EP4189712A1 - Composant magnetique à flux de fuite controlé - Google Patents

Composant magnetique à flux de fuite controlé

Info

Publication number
EP4189712A1
EP4189712A1 EP21734842.4A EP21734842A EP4189712A1 EP 4189712 A1 EP4189712 A1 EP 4189712A1 EP 21734842 A EP21734842 A EP 21734842A EP 4189712 A1 EP4189712 A1 EP 4189712A1
Authority
EP
European Patent Office
Prior art keywords
leg
legs
winding
electrical
magnetic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21734842.4A
Other languages
German (de)
English (en)
Inventor
Boris Bouchez
Stéphane FONTAINE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo eAutomotive France SAS
Original Assignee
Valeo eAutomotive France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo eAutomotive France SAS filed Critical Valeo eAutomotive France SAS
Publication of EP4189712A1 publication Critical patent/EP4189712A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/12Two-phase, three-phase or polyphase transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/263Fastening parts of the core together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/346Preventing or reducing leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to the field of magnetic components, in particular electrical transformers.
  • the present invention relates more particularly to the field of electrical transformers, for example integrated with resonant voltage converters or any other type of power converters, or with electrical chargers.
  • the present invention relates to a magnetic component such as a three-phase electrical transformer.
  • An electrical transformer allows the transfer of electrical energy from a primary circuit to a secondary circuit.
  • an electric transformer in which an electric current circulates which generates a magnetic field allowing the transfer of electric energy from the primary circuit to the secondary circuit. More specifically, in an electric transformer, in particular in a magnetizing inductance power converter or in a resonant power converter, there is a primary winding and a secondary winding, formed by windings around a magnetic core, between which is transferred electrical energy.
  • a three-phase electrical transformer more particularly there are three primary windings and three secondary windings wound on different portions of a ferromagnetic core of suitable shape.
  • E-shaped ferromagnetic cores are known in particular, as represented in FIG. 1, or triangle-shaped, as represented in FIG. 2.
  • Any electrical transformer has a leakage inductance, which results in a loss of efficiency because part of the magnetic flux created in the primary circuit is not picked up by the windings of the secondary circuit. Additional losses may also appear on the primary and secondary windings. In the case of non-resonant voltage converters, overvoltages may also occur.
  • the geometry of the windings of an electrical transformer, as well as the choice of the magnetic materials used for the magnetic core, or even the geometry of said magnetic core, in particular, are configured to comply with electrical and magnetic criteria.
  • One objective of the dimensioning of an electric transformer resides in particular in the control of the value of the leakage inductance of the electric transformer.
  • the windings are flat and the primary winding 310 and the secondary winding 320 form two superposed layers on each leg 31, 32, 33 of the ferromagnetic core 30.
  • Such a known electric transformer 3, assembled through a flat winding technique exhibits low leakage inductance.
  • the parasitic capacitance is in this case very high at the level of the primary circuit as at the level of the secondary circuit.
  • the cooling of the winding arranged below, in other words of the “buried” winding is very difficult.
  • Another known solution for making a three-phase electrical transformer 4 consists of arranging the windings on a ferromagnetic core in an equilateral triangle, and thus having legs at 60° to each other, as shown in Figure 2.
  • the subject of the invention is a magnetic component comprising two ferromagnetic half-cores stacked and superimposed to form a ferromagnetic core comprising three legs including two first legs and a second leg, each leg being formed of two half- legs facing each other and separated by an air gap, each leg comprising a primary winding and a secondary winding having a direction of winding, respectively on each of the half-legs which constitute it, the magnetic component being characterized in that, on the second leg, the primary winding and the secondary winding as well as their direction of winding are reversed with respect to those of the first legs.
  • first legs can be side legs and the second leg a central leg.
  • the two ferromagnetic half-cores have a so-called "triangle" arrangement according to which, on each ferromagnetic half-core, the three branches respectively forming each half-leg are at 60° to one of the other.
  • the three branches respectively forming each half-leg are located on the vertices of an equilateral triangle.
  • the two ferromagnetic half-cores have an E shape.
  • the invention also relates to an electrical transformer comprising a magnetic component as briefly described above.
  • the invention also relates to electrical equipment comprising an electrical transformer as briefly described above.
  • said electrical equipment comprises a cooling module comprising a cavity forming a cooling basin housing said electrical transformer.
  • said electrical equipment forms an electrical charger.
