EP4194773B1 - Cascade de pompes à chaleur et procédé de chauffage ou de refroidissement d'un réfrigérant au moyen d'une cascade de pompes à chaleur - Google Patents

Cascade de pompes à chaleur et procédé de chauffage ou de refroidissement d'un réfrigérant au moyen d'une cascade de pompes à chaleur Download PDF

Info

Publication number
EP4194773B1
EP4194773B1 EP22206893.4A EP22206893A EP4194773B1 EP 4194773 B1 EP4194773 B1 EP 4194773B1 EP 22206893 A EP22206893 A EP 22206893A EP 4194773 B1 EP4194773 B1 EP 4194773B1
Authority
EP
European Patent Office
Prior art keywords
coolant
heat pump
heat
stage
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP22206893.4A
Other languages
German (de)
English (en)
Other versions
EP4194773A1 (fr
Inventor
Jürgen OLFE
Christian Schneck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP4194773A1 publication Critical patent/EP4194773A1/fr
Application granted granted Critical
Publication of EP4194773B1 publication Critical patent/EP4194773B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • F25B21/04Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect reversible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/001Details of machines, plants or systems, using electric or magnetic effects by using electro-caloric effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects

Definitions

  • the present invention relates to a heat pump cascade comprising n stages with n ⁇ 2. Furthermore, the present invention relates to a method for heating or cooling a coolant, carried out with a heat pump cascade comprising n stages with n ⁇ 2.
  • Caloric heat pumps can be used in many areas of heating and cooling technology, especially in vehicle construction.
  • a temperature difference is the difference between the temperature of the gaseous or liquid coolant flowing into the heat pump and the temperature of the coolant flowing out. This temperature difference is limited by the temperature change of the calorific material during the phase transition and the thermodynamic conditions in the heat pump, which are influenced by the surfaces, the flow velocity, heat transfer, etc. This applies to elastocaloric as well as magneto- or electrocaloric heat pumps.
  • a heat pump cascade consisting of several heat pumps is known and is suitable for use in a large power plant.
  • the heat pumps are connected in parallel to form a multi-stage heat pump cascade.
  • the EN 10 2018 219 714 A1 discloses a heat exchanger device for a fluid exchange device for tempering a fluid flowing through the fluid exchange device flowing fluid, with at least one inlet channel for guiding the fluid, with at least one outlet channel, in particular for returning the fluid, and with at least one heat conduction unit arranged between the inlet channel and the outlet channel for an exchange of heat between the inlet channel and the outlet channel, wherein at least one oscillatable membrane element arranged within the heat conduction unit is provided for a shrinkage position-dependent heat conduction between the membrane element and the inlet channel and/or the outlet channel.
  • a device which essentially comprises an evaporative drying device, a primary heat pump-coupled air heating system, a secondary heat pump-coupled air heating system, a tertiary heat pump-coupled air heating system and a quaternary heat pump-coupled air heating system, which have the same construction type and the same connection form.
  • the EP 3 296 658 B1 discloses an exhaust air heat pump comprising an inlet duct for indoor exhaust air, an outlet duct for exhaust air and a heat pump unit for heat recovery from the exhaust air or indoor air.
  • the DD223221A1 discloses an absorption heat pump for generating heating heat, with which the different high flow temperatures required depending on the season can be achieved with an optimal heat ratio and with consistent use of environmental energy.
  • a single-stage system is integrated into a two-stage absorption heat pump via valve combinations and bypass lines.
  • the heating water circuit takes place via the high-temperature absorber and the condenser, while another circuit is provided for hot water preparation via the low-temperature absorber.
  • single-stage operation however, the entire water flow is guided via the low-temperature absorber and the condenser and divided between hot water preparation and heating.
  • the US 2019/0257555 A1 discloses a magnetocaloric heat pump with a regeneration device and a rotatable field generator.
  • a multi-stage heat pump which has an evaporator, a condenser and expansion stages, vapor compression stages and tanks for storing the gaseous phases of a fluid.
