EP4205260A1 - Device and system for a contactless energy transmission - Google Patents

Device and system for a contactless energy transmission

Info

Publication number
EP4205260A1
EP4205260A1 EP21745718.3A EP21745718A EP4205260A1 EP 4205260 A1 EP4205260 A1 EP 4205260A1 EP 21745718 A EP21745718 A EP 21745718A EP 4205260 A1 EP4205260 A1 EP 4205260A1
Authority
EP
European Patent Office
Prior art keywords
primary
conductor
current
loop
coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21745718.3A
Other languages
German (de)
French (fr)
Inventor
Jürgen BÖCKLE
Klaus Schwesinger
Michael Geissler
Michael Kutz
Matthias Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEW Eurodrive GmbH and Co KG
Original Assignee
SEW Eurodrive GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEW Eurodrive GmbH and Co KG filed Critical SEW Eurodrive GmbH and Co KG
Publication of EP4205260A1 publication Critical patent/EP4205260A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/50Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices
    • H02J50/502Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices the energy repeater being integrated together with the emitter or the receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/005Current collectors for power supply lines of electrically-propelled vehicles without mechanical contact between the collector and the power supply line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/32Constructional details of charging stations by charging in short intervals along the itinerary, e.g. during short stops
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention relates to a device for contactless energy transmission to a mobile consumer, comprising an energy source which generates a primary current and a primary conductor which is laid in the form of a primary loop and has a first inductance, the primary conductor being connected to the energy source and from which Primary current is traversed.
  • the invention also relates to a system for contactless energy transmission, comprising a device according to the invention and a mobile consumer, which has a transmitter head for receiving energy.
  • a system for contactless energy transmission is known from DE 100 53 373 B4.
  • the system includes a feed that injects a medium frequency alternating current into an elongated primary conductor.
  • Mobile loads can be moved along the primary conductor and each have a coil that is inductively coupled to the primary conductor. This inductive coupling means that energy can be transmitted from the primary conductor to the consumer.
  • a system for contactless energy transmission is also known from DE 102006 013 004 A1, which comprises a feed that feeds a medium-frequency alternating current into an elongated primary conductor.
  • a system for contactless energy transmission is known from DE 102004 055 1543 B4.
  • the system includes a power source connected to an elongate primary conductor.
  • a mobile consumer which can be moved along the primary conductor, has a pick-up.
  • the pick-up has a winding which is inductively coupled to the primary conductor. This inductive coupling means that energy can be transmitted from the primary conductor to the consumer's pick-up.
  • a system which comprises a primary conductor system and at least one device arranged to be movable along it.
  • a system for the wireless transmission of power is known from US 2012/0001497 A1. Said system comprises a power transmitting section and a power receiving section.
  • a system for electromagnetic energy transmission is known from US 2018/0278095 A1, which has a primary coil and a secondary coil.
  • a system for the inductive transmission of energy to a consumer is known from EP 2 700 140 B1.
  • the system includes a primary conductor system to which a secondary winding of the load is inductively coupled.
  • An inductive energy distribution system is known from DE 692 27242 T2.
  • the power distribution system includes a power source, a primary conductive path, and multiple electrical devices.
  • the invention is based on the object of further developing a device and a system for contactless energy transmission.
  • the object is achieved according to the invention by a device for contactless energy transmission with the features specified in claim 1.
  • Advantageous refinements and developments are the subject of the dependent claims.
  • the object is also achieved by a system for contactless energy transmission with the features specified in claim 13.
  • Advantageous refinements and developments are the subject of the dependent claims.
  • the device comprises a secondary conductor, which is laid in the form of a secondary loop and has a second inductance, and a capacitance, the secondary conductor being connected to the capacitance in such a way that the second inductance and the capacitance form an oscillating circuit, and the primary loop and the Secondary loop are placed such that the primary conductor and the secondary conductor are parallel over a coupling region with a coupling length, and that the primary conductor and the secondary conductor are inductively coupled in such a way that a secondary current flows through the secondary conductor.
  • the primary current in the primary conductor which preferably has a constant fundamental frequency and a constant current intensity, generates a first magnetic field.
  • the secondary current in the secondary conductor which has the same fundamental frequency and whose current strength depends on the primary current and on the dimensioning of the oscillating circuit, generates a second magnetic field.
  • the first magnetic field and the second magnetic field are superimposed to form an overall magnetic field.
  • Energy is transferred from the device to the consumer inductively via the overall magnetic field.
  • the power that can be transmitted to the consumer depends in particular on a field strength of the overall magnetic field.
  • the intensity of the secondary current can be adjusted by means of the secondary conductor, in particular by suitable dimensioning of the oscillating circuit.
  • the field strength of the overall magnetic field can thus be adjusted.
  • the power that can be transmitted to the consumer can thus be adjusted.
  • the device according to the invention thus allows the power that can be transmitted to the consumer to be set while the current strength of the primary current remains the same.
  • the secondary loop is arranged inside the primary loop. This results in an effective inductive coupling between the primary conductor and the secondary conductor with a small space requirement.
  • the primary loop has exactly one turn. Said design of the primary loop with exactly one turn requires a short length of the primary conductor and thus a small material requirement.
  • the secondary loop has exactly one turn. Said design of the secondary loop with exactly one turn requires a small length of the secondary conductor and thus a small material requirement.
  • the secondary loop has a plurality of turns. Said configuration of the secondary loop with a plurality of windings allows adjustment of the second inductance and thus dimensioning of the oscillating circuit. Furthermore, with a plurality of turns, one Mutual inductance, which describes the inductive coupling between the primary conductor and the secondary conductor, increases.
  • the resonant circuit is designed in such a way that the primary current and the secondary current flow in phase in the coupling region.
  • the first magnetic field generated by the primary current and the second magnetic field generated by the secondary current are then also in phase.
  • the overall magnetic field generated thus has a field strength that is greater than the field strength of the first magnetic field. In the coupling area, therefore, greater power can be transmitted from the device to the consumer than in an area in which only the primary conductor is located.
  • the resonant circuit is designed in such a way that the primary current and the secondary current flow in phase opposition in the coupling region.
  • the first magnetic field generated by the primary current and the second magnetic field generated by the secondary current are then also in antiphase.
  • the overall magnetic field generated thus has a field strength that is smaller than the field strength of the first magnetic field.
  • a lower power can therefore be transmitted by the device in the coupling area than in an area in which only the primary conductor is located.
  • the intensity of the secondary current is at least approximately the same as the intensity of the primary current. If the primary current and the secondary current flow in phase opposition in the coupling region, the first magnetic field generated by the primary current and the second magnetic field generated by the secondary current cancel each other out and the overall magnetic field is equal to zero.
  • a coupling area designed in this way can be used particularly advantageously in places where there are sources of interference that draw undesired energy from the device. Such sources of interference are, for example, steel reinforcements in a concrete floor, in which the primary conductor and the secondary conductor are laid. In a coupling area designed in this way, energy transfer to the consumer is not possible.
  • the current intensity of the secondary current is at least approximately half the current intensity of the primary current.
  • the first magnetic field generated by the primary current and that of the strengthen Secondary current generated second magnetic field to a total magnetic field with a field strength of 150% of the field strength of the first magnetic field.
  • the power that can be transmitted in the coupling area from the device to the consumer thus corresponds to 150% of the power that can be transmitted in an area in which only the primary conductor is located.
  • the primary loop has a loop width that is greater than the coupling length.
  • the coupling length and the space requirement of the coupling area are therefore relatively small.