  • said electrical equipment forms a power converter.
  • Figure 1 is a schematic representation of a first known electrical transformer, with primary and secondary windings arranged in superimposed layers;
  • Figure 2 is a schematic representation of a first known electrical transformer, with primary and secondary windings arranged on a ferromagnetic core triangle;
  • Figure 3 is an electrical diagram of an electrical transformer
  • FIG. 4 is a schematic representation of an electrical transformer in E, having the known drawbacks
  • Figure 5 is a schematic representation of an example of an electrical transformer according to the invention, assembled on a ferromagnetic core in E.
  • the invention relates to a magnetic component, in particular a three-phase transformer.
  • FIG. 3 represents an equivalent electric diagram of a resonant voltage converter circuit, comprising an electric transformer, for converting an input voltage VIN into an output voltage V 0 .
  • the electrical transformer includes primary and secondary windings. The magnetic flux created by the circulation of an electric current in the primary winding allows the transfer of energy to the secondary circuit.
  • a resonant LLC circuit consisting of a resonance capacitance Cr, a resonance inductance Lr and a magnetizing inductance Lm which can be integrated into the electrical transformer.
  • the electrical transformer is controlled by a half-bridge of switches Q1, Q2 connected to the primary winding.
  • the diodes D1, D2 connected to the secondary circuit make it possible to avoid current returns.
  • Figures 4 and 5 represent respectively schematic representations of an electrical transformer 20 according to the state of the art and of an example of an electrical transformer 10 according to the invention, both based on a ferromagnetic core in E Said ferromagnetic core is formed of two half-cores having the shape of an E, stacked head to tail.
  • the ferromagnetic core has three legs 11, 12, 13, 21, 22, 23, namely two side legs 11, 13, 21, 23 and a central leg 12, 22.
  • Each leg 11, 12, 13, 21 , 22, 23 is formed of two half-legs facing each other separated by an air gap.
  • Each leg 11, 12, 13, 21, 22, 23 corresponds to a phase of the three-phase electrical transformer 20, respectively 10.
  • each branch of the E in other words each leg 11, 12, 13, 21, 22, 23 of said ferromagnetic core, corresponds to a phase of the electrical transformer.
  • each leg corresponding to a vertex of the triangle is linked to a phase of the electrical transformer.
  • the windings 211, 212, 221, 222, 231, 232 are made in the same direction for all of the primary windings, which are all on the upper half-legs, and, respectively, for the secondary windings, which are all on the lower half-legs.
  • the drawback of this architecture lies in the fact that part of the magnetic leakage fluxes are in opposite directions. These leakage magnetic fluxes do not loop through the leg corresponding to their phase but jump from one leg to the other. In particular, magnetic fluxes are created parallel to the air gaps and jump from each lateral leg 21, 23 towards the central leg 22. In other words, a coupling appears between each lateral leg 21, 23 and the central leg 22.
  • Figure 5 shows the solution proposed by the present invention, according to one embodiment.
  • the primary winding 121 and the secondary winding 122 are inverted and the winding direction of these primary 121 and secondary 122 windings is reversed.
  • the primary winding 121 of the central leg 12 is located thus on the same side of the ferromagnetic core as the secondary windings 112, 132 of the legs sides 11, 13.
  • the secondary winding 122 of the central leg 12 is thus on the same side of the ferromagnetic core as the primary windings 111, 131 of the side legs 11, 13.
  • the winding direction of the windings primary and secondary 121, 122 of the central leg 12 is reversed with respect to that of the windings 111, 112, 131, 132 of the side legs 11, 13.
  • An advantage related to the implementation of the invention according to the embodiment of Figure 5 lies in the use of a standard E-core because it is easy to integrate mechanically and easy to cool via standard cooling technologies, in particular via a cooling basin, as is known, making it possible to obtain adequate cooling of the windings and of the core.
  • a three-phase electrical transformer with a linear E-shaped core is not symmetrical, in the sense that the phases formed on the side legs 11, 13 are further apart from one another. other than the central leg 12. Conversely, in an electric transformer in the shape of a triangle, in particular equilateral, the phases are equidistant because the legs are.
  • the present invention is all the more indicated to prevent the leakage magnetic flux from taking the same magnetic path as the controlled magnetic flux. Thanks to the invention, the leakage magnetic flux does not interfere with the controlled magnetic flux. In other words, the leakage magnetic flux does not oppose the controlled magnetic flux and does not create additional losses.
  • Such an electrical transformer according to the invention can advantageously be integrated into electrical equipment, in particular for automobiles, in particular an electrical charger or a power converter.
  • an electrical transformer according to the invention can easily be integrated into an electrical equipment chassis comprising a cooling module with a cavity forming a cooling basin housing said electrical transformer.