  • the US 7 475 551 B2 discloses a method of operating a thermoelectric system for thermal control of a target, the method comprising: flowing a first volume of a heat transfer fluid into a portion of a first fluid path, the first portion in thermal communication with a first side of a thermoelectric module; allowing at least a portion of the first volume to reside in the first fluid path portion; flowing a second volume of a heat transfer fluid into the first fluid path portion while simultaneously flowing at least a portion of the first volume out toward the first fluid path portion, and repeating the residency for the second and subsequent volumes of the thermal heat transfer fluid, and the residency and the flow toward the target.
  • thermoelectric device comprises a thermoelectric device and a first well.
  • the thermoelectric device comprises a plurality of thermoelectric elements electrically connected to one another by a plurality of electrical connections coupled between an inner surface of a first plate and an inner surface of a second plate.
  • the first well has a flat bottom and a plurality of generally parallel ribs extending from the flat bottom.
  • the flat bottom is coupled to an outer surface of the first plate by a coupling medium containing a resilient and thermally conductive pad.
  • the EN 10 2010 021 901 A1 relates to a heat exchanger for transferring a heat flow between a first fluid flow and a second fluid flow, comprising a first fluid path for guiding the first fluid flow, a second fluid path thermally associated with the first fluid path for guiding the second fluid flow, a first fluid path and the second fluid path connected thermoelectric device, by means of which the heat flow can be generated by supplying electrical energy against or in the direction of a temperature gradient.
  • the fluid paths are arranged at an angle to one another and together with the thermoelectric device form a cross-flow heat exchanger.
  • the present invention is based on the object of providing a heat pump cascade with which a high temperature lift can be achieved with high efficiency.
  • the present invention is based on the object of providing a method for heating or cooling a coolant.
  • the heat pump cascade is designed to heat or cool a coolant.
  • the coolant can be a liquid or a gaseous coolant such as air or water.
  • each of the stages or in each of the heat pumps of the respective stages the maximum achievable temperature lift of the heat pump is generated.
  • a coolant entering the respective coolant inlet is divided by a volume flow divider into a partial flow for the warm side and a partial flow for the cold side.
  • heat is then transferred from the partial flow of the coolant on the cold side to the partial flow of the coolant on the warm side.
  • the heat pump cascade is designed to heat or cool a consumer system
  • either the partial flow of the warm side or the partial flow of the cold side is led out of the first coolant outlet of the respective heat pump of each stage and fed to the coolant inlet of the heat pump of the subsequent stage.
  • the partial flow of the remaining cold side or warm side then exits from the second coolant outlet of the heat pump of each stage.
  • the successively cooled cooling medium flows from one heat pump to the next heat pump.
  • the finally cooled coolant then exits the first coolant outlet of the heat pump of the last stage to cool a consumer system.
  • the coolant emerging from the second coolant outlet is fed by means of a return line to the coolant inlet of one of the heat pumps of a preceding stage.
  • the coolant flow exiting the first coolant outlet of the heat pump of the last stage would be lower by a factor of 1/2 n than the coolant flow entering the coolant inlet of the heat pump of the first stage in n stages.
  • the coolant is returned to the immediately preceding stage in each stage from the third stage onwards, the The usable coolant flow exiting the first coolant outlet of the heat pump of the last stage is only 1/2n smaller than the coolant flow entering the coolant inlet of the heat pump of the first stage.
  • the roles of the warm side and cold side can also be swapped.
  • the coolant from the warm side then exits from the respective first coolant outlet.
  • the successively heated cooling medium flows from one heat pump to the next heat pump.
  • the finally heated coolant then exits from the first coolant outlet of the heat pump of the last stage to heat a consumer system.
  • the partial flow of the cold side then exits from the second coolant outlet of the heat pump and is fed to the coolant inlet of the heat pump of a previous stage.
  • the volume flow of the coolant that can be used for cooling or heating and is available at the first coolant outlet of the heat pump of the last stage is further increased.
  • the principle can be described as follows: In the first stage, a coolant with a temperature of, for example, 20°C enters the first coolant inlet of the heat pump. Within the first stage heat pump, the coolant is cooled to 15°C on the cold side and heated to 25°C on the warm side. The coolant thus exits the first coolant outlet of the first stage heat pump at a temperature of 15°C and consequently enters the coolant inlet of the second stage at 15°C.