  • Such a coupling area can advantageously be used in places where sources of interference are present, which draw undesired energy from the device when the first magnetic field and the second magnetic field cancel each other out in the coupling area.
  • the primary loop has a loop width that is smaller than the coupling length.
  • the coupling length of the coupling area is therefore relatively large. As a result, energy can be transmitted to the consumer over a large coupling area.
  • the primary loop and the secondary loop have approximately the same loop width.
  • a mutual inductance which describes the inductive coupling between the primary conductor and the secondary conductor, is increased.
  • a system according to the invention for contactless energy transmission comprises a device according to the invention for contactless energy transmission and a mobile consumer, which has a pick-up for receiving energy, the pick-up including a tertiary winding and being arranged such that the tertiary winding is inductively coupled to the primary conductor.
  • the energy is transmitted inductively via the tertiary winding of the pick-up to the mobile consumer.
  • the pick-up is arranged, at least temporarily, in such a way that the tertiary winding is inductively coupled to the primary conductor and to the secondary conductor in the coupling region.
  • An energy transfer from the device to the consumer takes place inductively via the total magnetic field, the field strength of which is adjustable. The power that can be transmitted to the consumer can thus be adjusted.
  • the pick-up can be moved along the primary conductor.
  • the consumer is thus able to inductively absorb energy from the device while traveling along the primary conductor.
  • Figure 1 a schematic representation of a system for contactless energy transmission
  • Figure 2 a simplified electrical equivalent circuit diagram of a device for contactless energy transmission
  • FIG. 3 a qualitative dependence of a secondary current on a capacitance of a capacitor.
  • FIG. 1 shows a schematic representation of a system for contactless energy transmission.
  • the system includes a device 20 for contactless energy transmission and a mobile consumer.
  • the mobile consumer is, for example, an autonomously driving vehicle.
  • the mobile consumer has a pick-up 50 for receiving energy.
  • the pick-up 50 includes a tertiary winding 31.
  • the device 20 is used for contactless energy transmission to the mobile consumer.
  • the device 20 comprises an energy source 40, which generates a primary current 11, and a primary conductor 11.
  • the primary conductor 11 is laid in the form of a primary loop 21 and has a first inductance L1.
  • the primary conductor 11 is electrically connected to the energy source 40 and has the primary current 11 flowing through it. In the present case, the primary loop 21 has exactly one turn.
  • the energy source 40 has a current source 42 which supplies the primary current 11 .
  • the primary current 11 is a medium-frequency alternating current and has a fundamental frequency F0 of 25 kHz or 50 kHz, for example.
  • a current strength of the primary current 11 is 60 A or 90 A, for example.
  • the primary conductor 11 is laid, for example, in a floor on which the mobile consumer moves.
  • the primary conductor 11 is laid close to the surface of the floor.
  • the mobile consumer's pick-up 50 is in close proximity of the ground above the primary conductor 11.
  • the pick-up 50 is arranged in such a way that the tertiary winding 31 is inductively coupled to the primary conductor 11. Energy can thus be transmitted from the energy source 40 via the primary conductor 11 to the tertiary winding 31 and thus to the consumer.
  • the mobile consumer drives on the floor, for example in a technical installation such as a production plant.
  • the pick-up 50 can be moved in particular along the primary conductor 11 .
  • energy can be transmitted from the device 20 to the consumer.
  • the device 20 for contactless energy transmission also includes a secondary conductor 12.
  • the secondary conductor 12 is laid in the form of a secondary loop 22 and has a second inductance L2.
  • the device 20 for contactless energy transmission also includes a capacitance C2.
  • the secondary conductor 12 is electrically connected to the capacitance C2 in such a way that the second inductance L2 and the capacitance C2 form an oscillating circuit.
  • the secondary conductor 12 is also laid, for example, in the floor on which the mobile consumer is moving.
  • the secondary conductor 12 is laid close to the surface of the floor.
  • the primary loop 21 and the secondary loop 22 are laid in such a way that the primary conductor 11 and the secondary conductor 12 run parallel over a coupling region with a coupling length D.
  • the primary conductor 11 and the secondary conductor 12 are inductively coupled in the coupling region in such a way that a secondary current I2 flows through the secondary conductor 12 .
  • the primary current I1 in the primary conductor 11 induces the secondary current I2 in the secondary conductor 12 via said inductive coupling.
  • the pick-up 50 of the mobile consumer is in the coupling area and in the immediate vicinity of the ground above the secondary conductor 12.
  • the pick-up 50 is arranged in such a way that the tertiary winding 31 is also inductively coupled to the secondary conductor 12.
  • the pickup 50 is thus arranged in the coupling region in such a way that the tertiary winding 31 is inductively coupled to the primary conductor 11 and to the secondary conductor 12 .
  • the secondary loop 22 is arranged inside the primary loop 21 .
  • the primary conductor 11 and the secondary conductor 12 are directly in the coupling area laid next to each other.
  • the primary loop 21 and the secondary loop 22 thus have an approximately equal loop width B.
  • the loop width B is an extension of the primary loop 21 and the secondary loop 22 perpendicular to the coupling length D.
  • the loop width B is smaller than the coupling length D. It is also conceivable that the loop width B is greater than the coupling length D.
  • the primary conductor 11 and the secondary conductor 12 are laid approximately in a plane which extends parallel to the surface of the floor.
  • the secondary loop 22 has exactly one turn. It is also conceivable that the secondary loop 22 has a plurality of turns.
  • the primary current 11 in the primary conductor 11 generates a first magnetic field.
  • the secondary current I2 in the secondary conductor 12 creates a second magnetic field.
  • the first magnetic field and the second magnetic field are superimposed to form an overall magnetic field.
  • the total magnetic field penetrates the tertiary winding 31 of the pick-up 50.
  • the power that can be transmitted to the consumer depends in particular on a field strength of the total magnetic field.
  • FIG. 2 shows a simplified electrical equivalent circuit diagram of the device 20 shown in FIG. 1 for contactless energy transmission.
  • the device 20 comprises the energy source 40 which has a current source 42 .
  • the current source 42 supplies the primary current 11 with the fundamental frequency F0.
  • the primary current 11 flows through the primary conductor 11 with the first inductance L1. In this case, a first voltage U1 drops across the energy source 40 .
  • the secondary current I2 flows through the secondary conductor 12 with the second inductance L2 and through the capacitance C2.
  • a second voltage U2 drops across the capacitance C2.
  • the second inductor L2 and the capacitor C2 form an oscillating circuit.
  • the inductive coupling between the primary conductor 11 and the secondary conductor 12 is represented by a mutual inductance M.
  • the second inductance L2 and the mutual inductance M are largely determined by the configuration of the primary conductor 11 and the secondary conductor 12 and the geometric arrangement of the primary loop 21 and the secondary loop 22.
  • the capacitance C2 can be selected depending on the desired application.
  • the primary current 11 and the secondary current I2 flow in phase.
  • the first magnetic field generated by the primary current I1 and the second magnetic field generated by the secondary current I2 are then also in phase.
  • the overall magnetic field generated thus has a field strength that is greater than the field strength of the first magnetic field. A greater power can thus be transmitted to the consumer in the coupling area than in an area in which only the primary conductor 11 is located.
  • the primary current I1 and the secondary current I2 flow in phase opposition.
  • the first magnetic field generated by the primary current I1 and the second magnetic field generated by the secondary current I2 are then also in phase opposition.
  • the total magnetic field generated thus has a field strength that is smaller than the field strength of the first magnetic field. In the coupling area, therefore, less power can be transmitted to the consumer than in an area in which only the primary conductor 11 is located.
  • the oscillating circuit therefore has a resonant frequency FR which corresponds to the fundamental frequency FO.
  • the resonant frequency FR of the oscillating circuit corresponds to the fundamental frequency FO, a relatively large secondary current I2 flows, which may cause the device 20 to be destroyed.
  • FIG. 3 qualitatively shows a dependency of the secondary current I2 on the capacitance C2 of the capacitor.
  • the capacitance C2 of the capacitor is plotted on the abscissa, and the secondary current I2 is plotted on the ordinate.
  • the second inductance L2 and the mutual inductance M are assumed to be constant.
  • the capacitance C2 of the capacitor is variable.
  • the primary current I1 and the secondary current I2 flow in phase.
  • the amperage of the secondary current I2 is half the amperage of the primary current 11.
  • the power that can be transmitted to the consumer in the coupling area corresponds to 150% of the power that can be transmitted in an area in which only the Primary conductor 11 is located.
  • the resonant frequency FR of the resonant circuit corresponds to the fundamental frequency F0.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