Abstract

La présente invention vise un composant magnétique comprenant deux demi-noyaux ferromagnétiques empilés et superposés pour former un cœur ferromagnétique comprenant trois jambes (11, 12, 13) dont deux premières jambes (11, 13) et une deuxième jambe (12), chaque jambe (11, 12, 13) étant formée de deux demi-jambes en vis-à-vis et séparées par un entrefer, chaque jambe (11, 12, 13) comprenant un enroulement primaire (111, 121, 131) et un enroulement secondaire (112, 122, 132) présentant un sens d'enroulement, respectivement sur chacune des demi-jambes qui la constituent, le composant magnétique étant caractérisé en ce que, sur la deuxième jambe (12), l'enroulement primaire (121) et l'enroulement secondaire (122) ainsi que leur sens d'enroulement sont inversés par rapport à ceux (111, 112, 131, 132) des premières jambes (11, 13).

Description

COMPOSANT MAGNETIQUE À FLUX DE FUITE CONTROLE
DOMAINE TECHNIQUE
[0001] La présente invention concerne le domaine des composants magnétiques, notamment des transformateurs électriques.
[0002] La présente invention se rapporte plus particulièrement au domaine des transformateurs électriques, par exemple intégrés à des convertisseurs de tension résonnants ou à tout autre type de convertisseurs de puissance, ou à des chargeurs électriques. Notamment, la présente invention vise un composant magnétique tel qu’un transformateur électrique triphasé.
ETAT DE LA TECHNIQUE
[0003] Un transformateur électrique permet le transfert d’énergie électrique d’un circuit primaire à un circuit secondaire.
[0004] Comme cela est connu, dans un transformateur électrique, on utilise un noyau magnétique et des bobinages dans lesquels circule un courant électrique qui génère un champ magnétique permettant le transfert d’énergie électrique du circuit primaire au circuit secondaire. Plus précisément, dans un transformateur électrique, en particulier dans un convertisseur de puissance à inductance magnétisante ou dans un convertisseur de puissance résonnant, on a un bobinage primaire et un bobinage secondaire, formés par des enroulements autour d’un noyau magnétique, entre lesquels est transférée de l’énergie électrique.
[0005] Dans un transformateur électrique triphasé, plus particulièrement on a trois enroulements primaires et trois enroulement secondaires enroulés sur différentes portions d’un noyau ferromagnétique de forme adaptée. On connaît notamment des noyaux ferromagnétiques en E, comme représenté sur la figure 1 , ou en triangle, comme représenté sur la figure 2.
[0006] Tout transformateur électrique présente une inductance de fuite, qui se traduit par une perte d’efficacité car une partie du flux magnétique créé au circuit primaire n’est pas captée par les enroulements du circuit secondaire. Des pertes supplémentaires peuvent en outre apparaître sur les enroulements primaires et secondaires. Dans le cas de convertisseurs de tension non résonnants, des surtensions peuvent par ailleurs survenir. La géométrie des bobinages d’un transformateur électrique, de même que le choix des matériaux magnétiques utilisés pour le noyau magnétique, ou encore la géométrie dudit noyau magnétique, notamment, sont configurés pour respecter des critères électriques et magnétiques. Un objectif du dimensionnement d’un transformateur électrique réside notamment dans le contrôle de la valeur de l’inductance de fuite du transformateur électrique. [0007] Il est connu deux principaux modes de fabrication de tels transformateurs électriques, notamment triphasés. Dans l’exemple de la figure 1 , les bobinages sont plats et l’enroulement primaire 310 et l’enroulement secondaire 320 forment deux couches superposées sur chaque jambe 31 , 32, 33 du noyau ferromagnétique 30. Un tel transformateur électrique 3 connu, assemblé par l’intermédiaire d’une technique d’enroulement à plat, présente une inductance de fuite faible. En outre, la capacité parasite est dans ce cas très forte au niveau du circuit primaire comme au niveau du circuit secondaire. Par ailleurs, le refroidissement de l’enroulement disposé en dessous, autrement dit de l’enroulement « enfoui », est très difficile.