  • the coolant is cooled again by 5°C on the cold side and exits the first coolant outlet of the second stage heat pump at a temperature of 10°C and enters the coolant inlet of the third stage heat pump at this temperature.
  • the heated coolant from the second coolant outlet of the second stage has a temperature of 20°C
  • the coolant exiting the second coolant outlet of the third stage has a temperature of 15°C.
  • the coolant exiting the second coolant outlet of the third stage heat pump is fed via the return line to the coolant inlet of the second stage, which, as explained above, has a temperature of 15°C.
  • volume flow dividers of the heat pumps divide the incoming coolant flow in a ratio of 50:50.
  • the volume flow dividers can be designed to divide the coolant into the cold side and the hot side in a ratio of 20:80 to 80:20, preferably 40:60 to 60:40.
  • the temperature of the coolant exiting from the second coolant outlet of the heat pump of the respective stage and leading to the preceding stage returned coolant corresponds to the temperature of the coolant supplied to the coolant inlet of the heat pump of the preceding stage from the stage preceding that stage.
  • the heat pumps are caloric heat pumps, in particular electrocaloric heat pumps, magnetocaloric heat pumps or elastocaloric heat pumps.
  • each heat pump is designed to bring about a temperature spread of the coolant between the hot side and the cold side of at least 5°C, preferably of at least 10°, more preferably of at least 20°C.
  • the first coolant line comprises a heat exchanger.
  • a cooled coolant exits from the first coolant outlet of the heat pump of the last stage.
  • This coolant is introduced into the first coolant line and can be fed back to the coolant inlet of the heat pump of the first stage via the first coolant line in order to create a closed coolant circuit.
  • a heat exchanger for example a heat exchanger for a vehicle interior, can be located in the first coolant line.
  • the heat exchanger can be used to absorb heat from the vehicle interior in order to cool the vehicle interior.
  • the heat absorbed by the heat exchanger can heat the cooled coolant back up to a temperature of, for example, 20°C and is fed back to the coolant inlet of the first heat pump at this increased temperature.
  • the coolant which exits from the second coolant outlet of the heat pumps of the first and second stages is fed to a second coolant line.
  • a cooler can be located in the second coolant line.
  • the cooler can be, for example, a cooler to dissipate the heat of the coolant flow in the second coolant line to the outside environment.
  • the cooler can also be a heat exchanger for a drive battery of a battery-electric or hybrid electric vehicle, so that the battery can be tempered by means of the heat exchanger. Heat is thus transferred from the heated coolant in the second coolant line to the battery or to the outside environment, so that the temperature of the coolant in the second coolant line drops.
  • the coolant flow is then fed back to the coolant inlet of the heat pump of the first stage, where it mixes with the coolant supplied from the first coolant line.
  • the coolant it is also conceivable to dispense with the first coolant line and the second coolant line as well as the first heat exchanger and the second heat exchanger or the cooler.
  • a heated coolant flow then emerges from the first coolant outlet of the heat pump of the last stage and is fed to the first coolant line.
  • the heat exchanger arranged in the first coolant line can be used to heat the vehicle interior.
  • the coolant thus cooled is fed back to the coolant inlet of the heat pump of the first stage via the first coolant line.
  • the cooled coolant emerging from the second coolant outlet of the heat pumps of the stages without coolant return is introduced into the second coolant line, which can have another heat exchanger.
  • the cooled coolant in the second coolant line can be reheated via the heat exchanger by absorbing thermal energy, for example from the vehicle environment.
  • the cooled coolant in the second coolant line can be used to cool vehicle components such as the battery or for the drive motors.
  • the coolant thus reheated in the second coolant line is also fed to the coolant inlet of the heat pump of the first stage and mixed with the cooled coolant from the first coolant line.
  • the first coolant outlet of each heat pump is assigned to the warm side and that the second coolant outlet of each heat pump is assigned to the cold side, or that the first coolant outlet of each heat pump is assigned to the cold side and that the second coolant outlet of each heat pump is assigned to the warm side.
