WO2020115389A1 - Dispositif d'induction electromagnetique - Google Patents

Dispositif d'induction electromagnetique Download PDF

Info

Publication number
WO2020115389A1
WO2020115389A1 PCT/FR2019/052768 FR2019052768W WO2020115389A1 WO 2020115389 A1 WO2020115389 A1 WO 2020115389A1 FR 2019052768 W FR2019052768 W FR 2019052768W WO 2020115389 A1 WO2020115389 A1 WO 2020115389A1
Authority
WO
WIPO (PCT)
Prior art keywords
legs
leakage
leg
main
section
Prior art date
Application number
PCT/FR2019/052768
Other languages
English (en)
Inventor
Gérard DELETTE
Serge Loudot
Ulrich SOUPREMANIEN
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Renault S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives, Renault S.A.S. filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to EP19829292.2A priority Critical patent/EP3871236A1/fr
Priority to JP2021530985A priority patent/JP7378475B2/ja
Publication of WO2020115389A1 publication Critical patent/WO2020115389A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/12Magnetic shunt paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F2003/106Magnetic circuits using combinations of different magnetic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to an electromagnetic induction device.
  • the present invention relates to an electromagnetic induction device which comprises sampling means giving a primary winding the behavior of two inductors in series.
  • the electromagnetic induction device according to the present invention is advantageously implemented in a power transformer, in particular a power transformer in the automotive field, and more particularly for charging electric motor vehicles.
  • the latter use a battery which delivers the power necessary for the traction of the vehicle, and the charging of which is carried out during the phase of the vehicle in question.
  • an exchange of information can be implemented between the AC-DC converter and the various components of the vehicle and in particular the battery management system.
  • the AC-DC converter can benefit from connectivity with the outside to provide various services such as “smart charging", geographic positioning to adapt the "grid code”, ...
  • the AC-DC converters meet specific constraints and in particular have a reduced volume, for example by implementing a magnetic core operating at relatively high frequency.
  • AC-DC converters bidirectional and thus pave the way for storage of and / or distribution of energy by the battery or batteries of electric vehicles.
  • a bidirectional AC-DC converter requires a special arrangement to make it quieter.
  • the proposed arrangement must also respond to a problem of efficiency so as to limit the electrical losses during the conversion of the current.
  • the LLC topology is notably based on the integration of a resonant type stage (“resonant tank” according to English terminology), and includes a transformer associated with capacitors, of 2C capacity and inductances mounted in “series” .
  • the inductors and capacitors are adjusted to operate in resonance at a frequency close to the nominal switching frequency of the switches.
  • the transformer is also designed to allow galvanic isolation of the input and load circuits, and adaptation of the voltage value applied to the load terminals.
  • It notably comprises a primary winding and a secondary winding formed around a magnetic core, with a ratio of number of turns n equal to the ratio of the input and load voltages.
  • the resonant series components are duplicated on both sides of the same winding.
  • the magnetizing inductance of the transformer Lm which is a function of the number of turns of the primary winding and of the geometry of the core, is, in the case of the LLC topology, determined precisely to ensure the adjustment of the gain of the converter.
  • the DAB topology includes arms placed on either side of the transformer without capacity.
  • the inductors in series have the function of transmitting the power.
  • the magnetizing inductance of the transformer is no longer constrained to a value given in DAB topology, and must only be high enough to obtain a good utilization rate.
  • the inductors typically of the order of 1 to 10 mH, and connected in series with the transformer in the LLC and DAB topologies, are, in the prior art, components of the discrete type, placed outside the transformer.
  • the document [2] cited at the end of the description proposes to take advantage of the transformer natural leakage inductance as a series inductor as illustrated in FIG. 3.
  • the leakage inductance characterizes, in particular, the part of the magnetic flux created by the primary winding of the transformer and which does not cross the secondary winding.
  • This leakage inductance is representative of non-ideal operation of the transformer, and is the source of a distribution of part of the magnetic flux around the component considered.
  • the leakage inductance is generally low (less than 1 microHenry, mH), and evaluation is difficult to predict.
  • the spacing created between the first winding and the second winding tends to increase the volume of the transformer.
  • magnetic leaks around the winding constrain its implantation by prohibiting the presence of any conductive element nearby so as not to induce eddy currents there, which significantly increases the volume of the converter.
  • the additional winding is intended to create in the core an integrated inductance by virtue of the circulation of a magnetic flux in a direction identical or different from that of the main flux.
  • the increase in the volume of the core remains limited as long as a single additional winding is considered.
  • An object of the present invention is therefore to propose a transformer provided with a controlled leakage inductance and which does not induce a notable increase in volume.
  • an electromagnetic induction device comprising:
  • a ferromagnetic core comprising a plurality of legs essentially parallel to each other, and each extending between two ends, the plurality of legs comprising at least one main leg, at least one lateral leg and at least two leakage legs;
  • At least one primary winding and at least one secondary winding each comprising a main section, wound around the main leg, and a leakage section, called respectively primary leakage section and secondary leakage section each wound on a trailing leg different.
  • the core comprises two plates, called the bottom plate and the top plate respectively, facing each other on an internal face, said respectively the internal bottom face and the internal top face, and between which the plurality of legs.
  • each of the legs among the plurality of legs has an air gap.
  • the air gap of each of the at least two leakage legs known as the leakage air gap, and greater than or equal, preferably strictly greater, to the air gaps of the other legs.
  • the air gaps of the at least one main leg and of the at least one lateral leg are equal.
  • a plane equidistant from the two internal faces forms a plane of symmetry of the core.
  • a groove is formed on both of the internal faces, at a distance and at least partially surrounding each of the two ends of each trailing leg, the groove interposed between the trailing leg and the main leg.
  • the legs of the plurality of legs are cylindrical.
  • the at least one main leg comprises a single main leg
  • the at least one side leg comprises four side legs arranged regularly around the main leg.
  • the at least two leakage legs comprises four leakage legs arranged regularly around the main leg, advantageously all of the leakage legs have an angular offset of 45 ° relative to the lateral legs.
  • the primary leakage section comprises two primary leakage sections so that the primary winding comprises, in order, one of the primary leakage sections, the main section, and the other primary leakage section, the primary leak sections being each wrapped around a different and diametrically opposite leak leg.
  • the secondary leakage section comprises two secondary leakage sections so that the primary winding comprises in order one of the secondary leakage sections, the main section, and the other secondary leakage section, the secondary leakage sections being each wrapped around a different and diametrically opposite leakage leg.
  • the at least one main leg comprises three main legs merged with the at least one side leg, each main leg being associated with a set of two leakage legs which is specific to it.
  • the three main legs are regularly arranged around a main axis which is parallel to them.
  • the two legs of leakage from the given set of legs are diametrically opposite with respect to the main leg associated with them.
  • the two legs of leakage from the footwork are arranged symmetrically with respect to a plane passing through the main axis.
  • the invention also relates to the device according to the present invention.
  • FIG. 1 is a schematic representation in discrete components of a transformer in LLC topology known from the state of the art
  • FIG. 2 is a schematic representation in discrete components of a transformer in DAB topology known from the state of the art
  • Figure 3 is a schematic representation of a primary winding and a concentric secondary winding formed around a section of a core known from the prior art
  • Figure 4 is a schematic presentation according to a perspective view of an electromagnetic induction device according to a first variant of the present invention
  • FIGS. 5A and 5B are schematic representations of the lower and upper blocks of a core capable of being implemented in this first variant
  • Figure 6 is a perspective view of a block, including the lower block, illustrating the implementation of grooves
