EP4189434A1 - Method for operating a radar system, radar system, and vehicle comprising at least one radar system - Google Patents

Method for operating a radar system, radar system, and vehicle comprising at least one radar system

Info

Publication number
EP4189434A1
EP4189434A1 EP21749604.1A EP21749604A EP4189434A1 EP 4189434 A1 EP4189434 A1 EP 4189434A1 EP 21749604 A EP21749604 A EP 21749604A EP 4189434 A1 EP4189434 A1 EP 4189434A1
Authority
EP
European Patent Office
Prior art keywords
antenna element
signals
antenna elements
transmitting antenna
radar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21749604.1A
Other languages
German (de)
French (fr)
Inventor
Christian Sturm
Alexander Vanaev
Waqas MALIK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Schalter und Sensoren GmbH
Original Assignee
Valeo Schalter und Sensoren GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Schalter und Sensoren GmbH filed Critical Valeo Schalter und Sensoren GmbH
Publication of EP4189434A1 publication Critical patent/EP4189434A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/325Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of coded signals, e.g. P.S.K. signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/426Scanning radar, e.g. 3D radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/408Radar; Laser, e.g. lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • G01S13/4463Monopulse radar, i.e. simultaneous lobing using phased arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles

Definitions

  • the invention relates to a method for operating a radar system, which is used to monitor at least one monitoring area, in which method a plurality of transmitting antenna elements are controlled with transmission signals and corresponding radar signals are sent into a monitoring area, with a plurality of receiving antenna elements echoes from radar signals reflected in the monitoring area are received and converted into corresponding received signals, which are signal-processed, and information about objects in the monitored area can be determined from the received signals.
  • the invention relates to a radar system for monitoring at least one surveillance area, which has a plurality of transmitting antenna elements that can be controlled with transmission signals and with which corresponding radar signals can be sent into a surveillance area, a plurality of receiving antenna elements with which Echoes of radar signals reflected in the monitoring area can be received and converted into corresponding received signals, and at least one control and evaluation device with which the transmitting antenna elements and the receiving antenna elements can be controlled and with which received signals determined from received echoes can be evaluated can become.
  • the invention also relates to a vehicle with at least one radar system for monitoring at least one monitoring area, the at least one radar system having a plurality of transmitting antenna elements that can be controlled with transmission signals and with which corresponding radar signals can be sent into a monitoring area, a number of receiving antenna elements with which echoes from rechungs Victoria reflected radar signals can be received and converted into corresponding received signals, and at least one control and evaluation device with which the transmitting antenna elements and the receiving antenna elements can be controlled and with which determined from received echoes received signals can be evaluated.
  • DE 10 2006 032 539 A1 discloses an FMCW radar sensor with a plurality of antenna elements and a feed circuit for feeding transmission signals with ramp-shaped modulated frequencies into the antenna elements.
  • the FMCW radar sensor is characterized by a switching device for switching the feed circuit between a short-range mode in which the transmission signals routed to the individual antenna elements have a specific frequency offset, and a long-range mode in which the frequencies of the transmission signals are identical.
  • the invention is based on the object of designing a method, a radar system and a vehicle of the type mentioned at the outset, in which radar measurements can be improved with regard to the direction measurement accuracy and the detection range.
  • this object is achieved in the method in that radar signals are transmitted with at least two transmitting-antenna element groups, each of which has at least one transmitting-antenna element Radar signals are also sent with the at least two transmitting antennae element groups with different transmission power.
  • the at least two transmitting-antenna element groups are used to transmit un distinguishable radar signals, which also have different transmission power levels.
  • the corresponding reflected echoes on the receiver side can correspond to the corresponding transmit antenna element group. be assigned to pen. In this way, the expenditure on transmitting antenna elements for a direction measurement can be reduced.
  • the distinguishable radar signals are also sent with different transmission power.
  • one of the at least two transmission-antenna element groups transmits with a higher transmission power than the corresponding other transmission-antenna element group. In this way, the detection range of the radar system can be increased overall by the increased transmission power.
  • Information about objects in the monitored area is determined from the received signals.
  • the information can be distances, directions and/or speeds of object targets relative to the radar system.
  • Object targets are areas of objects where radar signals can be reflected.
  • direction measurements can be carried out with high accuracy and at the same time a large detection range. This does not require switching between a short-range mode and a long-range mode, as is required with the radar sensor known from the prior art.
  • a further advantage of the invention is that the geometry of the antenna elements can be designed better both for increasing the directional accuracy and for increasing the detection range. No compromise is required between a range mode and a short range mode as is the case with the prior art radar sensor.