  • each heat pump has a switching device, wherein the switching device is designed to optionally assign the warm side to the first coolant outlet and the cold side to the second coolant outlet, or to assign the cold side to the first coolant outlet and the warm side to the second coolant outlet.
  • the switching device allows the heat pump cascade to be used either to heat or to cool the coolant flow.
  • the switching device can be designed using valves, suitable gears or switching mechanisms.
  • the switching device serves in particular to exchange the hot sides and the cold sides of the heat pumps with each other with respect to the first coolant outlet and the second coolant outlet of the respective heat pumps.
  • At least five, preferably at least seven, more preferably at least ten, stages are provided.
  • the heat pumps of each stage i are caloric heat pumps, in particular electrocaloric heat pumps, magnetocaloric heat pumps or elastocaloric heat pumps.
  • each heat pump causes a temperature spread of the coolant between the warm side and the cold side of at least 5°C, preferably of at least 10°, more preferably of at least 20°C.
  • each stage i the first coolant outlet of each heat pump is assigned to the warm side and that the second coolant outlet of each heat pump is assigned to the cold side, or that the first coolant outlet of each heat pump is assigned to the cold side and that the second coolant outlet of each heat pump is assigned to the warm side.
  • a switching device is provided in each stage i, wherein the switching device optionally assigns the hot side to the first coolant outlet and the cold side to the second coolant outlet, or assigns the cold side to the first coolant outlet and the hot side to the second coolant outlet.
  • Fig.1 shows a heat pump cascade 100 in accordance with the invention, based on which a method 200 for heating or cooling a coolant is to be explained in more detail.
  • Each of the stages i comprises a heat pump 10 with a coolant inlet 11, a first coolant outlet 12 and a second coolant outlet 13.
  • Each heat pump 10 of each stage i further comprises a hot side 14 and a cold side 15.
  • the cold side 15 is assigned to the first coolant outlet 12 and the warm side 14 is assigned to the second coolant outlet 13.
  • the heat pumps 10 also have volume flow dividers 24, wherein the volume flow dividers 24 are designed to divide a coolant flow entering the coolant inlet 11 of the respective heat pump 10 into the warm side 14 and the cold side 15.
  • first coolant line 16 there is a heat exchanger 18 for a vehicle interior of a motor vehicle (not shown), and in the second coolant line 17 there is a further heat exchanger 19 in the form of a radiator 20 of the motor vehicle (not shown in detail).
  • the heat pumps 10 are designed as elastocaloric heat pumps 22. Each of the heat pumps 10 is designed to cause a temperature spread of the coolant between the warm side 14 and the cold side 15 of 10°C.
  • the coolant is divided into two partial flows to the warm side 14 and the cold side 15, and heat is transferred from the cold side 15 to the warm side 14.
  • the coolant in the first coolant line 16 absorbs the heat from the interior of the vehicle and is heated again to a temperature of, for example, 20 °C.
  • the heat of the coolant in the second coolant line 17 can also be used to heat a battery or other systems of the motor vehicle.
  • the coolant it is also conceivable to dispense with the first coolant line 16 and the second coolant line 17 as well as the first heat exchanger 18 and the second heat exchanger 19 or the cooler 20.
  • Fig. 2 shows an alternative embodiment of the heat pump cascade 100, which can be used to heat a vehicle interior of a motor vehicle.
  • the heat pump cascade 100 of Fig.1 are in the heat pump cascade 100 of the Fig. 2 in each of the heat pumps 10, the roles of the warm side 14 and the cold side 15 are swapped.
  • the warm side 14 is assigned to the first coolant outlet 12 and the cold side 15 to the second coolant outlet 13.
  • the first coolant line 16 and the second coolant line 17 as well as the first heat exchanger 18 and the second heat exchanger 19 can be dispensed with.
  • Fig.3 shows a further embodiment of the heat pump cascade 100.
  • the function of the heat pump cascade 100 according to Fig.3 corresponds to that of the heat pump cascades 100 according to the Fig.1 and 2 .
  • a switching device 23 is provided, which is designed to optionally assign the warm side 14 to the first coolant outlet 12 and the cold side 15 to the second coolant outlet 13 or the warm side 14 to the second coolant outlet 13 and the cold side 15 to the first coolant outlet 12 in each heat pump 10.
  • the heat pump cascade 100 of the Fig.3 between the designs of the Fig.1 and 2 and can be used for both heating and cooling a vehicle interior.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Claims (10)