  • FIG. 7 is a perspective view of a block, in particular the lower block, illustrating the arrangement of the main winding and the secondary winding;
  • FIG. 8 represents two views of a block illustrating the geometrical characteristics of said block in relation to table 2;
  • Figure 9 is a schematic representation of a block, including the lower block, illustrating the positioning of the different legs in the context of a second variant of the present invention;
  • Figure 10 is a representation of an equivalent electrical diagram of the device shown in Figure 4.
  • FIG. 11 is a schematic representation of a block and of the arrangement of all of the windings.
  • the electromagnetic induction device comprises a ferromagnetic core provided with a main leg and at least two trailing legs.
  • the electromagnetic induction device comprises two windings partly wound around the main leg, and, partly, each around a different trailing leg.
  • This arrangement makes it possible to confer on each of the windings a behavior of inductances connected in series, and in particular a magnetizing inductance in series with at least one inductance, called leakage inductance.
  • FIG. 4 is a schematic representation of the electromagnetic induction device 1000.
  • the device 1000 comprises a core 2000, and more particularly a core made of a ferromagnetic material.
  • the ferromagnetic material can be sintered and in particular comprise at least one material chosen from: MnZn, NiZn.
  • the ferromagnetic core comprising a plurality of legs essentially parallel to each other, and each extending between two ends.
  • the plurality of legs includes at least one main leg, at least one side leg, and at least two leak legs.
  • leg is meant a section which has an elongated shape. The leg can then take the form of a bar, in particular a bar of cylindrical cross section.
  • the legs can be cylindrical.
  • the main leg 2100 extends longitudinally between its two ends 2110 and 2120 ( Figures 5a and 5b).
  • the core 1000 can comprise two said plates, respectively, lower plate 2500 and upper plate 2510, essentially parallel to each other, and facing each other along one of their said face, respectively, lower internal face 2500a and upper internal face 2510a.
  • the lower plate 2500 and the upper plate 2510 are advantageously perpendicular to the plurality of legs.
  • the main leg, the at least one lateral leg and the at least two leakage legs can comprise an air gap (“air gap” according to Anglo-Saxon terminology) denoted, respectively, main air gap, lateral air gap and leak gap.
  • air gap air gap
  • each of the legs of the plurality of legs makes it possible to consider a core made of two symmetrical blocks from one another, called respectively the lower block and the upper block.
  • Each of the blocks comprises one of the plates 2500 or 2510, and the half-legs of the plurality of legs.
  • each of the legs comprises an air gap.
  • the device comprises a single main leg 2100, for example in the central position relative to the two plates 2500 and 2510.
  • the at least one side leg includes four side legs 2201, 2202, 2203 and 2204 arranged regularly around the main leg.
  • the at least two trailing legs include four trailing legs 2301, 2302, 2303, and 2304 arranged regularly around the main leg.
  • the set of leakage legs has an angular offset of 45 ° relative to the lateral legs.
  • the device comprises a single primary winding 3000 and a single secondary winding 4000 (FIG. 7).
  • the first coil 3000 comprises a main section 3000a wound around the main leg and two primary leakage sections called, respectively, first primary leakage section 3000b and second primary leakage section 3000c each wound around two different trailing legs.
  • first primary leakage section 3000b and the second primary leakage section 3000c are wound around two diametrically opposite leakage legs.
  • the second coil 4000 comprises a secondary section 4000a wound around the main leg and two secondary leakage sections called, respectively, first secondary leakage section 4000b and second secondary leakage section 4000c each wound around two different trailing legs.
  • first secondary leakage section 4000b and the second secondary leakage section 4000c are wound around two diametrically opposite leakage legs.
  • the primary section 3000a and the secondary section 4000a perform the main function of the transformer, namely the voltage conversion.
  • the primary leakage sections 3000b, 3000c and the secondary leakage sections 4000b, 4000c act as leakage inductors. According to this arrangement, each of the windings reproduces the behavior of three inductors in series, called, respectively, leakage inductance Lr and magnetizing inductance Lm.
  • the magnetizing inductance determines the transformation ratio (or gain) between the voltage at one winding and the output voltage at the other winding.
  • Leakage inductors allow them to store electromagnetic energy and restore it when the time comes. In other words, the leakage inductance causes the power to transit.
  • FIG. 10 The equivalent electrical diagram relating to the device of FIG. 4 is represented in FIG. 10.
  • the latter notably comprises the magnetizing inductance Lm in series with two leakage inductors Lr.
  • a current flows in one of the windings, for example the first winding.
  • a magnetic flux, called magnetizing flux, generated by the main section also crosses the secondary section 4000a, and forms a magnetic loop in the core 2000 for example by forming magnetic loops circulating in the lateral legs and trailing legs.
  • the core may however include an arrangement intended to promote the circulation of the magnetizing flux in the lateral legs 2201, 2202, 2203 and 2204 rather than in the leakage legs 2301, 2302, 2303, and 2304.
  • the trailing air gap may be greater than the lateral air gaps.
  • a groove 2301a, 2302a, 2303a and 2304a can be formed on either of the internal faces, at a distance and at least partially surrounding each of the two ends of each trailing leg, the groove between the trailing leg and the main leg ( Figure 6).
  • Table 1 brings together the specifications of a “DAB” type transformer having a resonant frequency of 500 kHz, and comprising the electromagnetic induction device according to the present invention.
  • Table 2 brings together the characteristics of the electromagnetic induction device making it possible to comply with the specifications gathered in Table 1 (the dimensions are shown in Figure 8).
  • the principle explained in the first variant be adapted and implemented in the context of a second variant for the production of a multi-phase, and in particular three-phase electromagnetic induction device.
  • Figure 9 illustrates in this regard an example of implementation of a three-phase induction device.
  • This example of implementation can essentially take up the elements relating to the first variant.
  • the core comprises three main legs 2101, 2102, and 2103, and is devoid of lateral legs.
  • the three main legs can be arranged regularly around an axis, called the main axis XX ', which is parallel to them. Furthermore, each main leg 2101, 2102, and 2103 is associated with two trailing legs 2305a, 2305b, 2306a, 2306b, 2307a, 2307b, 2308a and 2308b as well as a primary winding 3001, 3002 and 3003 and a secondary winding. 4001, 4002, 4003 which are specific to it.
  • a main leg, the two trailing legs and the primary and secondary windings form a phase of the electromagnetic induction device 1000.
  • the first winding 3001, 3002 and 3003 comprises a main section 3001a, 3002a and 3003a wound around the main leg and a primary leakage section 3001b, 3002b and 3003b wound around a trailing leg ( Figure 11 ).
  • the second winding 4001, 4002, 4003 comprises a secondary section 4001a, 4002a, 4003a wound around the main leg and a secondary leakage section 4001b, 4002b, 4003b wound around the other trailing leg (FIG. 11 ).
  • the primary section 3001a, 3002a and 3003a and the secondary section 4001a, 4002a, 4003a provide the main function of the transformer, namely the conversion of the voltage.
  • the design of the core according to the present invention may use an injection molding technique (“PIM” or “Powder Injection Molding” according to Anglo-Saxon terminology). This technique is particularly well suited for the production of parts in large series. Injection molding first implements a step of forming a masterbatch ("feedstock" according to Anglo-Saxon terminology).
  • the masterbatch in particular comprises a mixture of organic matter (or polymeric binder) and inorganic powders (metallic or ceramic) intended to form the final part.
  • the masterbatch is injected into an injection press, the technology of which is known to those skilled in the art.
  • the injection press makes it possible to melt the polymers injected with the powder in a cavity, and to give said powder the desired shape.
  • the masterbatch thus formed and melted, is subjected to cooling so as to solidify and solidify it in a form imposed by the injection molding machine.
  • the part formed by the masterbatch is then removed from the mold, and unbound in order to remove the organic matter.
  • the part can then be consolidated by sintering.
  • the invention also relates to a transformer (in particular a “DAB” type transformer) provided with the electromagnetic induction device according to the present invention.
  • a transformer in particular a “DAB” type transformer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Near-Field Transmission Systems (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