[0008] Sur le même type de noyau ferromagnétique en E, on peut aussi réaliser des enroulements empilés. Un avantage de cette architecture connue réside dans le fait qu’elle est aisée à intégrer et à refroidir. Une telle architecture présente toutefois une inductance de fuite élevée.
[0009] Une autre solution connue pour réaliser un transformateur électrique 4 triphasé consiste à disposer les enroulements sur un noyau ferromagnétique en triangle équilatéral, et ainsi avoir des jambes à 60° l’une de l’autre, comme représenté sur la figure 2.
[0010] Une telle structure en triangle est toutefois difficile à intégrer mécaniquement.
[0011] Dans ce contexte, il est connu, sur la base d’une architecture fondée sur des enroulements empilés sur un noyau ferromagnétique en E, d’utiliser l’inductance de fuite pour faire fonction d’inductance de résonnance et donc favoriser le transfert d’énergie des enroulements primaires vers les enroulements secondaires. Ainsi, l’inductance de fuite, a priori préjudiciable, est valorisée.
[0012] Ce principe connu est illustré sur la figure 4. Comme cela est visible sur la figure 4, on dispose des enroulements primaires sur le demi-noyau ferromagnétique en E du haut et des enroulements secondaires sur le demi-noyau ferromagnétique en E du bas.
[0013] Le problème technique lié à la mise en oeuvre de cette technologie réside dans le fait que le flux magnétique de fuite ne boucle pas. En effet, il se concentre dans les jambes et « saute » des jambes latérales 21 , 23 vers la jambe centrale 22, comme cela est illustré sur la figure 4. Les lignes de flux sont ainsi parallèles aux entrefers.
[0014] Il existe donc un besoin pour un transformateur électrique triphasé aisé à intégrer et à refroidir et dont l’inductance de fuite est contrôlée.
PRESENTATSON DE L’INVENTION [0015] A cette fin, l’invention a pour objet un composant magnétique comprenant deux demi- noyaux ferromagnétiques empilés et superposés pour former un cœur ferromagnétique comprenant trois jambes dont deux premières jambes et une deuxième jambe, chaque jambe étant formée de deux demi-jambes en vis-à-vis et séparées par un entrefer, chaque jambe comprenant un enroulement primaire et un enroulement secondaire présentant un sens d’enroulement, respectivement sur chacune des demi-jambes qui la constituent, le composant magnétique étant caractérisé en ce que, sur la deuxième jambe, l’enroulement primaire et l’enroulement secondaire ainsi que leur sens d’enroulement sont inversés par rapport à ceux des premières jambes.
[0016] Notamment, les premières jambes peuvent être des jambes latérales et la deuxième jambe une jambe centrale.
[0017] Selon un mode de réalisation, les deux demi-noyaux ferromagnétiques présentent une disposition dite « en triangle » selon lequel, sur chaque demi-noyau ferromagnétique, les trois branches formant respectivement chaque demi-jambe sont à 60° l’une de l’autre. Notamment, les trois branches formant respectivement chaque demi-jambe sont situées sur les sommets d’un triangle équilatéral.
[0018] Avantageusement, les deux demi-noyaux ferromagnétiques présentent une forme de E.
[0019] L’invention vise aussi un transformateur électrique comprenant un composant magnétique tel que brièvement décrit ci-dessus.
[0020] L’invention porte également sur un équipement électrique comprenant un transformateur électrique tel que brièvement décrit ci-dessus.
[0021] Avantageusement, ledit équipement électrique comprend un module de refroidissement comprenant une cavité formant un bassin de refroidissement logeant ledit transformateur électrique.
[0022] Selon un mode de réalisation, ledit équipement électrique forme un chargeur électrique.
[0023] Selon un autre mode de réalisation, ledit équipement électrique forme un convertisseur de puissance.
PRESENTATION DES FIGURES [0024] L’invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d’exemple, et se référant aux dessins annexés donnés à titre d’exemples non limitatifs, dans lesquels des références identiques sont données à des objets semblables et sur lesquels :