  1. Cascade de pompes à chaleur (100) comprenant n étages avec n ≥ 2, chacun des n étages présentant une pompe à chaleur (10) avec une entrée de réfrigérant (11), une première sortie de réfrigérant (12) et une deuxième sortie de réfrigérant (13), chaque pompe à chaleur (10) présentant un côté chaud (14) et un côté froid (15) et un diviseur de courant volumique (24), le diviseur de courant volumique (24) étant adapté pour répartir un courant de réfrigérant entrant dans l'entrée de réfrigérant (11) entre le côté chaud (14) et le côté froid (15), la première sortie de réfrigérant (12) de la pompe à chaleur (10) de chaque étage i avec i = 1 ... n-1 étant reliée à l'entrée de réfrigérant (11) de la pompe à chaleur (10) d'un étage suivant i+1, caractérisée en ce que la deuxième sortie de réfrigérant (13) de la pompe à chaleur (10) d'au moins un étage suivant i+1 avec i = 1 ... n-1 est reliée au moyen d'une conduite de retour (21) à l'entrée de réfrigérant (11) de la pompe à chaleur (10) d'un étage précédent 1 ... i.
  2. Cascade de pompes à chaleur (100) selon la revendication 1, caractérisée en ce que la deuxième sortie de réfrigérant (13) de la pompe à chaleur (10) de chaque étage suivant i+1 avec i = 2 ... n-1 est reliée au moyen d'une conduite de retour (21) à l'entrée de réfrigérant (11) de la pompe à chaleur (10) d'un étage précédent 1 ... i.
  3. Cascade de pompes à chaleur (100) selon la revendication 2, caractérisée en ce que la deuxième sortie de réfrigérant (13) de la pompe à chaleur (10) de chaque étage suivant i+1 avec i = 2 ... n-1 est reliée au moyen d'une conduite de retour (21) à l'entrée de réfrigérant (11) de la pompe à chaleur (10) de l'étage précédent i.
  4. Cascade de pompes à chaleur (100) selon l'une quelconque des revendications précédentes, caractérisée en ce que les pompes à chaleur (10) sont des pompes à chaleur caloriques, notamment des pompes à chaleur électrocaloriques, des pompes à chaleur magnétocaloriques ou des pompes à chaleur élastocaloriques (22), et/ou en ce que chaque pompe à chaleur (10) est adaptée pour produire un écart de température du réfrigérant entre le côté chaud (14) et le côté froid (15) d'au moins 5 °C, de préférence d'au moins 10 °, de manière davantage préférée d'au moins 20 °C.
  5. Cascade de pompes à chaleur (100) selon l'une quelconque des revendications précédentes, caractérisée en ce qu'au moins la première sortie de réfrigérant (12) de la pompe à chaleur (10) du dernier étage i = n est reliée à une première ligne de réfrigérant (16), la première ligne de réfrigérant (16) étant reliée à l'entrée de réfrigérant (11) de la pompe à chaleur (10) du premier étage i = 1, de préférence la première ligne de réfrigérant (16) comprenant un échangeur de chaleur (18) .
  6. Cascade de pompes à chaleur (100) selon l'une quelconque des revendications précédentes, caractérisée en ce qu'au moins la deuxième sortie de réfrigérant (13) de la pompe à chaleur (10) du premier étage i = 1 est reliée à une deuxième ligne de réfrigérant (17), la deuxième ligne de réfrigérant (17) étant reliée à l'entrée de réfrigérant (11) de la pompe à chaleur (10) du premier étage i = 1, de préférence la deuxième sortie de réfrigérant (13) respective des pompes à chaleur (10) des j premiers étages j = 1 ... n-1, de préférence des deux premiers étages, étant reliée à la deuxième ligne de réfrigérant (17), de manière davantage préférée la deuxième ligne de réfrigérant (17) comprenant un échangeur de chaleur (19), notamment un refroidisseur (20) .