L'invention concerne un dispositif d'induction électromagnétique (1000) comprenant : -un noyau ferromagnétique comprenant une pluralité de jambes essentiellement parallèles entre elles, et s'étendant chacune entre deux extrémités, la pluralité de jambes comprenant au moins une jambe principale (2100), au moins une jambe latérale (2201, 2202, 2203, 2204) et au moins deux jambes de fuites (2301, 2302, 2303, 2304); -au moins un bobinage primaire et au moins un bobinage secondaire, comprenant chacun une section principale, enroulée autour de la jambe principale, et une section de fuite, dites respectivement section de fuite primaire et section de fuite secondaire enroulées chacune sur une jambe de fuite différente.

Description

Description
Titre : DISPOSITIF D'INDUCTION ELECTROMAGNETIQUE DOMAINE TECHNIQUE
La présente invention concerne un dispositif d'induction électromagnétique.
Plus particulièrement, la présente invention concerne un dispositif d'induction électromagnétique qui comprend des moyens de prélèvement conférant à un bobinage primaire un comportement de deux inductances en série.
Le dispositif d'induction électromagnétique selon la présente invention est avantageusement mis en œuvre dans un transformateur de puissance, notamment un transformateur de puissance dans le domaine automobile, et plus particulièrement pour la charge des véhicules automobiles électriques.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
On observe depuis quelques années, un essor important des véhicules électriques.
Ces derniers mettent en œuvre une batterie qui délivre la puissance nécessaire à la traction du véhicule, et dont la charge est effectuée lors de phase du véhicule considéré.
Cette charge, exécutée au niveau de bornes de chargement qui délivrent un courant alternatif, nécessite l'emploi d'un convertisseur AC-DC.
Toutefois, compte tenu du volume que ces derniers sont susceptibles d'occuper dans les bornes de chargement, les constructeurs envisagent de les intégrer dans les véhicules automobiles.
Cette solution permet d'envisager un interfaçage du convertisseur AC- DC avec l'électronique embarqué du véhicule automobile.
Plus particulièrement, un échange d'informations, par des moyens de communication adaptées, peut être mis en œuvre entre le convertisseur AC-DC et les différentes organes du véhicule et notamment le système de gestion de la batterie. Le convertisseur AC-DC peut bénéficier de la connectivité avec l'extérieur pour assurer divers services tels que le « smart charging », le positionnement géographique pour adapter le « grid code », ...
Il est donc préférable que les convertisseurs AC-DC répondent à des contraintes spécifiques et notamment présentent un volume réduit, par exemple en mettant en œuvre un noyau magnétique fonctionnant à relativement haute fréquence.
Il est également envisagé de rendre les convertisseurs AC-DC bidirectionnels et ainsi ouvrir la voie à un stockage de et/ou une distribution d'énergie par la ou les batteries des véhicules électriques.
Un tel agencement permettrait alors de pallier, en partie, les insuffisances du réseau électrique sur lequel lesdits véhicules sont connectés lors de phases de surproduction d'énergie et/ou de pics de consommation.
Un convertisseur AC-DC bidirectionnel nécessite toutefois un agencement particulier permettant de le rendre plus silencieux.
Enfin, l'agencement proposé doit également répondre à une problématique de rendement de manière à limiter les pertes électriques lors de la conversion du courant.
À ces fins, au moins deux topologies de convertisseurs (décrites dans le document [1] cité à la fin de la description) dites, respectivement, de type LLC (convertisseur résonnant illustré à la figure 1) et de type DAB (pour « Dual Active Bridge », illustré à la figure 2) ont pu être proposées.
La topologie LLC est notamment basée sur l'intégration d'un étage de type résonant (« résonant tank » selon la terminologie anglo-saxonne), et comprend un transformateur associé à des condensateurs, de capacité 2C et des inductances montées en « série ».
Les inductances et les condensateurs sont ajustés pour fonctionner en résonnance à une fréquence proche de la fréquence nominale de commutation des commutateurs. Le transformateur est également agencé pour permettre l'isolation galvanique des circuits d'entrée et de charge, et l'adaptation de la valeur de tension appliquée aux bornes de la charge.
Il comprend notamment un bobinage primaire et un bobinage secondaire formés autour d'un noyau magnétique, avec un rapport de nombre de tours n égal au rapport des tensions d'entrée et de charge.
Dans une configuration LLC équilibrée, les composants série résonants sont dupliqués de part et d'autre du même enroulement. L'inductance magnétisante du transformateur Lm, fonction du nombre de tours du bobinage primaire et de la géométrie du noyau, est, dans le cas de la topologie LLC, déterminée précisément pour assurer le réglage du gain du convertisseur.
La topologie DAB comprend quand-à elle des bras placés de part et d'autre du transformateur dépourvus de capacité. Les inductances en série ont pour fonction de faire transiter la puissance.
L'inductance magnétisante du transformateur n'est plus contrainte à une valeur donnée en topologie DAB, et doit seulement être assez élevée pour obtenir un bon taux d'utilisation. Toutefois, dans cette topologie bidirectionnelle, il est préférable de mettre en œuvre 4 inductances montées en série avec le transformateur de façon à avoir un circuit le plus symétrique possible et ainsi limiter les perturbations de mode commun à très faible niveau qui réduisent de fait la taille du filtrage en entrée.
Les inductances, typiquement de l'ordre de 1 à 10 mH, et montées en série avec le transformateur dans les topologies LLC et DAB, sont, dans l'état de la technique, des composants de type discrets, placés à l'extérieur du transformateur.
Ces composants occupent en général un volume important que l'on cherche à réduire en les intégrant dans le cœur du transformateur.
Le document [2] cité à la fin de la description propose de mettre à profit l'inductance de fuite naturelle du transformateur comme inductance série tel qu'illustré à la figure 3. L'inductance de fuite caractérise, notamment, la part du flux magnétique crée par le bobinage primaire du transformateur et qui ne traverse pas le bobinage secondaire.