The invention relates to a device (20) for a contactless energy transmission to a mobile load, comprising an energy source (40), which generates a primary current (I1), and a primary conductor (11), which is provided in the form of a primary loop (21) and has a first inductor (L1), wherein the primary conductor (11) is connected to the energy source (40), and the primary current (I1) flows through the primary conductor. The device (20) comprises a secondary conductor (12), which is provided in the form of a secondary loop (22) and has a second inductor (L2), and a capacitor (C2). The secondary conductor (12) is connected to the capacitor (C2) such that the second inductor (L2) and the capacitor (C2) form a resonant circuit, and the primary loop (21) and the secondary loop (22) are provided such that the primary conductor (11) and the secondary conductor (12) run parallel over a coupling region with a coupling length (D). The primary conductor (11) and the secondary conductor (12) are inductively coupled in the coupling region such that a secondary current (I2) flows through the secondary conductor (12). The invention also relates to a system for a contactless energy transmission, comprising a device (20) according to the invention and a mobile load which has a transmitter head (50) for receiving energy, said transmitter head (50) comprising a tertiary winding (31) and being arranged such that the tertiary winding (31) is inductively coupled to the primary conductor (11).

Description

Vorrichtung und System zur berührungslosen Energieübertragung Device and system for non-contact energy transfer
Beschreibung: Description:
Die Erfindung betrifft eine Vorrichtung zur berührungslosen Energieübertragung zu einem mobilen Verbraucher, umfassend eine Energiequelle, welche einen Primärstrom erzeugt, und einen Primärleiter, welcher in Form einer Primärschleife gelegt ist und eine erste Induktivität aufweist, wobei der Primärleiter mit der Energiequelle verbunden ist und von dem Primärstrom durchflossen wird. Die Erfindung betrifft auch ein System zur berührungslosen Energieübertragung, umfassend eine erfindungsgemäße Vorrichtung und einen mobilen Verbraucher, welcher einen Übertragerkopf zur Aufnahme von Energie aufweist. The invention relates to a device for contactless energy transmission to a mobile consumer, comprising an energy source which generates a primary current and a primary conductor which is laid in the form of a primary loop and has a first inductance, the primary conductor being connected to the energy source and from which Primary current is traversed. The invention also relates to a system for contactless energy transmission, comprising a device according to the invention and a mobile consumer, which has a transmitter head for receiving energy.
Aus der DE 100 53 373 B4 ist ein System zur berührungslosen Energieübertragung bekannt. Das System umfasst eine Einspeisung, die einen mittelfrequenten Wechselstrom in einen langgestreckten Primärleiter einspeist. Mobile Verbraucher sind entlang dem Primärleiter bewegbar und weisen jeweils eine Spule auf, die mit dem Primärleiter induktiv gekoppelt ist. Durch diese induktive Kopplung ist Energie von dem Primärleiter zu dem Verbraucher übertragbar. A system for contactless energy transmission is known from DE 100 53 373 B4. The system includes a feed that injects a medium frequency alternating current into an elongated primary conductor. Mobile loads can be moved along the primary conductor and each have a coil that is inductively coupled to the primary conductor. This inductive coupling means that energy can be transmitted from the primary conductor to the consumer.
Auch aus der DE 102006 013 004 A1 ist ein System zur berührungslosen Energieübertragung bekannt, das eine Einspeisung, die einen mittelfrequenten Wechselstrom in einen langgestreckten Primärleiter einspeist, umfasst. A system for contactless energy transmission is also known from DE 102006 013 004 A1, which comprises a feed that feeds a medium-frequency alternating current into an elongated primary conductor.
Aus der DE 102004 055 1543 B4 ist ein System zur berührungslosen Energieübertragung bekannt. Das System umfasst eine Stromquelle, die mit einem langgestreckten Primärleiter verbunden ist. Ein mobiler Verbraucher, der entlang dem Primärleiter bewegbar ist, weist einen Übertragerkopf auf. Der Übertragerkopf weist eine Wicklung auf, die mit dem Primärleiter induktiv gekoppelt ist. Durch diese induktive Kopplung ist Energie von dem Primärleiter zu dem Übertragerkopf des Verbrauchers übertragbar. A system for contactless energy transmission is known from DE 102004 055 1543 B4. The system includes a power source connected to an elongate primary conductor. A mobile consumer, which can be moved along the primary conductor, has a pick-up. The pick-up has a winding which is inductively coupled to the primary conductor. This inductive coupling means that energy can be transmitted from the primary conductor to the consumer's pick-up.
Aus der DE 102007 024293 A1 ist eine Anlage bekannt, welche ein Primärleitersystem und zumindest eine daran entlang bewegbar angeordnete Vorrichtung umfasst. Aus der US 2012/0001497 A1 ist ein System zur drahtlosen Übertragung von Leistung bekannt. Das besagte System umfasst einen leistungsübertragenden Abschnitt und einen leistungsempfangenden Abschnitt. From DE 102007 024293 A1 a system is known which comprises a primary conductor system and at least one device arranged to be movable along it. A system for the wireless transmission of power is known from US 2012/0001497 A1. Said system comprises a power transmitting section and a power receiving section.
Aus der US 2018/0278095 A1 ist ein System zur elektromagnetischen Energieübertragung bekannt, welches eine Primärspule und eine Sekundärspule aufweist. A system for electromagnetic energy transmission is known from US 2018/0278095 A1, which has a primary coil and a secondary coil.
Aus der EP 2 700 140 B1 ist ein System zur induktiven Energieübertragung an einen Verbraucher bekannt. Das System umfasst dabei ein Primärleitersystem, an welches eine Sekundärwicklung des Verbrauchers induktiv gekoppelt ist. A system for the inductive transmission of energy to a consumer is known from EP 2 700 140 B1. The system includes a primary conductor system to which a secondary winding of the load is inductively coupled.
Aus der DE 692 27242 T2 ist ein induktives Energieverteilungssystem bekannt. Das Energieverteilungssystem weist dabei eine Stromquelle, einen Primärleiterweg und mehrere elektrische Geräte auf. An inductive energy distribution system is known from DE 692 27242 T2. The power distribution system includes a power source, a primary conductive path, and multiple electrical devices.
Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung sowie ein System zur berührungslosen Energieübertragung weiterzubilden. The invention is based on the object of further developing a device and a system for contactless energy transmission.
Die Aufgabe wird erfindungsgemäß durch eine Vorrichtung zur berührungslosen Energieübertragung mit den in Anspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen sind Gegenstand der Unteransprüche. Die Aufgabe wird auch durch ein System zur berührungslosen Energieübertragung mit den in Anspruch 13 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen sind Gegenstand der Unteransprüche. The object is achieved according to the invention by a device for contactless energy transmission with the features specified in claim 1. Advantageous refinements and developments are the subject of the dependent claims. The object is also achieved by a system for contactless energy transmission with the features specified in claim 13. Advantageous refinements and developments are the subject of the dependent claims.
Eine erfindungsgemäße Vorrichtung zur berührungslosen Energieübertragung zu einem mobilen Verbraucher umfasst eine Energiequelle, welche einen Primärstrom erzeugt, und einen Primärleiter, welcher in Form einer Primärschleife gelegt ist und eine erste Induktivität aufweist, wobei der Primärleiter mit der Energiequelle verbunden ist und von dem Primärstrom durchflossen wird. Die Vorrichtung umfasst einen Sekundärleiter, welcher in Form einer Sekundärschleife gelegt ist und eine zweite Induktivität aufweist, und eine Kapazität, wobei der Sekundärleiter mit der Kapazität derart verbunden ist, dass die zweite Induktivität und die Kapazität einen Schwingkreis bilden, und wobei die Primärschleife und die Sekundärschleife derart gelegt sind, dass der Primärleiter und der Sekundärleiter über einen Kopplungsbereich mit einer Kopplungslänge parallel verlaufen, und dass der Primärleiter und der Sekundärleiter derart induktiv gekoppelt sind, dass der Sekundärleiter von einem Sekundärstrom durchflossen wird. A device according to the invention for contactless energy transmission to a mobile consumer comprises an energy source, which generates a primary current, and a primary conductor, which is laid in the form of a primary loop and has a first inductance, the primary conductor being connected to the energy source and having the primary current flow through it . The device comprises a secondary conductor, which is laid in the form of a secondary loop and has a second inductance, and a capacitance, the secondary conductor being connected to the capacitance in such a way that the second inductance and the capacitance form an oscillating circuit, and the primary loop and the Secondary loop are placed such that the primary conductor and the secondary conductor are parallel over a coupling region with a coupling length, and that the primary conductor and the secondary conductor are inductively coupled in such a way that a secondary current flows through the secondary conductor.