  • the radar system can have means for controlling the transmitting antenna element, in particular for generating transmission signals. Furthermore, the radar system can have means for signal processing of the received signals.
  • the means for controlling and/or for signal processing can be implemented with a common control and evaluation device using software and/or hardware.
  • the control and evaluation device can have corresponding transmission channels for the transmission signals and/or reception channels for the reception signals.
  • the transmission signals and / or the reception signals can be electrical be signals. In this way electronic means can be used for control and/or evaluation.
  • the invention can be used in a radar system of a vehicle, particularly a motor vehicle.
  • the invention can advantageously be used in a land vehicle, in particular a passenger car, a truck, a bus, a motorcycle or the like, an aircraft and/or a watercraft.
  • the invention can also be used in vehicles that can be operated autonomously or at least partially autonomously.
  • the invention is not limited to vehicles. It can also be used in stationary radar systems.
  • the radar system can advantageously be connected to at least one electronic control device of the vehicle, in particular a driver assistance system and/or chassis control and/or a driver information device and/or a parking assistance system and/or gesture recognition or the like, or be part of such.
  • the vehicle can be operated autonomously or semi-autonomously.
  • targets of stationary or moving objects in particular vehicles, people, animals, plants, obstacles, bumps in the road, in particular potholes or stones, road boundaries, traffic signs, free spaces, in particular parking spaces, precipitation or the like, can be detected.
  • identical individual radar signals can be transmitted with at least two adjacent transmitting antenna elements of at least one of the transmitting antenna element groups, which can be combined to form group radar signals of this at least one transmitting antenna element group.
  • the transmission power can be increased in comparison to an individual transmission-antenna element.
  • the transmission power for the composite group radar signals can be doubled accordingly.
  • the method can with at least two adjacent transmission-antenna elements of at least one of the transmission-antenna element groups, coherent individual radar signals are transmitted, which are combined to form group radar signals of this at least one transmission-antenna element group. In this way, interference can be realized by superimposing the corresponding individual radar signals to form group radar signals.
  • At least one of the transmitting antenna element groups can be used to transmit identical individual radar signals with predetermined phase offsets using at least two adjacent transmitting antenna elements, which antenna element groups are combined to form group radar signals of this at least one transmitting antenna element group be able.
  • the direction of the composite group radar signals can be influenced by appropriate selection of the phase offsets.
  • the field of view of the radar system can be set, in particular in relation to the corresponding transmission-antenna element group, by means of the corresponding phase offsets.
  • the phase offsets can be changed between at least two measurements. In this way, the direction of the respective composite array radar signals can be changed.
  • the transmission power which is made up of the transmission powers of the adjacent transmission-antenna elements, can be concentrated on the direction that can be specified by the respective phase offsets. In this way, the detection range can be correspondingly increased in the direction specified by the phase offsets.
  • At least two adjacent transmitting-antenna elements, at least one of the transmitting-antenna element groups, can operate according to a beamforming method.
  • the same radar signal with defined phase offsets can be transmitted from a plurality of transmission channels in each case coherently via closely adjacent transmission antenna elements.
  • the adjacent transmitting-antenna elements of a transmitting-antenna element group can be arranged at a distance of about half the wavelength of the transmitted radar signals. In this way, a directional group radar signal is obtained a very high transmission power. Since the field strengths of the individual transmitting antenna elements add up in the beamforming process, the maximum beamforming gain, i.e. the power, corresponds to the square of the number of transmitting antenna elements. In the case of the pure beamforming method, the direction is measured exclusively via the receiving channels.
  • a second transmitting-antenna element group in addition to the transmitting-antenna element group that works according to the beamforming method, can be operated with the first transmitting-antenna element group according to a MIMO method.
  • the two transmit-antenna element groups transmit respective group radar signals, which can be distinguished at least temporarily, at least on the receiver side. In this way, the accuracy of the direction measurement can also be improved. In this way, targets can be detected with high directional accuracy and an equally high detection range.
  • the radar system in particular HD radar system, can be operated using a combined beamforming MIMO method.
  • a virtual array with a large number of virtual elements can be achieved by geometric folding of the positions of transmitting antenna elements and receiving antenna elements, in particular of their phase centers.
  • At least two adjacent transmitting antenna elements of at least one transmitting antenna element group can be arranged at a spatial distance from one another which corresponds to half the wavelength of the radar signals, possibly plus or minus a tolerance, and/or the phase centers of the transmission-antenna element groups, with which the distinguishable radar signals are transmitted, can be arranged at a spatial distance from one another which is at least as large as 1.5 times the wavelength of the radar signals, possibly plus or minus a tolerance from one another.