Cette inductance de fuite est représentative d'un fonctionnement non idéal du transformateur, et est à la source d'une distribution d'une partie du flux magnétique autour du composant considéré.
L'inductance de fuite est généralement faible (inférieure à 1 microHenry, mH), et sont évaluation est difficile à prévoir.
Aussi, afin d'augmenter la valeur de l'inductance de fuite, il est proposé dans le document [3] de ménager un espace entre le premier bobinage et le second bobinage.
Cet agencement ne permet toutefois de créer qu'une seule inductance série dans le transformateur, et ne peut donc être mise en œuvre dans les configurations LLC ou DAB équilibrées.
Par ailleurs, l'espacement créé entre le premier bobinage et le second bobinage tend à faire croître le volume du transformateur.
En outre, les fuites magnétiques autour du bobinage contraignent son implantation en interdisant la présence de tout élément conducteur à proximité pour ne pas y induire de courants de Foucault, ce qui augmente significativement le volume du convertisseur.
Le document [3] cité à la fin de la description propose d'introduire un bobinage supplémentaire autour du noyau, tel qu'illustré à la figure 3.
En particulier, le bobinage supplémentaire est destiné à créer dans le noyau une inductance intégrée grâce à la circulation d'un flux magnétique selon une direction identique ou différente de celle du flux principal.
L'augmentation du volume du noyau reste limitée tant qu'un seul bobinage supplémentaire est considéré.
Toutefois, cette configuration n'offre que peu de flexibilité quant à l'ajustement du circuit magnétique, en termes de longueur et de section, pour réaliser l'inductance série. Un but de la présente invention est donc de proposer un transformateur pourvu d'une inductance de fuite contrôlée et qui n'induit une augmentation de volume notable.
EXPOSÉ DE L'INVENTION
Le but de la présente invention est atteint par un dispositif d'induction électromagnétique comprenant :
- un noyau ferromagnétique comprenant une pluralité de jambes essentiellement parallèles entre elles, et s'étendant chacune entre deux extrémités, la pluralité de jambes comprenant au moins une jambe principale, au moins une jambe latérale et au moins deux jambes de fuites ;
- au moins un bobinage primaire et au moins un bobinage secondaire, comprenant chacun une section principale, enroulée autour de la jambe principale, et une section de fuite, dites respectivement section de fuite primaire et section de fuite secondaire enroulées chacune sur une jambe de fuite différente.
Selon un mode de mise en œuvre, le noyau comprend deux plaques, dites respectivement plaque inférieure et plaque supérieure, se faisant face chacune selon une face interne, dites respectivement face interne inférieure et face interne supérieure, et entre lesquelles s'étend la pluralité de jambes.
Selon un mode de mise en œuvre, chacune des jambes parmi la pluralité de jambe présente un entrefer.
Selon un mode de mise en œuvre, l'entrefer de chacune des au moins deux jambes de fuites, dit entrefer de fuite, et supérieur ou égale, de préférence strictement supérieur, aux entrefers des autres jambes.
Selon un mode de mise en œuvre, les entrefers de l'au moins une jambe principale, et de l'au moins une jambe latérale sont égaux.
Selon un mode de mise en œuvre, un plan équidistant des deux faces internes forme un plan de symétrie du noyau.
Selon un mode de mise en œuvre, une saignée est formée sur l'une et l'autre des faces internes, à distance et entourant au moins en partie chacune des deux extrémités de chaque jambe de fuite, la saignée s'interposant entre la jambe de fuite et la jambe principale.
Selon un mode de mise en œuvre, les jambes de la pluralité de jambes sont cylindriques.
Selon un mode de mise en œuvre, l'au moins une jambe principale comprend une unique jambe principale, l'au moins une jambe latérale comprend quatre jambes latérales disposées régulièrement autour de la jambe principale.
Selon un mode de mise en œuvre, l'au moins deux jambes de fuites comprend quatre jambes de fuites disposées régulièrement autour de la jambe principale, avantageusement l'ensemble des jambes de fuites présente un décalage angulaire de 45° par rapport aux jambes latérales.
Selon un mode de mise en œuvre, la section de fuite primaire comprend deux sections de fuites primaires de sorte que le bobinage primaire comprenne dans l'ordre une des sections de fuites primaire, la section principale, et l'autre section de fuites primaire, les sections de fuites primaires étant enroulées chacune autour d'une jambe de fuites différente et diamétralement opposées.
Selon un mode de mise en œuvre, la section de fuite secondaire comprend deux sections de fuites secondaires de sorte que le bobinage primaire comprenne dans l'ordre une des sections de fuites secondaires, la section principale, et l'autre section de fuites secondaire, les sections de fuites secondaires étant enroulées chacune autour d'une jambe de fuites différente et diamétralement opposées.
Selon un mode de mise en œuvre, l'au moins une jambe principale comprend trois jambes principales confondues avec l'au moins une jambe latérale, chaque jambe principale étant associée avec un jeu de deux jambes de fuites qui lui est propre.
Selon un mode de mise en œuvre, les trois jambes principales sont disposées régulièrement autour d'un axe principal qui leur est parallèle.
Selon un mode de mise en œuvre, les deux jambes de fuites du jeu de jambes donné sont diamétralement opposées par rapport à la jambe principale qui leur est associée. Selon un mode de mise en œuvre, les deux jambes de fuites du jeu de jambes sont disposées symétriquement par rapport à un plan passant par l'axe principal.
L'invention concerne également pourvu du dispositif selon la présente invention.
BRÈVE DESCRIPTION DES DESSINS
D'autres caractéristiques et avantages apparaîtront dans la description qui va suivre d'un dispositif d'induction électromagnétique selon l'invention, donnés à titre d'exemples non limitatifs, en référence aux dessins annexés dans lesquels :
La figure 1 est une représentation schématique en composantes discrètes d'un transformateur en topologie LLC connu de l'état de la technique ;
La figure 2 est une représentation schématique en composantes discrètes d'un transformateur en topologie DAB connu de l'état de la technique ;
La figure 3 est une représentation schématique d'un bobinage primaire et d'un bobinage secondaire concentriques formés autour d'une section d'un noyau connu de l'état de la technique ;