Der Primärstrom in dem Primärleiter, der vorzugsweise eine konstante Grundfrequenz und eine konstante Stromstärke aufweist, erzeugt ein erstes Magnetfeld. Der Sekundärstrom in dem Sekundärleiter, der die gleiche Grundfrequenz aufweist, und dessen Stromstärke von dem Primärstrom sowie von der Dimensionierung des Schwingkreises abhängt, erzeugt ein zweites Magnetfeld. Das erste Magnetfeld und das zweite Magnetfeld überlagern sich zu einem Gesamtmagnetfeld. Eine Energieübertragung von der Vorrichtung zu dem Verbraucher erfolgt induktiv über das Gesamtmagnetfeld. Die zu dem Verbraucher übertragbare Leistung hängt insbesondere von einer Feldstärke des Gesamtmagnetfelds ab. Mittels des Sekundärleiters, insbesondere durch geeignete Dimensionierung des Schwingkreises, ist die Stromstärke des Sekundärstroms einstellbar. Damit ist die Feldstärke des Gesamtmagnetfelds einstellbar. Damit ist die zu dem Verbraucher übertragbare Leistung einstellbar. Die erfindungsgemäße Vorrichtung gestattet somit eine Einstellung die zu dem Verbraucher übertragbaren Leistung bei gleichbleibender Stromstärke des Primärstroms. The primary current in the primary conductor, which preferably has a constant fundamental frequency and a constant current intensity, generates a first magnetic field. The secondary current in the secondary conductor, which has the same fundamental frequency and whose current strength depends on the primary current and on the dimensioning of the oscillating circuit, generates a second magnetic field. The first magnetic field and the second magnetic field are superimposed to form an overall magnetic field. Energy is transferred from the device to the consumer inductively via the overall magnetic field. The power that can be transmitted to the consumer depends in particular on a field strength of the overall magnetic field. The intensity of the secondary current can be adjusted by means of the secondary conductor, in particular by suitable dimensioning of the oscillating circuit. The field strength of the overall magnetic field can thus be adjusted. The power that can be transmitted to the consumer can thus be adjusted. The device according to the invention thus allows the power that can be transmitted to the consumer to be set while the current strength of the primary current remains the same.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung ist die Sekundärschleife innerhalb der Primärschleife angeordnet. Dies ergibt eine effektive induktive Kopplung zwischen dem Primärleiter und dem Sekundärleiter bei einem geringen Platzbedarf. According to an advantageous embodiment of the invention, the secondary loop is arranged inside the primary loop. This results in an effective inductive coupling between the primary conductor and the secondary conductor with a small space requirement.
Gemäß einer bevorzugten Ausgestaltung der Erfindung weist die Primärschleife genau eine Windung auf. Die besagte Ausgestaltung der Primärschleife mit genau einer Windung erfordert eine geringe Länge des Primärleiters und damit einen geringen Materialbedarf. According to a preferred embodiment of the invention, the primary loop has exactly one turn. Said design of the primary loop with exactly one turn requires a short length of the primary conductor and thus a small material requirement.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung weist die Sekundärschleife genau eine Windung auf. Die besagte Ausgestaltung der Sekundärschleife mit genau einer Windung erfordert eine geringe Länge des Sekundärleiters und damit einen geringen Materialbedarf. According to an advantageous embodiment of the invention, the secondary loop has exactly one turn. Said design of the secondary loop with exactly one turn requires a small length of the secondary conductor and thus a small material requirement.
Gemäß einer anderen vorteilhaften Ausgestaltung der Erfindung weist die Sekundärschleife eine Mehrzahl von Windungen auf. Die besagte Ausgestaltung der Sekundärschleife mit einer Mehrzahl von Windungen gestattet eine Einstellung der zweiten Induktivität und damit eine Dimensionierung des Schwingkreises. Ferner ist bei einer Mehrzahl von Windungen eine Gegeninduktivität, welche die induktive Kopplung zwischen dem Primärleiter und dem Sekundärleiter beschreibt, erhöht. According to another advantageous embodiment of the invention, the secondary loop has a plurality of turns. Said configuration of the secondary loop with a plurality of windings allows adjustment of the second inductance and thus dimensioning of the oscillating circuit. Furthermore, with a plurality of turns, one Mutual inductance, which describes the inductive coupling between the primary conductor and the secondary conductor, increases.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung ist der Schwingkreis derart ausgestaltet, dass der Primärstrom und der Sekundärstrom in dem Kopplungsbereich gleichphasig fließen. Das vom dem Primärstrom erzeugte erste Magnetfeld und das von dem Sekundärstrom erzeugte zweite Magnetfeld sind dann ebenfalls gleichphasig. Das erzeugte Gesamtmagnetfeld weist somit eine Feldstärke auf, die größer ist als die Feldstärke des ersten Magnetfeldes. In dem Kopplungsbereich ist somit eine größere Leistung von der Vorrichtung zu dem Verbraucher übertragbar als in einem Bereich, in welchem ausschließlich der Primärleiter liegt. According to an advantageous embodiment of the invention, the resonant circuit is designed in such a way that the primary current and the secondary current flow in phase in the coupling region. The first magnetic field generated by the primary current and the second magnetic field generated by the secondary current are then also in phase. The overall magnetic field generated thus has a field strength that is greater than the field strength of the first magnetic field. In the coupling area, therefore, greater power can be transmitted from the device to the consumer than in an area in which only the primary conductor is located.
Gemäß einer anderen vorteilhaften Ausgestaltung der Erfindung ist der Schwingkreis derart ausgestaltet, dass der Primärstrom und der Sekundärstrom in dem Kopplungsbereich gegenphasig fließen. Das vom dem Primärstrom erzeugte erste Magnetfeld und das von dem Sekundärstrom erzeugte zweite Magnetfeld sind dann ebenfalls gegenphasig. Unter der Annahme, dass der Sekundärstrom betragsmäßig kleiner ist als der Primärstrom, weist das erzeugte Gesamtmagnetfeld somit eine Feldstärke auf, die kleiner ist als die Feldstärke des ersten Magnetfeldes. In dem Kopplungsbereich ist somit eine kleinere Leistung von der Vorrichtung übertragbar als in einem Bereich, in welchem ausschließlich der Primärleiter liegt. According to another advantageous embodiment of the invention, the resonant circuit is designed in such a way that the primary current and the secondary current flow in phase opposition in the coupling region. The first magnetic field generated by the primary current and the second magnetic field generated by the secondary current are then also in antiphase. Assuming that the magnitude of the secondary current is smaller than the primary current, the overall magnetic field generated thus has a field strength that is smaller than the field strength of the first magnetic field. A lower power can therefore be transmitted by the device in the coupling area than in an area in which only the primary conductor is located.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung ist eine Stromstärke des Sekundärstroms zumindest annähernd gleich groß ist wie eine Stromstärke des Primärstroms. Wenn der Primärstrom und der Sekundärstrom dabei in dem Kopplungsbereich gegenphasig fließen, so löschen sich das vom dem Primärstrom erzeugte erste Magnetfeld und das von dem Sekundärstrom erzeugte zweite Magnetfeld gegenseitig aus und das Gesamtmagnetfeld ist gleich null. Ein derart ausgebildeter Kopplungsbereich ist besonders vorteilhaft an Stellen einsetzbar, wo Störquellen vorhanden sind, die der Vorrichtung ungewünscht Energie entnehmen. Solche Störquellen sind beispielsweise Stahlarmierungen in einem Betonboden, in welchen der Primärleiter und der Sekundärleiter verlegt sind. In einem derart ausgebildeten Kopplungsbereich ist eine Energieübertragung zu dem Verbrauch nicht möglich. According to an advantageous embodiment of the invention, the intensity of the secondary current is at least approximately the same as the intensity of the primary current. If the primary current and the secondary current flow in phase opposition in the coupling region, the first magnetic field generated by the primary current and the second magnetic field generated by the secondary current cancel each other out and the overall magnetic field is equal to zero. A coupling area designed in this way can be used particularly advantageously in places where there are sources of interference that draw undesired energy from the device. Such sources of interference are, for example, steel reinforcements in a concrete floor, in which the primary conductor and the secondary conductor are laid. In a coupling area designed in this way, energy transfer to the consumer is not possible.