[0025] la figure 1 est une représentation schématique d’un premier transformateur électrique connu, avec des enroulements primaire et secondaire disposés en couches superposées ;
[0026] la figure 2 est une représentation schématique d’un premier transformateur électrique connu, avec des enroulements primaire et secondaire disposés sur un noyau ferromagnétique en triangle ;
[0027] la figure 3 est un schéma électrique d’un transformateur électrique ;
[0028] la figure 4 est une représentation schématique d’un transformateur électrique en E, présentant les inconvénients connus ;
[0029] la figure 5 est une représentation schématique d’un exemple de transformateur électrique selon l’invention, assemblé sur un noyau ferromagnétique en E.
[0030] Il faut noter que les figures exposent l’invention de manière détaillée pour permettre de mettre en œuvre l’invention, lesdites figures pouvant bien entendu servir à mieux définir l’invention le cas échéant.
DESCRIPTION DETAILLEE DE L’INVENTION
[0031] L’invention concerne un composant magnétique, notamment un transformateur triphasé.
[0032] La figure 3 représente un schéma électrique équivalent d’un circuit convertisseur de tension résonnant, comportant un transformateur électrique, pour convertir une tension d’entrée VIN en une tension de sortie V0. Le transformateur électrique comprend des enroulements primaire et secondaire. Le flux magnétique créé par la circulation d’un courant électrique dans l’enroulement primaire permet le transfert d’énergie vers le circuit secondaire. Au circuit primaire, on trouve un circuit LLC résonnant constitué d’une capacité de résonnance Cr, d’une inductance de résonnance Lr et d’une inductance magnétisante Lm qui peut être intégrée au transformateur électrique. Le transformateur électrique est contrôlé par un demi-pont d’interrupteurs Q1 , Q2 connecté à l’enroulement primaire. Les diodes D1 , D2 connectées au circuit secondaire permettent d’éviter des retours de courant. [0033] Les figures 4 et 5 représentent respectivement des représentations schématiques d’un transformateur électrique 20 selon l’état de l’art et d’un exemple de transformateur électrique 10 selon l’invention, tous deux basés sur un noyau ferromagnétique en E. Ledit noyau ferromagnétique est formé de deux demi-noyaux présentant une forme de E, empilés tête-bêche.
[0034] Le noyau ferromagnétique présente trois jambes 11 , 12, 13, 21 , 22, 23, à savoir deux jambes latérales 11 , 13, 21 , 23 et une jambe centrale 12, 22. Chaque jambe 11 , 12, 13, 21 , 22, 23 est formée de deux demi-jambes en vis-à-vis séparées par un entrefer. Chaque jambe 11 , 12, 13, 21 , 22, 23 correspond à une phase du transformateur électrique triphasé 20, respectivement 10. Dans un transformateur électrique basé sur un noyau en E, chaque branche du E, autrement dit chaque jambe 11 , 12, 13, 21 , 22, 23 dudit noyau ferromagnétique, correspond à une phase du transformateur électrique. De même, dans un transformateur en triangle, chaque jambe correspondant à un sommet du triangle est liée à une phase du transformateur électrique.
[0035] Sur la figure 4, les enroulements 211 , 212, 221 , 222, 231 , 232 sont réalisés dans le même sens pour l’ensemble des enroulements primaires, qui se trouvent tous sur les demi- jambes supérieures, et, respectivement, pour les enroulements secondaires, qui se trouvent tous sur les demi-jambes inférieures.
[0036] L’inconvénient de cette architecture qui représente l’état de l’art schématisé sur la figure 4 réside dans le fait qu’une partie des flux magnétiques de fuite sont dans des sens opposés. Ces flux magnétiques de fuite ne rebouclent pas par la jambe correspondant à leur phase mais sautent d’une jambe à l’autre. En particulier, il se crée des flux magnétiques parallèles aux entrefers et sautant de chaque jambe latérale 21 , 23 vers la jambe centrale 22. Autrement dit, un couplage apparaît entre chaque jambe latérale 21 , 23 et la jambe centrale 22.