La figure 4 est une présentation schématique selon une vue en perspective d'un dispositif d'induction électromagnétique selon une première variante de la présente invention ;
Les figures 5A et 5B sont des représentations schématiques des blocs inférieur et supérieur d'un noyau susceptible d'être mis en œuvre dans cette première variante ;
La figure 6 est une vue en perspective d'un bloc, notamment le bloc inférieur, illustrant la mise en œuvre de saignées ;
La figure 7 est une vue en perspective d'un bloc, notamment le bloc inférieur, illustrant l'agencement du bobinage principal et du bobinage secondaire ;
La figure 8 représente deux vues d'un bloc illustrant les caractéristiques géométriques dudit bloc en relation avec le tableau 2 ; La figure 9 est une représentation schématique d'un bloc, notamment le bloc inférieur, illustrant le positionnement des différentes jambes dans le cadre d'une seconde variante de la présente invention ;
La figure 10 est une représentation d'un schéma électrique équivalent du dispositif représenté à la figure 4 ;
La figure 11 est une représentation schématique d'un bloc et de l'agencement de l'ensemble des bobinages.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
Le dispositif d'induction électromagnétique, selon la présente invention, comprend un noyau ferromagnétique pourvu d'une jambe principale et d'au moins deux jambes de fuite.
En particulier, le dispositif d'induction électromagnétique comprend deux bobinages enroulés pour partie autour de la jambe principale, et, pour partie, chacun autour d'une jambe de fuite différente.
Cet agencement permet de conférer à chacun des bobinages un comportement d'inductances connectées en série, et notamment une inductance magnétisante en série avec au moins une inductance, dite inductance de fuite.
La figure 4 est une représentation schématique du dispositif d'induction électromagnétique 1000.
Le dispositif 1000 comprend un noyau 2000, et plus particulièrement un noyau fait d'un matériau ferromagnétique.
Le matériau ferromagnétique peut être fritté et notamment comprendre au moins un matériau choisi parmi : MnZn, NiZn.
Le noyau ferromagnétique comprenant une pluralité de jambes essentiellement parallèles entre elles, et s'étendant chacune entre deux extrémités.
La pluralité de jambes comprend au moins une jambe principale, au moins une jambe latérale et au moins deux jambes de fuites. Par « jambe », on entend une section qui présente une forme allongée. La jambe peut alors prendre la forme d'un barreau, notamment un barreau de section transversale cylindrique.
Les jambes peuvent être cylindriques.
La jambe principale 2100 s'étend longitudinalement entre ses deux extrémités 2110 et 2120 (figures 5a et 5b).
Le noyau 1000 peut comprendre deux plaques dites, respectivement, plaque inférieure 2500 et plaque supérieure 2510, essentiellement parallèles entre elles, et se faisant face chacune selon une de leur face dites, respectivement, face interne inférieure 2500a et face interne supérieure 2510a.
La plaque inférieure 2500 et la plaque supérieure 2510 sont avantageusement perpendiculaires à la pluralité de jambes.
De manière avantageuse, la jambe principale, l'au moins une jambe latérale et l'au moins deux jambes de fuites peuvent comprendre un entrefer (« air gap » selon la terminologie Anglo-Saxonne) noté, respectivement, entrefer principal, entrefer latéral et entrefer de fuite.
La présence d'un entrefer sur chacune des jambes de la pluralité de jambes permet de considérer un noyau fait de deux blocs symétriques d'un de l'autre, dits respectivement bloc inférieur et bloc supérieur. Chacun des blocs comprend une des plaques 2500 ou 2510, et les demi-jambes de la pluralité de jambes.
Dans toute la suite de la description, quelle que soit la variante considérée, il sera admis que chacune des jambes comprend un entrefer.
Selon une première variante illustrée aux figures 5a et 5b, le dispositif comprend une unique jambe principale 2100, par exemple en position centrale par rapport aux deux plaques 2500 et 2510.
L'au moins une jambe latérale comprend quatre jambes latérales 2201, 2202, 2203 et 2204 disposées régulièrement autour de la jambe principale.
Les au moins deux jambes de fuite comprennent quatre jambes de fuites 2301, 2302, 2303, et 2304 disposées régulièrement autour de la jambe principale. De manière avantageuse, l'ensemble des jambes de fuites présente un décalage angulaire de 45° par rapport aux jambes latérales.
Selon cette première variante, le dispositif comprend un unique bobinage primaire 3000 et un unique bobinage secondaire 4000 (figure 7).
Le premier bobinage 3000 comprend une section principale 3000a enroulée autour de la jambe principale et deux sections de fuite primaire dites, respectivement, première section de fuite primaire 3000b et seconde section de fuite primaire 3000c enroulées chacune autour de deux jambes de fuite différentes.
En particulier, la première section de fuite primaire 3000b et la seconde section de fuite primaire 3000c sont enroulées autour de deux jambes de fuites diamétralement opposées.
Le second bobinage 4000 comprend une section secondaire 4000a enroulée autour de la jambe principale et deux sections de fuite secondaires dites, respectivement, première section de fuite secondaire 4000b et seconde section de fuite secondaire 4000c enroulées chacune autour de deux jambes de fuite différentes.
Il est entendu, sans qu'il soit nécessaire de le préciser, que les jambes de fuite autour desquelles sont enroulées les deux sections de fuite secondaire sont différentes des jambes de fuites autour desquelles sont enroulées les deux sections de fuite primaires.
En particulier, la première section de fuite secondaire 4000b et la seconde section de fuite secondaire 4000c sont enroulées autour de deux jambes de fuites diamétralement opposées.
Ainsi, tout flux magnétique, dit flux inducteur, généré par l'une ou l'autre de la section primaire 3000a et de la section secondaire 4000a, circule dans l'autre desdites sections. En d'autres termes, la section primaire 3000a et la section secondaire 4000a assurent la fonction principale du transformateur, à savoir la conversion de la tension.
Les sections de fuites primaires 3000b, 3000c et les sections de fuites secondaires 4000b, 4000c jouent le rôle d'inductances de fuite. Selon cet agencement, chacun des bobinages reproduit le comportement de trois inductances en série, dites, respectivement, inductance de fuite Lr et inductance magnétisante Lm.