Gemäß einer anderen vorteilhaften Ausgestaltung der Erfindung ist eine Stromstärke des Sekundärstroms zumindest annähernd halb so groß wie eine Stromstärke des Primärstroms. Wenn der Primärstrom und der Sekundärstrom in dem Kopplungsbereich gleichphasig fließen, so verstärken sich das vom dem Primärstrom erzeugte erste Magnetfeld und das von dem Sekundärstrom erzeugte zweite Magnetfeld zu einem Gesamtmagnetfeld mit einer Feldstärke von 150% der Feldstärke des ersten Magnetfeldes. Die in dem Kopplungsbereich von der Vorrichtung zu dem Verbraucher übertragbare Leistung entspricht damit 150% der Leistung, die in einem Bereich übertragbar ist, in welchem ausschließlich der Primärleiter liegt. According to another advantageous embodiment of the invention, the current intensity of the secondary current is at least approximately half the current intensity of the primary current. When the primary current and the secondary current flow in phase in the coupling region, the first magnetic field generated by the primary current and that of the strengthen Secondary current generated second magnetic field to a total magnetic field with a field strength of 150% of the field strength of the first magnetic field. The power that can be transmitted in the coupling area from the device to the consumer thus corresponds to 150% of the power that can be transmitted in an area in which only the primary conductor is located.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung weist die Primärschleife eine Schleifenbreite auf, welche größer ist als die Kopplungslänge. Die Kopplungslänge und der Platzbedarf des Kopplungsbereichs sind somit relativ gering. Ein solcher Kopplungsbereich ist vorteilhaft an Stellen einsetzbar, wo Störquellen vorhanden sind, die der Vorrichtung ungewünscht Energie entnehmen, wenn in dem Kopplungsbereich das erste Magnetfeld und das zweite Magnetfeld sich gegenseitig auslöschen. According to an advantageous embodiment of the invention, the primary loop has a loop width that is greater than the coupling length. The coupling length and the space requirement of the coupling area are therefore relatively small. Such a coupling area can advantageously be used in places where sources of interference are present, which draw undesired energy from the device when the first magnetic field and the second magnetic field cancel each other out in the coupling area.
Gemäß einer anderen vorteilhaften Ausgestaltung der Erfindung weist die Primärschleife eine Schleifenbreite auf, welche kleiner ist als die Kopplungslänge. Die Kopplungslänge des Kopplungsbereichs ist somit relativ groß. Dadurch ist die Energieübertragung zu dem Verbraucher in einem großen Kopplungsbereich möglich. According to another advantageous embodiment of the invention, the primary loop has a loop width that is smaller than the coupling length. The coupling length of the coupling area is therefore relatively large. As a result, energy can be transmitted to the consumer over a large coupling area.
Vorzugsweise weisen die Primärschleife und die Sekundärschleife eine annähernd gleiche Schleifenbreite auf. Dadurch ist eine Gegeninduktivität, welche die induktive Kopplung zwischen dem Primärleiter und dem Sekundärleiter beschreibt, erhöht. Preferably, the primary loop and the secondary loop have approximately the same loop width. As a result, a mutual inductance, which describes the inductive coupling between the primary conductor and the secondary conductor, is increased.
Ein erfindungsgemäßes System zur berührungslosen Energieübertragung umfasst eine erfindungsgemäße Vorrichtung zur berührungslosen Energieübertragung und einen mobilen Verbraucher, welcher einen Übertragerkopf zur Aufnahme von Energie aufweist, wobei der Übertragerkopf eine Tertiärwicklung umfasst und derart angeordnet ist, dass die Tertiärwicklung mit dem Primärleiter induktiv gekoppelt ist. A system according to the invention for contactless energy transmission comprises a device according to the invention for contactless energy transmission and a mobile consumer, which has a pick-up for receiving energy, the pick-up including a tertiary winding and being arranged such that the tertiary winding is inductively coupled to the primary conductor.
In dem erfindungsgemäßen System ist somit eine berührungslose Energieübertragung von der Vorrichtung zu dem Verbraucher möglich. Die Energieübertragung erfolgt dabei induktiv über die Tertiärwicklung des Übertragerkopfs zu dem mobilen Verbraucher. Contactless energy transmission from the device to the consumer is thus possible in the system according to the invention. The energy is transmitted inductively via the tertiary winding of the pick-up to the mobile consumer.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung ist der Übertragerkopf, zumindest zeitweise, derart angeordnet, dass die Tertiärwicklung mit dem Primärleiter und mit dem Sekundärleiter in dem Kopplungsbereich induktiv gekoppelt ist. Eine Energieübertragung von der Vorrichtung zu dem Verbraucher erfolgt dabei induktiv über das Gesamtmagnetfeld, dessen Feldstärke einstellbar ist. Damit ist die zu dem Verbraucher übertragbare Leistung einstellbar. According to an advantageous embodiment of the invention, the pick-up is arranged, at least temporarily, in such a way that the tertiary winding is inductively coupled to the primary conductor and to the secondary conductor in the coupling region. An energy transfer from the device to the consumer takes place inductively via the total magnetic field, the field strength of which is adjustable. The power that can be transmitted to the consumer can thus be adjusted.
Gemäß einer bevorzugten Ausgestaltung der Erfindung ist der Übertragerkopf entlang des Primärleiters bewegbar. Der Verbraucher ist somit in der Lage, während einer Fahrt entlang des Primärleiters Energie von der Vorrichtung induktiv aufzunehmen. According to a preferred embodiment of the invention, the pick-up can be moved along the primary conductor. The consumer is thus able to inductively absorb energy from the device while traveling along the primary conductor.
Die Erfindung ist nicht auf die Merkmalskombination der Ansprüche beschränkt. Für den Fachmann ergeben sich weitere sinnvolle Kombinationsmöglichkeiten von Ansprüchen und/oder einzelnen Anspruchsmerkmalen und/oder Merkmalen der Beschreibung und/oder der Figuren, insbesondere aus der Aufgabenstellung und/oder der sich durch Vergleich mit dem Stand der Technik stellenden Aufgabe. The invention is not limited to the combination of features of the claims. For the person skilled in the art, there are further meaningful combinations of claims and/or individual claim features and/or features of the description and/or the figures, in particular from the task and/or the task posed by comparison with the prior art.
Die Erfindung wird nun anhand von Abbildungen näher erläutert. Die Erfindung ist nicht auf die in den Abbildungen dargestellten Ausführungsbeispiele beschränkt. Die Abbildungen stellen den Gegenstand der Erfindung nur schematisch dar. Es zeigen: The invention will now be explained in more detail with reference to figures. The invention is not limited to the exemplary embodiments shown in the figures. The figures represent the subject matter of the invention only schematically. It shows:
Figur 1 : eine schematische Darstellung eines Systems zur berührungslosen Energieübertragung, Figure 1: a schematic representation of a system for contactless energy transmission,
Figur 2: ein vereinfachtes elektrisches Ersatzschaltbild einer Vorrichtung zur berührungslosen Energieübertragung und Figure 2: a simplified electrical equivalent circuit diagram of a device for contactless energy transmission and
Figur 3: qualitativ eine Abhängigkeit eines Sekundärstroms von einer Kapazität eines Kondensators. FIG. 3: a qualitative dependence of a secondary current on a capacitance of a capacitor.
Figur 1 zeigt eine schematische Darstellung eines Systems zur berührungslosen Energieübertragung. Das System umfasst eine Vorrichtung 20 zur berührungslosen Energieübertragung und einen mobilen Verbraucher. Bei dem mobilen Verbraucher handelt es sich beispielsweise um ein autonom fahrendes Fahrzeug. Der mobile Verbraucher weist einen Übertragerkopf 50 zur Aufnahme von Energie auf. Der Übertragerkopf 50 umfasst eine Tertiärwicklung 31. FIG. 1 shows a schematic representation of a system for contactless energy transmission. The system includes a device 20 for contactless energy transmission and a mobile consumer. The mobile consumer is, for example, an autonomously driving vehicle. The mobile consumer has a pick-up 50 for receiving energy. The pick-up 50 includes a tertiary winding 31.
Die Vorrichtung 20 dient zur berührungslosen Energieübertragung zu dem mobilen Verbraucher. Die Vorrichtung 20 umfasst eine Energiequelle 40, welche einen Primärstrom 11 erzeugt, und einen Primärleiter 11. Der Primärleiter 11 ist in Form einer Primärschleife 21 gelegt und weist eine erste Induktivität L1 auf. Der Primärleiter 11 ist mit der Energiequelle 40 elektrisch verbunden und wird von dem Primärstrom 11 durchflossen. Die Primärschleife 21 weist vorliegend genau eine Windung auf. The device 20 is used for contactless energy transmission to the mobile consumer. The device 20 comprises an energy source 40, which generates a primary current 11, and a primary conductor 11. The primary conductor 11 is laid in the form of a primary loop 21 and has a first inductance L1. The primary conductor 11 is electrically connected to the energy source 40 and has the primary current 11 flowing through it. In the present case, the primary loop 21 has exactly one turn.