  • the transmitting-antenna elements, which are half a wavelength apart can be operated together using a beamforming method. A correspondingly large detection range can thus be achieved with these transmitting antenna elements.
  • the transmitting antenna element groups which have a distance of at least 1.5 times the wavelength between the phase centers and emit distinguishable radar signals, can be used for a MIMO antenna arrangement. In this way, corresponding angular resolutions can be achieved when determining the direction.
  • the radar system can have a plurality of transmitting antenna elements, a subset of which is used to implement a beamforming method.
  • the transmitting-antenna elements, which are used for the beamforming method can have a spatial distance that corresponds to half the wavelength of the radar signals, possibly plus or minus a tolerance.
  • the remaining transmitting antenna elements, which are not used for the beamforming method can be arranged at a greater spatial distance from one another, in particular greater than 1.5 times the wavelength.
  • both a beamforming method and a MIMO method ie a combined beamforming-MIMO method, can be implemented at the same time.
  • the advantages of the beamforming method namely the greater detection range, can be combined with the advantages of the MIMO method, namely the greater directional resolution.
  • At least one transmitting antenna element group can be formed from one transmitting antenna element and/or at least one transmitting antenna element group can be formed from at least two transmitting antenna elements.
  • Each transmitting antenna element group can have at least one transmitting antenna element. If this one transmitting antenna element group consists of only one transmitting antenna element, this transmitting antenna element group can be characterized with the phase center of this one transmitting antenna element. If one Transmitting-antenna element group consists of several transmitting-antenna elements, the transmitting-antenna element group can be characterized by the phase center of the transmitting-antenna element group, which lies between the respective phase centers of the individual transmitting-antenna elements.
  • differently encoded radar signals can be transmitted with at least two transmitting-antenna element groups, which can be distinguished from one another at least temporarily on the side of the receiving-antenna elements.
  • the reflected radar signals ie the echoes, can be assigned to the respective transmitting antenna element groups and/or transmitting antenna elements on the side of the receiving antenna elements.
  • the transmission signals for generating the distinguishable radar signals can be encoded with respect to one another, in particular by means of phase modulations.
  • an at least temporary orthogonality in terms of signaling technology can be achieved between the transmission signals and/or the reception signals.
  • the radar signals, or the transmitted signals, and the corresponding echoes, or the received signals can be made distinguishable from one another.
  • the received signals can be evaluated on the receiver side by appropriate evaluation, in particular with the help of Fourier transformations.
  • the object is achieved according to the invention with the radar system in that the radar system has means for carrying out the method according to the invention.
  • control and evaluation device can have means with which at least two transmitting-antenna element groups, each having at least one transmitting-antenna element, can be controlled with transmission signals for transmitting radar signals, which are at least on the side of the receiving-antenna elements are at least temporarily distinguishable from each other.
  • the received echoes can be assigned to the corresponding transmit-antenna element groups.
  • the transmission signals can advantageously be encoded in relation to one another. In this way, the corresponding received signals can be distinguished from one another.
  • At least one transmitting antenna element group can have at least two closely adjacent transmitting antenna elements. In this way, the radar signals of the respective transmission-antenna elements can be combined to form a common group radar signal with a higher transmission power.
  • At least two adjacent transmission-antenna elements of at least one transmission-antenna element group can be arranged at a spatial distance from one another which corresponds to half the wavelength of the radar signals, possibly plus or minus a tolerance, and/or the phase centers of the transmission -Antenna element groups with which the distinguishable radar signals are transmitted can be arranged at a spatial distance from one another which is at least as large as 1.5 times the wavelength of the radar signals, possibly plus or minus a tolerance from one another.
  • the radar system can be operated with a combined beamforming MIMO method.
  • the object is achieved according to the invention in the vehicle in that the radar system has means for carrying out the method according to the invention.
  • FIG. 1 shows a front view of a motor vehicle with a driver assistance system and a radar system for monitoring a monitoring area in front of the motor vehicle in the direction of travel;
  • FIG. 2 shows a plan view of the motor vehicle from FIG. 1;
  • FIG. 3 shows a side view of the motor vehicle from FIGS. 1 and 2;
  • FIG. 4 shows a front view of transmitting antenna elements and receiving antenna elements of an antenna array of the radar system from FIGS. 1 to 3;
  • FIG. 5 shows a representation of a virtual array corresponding to the antenna array from FIG. 4;
  • FIG. 6 shows antenna diagrams of the radar system from FIGS. 1 to 3 in different operating modes.