À cet égard, l'inductance magnétisante détermine le rapport de transformation (ou le gain) entre la tension au niveau d'un bobinage et la tension de sortie au niveau de l'autre bobinage. Les inductances de fuite permettent quant à elles d'emmagasiner de l'énergie électromagnétique et de la restituer le moment venu. En d'autres termes, l'inductance de fuite fait transiter la puissance.
Le schéma électrique équivalent relatif au dispositif de la figure 4 est représenté à la figure 10. Ce dernier comprend notamment l'inductance magnétisante Lm en série avec deux inductances de fuite Lr.
En fonctionnement, un courant circule dans l'un des bobinages, par exemple le premier bobinage.
Sous l'effet de ce courant, un flux magnétique, dit flux magnétisant, généré par la section principale traverse également la section secondaire 4000a, et forme une boucle magnétique dans le noyau 2000 par exemple en formant des boucles magnétiques circulant dans les jambes latérales et les jambes de fuite.
Le noyau peut toutefois comprendre un agencement destiné à favoriser la circulation du flux magnétisant dans les jambes latérales 2201, 2202, 2203 et 2204 plutôt que dans les jambes de fuites 2301, 2302, 2303, et 2304.
À cette fin, l'entrefer de fuite peut être supérieur aux entrefers latéraux.
De manière alternative ou complémentaire, une saignée 2301a, 2302a, 2303a et 2304a peut être formée sur l'une et l'autre des faces internes, à distance et entourant au moins en partie chacune des deux extrémités de chaque jambe de fuite, la saignée s'interposant entre la jambe de fuite et la jambe principale (figure 6).
La section suivante présente un exemple de dimensionnement du dispositif décrit en relation avec la figure 4.
Notamment, le tableau 1 rassemble les spécifications d'un transformateur de type « DAB » présentant une fréquence de résonnance de 500 kHz, et comprenant le dispositif d'induction électromagnétique selon la présente invention.
Figure imgf000014_0001
Le tableau 2 rassemble les caractéristiques du dispositif d'induction électromagnétique permettant de respecter les spécifications rassemblées dans le tableau 1 (les cotes sont représentées à la figure 8).
Figure imgf000014_0002
Le principe exposé dans la première variante être adapté et mis en œuvre dans le cadre d'une seconde variante pour la réalisation d'un dispositif d'induction électromagnétique multiphasé, et notamment triphasé.
La figure 9 illustre à cet égard un exemple de mise en œuvre d'un dispositif d'induction triphasé.
Cet exemple de mise en œuvre peut reprendre pour l'essentiel les éléments relatifs à la première variante.
Selon cette seconde variante, le noyau comprend trois jambes principales 2101, 2102, et 2103, et est dépourvu de jambes latérales.
Les trois jambes principales peuvent être disposées régulièrement autour d'un axe, dit axe principal XX', qui leur est parallèle. Par ailleurs, chaque jambe principale 2101, 2102, et 2103 est associée à deux jambes de fuite 2305a, 2305b, 2306a, 2306b, 2307a, 2307b, 2308a et 2308b ainsi qu'à un bobinage primaire 3001, 3002 et 3003 et un bobinage secondaire 4001, 4002, 4003 qui lui sont propres.
Plus particulièrement, une jambe principale, les deux jambes de fuite et les bobinages primaire et secondaire forment une phase du dispositif d'induction électromagnétique 1000.
Pour chacune des phases, le premier bobinage 3001, 3002 et 3003 comprend une section principale 3001a, 3002a et 3003a enroulée autour de la jambe principale et une section de fuite primaire 3001b, 3002b et 3003b enroulée autour d'une jambe de fuite (figure 11).
De manière équivalente, le second bobinage 4001, 4002, 4003 comprend une section secondaire 4001a, 4002a, 4003a enroulée autour de la jambe principale et une section de fuite secondaire 4001b, 4002b, 4003b enroulée autour de l'autre jambe de fuite (figure 11).
Il est entendu, sans qu'il soit nécessaire de le préciser, que la jambe de fuite autour de laquelle est enroulée la section de fuite secondaire est différente de la jambe de fuite autour de laquelle est enroulée la section de fuite primaire.
Ainsi, tout flux magnétique, dit flux inducteur, généré par l'une ou l'autre de la section primaire 3001a, 3002a et 3003a et de la section secondaire 4001a, 4002a, 4003a, circule dans l'autre desdites sections. En d'autres termes, la section primaire 3001a, 3002a et 3003a et la section secondaire 4001a, 4002a, 4003a assurent la fonction principale du transformateur, à savoir la conversion de la tension.
L'absence de jambes latérales impose au flux magnétique créé au niveau d'une jambe principale de circuler dans l'une et/ou l'autre des deux autres jambes principales.
La conception du noyau selon la présente invention peut faire appel à une technique de moulage par injection (« PIM » ou « Powder Injection Molding » selon la terminologie Anglo-Saxonne). Cette technique est particulièrement bien adaptée pour la production de pièces en grande série. Le moulage par injection met en œuvre dans un premier temps une étape de formation d'un mélange maître (« feedstock » selon la terminologie Anglo- Saxonne).
Le mélange-maître comprend en particulier un mélange de matière organique (ou liant polymérique) et des poudres inorganiques (métalliques ou céramiques) destinées à former la pièce finale.
Le mélange-maître est injecté dans une presse à injecter, dont la technologie est connue de l'homme du métier. La presse à injecter permet de faire fondre les polymères injectés avec la poudre dans une cavité, et conférer à ladite poudre la forme désirée.
Le mélange-maître, ainsi mis en forme et fondu, est soumis à un refroidissement de manière à le solidifier et le figer dans une forme imposée par la presse à injecter.
La pièce formée par le mélange-maître est alors démoulée, et déliantée afin d'éliminer la matière organique.
La pièce peut ensuite être consolidée par frittage.
L'invention concerne également un transformateur (en particulier un transformateur de type « DAB ») pourvu du dispositif d'induction électromagnétique selon la présente invention.
REFERENCES
[1] Inoué, "A Bidirectional DC-DC Converter for an Energy Storage System With Galvanic Isolation", IEEE Transactions on Power Electronics, Vol.: 22, No.: 6 , 2007,
[2] Mingkai Mu et al., « Design of Integrated Transformer and Inductor for High Frequency Dual Active Bridge GaN Charger for PHEV », IEEE Applied Power Electronics
Conférence and Exposition, pages 579-585, 15-19 March 2015,
[3] US 6,320,490.