Die Energiequelle 40 weist eine Stromquelle 42 auf, welche den Primärstrom 11 liefert. Der Primärstrom 11 ist ein mittelfrequenter Wechselstrom und hat eine Grundfrequenz F0 von beispielweise 25 kHz oder 50 kHz. Eine Stromstärke des Primärstroms 11 beträgt beispielweise 60 A oder 90 A. The energy source 40 has a current source 42 which supplies the primary current 11 . The primary current 11 is a medium-frequency alternating current and has a fundamental frequency F0 of 25 kHz or 50 kHz, for example. A current strength of the primary current 11 is 60 A or 90 A, for example.
Der Primärleiter 11 ist beispielsweise in einem Boden verlegt, auf welchem der mobile Verbraucher sich bewegt. Der Primärleiter 11 ist dabei nahe an der Oberfläche des Bodens verlegt. Der Übertragerkopf 50 des mobilen Verbrauchers befindet sich in unmittelbarer Nähe des Bodens über dem Primärleiter 11. Insbesondere ist der Übertragerkopf 50 dabei derart angeordnet, dass die Tertiärwicklung 31 mit dem Primärleiter 11 induktiv gekoppelt ist. Somit ist Energie von der Energiequelle 40 über den Primärleiter 11 zu der Tertiärwicklung 31 und damit zu dem Verbraucher übertragbar. The primary conductor 11 is laid, for example, in a floor on which the mobile consumer moves. The primary conductor 11 is laid close to the surface of the floor. The mobile consumer's pick-up 50 is in close proximity of the ground above the primary conductor 11. In particular, the pick-up 50 is arranged in such a way that the tertiary winding 31 is inductively coupled to the primary conductor 11. Energy can thus be transmitted from the energy source 40 via the primary conductor 11 to the tertiary winding 31 and thus to the consumer.
Der mobile Verbraucher fährt auf dem Boden, beispielsweise in einer technischen Anlage wie einem Produktionswerk. Dabei ist der Übertragerkopf 50 insbesondere entlang des Primärleiters 11 bewegbar. Somit ist während der Fahrt des mobilen Verbrauchers Energie von der Vorrichtung 20 zu dem Verbraucher übertragbar. The mobile consumer drives on the floor, for example in a technical installation such as a production plant. In this case, the pick-up 50 can be moved in particular along the primary conductor 11 . Thus, while the mobile consumer is driving, energy can be transmitted from the device 20 to the consumer.
Die Vorrichtung 20 zur berührungslosen Energieübertragung umfasst auch einen Sekundärleiter 12. Der Sekundärleiter 12 ist in Form einer Sekundärschleife 22 gelegt und weist eine zweite Induktivität L2 auf. Die Vorrichtung 20 zur berührungslosen Energieübertragung umfasst ferner eine Kapazität C2. Der Sekundärleiter 12 ist mit der Kapazität C2 elektrisch derart verbunden, dass die zweite Induktivität L2 und die Kapazität C2 einen Schwingkreis bilden. Der Sekundärleiter 12 ist ebenfalls beispielsweise in dem Boden verlegt, auf welchem der mobile Verbraucher sich bewegt. Der Sekundärleiter 12 ist dabei nahe an der Oberfläche des Bodens verlegt. The device 20 for contactless energy transmission also includes a secondary conductor 12. The secondary conductor 12 is laid in the form of a secondary loop 22 and has a second inductance L2. The device 20 for contactless energy transmission also includes a capacitance C2. The secondary conductor 12 is electrically connected to the capacitance C2 in such a way that the second inductance L2 and the capacitance C2 form an oscillating circuit. The secondary conductor 12 is also laid, for example, in the floor on which the mobile consumer is moving. The secondary conductor 12 is laid close to the surface of the floor.
Die Primärschleife 21 und die Sekundärschleife 22 sind derart gelegt, dass der Primärleiter 11 und der Sekundärleiter 12 über einen Kopplungsbereich mit einer Kopplungslänge D parallel verlaufen. Dabei sind der Primärleiter 11 und der Sekundärleiter 12 in dem Kopplungsbereich derart induktiv gekoppelt, dass der Sekundärleiter 12 von einem Sekundärstrom I2 durchflossen wird. Der Primärstrom 11 in dem Primärleiter 11 induziert dabei über die besagte induktive Kopplung den Sekundärstrom I2 in dem Sekundärleiter 12. The primary loop 21 and the secondary loop 22 are laid in such a way that the primary conductor 11 and the secondary conductor 12 run parallel over a coupling region with a coupling length D. The primary conductor 11 and the secondary conductor 12 are inductively coupled in the coupling region in such a way that a secondary current I2 flows through the secondary conductor 12 . The primary current I1 in the primary conductor 11 induces the secondary current I2 in the secondary conductor 12 via said inductive coupling.
In der hier gezeigten Darstellung befindet sich der Übertragerkopf 50 des mobilen Verbrauchers in dem Kopplungsbereich und in unmittelbarer Nähe des Bodens über dem Sekundärleiter 12. Insbesondere ist der Übertragerkopf 50 dabei derart angeordnet, dass die Tertiärwicklung 31 auch mit dem Sekundärleiter 12 induktiv gekoppelt ist. In dem Kopplungsbereich ist der Übertragerkopf 50 somit derart angeordnet, dass die Tertiärwicklung 31 mit dem Primärleiter 11 und mit dem Sekundärleiter 12 induktiv gekoppelt ist. In the representation shown here, the pick-up 50 of the mobile consumer is in the coupling area and in the immediate vicinity of the ground above the secondary conductor 12. In particular, the pick-up 50 is arranged in such a way that the tertiary winding 31 is also inductively coupled to the secondary conductor 12. The pickup 50 is thus arranged in the coupling region in such a way that the tertiary winding 31 is inductively coupled to the primary conductor 11 and to the secondary conductor 12 .
Die Sekundärschleife 22 ist vorliegend innerhalb der Primärschleife 21 angeordnet. In dem Kopplungsbereich sind dabei der Primärleiter 11 und der Sekundärleiter 12 unmittelbar nebeneinander verlegt. Die Primärschleife 21 und die Sekundärschleife 22 weisen somit eine annähernd gleiche Schleifenbreite B auf. Die Schleifenbreite B ist dabei eine Ausdehnung der Primärschleife 21 sowie der Sekundärschleife 22 rechtwinklig zu der Kopplungslänge D. Vorliegend ist die Schleifenbreite B kleiner ist als die Kopplungslänge D. Es ist auch denkbar, dass die Schleifenbreite B größer als die Kopplungslänge D ist. In the present case, the secondary loop 22 is arranged inside the primary loop 21 . The primary conductor 11 and the secondary conductor 12 are directly in the coupling area laid next to each other. The primary loop 21 and the secondary loop 22 thus have an approximately equal loop width B. The loop width B is an extension of the primary loop 21 and the secondary loop 22 perpendicular to the coupling length D. In the present case, the loop width B is smaller than the coupling length D. It is also conceivable that the loop width B is greater than the coupling length D.
In dem Kopplungsbereich sind der Primärleiter 11 und der Sekundärleiter 12 annähernd in einer Ebene verlegt, welche sich parallel zu der Oberfläche des Bodens erstreckt. Vorliegend weist die Sekundärschleife 22 genau eine Windung auf. Es ist auch denkbar, dass die Sekundärschleife 22 eine Mehrzahl von Windungen aufweist. In the coupling area, the primary conductor 11 and the secondary conductor 12 are laid approximately in a plane which extends parallel to the surface of the floor. In the present case, the secondary loop 22 has exactly one turn. It is also conceivable that the secondary loop 22 has a plurality of turns.
Der Primärstrom 11 in dem Primärleiter 11 erzeugt ein erstes Magnetfeld. Der Sekundärstrom I2 in dem Sekundärleiter 12 erzeugt ein zweites Magnetfeld. Das erste Magnetfeld und das zweite Magnetfeld überlagern sich zu einem Gesamtmagnetfeld. Bei einer Energieübertragung von der Vorrichtung 20 zu dem Verbraucher durchdringt das Gesamtmagnetfeld die Tertiärwicklung 31 des Übertragerkopfs 50. Die zu dem Verbraucher übertragbare Leistung hängt insbesondere von einer Feldstärke des Gesamtmagnetfelds ab. The primary current 11 in the primary conductor 11 generates a first magnetic field. The secondary current I2 in the secondary conductor 12 creates a second magnetic field. The first magnetic field and the second magnetic field are superimposed to form an overall magnetic field. When energy is transmitted from the device 20 to the consumer, the total magnetic field penetrates the tertiary winding 31 of the pick-up 50. The power that can be transmitted to the consumer depends in particular on a field strength of the total magnetic field.
Figur 2 zeigt ein vereinfachtes elektrisches Ersatzschaltbild der in Figur 1 dargestellten Vorrichtung 20 zur berührungslosen Energieübertragung. Die Vorrichtung 20 umfasst, wie bereits erwähnt, die Energiequelle 40, welche eine Stromquelle 42 aufweist. Die Stromquelle 42 liefert den Primärstrom 11 mit der Grundfrequenz F0. Der Primärstrom 11 fließt durch den Primärleiter 11 mit der ersten Induktivität L1. Über der Energiequelle 40 fällt dabei eine erste Spannung U1 ab. FIG. 2 shows a simplified electrical equivalent circuit diagram of the device 20 shown in FIG. 1 for contactless energy transmission. As already mentioned, the device 20 comprises the energy source 40 which has a current source 42 . The current source 42 supplies the primary current 11 with the fundamental frequency F0. The primary current 11 flows through the primary conductor 11 with the first inductance L1. In this case, a first voltage U1 drops across the energy source 40 .