[0037] Cela entraîne une augmentation des pertes et un risque de surchauffe au centre du transformateur électrique 20, au niveau de la jambe centrale 22.
[0038] Une solution pour éviter ce couplage serait d’éloigner les jambes latérales 21 , 23 de la jambe centrale 22, pour empêcher ces sauts de flux magnétique des jambes latérales 21 , 23 vers la jambe centrale 22, en augmentant de fait la taille du noyau ferromagnétique. Cependant, cela induirait de toute évidence une augmentation de l’encombrement lié au transformateur électrique, ce qui serait préjudiciable.
[0039] La figure 5 montre la solution proposée par la présente invention, selon un mode de réalisation. Au niveau de la jambe centrale 12, on inverse l’enroulement primaire 121 et l’enroulement secondaire 122 et on inverse le sens d’enroulement de ces enroulements primaire 121 et secondaire 122. L’enroulement primaire 121 de la jambe centrale 12 se trouve ainsi du même côté du noyau ferromagnétique que les enroulement secondaires 112, 132 des jambes latérales 11 , 13. Réciproquement, l’enroulement secondaire 122 de la jambe centrale 12 se trouve ainsi du même côté du noyau ferromagnétique que les enroulement primaires 111 , 131 des jambes latérales 11 , 13. En outre, le sens d’enroulement des enroulement primaire et secondaire 121 , 122 de la jambe centrale 12 est inversé par rapport à celui des enroulements 111 , 112, 131 , 132 des jambes latérales 11 , 13.
[0040] Grâce à l’architecture selon l’invention, on évite les sauts de flux magnétique inter jambes. Comme le montre la figure 5, en effet, au lieu de se concentrer sur la jambe centrale 12 comme sur la figure 4, les flux magnétiques créés sur les différentes jambes 11 , 12, 13 se repoussent deux-à-deux. De ce fait, les flux magnétiques créés sur les jambes latérales 11 , 13 ne sautent pas sur la jambe centrale 12.
[0041] Ainsi, le flux magnétique sur la jambe centrale 12 n’augmente pas et le risque de surchauffe est par conséquent réduit.
[0042] Un avantage lié à la mise en œuvre de l’invention selon le mode de réalisation de la figure 5 réside dans l’utilisation d’un noyau en E standard car celui-ci est aisé à intégrer mécaniquement et aisé à refroidir via des technologies de refroidissement standards, notamment via un bassin de refroidissement, comme cela est connu, permettant d’obtenir un refroidissement adéquat des enroulements et du noyau.
[0043] Il faut noter par ailleurs qu’un transformateur électrique triphasé avec un noyau en E de forme linéaire, n’est pas symétrique, au sens où les phases formées sur les jambes latérales 11 , 13 sont davantage éloignées l’une de l’autre que de la jambe centrale 12. A l’inverse, dans un transformateur électrique en forme de triangle, notamment équilatéral, les phases sont équidistantes car les jambes le sont. Dans le cas d’un transformateur électrique en E, la présente invention est d’autant plus indiquée pour éviter que le flux magnétique de fuite n’emprunte le même chemin magnétique que le flux magnétique contrôlé. Grâce à l’invention, le flux magnétique de fuite n’interfère pas avec le flux magnétique contrôlé. Autrement dit, le flux magnétique de fuite ne s’oppose pas au flux magnétique contrôlé et ne crée pas de pertes supplémentaires.
[0044] Dans le cas d’un transformateur en triangle, notamment en triangle équilatéral, grâce à l’invention, on est dispensé d’un composant inductif externe. En outre, dans ce cas, toutes les jambes sont équidistantes.
[0045] Un tel transformateur électrique selon l’invention, comme dit précédemment, peut avantageusement être intégré dans un équipement électrique, notamment pour automobile, en particulier un chargeur électrique ou un convertisseur de puissance. [0046] En outre, dans le cas d’un transformateur électrique en E, un tel transformateur électrique selon l’invention peut aisément être intégré dans un châssis d’équipement électrique comprenant un module de refroidissement avec une cavité formant un bassin de refroidissement logeant ledit transformateur électrique.