  7. Cascade de pompes à chaleur (100) selon l'une quelconque des revendications précédentes, caractérisée en ce que la première sortie de réfrigérant (12) de chaque pompe à chaleur (10) est associée au côté chaud (14) et en ce que la deuxième sortie de réfrigérant (13) de chaque pompe à chaleur (10) est associée au côté froid (15), ou en ce que la première sortie de réfrigérant (12) de chaque pompe à chaleur (10) est associée au côté froid (15) et en ce que la deuxième sortie de réfrigérant (13) de chaque pompe à chaleur (10) est associée au côté chaud (14), et/ou en ce que chaque pompe à chaleur (10) présente un dispositif de commutation (23), le dispositif de commutation (23) étant configuré pour associer, au choix, le côté chaud (14) à la première sortie de réfrigérant (12) et le côté froid (15) à la deuxième sortie de réfrigérant (13), ou pour associer le côté froid (15) à la première sortie de réfrigérant (12) et le côté chaud (14) à la deuxième sortie de réfrigérant (13).
  8. Cascade de pompes à chaleur (100) selon l'une quelconque des revendications précédentes, caractérisée en ce qu'au moins cinq étages, de préférence au moins sept, de manière davantage préférée au moins dix, sont prévus.
  9. Procédé (200) de chauffage ou de refroidissement d'un réfrigérant, réalisé avec une cascade de pompes à chaleur (100) comprenant n étages avec n ≥ 2 selon l'une quelconque des revendications précitées, un courant de réfrigérant étant amené à une entrée de réfrigérant (11) de la pompe à chaleur (10) du premier étage i = 1 ; dans chacun des étages i avec i = 1 ... n-1, un premier courant partiel du réfrigérant étant amené par la première sortie de réfrigérant (12) de la pompe à chaleur (10) respective à l'entrée de réfrigérant (11) de la pompe à chaleur (10) de l'étage suivant i+1, caractérisé en ce que, dans au moins un des étages suivants i+1 avec i = 1 ... n-1, un deuxième courant partiel du réfrigérant est amené par la deuxième sortie de réfrigérant (13) de la pompe à chaleur (10) respective à l'entrée de réfrigérant (11) de la pompe à chaleur (10) d'un étage précédent 1 ... i.
  10. Procédé (200) selon la revendication 9, caractérisé en ce que dans chacun des étages suivants i+1, avec i = 2 ... n-1, le deuxième courant partiel du réfrigérant est amené par la deuxième sortie de réfrigérant (13) de la pompe à chaleur (10) respective à l'entrée de réfrigérant (11) de la pompe à chaleur (10) d'un étage précédent 1 ... i, de préférence dans chacun des étages suivants i+1 avec i = 2 ... n-1, le deuxième courant partiel du réfrigérant étant amené par la deuxième sortie de réfrigérant (13) de la pompe à chaleur (10) respective à l'entrée de réfrigérant (11) de la pompe à chaleur (10) de l'étage précédent i.
EP22206893.4A 2021-12-13 2022-11-11 Cascade de pompes à chaleur et procédé de chauffage ou de refroidissement d'un réfrigérant au moyen d'une cascade de pompes à chaleur Active EP4194773B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102021214258.3A DE102021214258A1 (de) 2021-12-13 2021-12-13 Wärmepumpenkaskade und Verfahren zur Erwärmung oder Abkühlung eines Kühlmittels mittels einer Wärmepumpenkaskade