Claims

REVENDICATIONS
1. Dispositif d'induction électromagnétique (1000) comprenant :
- un noyau ferromagnétique comprenant une pluralité de jambes essentiellement parallèles entre elles, et s'étendant chacune entre deux extrémités, la pluralité de jambes comprenant au moins une jambe principale (2100, 2101, 2102, 2103, 2104), au moins une jambe latérale (2201, 2202, 2203, 2204) et au moins deux jambes de fuites (2301, 2302, 2303, 2304, 2305a, 2305b, 2306a, 2306b, 2307a, 2307b) ;
- au moins un bobinage primaire (3000, 3001, 3002, 3003) et au moins un bobinage secondaire (4000, 4001, 4002, 4003), comprenant chacun une section principale (3000a, 3001a, 3002a, 3003a, 4000a, 4001a, 4002a, 4003a), enroulée autour de la jambe principale, et une section de fuite, dites respectivement section de fuite primaire (3000b, 3001b, 3002b, 3003b) et section de fuite secondaire (4000b, 4001b, 4002b, 4003b) enroulées chacune sur une jambe de fuite différente.
2. Dispositif selon la revendication 1, dans lequel le noyau comprend deux plaques, dites respectivement plaque inférieure (2600) et plaque supérieure (2610), se faisant face chacune selon une face interne, dites respectivement face interne inférieure et face interne supérieure, et entre lesquelles s'étend la pluralité de jambes.
3. Dispositif selon la revendication 2, dans lequel chacune des jambes parmi la pluralité de jambe présente un entrefer.
4. Dispositif selon la revendication 3, dans lequel l'entrefer de chacune des au moins deux jambes de fuites (2301, 2302, 2303, 2304, 2305a, 2305b, 2306a, 2306b, 2307a, 2307b), dit entrefer de fuite, est supérieur ou égal, de préférence strictement supérieur, aux entrefers des autres jambes.
5. Dispositif selon la revendication 3 ou 4, dans lequel les entrefers de l'au moins une jambe principale (2100, 2101, 2102, 2103, 2104), et de l'au moins une jambe latérale (2201, 2202, 2203, 2204) sont égaux.
6. Dispositif selon l'une des revendications 3 à 5, dans lequel le plan équidistant des deux faces internes forme un plan de symétrie du noyau.
7. Dispositif selon l'une des revendications 3 à 6, dans lequel une saignée (2301a, 2302a, 2303a, 2304a) est formée sur l'une et l'autre des faces internes, à distance et entourant au moins en partie chacune des deux extrémités de chaque jambe de fuite, la saignée (2301a, 2302a, 2303a, 2304a) s'interposant entre la jambe de fuite et la jambe principale (2100, 2101, 2102, 2103, 2104).
8. Dispositif selon l'une des revendications 1 à 7, dans lequel les jambes de la pluralité de jambes sont cylindriques.
9. Dispositif selon l'une des revendications 1 à 8, dans lequel l'au moins une jambe principale comprend une unique jambe principale (2100), l'au moins une jambe latérale (2201, 2202, 2203, 2204) comprend quatre jambes latérales disposées régulièrement autour de la jambe principale (2100).
10. Dispositif selon la revendication 9, dans lequel les au moins deux jambes de fuites (2301, 2302, 2303) comprennent quatre jambes de fuites disposées régulièrement autour de la jambe principale (2100), avantageusement l'ensemble des jambes de fuites présente un décalage angulaire de 45° par rapport aux jambes latérales.
11. Dispositif selon la revendication 10, dans lequel la section de fuite primaire comprend deux sections de fuites primaires de sorte que le bobinage primaire comprenne dans l'ordre une des sections de fuites primaire, la section principale, et l'autre section de fuites primaire, les sections de fuites primaires étant enroulées chacune autour d'une jambe de fuites différente, et avantageusement diamétralement opposées.
12. Dispositif selon la revendication 10 ou 11, dans lequel la section de fuite secondaire comprend deux sections de fuites secondaire de sorte que le bobinage primaire comprenne dans l'ordre une des sections de fuites secondaire, la section principale, et l'autre section de fuites secondaire, les sections de fuites secondaire étant enroulées chacune autour d'une jambe de fuites différente, et avantageusement diamétralement opposées.
13. Dispositif selon l'une des revendications 1 à 8, dans lequel l'au moins une jambe principale (2101, 2102, 2103, 2104) comprend trois jambes principales confondues avec l'au moins une jambe latérale (2201, 2202, 2203, 2204), chaque jambe principale étant associée avec un jeu de deux jambes de fuites (2304, 2305a, 2305b, 2306a, 2306b, 2307a, 2307b) qui lui est propre.
14. Dispositif selon la revendication 13, dans lequel les trois jambes principales sont disposées régulièrement autour d'un axe principal qui leur est parallèle.
15. Dispositif selon la revendication 14, dans lequel les deux jambes de fuites (2304, 2305a, 2305b, 2306a, 2306b, 2307a, 2307b) du jeu de jambes donné sont diamétralement opposées par rapport à la jambe principale (2101, 2102, 2103, 2104) qui leur est associée.
16. Dispositif selon la revendication 15, dans lequel les deux jambes de fuites (2304, 2305a, 2305b, 2306a, 2306b, 2307a, 2307b) du jeu de jambes sont disposées symétriquement par rapport à un plan passant par l'axe principal.
17. Transformateur pourvu du dispositif selon l'une des revendications 1 à 16.
PCT/FR2019/052768 2018-12-07 2019-11-20 Dispositif d'induction electromagnetique WO2020115389A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19829292.2A EP3871236A1 (fr) 2018-12-07 2019-11-20 Dispositif d'induction electromagnetique
JP2021530985A JP7378475B2 (ja) 2018-12-07 2019-11-20 電磁誘導装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1872539A FR3089675B1 (fr) 2018-12-07 2018-12-07 Dispositif d’induction electromagnetique
FR1872539 2018-12-07