Claims

REVENDICATIONS
1. Composant magnétique comprenant deux demi-noyaux ferromagnétiques empilés et superposés pour former un cœur ferromagnétique comprenant trois jambes (11 , 12, 13) dont deux premières jambes (11 , 13) et une deuxième jambe (12), chaque jambe (11 , 12, 13) étant formée de deux demi-jambes en vis-à-vis et séparées par un entrefer, chaque jambe (11 , 12,
13) comprenant un enroulement primaire (111 , 121 , 131) et un enroulement secondaire (112, 122, 132) présentant un sens d’enroulement, respectivement sur chacune des demi-jambes qui la constituent, le composant magnétique étant caractérisé en ce que, sur la deuxième jambe (12), l’enroulement primaire (121) et l’enroulement secondaire (122) ainsi que leur sens d’enroulement sont inversés par rapport à ceux (111 , 112, 131 , 132) des premières jambes (11 , 13).
2. Composant magnétique selon la revendication 1 , dans lequel les deux demi-noyaux ferromagnétiques présentent une disposition dite « en triangle » selon lequel, sur chaque demi- noyau ferromagnétique, les trois branches formant respectivement chaque demi-jambe sont à 60° l’une de l’autre.
3. Composant magnétique selon la revendication 1 , dans lequel les deux demi-noyaux ferromagnétiques présentent une forme de E.
4. Transformateur électrique (10) comprenant un composant magnétique selon l’une des revendications précédentes.
5. Equipement électrique comprenant un transformateur électrique (10) selon la revendication précédente.
6. Equipement électrique selon la revendication précédente, comprenant un module de refroidissement comprenant une cavité formant un bassin de refroidissement logeant ledit transformateur électrique (10).
7. Equipement électrique selon la revendication 5 ou 6, formant un chargeur électrique.
8. Equipement électrique selon l’une quelconque des revendications 5 à 7, formant un convertisseur de puissance.
EP21734842.4A 2020-07-29 2021-06-23 Composant magnetique à flux de fuite controlé Pending EP4189712A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2007993A FR3113178B1 (fr) 2020-07-29 2020-07-29 Composant magnétique à flux de fuite contrôlé
PCT/EP2021/067109 WO2022022896A1 (fr) 2020-07-29 2021-06-23 Composant magnetique à flux de fuite controlé