Publications (2)

Publication Number Publication Date
EP4194773A1 EP4194773A1 (fr) 2023-06-14
EP4194773B1 true EP4194773B1 (fr) 2024-05-22

Family

ID=84332258

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22206893.4A Active EP4194773B1 (fr) 2021-12-13 2022-11-11 Cascade de pompes à chaleur et procédé de chauffage ou de refroidissement d'un réfrigérant au moyen d'une cascade de pompes à chaleur

Country Status (4)

Country Link
US (1) US20230184468A1 (fr)
EP (1) EP4194773B1 (fr)
CN (1) CN116263276A (fr)
DE (1) DE102021214258A1 (fr)

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD223221A1 (de) 1983-12-19 1985-06-05 Waermeanlagenbau Veb Absorptionswaermepumpe
US5157925A (en) 1991-09-06 1992-10-27 Exxon Production Research Company Light end enhanced refrigeration loop
US5170639A (en) 1991-12-10 1992-12-15 Chander Datta Cascade refrigeration system
US7475551B2 (en) * 2004-12-23 2009-01-13 Nanocoolers, Inc. System employing temporal integration of thermoelectric action
US8359871B2 (en) * 2009-02-11 2013-01-29 Marlow Industries, Inc. Temperature control device
DE102010021901A1 (de) * 2010-05-28 2011-12-01 Volkswagen Ag Wärmetauschen zwischen Fluidströmen mittels einer thermoelektrischen Vorrichtung
KR101175516B1 (ko) 2010-05-28 2012-08-23 엘지전자 주식회사 히트펌프 연동 급탕장치
JP5734424B2 (ja) 2011-05-31 2015-06-17 三菱電機株式会社 空調給湯複合システム
GB2497987A (en) 2011-12-23 2013-07-03 Delaval Internat Ab Bulk fluid refrigeration and heating apparatus
CN202709358U (zh) 2012-07-25 2013-01-30 煤炭工业济南设计研究院有限公司 地源热泵系统装置
US10465951B2 (en) 2013-01-10 2019-11-05 Haier Us Appliance Solutions, Inc. Magneto caloric heat pump with variable magnetization
EP2827068B1 (fr) 2013-07-19 2019-08-28 BDR Thermea Group Pompe à chaleur en cascade
KR101367086B1 (ko) 2013-10-17 2014-02-24 (주)테키스트 반도체 제조 설비를 위한 온도제어 시스템
EP2947401A1 (fr) 2014-05-23 2015-11-25 Vlaamse Instelling voor Technologisch Onderzoek (VITO) Moteur thermique à plusieurs étages
DE102015117786A1 (de) 2015-10-19 2017-04-20 Hoval Aktiengesellschaft Klimaanlagensystem und Verfahren zur Kühlung von Luft unter Verwendung eines solchen Klimaanlagensystems
KR20180084893A (ko) 2015-11-13 2018-07-25 바스프 에스이 자기열량 히트 펌프, 냉각 장치 및 그 작동 방법
DE102016213679A1 (de) 2016-07-26 2018-02-01 Efficient Energy Gmbh Wärmepumpensystem mit eingangsseitig und ausgangsseitig gekoppelten Wärmepumpenanordnungen
FI129149B (en) 2016-09-16 2021-08-13 Byro Energiatekniikka Oy Exhaust air heat pump apparatus and method for processing exhaust air
DE102018219714A1 (de) 2018-06-18 2019-12-19 Robert Bosch Gmbh Wärmeübertragervorrichtung für eine Fluidaustauschvorrichtung
CN109260750A (zh) 2018-08-22 2019-01-25 大连理工大学 一种蒸发、干燥过程挥发份梯级冷凝与多级热泵耦合节能减排技术装置及方法
US11561032B2 (en) 2019-11-12 2023-01-24 Heat X, LLC Magnetic induction water heater/chiller with separate heating/chilling zones
CN112325510A (zh) 2020-11-10 2021-02-05 上海交通大学 适用于大型电厂的循环冷却水分温装置
US20230018448A1 (en) 2021-07-14 2023-01-19 Qualcomm Incorporated Reduced impedance substrate