Publications (1)

Publication Number Publication Date
WO2020115389A1 true WO2020115389A1 (fr) 2020-06-11

Family

ID=66218230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/052768 WO2020115389A1 (fr) 2018-12-07 2019-11-20 Dispositif d'induction electromagnetique

Country Status (4)

Country Link
EP (1) EP3871236A1 (fr)
JP (1) JP7378475B2 (fr)
FR (1) FR3089675B1 (fr)
WO (1) WO2020115389A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220223336A1 (en) * 2021-01-08 2022-07-14 Ford Global Technologies, Llc Integrated quad-core transformer with asymmetric gap distribution for magnetic flux balancing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110828126B (zh) * 2019-10-14 2023-04-07 华为数字能源技术有限公司 一种平面变压器及有源电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766365A (en) * 1987-04-15 1988-08-23 Hydro Quebec Self-regulated transformer-inductor with air gaps
US6320490B1 (en) 1999-08-13 2001-11-20 Space Systems/Loral, Inc. Integrated planar transformer and inductor assembly
US6348848B1 (en) * 2000-05-04 2002-02-19 Edward Herbert Transformer having fractional turn windings
US6617814B1 (en) * 2001-04-11 2003-09-09 Rockwell Automation Technologies, Inc. Integrated DC link choke and method for suppressing common-mode voltage in a motor drive
CN102074330A (zh) * 2010-11-30 2011-05-25 薛韬 多相差模和共模共体电抗器
EP2711944A1 (fr) * 2011-05-16 2014-03-26 Hitachi, Ltd. Dispositif à réacteur et convertisseur de secteur utilisant ledit dispositif

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766365A (en) * 1987-04-15 1988-08-23 Hydro Quebec Self-regulated transformer-inductor with air gaps
US6320490B1 (en) 1999-08-13 2001-11-20 Space Systems/Loral, Inc. Integrated planar transformer and inductor assembly
US6348848B1 (en) * 2000-05-04 2002-02-19 Edward Herbert Transformer having fractional turn windings
US6617814B1 (en) * 2001-04-11 2003-09-09 Rockwell Automation Technologies, Inc. Integrated DC link choke and method for suppressing common-mode voltage in a motor drive
CN102074330A (zh) * 2010-11-30 2011-05-25 薛韬 多相差模和共模共体电抗器
EP2711944A1 (fr) * 2011-05-16 2014-03-26 Hitachi, Ltd. Dispositif à réacteur et convertisseur de secteur utilisant ledit dispositif

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INOUÉ: "A Bidirectional DC-DC Converter for an Energy Storage System With Galvanic Isolation", IEEE TRANSACTIONS ON POWER ELECTRONICS, vol. 22, no. 6, 2007, XP011196139, DOI: 10.1109/TPEL.2007.909248
MINGKAI MU ET AL.: "Design of Integrated Transformer and Inductor for High Frequency Dual Active Bridge GaN Charger for PHEV", IEEE APPLIED POWER ELECTRONICS CONFÉRENCE AND EXPOSITION, 15 March 2015 (2015-03-15), pages 579 - 585, XP032775358, DOI: 10.1109/APEC.2015.7104407

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220223336A1 (en) * 2021-01-08 2022-07-14 Ford Global Technologies, Llc Integrated quad-core transformer with asymmetric gap distribution for magnetic flux balancing

Also Published As

Publication number Publication date
EP3871236A1 (fr) 2021-09-01
FR3089675A1 (fr) 2020-06-12
JP2022513675A (ja) 2022-02-09
FR3089675B1 (fr) 2020-11-20
JP7378475B2 (ja) 2023-11-13

Similar Documents

Publication Publication Date Title
EP3605818B1 (fr) Convertisseur de tension continu-continu a resonance
EP2367705B1 (fr) Procede et dispositif electrique combine d'alimentation et de charge a moyens de compensation
EP3605820B1 (fr) Convertisseur de tension continu-continu a resonance
EP3871236A1 (fr) Dispositif d'induction electromagnetique
EP2400636A1 (fr) Moteur électrique à courant alternatif pouvant être branché dans le circuit de charge de batteries
EP3111736B1 (fr) Bloc de capacités pour un module électronique de puissance de véhicule automobile
WO2017064220A1 (fr) Convertisseur dc/dc isole
WO2020115402A1 (fr) Dispositif d'induction electromagnetique
EP1929630B1 (fr) Commande rapprochee de convertisseurs d'energie electriques
WO2021099724A1 (fr) Dispositif d'induction electromagnetique
WO2021122452A1 (fr) Système de filtre hybride monophasé et triphasé, pour un chargeur électrique
WO2022022896A1 (fr) Composant magnetique à flux de fuite controlé
EP2592743B1 (fr) Convertisseur pour circuit électrique destiné à fournir de l'énergie électrique de propulsion à bord d'un véhicule automobile
FR3066866B1 (fr) Convertisseur continu-continu pour vehicule electrique ou hybride
FR3140983A1 (fr) Transformateur d'un système électrique pour la conversion de la tension continue et pour la charge des batteries d'un véhicule.
WO2021144541A1 (fr) Dispositif électromagnétique de conversion d'énergie
EP3132456B1 (fr) Tranformateur planaire d'un convertisseur courant continu-courant continu a resonance, et convertisseur correspondant
FR3141010A1 (fr) Système électrique pour la conversion de la tension continue et pour la charge des batteries d'un véhicule.
FR2961755A1 (fr) Convertisseur pour circuit electrique destine a fournir de l'energie elec-trique de propulsion a bord d'un vehicule automobile
FR2707052A1 (fr)
WO2016038318A1 (fr) Convertisseur de tension continue et procédé de commande associé

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19829292

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021530985

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019829292

Country of ref document: EP

Effective date: 20210528