Publications (1)

Publication Number Publication Date
EP4189712A1 true EP4189712A1 (fr) 2023-06-07

Family

ID=73013678

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21734842.4A Pending EP4189712A1 (fr) 2020-07-29 2021-06-23 Composant magnetique à flux de fuite controlé

Country Status (6)

Country Link
US (1) US20230274869A1 (fr)
EP (1) EP4189712A1 (fr)
JP (1) JP2023535968A (fr)
CN (1) CN116034441A (fr)
FR (1) FR3113178B1 (fr)
WO (1) WO2022022896A1 (fr)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018206389A1 (de) * 2018-04-25 2019-10-31 Siemens Aktiengesellschaft Dreiphasiger Transformator
US11404203B2 (en) * 2018-06-13 2022-08-02 General Electric Company Magnetic unit and an associated method thereof

Also Published As

Publication number Publication date
US20230274869A1 (en) 2023-08-31
FR3113178B1 (fr) 2023-03-31
FR3113178A1 (fr) 2022-02-04
JP2023535968A (ja) 2023-08-22
CN116034441A (zh) 2023-04-28
WO2022022896A1 (fr) 2022-02-03

Similar Documents

Publication Publication Date Title
FR2839189A1 (fr) Transformateur de faible encombrement
FR2888396A1 (fr) Procede et dispositif d'alimentation d'un coupleur magnetique
FR3084797A1 (fr) Convertisseur de tension continu-continu a resonance
EP3605820B1 (fr) Convertisseur de tension continu-continu a resonance
EP2834820B1 (fr) Transformateur fixe triphase-diphase a flux lies forces
EP4189712A1 (fr) Composant magnetique à flux de fuite controlé
WO2020115389A1 (fr) Dispositif d'induction electromagnetique
CA2620812C (fr) Convertisseur a decoupage unipolaire ou bipolaire a deux enroulements magnetiquement couples
EP4042453A1 (fr) Dispositif d'induction electromagnetique
CA2872723A1 (fr) Transformateur triphase a trois noyaux magnetiques avec bobinages radial et annulaire
WO2020115402A1 (fr) Dispositif d'induction electromagnetique
FR3009885A3 (fr)
FR3116372A1 (fr) Dispositif electrique a deux groupes de bobines couplees portes par un carte de circuit imprime, convertisseur de tension comportant un tel dispositif electrique et procede de fabrication d’un tel dispositif electrique
FR3058255A1 (fr) Transformateur electrique haute tension a boitier isolant
WO2017140674A1 (fr) Composant magnétique, circuit electrique resonant, convertisseur electrique et systeme electrique
FR2944164A1 (fr) Moteur electrique ameliore.
FR3113386A1 (fr) Ensemble électrique comprenant un composant magnétique
FR3104801A1 (fr) Dispositif électrotechnique pour un aéronef
WO2023148177A1 (fr) Dispositif magnétique intégré
WO2021144541A1 (fr) Dispositif électromagnétique de conversion d'énergie
FR3104802A1 (fr) Dispositif électrotechnique pour un aéronef comprenant des composants bobinés basse fréquence
FR3112886A1 (fr) Ensemble comprenant au moins une première et une deuxième inductance
FR3089367A1 (fr) Convertisseur ac/dc
EP4205151A1 (fr) Un support d'enroulements pour un composant magnétique d'un ensemble électrique
EP3687051A1 (fr) Convertisseur resonant serie parallele llcc

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)