Der Sekundärstrom I2 fließt durch den Sekundärleiter 12 mit der zweiten Induktivität L2 und durch die Kapazität C2. Über der Kapazität C2 fällt dabei eine zweite Spannung U2 ab. Die zweite Induktivität L2 und die Kapazität C2 bilden, wie bereits erwähnt, einen Schwingkreis. Die induktive Kopplung zwischen dem Primärleiter 11 und dem Sekundärleiter 12 ist durch eine Gegeninduktivität M dargestellt. The secondary current I2 flows through the secondary conductor 12 with the second inductance L2 and through the capacitance C2. A second voltage U2 drops across the capacitance C2. As already mentioned, the second inductor L2 and the capacitor C2 form an oscillating circuit. The inductive coupling between the primary conductor 11 and the secondary conductor 12 is represented by a mutual inductance M.
In der Primärschleife 21 gilt näherungsweise, mit der Kreisfrequenz w = 2 TT F0: In the primary loop 21, the following applies approximately, with the angular frequency w = 2 TT F0:
U1 = l1 * L1 * w + l2 * M * w [Gl. 1] U1 = l1 * L1 * w + l2 * M * w [Eq. 1]
In der Sekundärschleife 22 gilt näherungsweise, mit der Kreisfrequenz w = 2 TT FO: In the secondary loop 22, with the angular frequency w = 2 TT FO , the following applies approximately:
Die zweite Induktivität L2 und die Gegeninduktivität M sind weitgehend durch die Ausgestaltung des Primärleiters 11 und des Sekundärleiters 12, sowie die geometrische Anordnung der Primärschleife 21 und der Sekundärschleife 22 bestimmt. Die Kapazität C2 ist je nach gewünschter Anwendung wählbar. The second inductance L2 and the mutual inductance M are largely determined by the configuration of the primary conductor 11 and the secondary conductor 12 and the geometric arrangement of the primary loop 21 and the secondary loop 22. The capacitance C2 can be selected depending on the desired application.
Aus [Gl. 3] folgt: From [Eq. 3] follows:
Wenn L2 < 1 / (C2 * w2) dann 11 / 12 > 0 If L2 < 1 / (C2 * w2) then 11 / 12 > 0
C2 < 1 / (L2 * w2) dann I1 / I2 > O C2 < 1/(L2*w2) then I1/I2 > O
Wenn 11 / 12 > 0 dann fließen der Primärstrom 11 und der Sekundärstrom I2 gleichphasig. Das vom dem Primärstrom 11 erzeugte erste Magnetfeld und das von dem Sekundärstrom I2 erzeugte zweite Magnetfeld sind dann ebenfalls gleichphasig. Das erzeugte Gesamtmagnetfeld weist somit eine Feldstärke auf, die größer ist als die Feldstärke des ersten Magnetfeldes. In dem Kopplungsbereich ist somit eine größere Leistung zu dem Verbraucher übertragbar als in einem Bereich, in welchem ausschließlich der Primärleiter 11 liegt. If 11 / 12 > 0 then the primary current 11 and the secondary current I2 flow in phase. The first magnetic field generated by the primary current I1 and the second magnetic field generated by the secondary current I2 are then also in phase. The overall magnetic field generated thus has a field strength that is greater than the field strength of the first magnetic field. A greater power can thus be transmitted to the consumer in the coupling area than in an area in which only the primary conductor 11 is located.
Aus [Gl. 3] folgt ferner: From [Eq. 3] also follows:
Wenn L2 > 1 / (C2 * w2) dann 11 / 12 < 0 If L2 > 1 / (C2 * w2) then 11 / 12 < 0
C2 > 1 / (L2 * w2) dann I1 / I2 < O C2 > 1 / (L2 * w2) then I1 / I2 < O
Wenn 11 / 12 < 0 dann fließen der Primärstrom 11 und der Sekundärstrom I2 gegenphasig. Das vom dem Primärstrom 11 erzeugte erste Magnetfeld und das von dem Sekundärstrom I2 erzeugte zweite Magnetfeld sind dann ebenfalls gegenphasig. Unter der Annahme, dass der Sekundärstrom I2 betragsmäßig kleiner ist als der Primärstrom 11, weist das erzeugte Gesamtmagnetfeld somit eine Feldstärke auf, die kleiner ist als die Feldstärke des ersten Magnetfeldes. In dem Kopplungsbereich ist somit eine kleinere Leistung zu dem Verbraucher übertragbar als in einem Bereich, in welchem ausschließlich der Primärleiter 11 liegt. If 11 / 12 < 0, the primary current I1 and the secondary current I2 flow in phase opposition. The first magnetic field generated by the primary current I1 and the second magnetic field generated by the secondary current I2 are then also in phase opposition. Assuming that the magnitude of the secondary current I2 is smaller than that of the primary current I1, the total magnetic field generated thus has a field strength that is smaller than the field strength of the first magnetic field. In the coupling area, therefore, less power can be transmitted to the consumer than in an area in which only the primary conductor 11 is located.
Aus [Gl. 3] folgt weiter: Wenn L2 = 1 / (C2 * w2) dann 11 / 12 = 0From [Eq. 3] follows further: If L2 = 1 / (C2 * w2) then 11 / 12 = 0
C2 = 1 / (L2 * w2) dann 11 / 12 = 0 C2 = 1 / (L2 * w2) then 11 / 12 = 0
Wenn 11 / 12 = 0 dann ist w2 = 1 / (C2 * L2). Der Schwingkreis weist in diesem Fall also eine Resonanzfrequenz FR auf, welche der Grundfrequenz FO entspricht. If 11 / 12 = 0 then w2 = 1 / (C2 * L2). In this case, the oscillating circuit therefore has a resonant frequency FR which corresponds to the fundamental frequency FO.
FR = 1 / (2 TT (sqrt(L2 * C2)) = FO FR = 1 / (2 TT (sqrt(L2 * C2))) = FO
Wenn die Resonanzfrequenz FR des Schwingkreises der Grundfrequenz FO entspricht, so fließt ein verhältnismäßig großer Sekundärstrom I2, welcher gegebenenfalls eine Zerstörung der Vorrichtung 20 verursacht. If the resonant frequency FR of the oscillating circuit corresponds to the fundamental frequency FO, a relatively large secondary current I2 flows, which may cause the device 20 to be destroyed.
Figur 3 zeigt qualitativ eine Abhängigkeit des Sekundärstroms I2 von der Kapazität C2 des Kondensators. Auf der Abszisse ist dabei die Kapazität C2 des Kondensators aufgetragen, auf der Ordinate ist der Sekundärstrom I2 aufgetragen. Die zweite Induktivität L2 und die Gegeninduktivität M werden dabei als konstant angenommen. Die Kapazität C2 des Kondensators ist variabel. FIG. 3 qualitatively shows a dependency of the secondary current I2 on the capacitance C2 of the capacitor. The capacitance C2 of the capacitor is plotted on the abscissa, and the secondary current I2 is plotted on the ordinate. The second inductance L2 and the mutual inductance M are assumed to be constant. The capacitance C2 of the capacitor is variable.
Wenn C2 < 1 / (L2 * w2) dann fließen der Primärstrom 11 und der Sekundärstrom I2 gleichphasig. An der entsprechend markierten Stelle ist die Stromstärke des Sekundärstroms I2 halb so groß wie die Stromstärke des Primärstroms 11. Die in dem Kopplungsbereich zu dem Verbraucher übertragbare Leistung entspricht in diesem Fall 150% der Leistung, die in einem Bereich übertragbar ist, in welchem ausschließlich der Primärleiter 11 liegt. If C2 < 1/(L2 * w2) then the primary current I1 and the secondary current I2 flow in phase. At the correspondingly marked point, the amperage of the secondary current I2 is half the amperage of the primary current 11. In this case, the power that can be transmitted to the consumer in the coupling area corresponds to 150% of the power that can be transmitted in an area in which only the Primary conductor 11 is located.
Wenn C2 = 1 / (L2 * w2) dann wird der Sekundärstrom I2 unendlich groß. Die Resonanzfrequenz FR des Schwingkreises entspricht in diesem Fall der Grundfrequenz F0. If C2 = 1 / (L2 * w2) then the secondary current I2 becomes infinitely large. In this case, the resonant frequency FR of the resonant circuit corresponds to the fundamental frequency F0.
Wenn C2 > 1 / (L2 * w2) dann fließen der Primärstrom 11 und der Sekundärstrom I2 gegenphasig. An der entsprechend markierten Stelle ist die Stromstärke des Sekundärstroms I2 gleich groß wie die Stromstärke des Primärstroms 11. In dem Kopplungsbereich löschen sich das vom dem Primärstrom erzeugte erste Magnetfeld und das von dem Sekundärstrom erzeugte zweite Magnetfeld gegenseitig aus und das Gesamtmagnetfeld ist gleich null. Bezugszeichenliste If C2 > 1/(L2 * w2) then the primary current I1 and the secondary current I2 flow in opposite phase. At the correspondingly marked point, the intensity of the secondary current I2 is the same as the intensity of the primary current 11. In the coupling area, the first magnetic field generated by the primary current and the second magnetic field generated by the secondary current cancel each other out and the total magnetic field is equal to zero. Reference List
11 Primärleiter 11 primary conductor
12 Sekundärleiter 12 secondary conductors
20 Vorrichtung zur berührungslosen Energieübertragung20 Device for contactless energy transfer
21 Primärschleife 21 primary loop
22 Sekundärschleife 22 secondary loop
31 Tertiärwicklung 31 tertiary winding
40 Energiequelle 40 energy source
42 Stromquelle 42 power source
50 Übertragerkopf 50 pick-up
D Kopplungslänge D coupling length
B Schleifenbreite B loop width
F0 Grundfrequenz w Kreisfrequenz F0 fundamental frequency w angular frequency
FR Resonanzfrequenz FR resonance frequency
C2 Kapazität C2 capacity
11 Primärstrom 11 primary current
12 Sekundärstrom 12 secondary current
L1 erste Induktivität L1 first inductor
L2 zweite Induktivität L2 second inductor
M Gegeninduktivität M mutual inductance
U1 erste Spannung U1 first voltage
U2 zweite Spannung U2 second voltage