Also Published As

Publication number Publication date
CN116263276A (zh) 2023-06-16
EP4194773A1 (fr) 2023-06-14
US20230184468A1 (en) 2023-06-15
DE102021214258A1 (de) 2023-06-15

Similar Documents

Publication Publication Date Title
EP3444135B1 (fr) Système circulatoire pour un véhicule à pile à combustible
EP2608973B1 (fr) Dispositif de chauffage et de refroidissement et module de chauffage / de refroidissement pour un dispositif de chauffage / de refroidissement
DE102012222635A1 (de) Wärmeübertrager, insbesondere für ein Kraftfahrzeug
WO2019096696A1 (fr) Système de refroidissement pour véhicule automobile et véhicule automobile muni dudit système de refroidissement
EP1111214A2 (fr) Circuit pour refroidissement et chauffage avec deux radiateurs
DE102016006682B4 (de) Verfahren zum Betreiben einer Klimaanlage eines Elektro- oder Hybridfahrzeugs sowie Klimaanlage zur Durchführung des Verfahrens
DE102015212726B4 (de) Wärmesystem für ein Fahrzeug und Verfahren zur Klimatisierung eines Fahrzeugs
DE102012108043A1 (de) Temperierungsanordnung
DE102012005368A1 (de) Heizmedium-Heizvorrichtung und Fahrzeugklimaanlage mit der Heizmedium-Heizvorrichtung
DE102020206727A1 (de) Thermomanagementsystem für eine Batterie eines Kraftfahrzeugs, und Verfahren für ein Thermomanagement für eine Batterie eines Kraftfahrzeug
EP3648997A1 (fr) Installation frigorifique pour véhicule pourvue d'un circuit de réfrigération équipé d'un échangeur thermique et échangeur thermique conçu pour une telle installation frigorifique
DE102020130911B3 (de) Kältemittelkreislauf für eine Fahrzeugklimaanlage
DE102020117471A1 (de) Wärmepumpenanordnung mit indirekter Batterieerwärmung für batteriebetriebene Kraftfahrzeuge und Verfahren zum Betreiben einer Wärmepumpenanordnung
DE102015014781B4 (de) Elektrisch angetriebenes Fahrzeug
DE102016000316A1 (de) Fahrzeugklimaanlage
DE112019006766T5 (de) Fahrzeugklimaanlage
EP4171979A1 (fr) Circuit d'agent caloporteur pour un véhicule automobile
DE102021204380A1 (de) Thermomanagementsystem für eine Batterie eines Kraftfahrzeuges sowie Kraftfahrzeug mit einem Thermomanagementsystem
EP4194773B1 (fr) Cascade de pompes à chaleur et procédé de chauffage ou de refroidissement d'un réfrigérant au moyen d'une cascade de pompes à chaleur
DE112020005910T5 (de) Fahrzeugwärmepumpensystem
WO2021018501A1 (fr) Système de gestion thermique pour un véhicule à moteur, procédé pour la gestion thermique d'un véhicule à moteur et véhicule à moteur ayant un système de gestion thermique
DE102019119311B4 (de) Antriebssystem für ein Elektrofahrzeug und Elektrofahrzeug
DE102021113104A1 (de) Thermomanagementanordnung für Fahrzeuge sowie Verfahren zum Betreiben einer Thermomanagementanordnung
DE102020203030A1 (de) Wärmeübertrager, Wärmepumpe, Kühlsystem sowie Kraftfahrzeug mit Wärmepumpe und Kraftfahrzeug mit Kühlsystem
DE102018009269B4 (de) Klimatisierungseinrichtung für ein Kraftfahrzeug, sowie Kraftfahrzeug damit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231214

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240206

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240306

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502022000929

Country of ref document: DE