Claims

Patentansprüche: Patent Claims:
1. Vorrichtung (20) zur berührungslosen Energieübertragung zu einem mobilen Verbraucher, umfassend eine Energiequelle (40), welche einen Primärstrom (11) erzeugt, und einen Primärleiter (11), welcher in Form einer Primärschleife (21) gelegt ist und eine ersteFirst device (20) for contactless energy transfer to a mobile consumer, comprising an energy source (40) which generates a primary current (11) and a primary conductor (11) which is laid in the form of a primary loop (21) and a first
Induktivität (L1) aufweist, wobei der Primärleiter (11) mit der Energiequelle (40) verbunden ist und von dem PrimärstromInductance (L1), wherein the primary conductor (11) is connected to the energy source (40) and from the primary current
(11) durchflossen wird, dadurch gekennzeichnet, dass die Vorrichtung (20) einen Sekundärleiter (12), welcher in Form einer Sekundärschleife (22) gelegt ist und eine zweite Induktivität (L2) aufweist, und eine Kapazität (C2) umfasst, wobei der Sekundärleiter (12) mit der Kapazität (C2) derart verbunden ist, dass die zweite Induktivität (L2) und die Kapazität (C2) einen Schwingkreis bilden, und wobei die Primärschleife (21) und die Sekundärschleife (22) derart gelegt sind, dass der Primärleiter (11) und der Sekundärleiter (12) über einen Kopplungsbereich mit einer Kopplungslänge (D) parallel verlaufen, und dass der Primärleiter (11) und der Sekundärleiter (12) in dem Kopplungsbereich derart induktiv gekoppelt sind, dass der Sekundärleiter (12) von einem Sekundärstrom (I2) durchflossen wird. (11) is traversed, characterized in that the device (20) comprises a secondary conductor (12), which is laid in the form of a secondary loop (22) and has a second inductance (L2), and a capacitance (C2), the The secondary conductor (12) is connected to the capacitance (C2) in such a way that the second inductance (L2) and the capacitance (C2) form an oscillating circuit, and the primary loop (21) and the secondary loop (22) are laid in such a way that the The primary conductor (11) and the secondary conductor (12) run parallel over a coupling area with a coupling length (D), and that the primary conductor (11) and the secondary conductor (12) are inductively coupled in the coupling area in such a way that the secondary conductor (12) of a secondary current (I2) flows through it.
2. Vorrichtung (20) nach Anspruch 1 , dadurch gekennzeichnet, dass die Sekundärschleife (22) innerhalb der Primärschleife (21) angeordnet ist. 2. Device (20) according to claim 1, characterized in that the secondary loop (22) is arranged within the primary loop (21).
3. Vorrichtung (20) nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Primärschleife (21) genau eine Windung aufweist. 3. Device (20) according to at least one of the preceding claims, characterized in that the primary loop (21) has exactly one turn.
4. Vorrichtung (20) nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Sekundärschleife (22) genau eine Windung aufweist. 4. Device (20) according to at least one of the preceding claims, characterized in that the secondary loop (22) has exactly one turn.
5. Vorrichtung (20) nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Sekundärschleife (22) eine Mehrzahl von Windungen aufweist. 5. Device (20) according to at least one of claims 1 to 3, characterized in that the secondary loop (22) has a plurality of turns.
6. Vorrichtung (20) nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Schwingkreis derart ausgestaltet ist, dass der Primärstrom (11) und der Sekundärstrom (I2) in dem Kopplungsbereich gleichphasig fließen. 6. Device (20) according to at least one of the preceding claims, characterized in that the resonant circuit is designed such that the primary current (11) and the secondary current (I2) flow in phase in the coupling region.
7. Vorrichtung (20) nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Schwingkreis derart ausgestaltet ist, dass der Primärstrom (11) und der Sekundärstrom (I2) in dem Kopplungsbereich gegenphasig fließen. 7. Device (20) according to at least one of claims 1 to 5, characterized in that the resonant circuit is designed such that the primary current (11) and the secondary current (I2) flow in phase opposition in the coupling region.
8. Vorrichtung (20) nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass eine Stromstärke des Sekundärstroms (I2) zumindest annähernd gleich groß ist wie eine Stromstärke des Primärstroms (11). - 15 -8. Device (20) according to at least one of the preceding claims, characterized in that a current intensity of the secondary current (I2) is at least approximately the same as a current intensity of the primary current (11). - 15 -
9. Vorrichtung (20) nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass eine Stromstärke des Sekundärstroms (I2) zumindest annähernd halb so groß ist wie eine Stromstärke des Primärstroms (11). 9. Device (20) according to at least one of claims 1 to 7, characterized in that a current intensity of the secondary current (I2) is at least approximately half as large as a current intensity of the primary current (11).
10. Vorrichtung (20) nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Primärschleife (21) eine Schleifenbreite (B) aufweist, welche größer ist als die Kopplungslänge (D). 10. Device (20) according to at least one of the preceding claims, characterized in that the primary loop (21) has a loop width (B) which is greater than the coupling length (D).
11. Vorrichtung (20) nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Primärschleife (21) eine Schleifenbreite (B) aufweist, welche kleiner ist als die Kopplungslänge (D). 11. Device (20) according to at least one of the preceding claims, characterized in that the primary loop (21) has a loop width (B) which is smaller than the coupling length (D).
12. Vorrichtung (20) nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Primärschleife (21) und die Sekundärschleife (22) eine annähernd gleiche Schleifenbreite (B) aufweisen. 12. Device (20) according to at least one of the preceding claims, characterized in that the primary loop (21) and the secondary loop (22) have approximately the same loop width (B).
13. System zur berührungslosen Energieübertragung, umfassend eine Vorrichtung (20) nach mindestens einem der vorangegangenen Ansprüche, und einen mobilen Verbraucher, welcher einen Übertragerkopf (50) zur Aufnahme von Energie aufweist, wobei der Übertragerkopf (50) eine Tertiärwicklung (31) umfasst und derart angeordnet ist, dass die Tertiärwicklung (31) mit dem Primärleiter (11) induktiv gekoppelt ist. 13. System for contactless energy transmission, comprising a device (20) according to at least one of the preceding claims, and a mobile consumer, which has a pick-up (50) for receiving energy, wherein the pick-up (50) comprises a tertiary winding (31) and is arranged such that the tertiary winding (31) is inductively coupled to the primary conductor (11).
14. System nach Anspruch 13, dadurch gekennzeichnet, dass der Übertragerkopf (50) derart angeordnet ist, dass die Tertiärwicklung (31) mit dem Primärleiter (11) und mit dem Sekundärleiter (12) in dem Kopplungsbereich induktiv gekoppelt ist. 14. System according to claim 13, characterized in that the pick-up (50) is arranged such that the tertiary winding (31) is inductively coupled to the primary conductor (11) and to the secondary conductor (12) in the coupling region.
15. System nach einem der Ansprüche 13 bis 14, dadurch gekennzeichnet, dass der Übertragerkopf (50) entlang des Primärleiters (11) bewegbar ist. 15. System according to any one of claims 13 to 14, characterized in that the pick-up (50) is movable along the primary conductor (11).
EP21745718.3A 2020-08-28 2021-07-13 Device and system for a contactless energy transmission Pending EP4205260A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020005294 2020-08-28
PCT/EP2021/069530 WO2022042931A1 (en) 2020-08-28 2021-07-13 Device and system for a contactless energy transmission

Publications (1)

Publication Number Publication Date
EP4205260A1 true EP4205260A1 (en) 2023-07-05

Family

ID=77042924

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21745718.3A Pending EP4205260A1 (en) 2020-08-28 2021-07-13 Device and system for a contactless energy transmission

Country Status (3)

Country Link
EP (1) EP4205260A1 (en)
DE (1) DE102021003579A1 (en)
WO (1) WO2022042931A1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5293308A (en) 1991-03-26 1994-03-08 Auckland Uniservices Limited Inductive power distribution system
DE10053373B4 (en) 2000-10-27 2019-10-02 Sew-Eurodrive Gmbh & Co Kg Method and device for contactless energy transmission
DE102004051543A1 (en) 2004-10-20 2006-05-04 Miliauskaite, Asta, Dr. Thermal battery with in series alternating thermoelectric positive and negative conductor elements and thermoelement useful in semiconductor technology. Has deepened recesses on opposite sides of conductor element surface
DE102006013004B4 (en) 2005-07-07 2020-12-10 Sew-Eurodrive Gmbh & Co Kg System for contactless energy transmission and method for operating such a system
DE102007024293B4 (en) 2006-06-09 2020-10-22 Sew-Eurodrive Gmbh & Co Kg System with primary conductor system and movably arranged device
WO2010001540A1 (en) * 2008-07-04 2010-01-07 村田機械株式会社 Traveling vehicle system
US8466583B2 (en) * 2008-09-27 2013-06-18 Witricity Corporation Tunable wireless energy transfer for outdoor lighting applications
US8970070B2 (en) 2010-07-02 2015-03-03 Panasonic Intellectual Property Management Co., Ltd. Wireless power transmission system
DE102011018633B4 (en) 2011-04-21 2021-10-07 Sew-Eurodrive Gmbh & Co Kg System for inductive energy transmission to a consumer
JP6028000B2 (en) * 2014-05-07 2016-11-16 株式会社エクォス・リサーチ Power transmission system
US10770922B2 (en) 2017-03-21 2020-09-08 Group Dekko, Inc. Resonant inductive converter

Also Published As

Publication number Publication date
DE102021003579A1 (en) 2022-03-03
WO2022042931A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
DE102015112431B4 (en) Device for detecting objects, in particular for charging systems
DE102013109382A1 (en) Non-contact energy transmission system
DE102020120990A1 (en) DEVICE FOR DETECTING FOREIGN MATERIALS
EP3001561B1 (en) Antenna circuit for near-field antennas
WO2022042931A1 (en) Device and system for a contactless energy transmission
DE202022001642U1 (en) Receiver for resonant inductive energy transfer
WO2014121895A1 (en) Winding arrangement having partial windings, and arrangement, in particular charging station, for contactless energy transmission to an electric vehicle, having a winding arrangement
DE10141884B4 (en) Feed circuit of a resonance circuit generating a magnetic field and control device for this
WO2016055326A1 (en) Inductive energy transmission system having a wide primary assembly
DE102004038837B4 (en) Electronic anti-theft system with correlated transmit / receive antennas
WO2020002224A1 (en) Signal matching apparatus in a system for inductive power transmission
EP3175533A1 (en) Device having an adjustable capacitance value for tuning a system that can oscillate, system that can oscillate, and energy transmission system
DE102004027847A1 (en) Energy transfer device, has coils arranged so that traveling magnetic field is produced by current, where field induces voltage that does not change, if coil is moved freely in plane parallel to arrangement plane
DE4431446C2 (en) Transponder antenna device
DE102004036837B4 (en) Self-cleaning exhaust air chamber and cleaning system for an exhaust air chamber
DE102018008251A1 (en) Method for detecting a movably arranged mobile part with secondary winding and system for carrying out a method
DE102017110604A1 (en) Charging system for a battery-powered industrial truck and method for inductively charging a battery-powered industrial truck
DE102010062462A1 (en) Antenna system for transmission arrangement used in keyless entry system installed in vehicle e.g. motor car, has two antennas comprising respective windings that are electrically coupled with one another
DE102012023708A1 (en) Method for determining relative position between mobile unit and transmitter, involves emitting wave train with certain wavelength by transmitter, where mobile unit comprises three receivers which are not arranged in straight line
EP4308408A1 (en) Charging station for a vehicle that can be electrically driven
WO1998047094A2 (en) Contactless transponder system
DE102022125036A1 (en) Inductive charging device for a vehicle charging system
WO2024037750A1 (en) Inductive charging device for a vehicle charging system
DE102019209324A1 (en) Method for positioning a vehicle over a floor plate for inductive charging of a vehicle battery
DE102022125039A1 (en) Inductive charging device for a vehicle charging system

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230328

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)