  • FIG. 1 shows a front view of a motor vehicle 10 in the form of a passenger car.
  • FIG. 2 shows motor vehicle 10 in a plan view.
  • the motor vehicle 10 is shown in a side view.
  • the motor vehicle 10 has a radar system 12.
  • the radar system 12 is arranged in the front bumper of the motor vehicle 10, for example. With the radar system 12, a monitoring area 14 in the direction of travel 16 in front of the motor vehicle 10 can be monitored for objects 18.
  • the radar system 12 can also be arranged at a different location on the motor vehicle 10 and oriented differently. With the radar system 12, distances r and directions, for example in the form of the azimuth cp and the elevation Q, of targets of objects 18 relative to the motor vehicle 10 or to the Radar system 12 are determined.
  • the target of an object 18 is a part of the object 18 from which radar beams can be reflected.
  • the objects 18 can be stationary or moving objects, for example other vehicles, people, animals, plants, obstacles, bumps in the road, for example potholes or stones, road boundaries, traffic signs, open spaces, for example parking spaces, precipitation or the like.
  • the x-axis extends in the direction of a vehicle longitudinal axis of motor vehicle 10
  • the y-axis extends along a vehicle transverse axis
  • the z-axis extends spatially upward perpendicular to the x-y plane.
  • the motor vehicle 10 is operational on a horizontal roadway
  • the x-axis and y-axis extend horizontally in space and the z-axis extends vertically in space.
  • the radar system 12 is designed as a frequency-modulated continuous wave radar based on a beam-forming MIMO radar system. Frequency-modulated continuous wave radars are also referred to in technical circles as FMCW (Frequency modulated continuous wave) radars.
  • the radar system 12 can be used to detect objects 18 at large distances r with large angular resolutions in relation to azimuth Q and elevation cp.
  • the radar system 12 is connected to a driver assistance system 20 .
  • Motor vehicle 10 can be operated autonomously or partially autonomously with driver assistance system 20 .
  • the radar system 12 includes an antenna array 22 and a control and evaluation device 24.
  • the antenna array 22 has, for example, three transmitting antenna elements 26 and four receiving antenna elements 28.
  • the receiving antenna elements 28 are spatially arranged below the transmitting antenna elements 26.
  • catch antenna elements 28 can also be arranged above, next to or at least partially between the transmitting antenna elements 26 .
  • Each transmit antenna element 26 is connected to a corresponding transmit channel.
  • the respective transmission antenna elements 26 can be controlled with corresponding electrical transmission signals via the transmission channels.
  • each receiving antenna element 28 is connected to a corresponding receiving channel. Electrical reception signals can be transmitted from the reception antenna elements 28 via the reception channels.
  • the transmission channels and the reception channels can be integrated in the control and evaluation device 24, for example.
  • Corresponding radar signals 42 can be transmitted with the transmission antenna elements 26 by activation with the electrical transmission signals.
  • the radar signals 42 are marked in FIG. 4 with the indices a, b and e to make them easier to distinguish because they belong to the respective transmitting-antenna elements 26 or to transmitting-antenna element groups 32a and 32b explained further below.
  • the symbols for the radar signals 42 in FIG. 4 do not relate to their direction of propagation.
  • each transmit antenna element 26 is defined by its respective single phase center 38e.
  • the transmission antenna elements 26, or the individual phase centers 38e, are arranged next to one another along an imaginary transmission antenna axis 30, for example.
  • the transmission antenna axis 30 runs, for example, parallel to the y-axis.
  • the transmitting-antenna elements 26 are grouped into two transmitting-antenna element groups 32, which are marked with the indices a and b for the sake of differentiation.
  • the transmitting-antenna element group 32a on the left in FIG Transmission antenna elements 26 are sent out.
  • the distance 34 can optionally be half the wavelength l plus or minus a tolerance.
  • the position of the left-hand transmitting antenna element group 32a is characterized by a corresponding group phase center 38g, which is located between the two individual phase centers 38e of the transmitting antenna elements 26, for example.
  • the transmitting-antenna element group 32b on the right in FIG rum 38g which in this case is identical to the single phase center 38e of the transmitting antenna element 26.
  • the group phase centers 38g of the two transmission-antenna element groups 32a and 32b are arranged at a distance 40 from one another, which, for example, corresponds to 1.5 times the wavelength l of the radar signals 42 .
  • the distance 40 can optionally correspond to 1.5 times the wavelength 1 plus or minus a tolerance.
  • the distance 40 corresponds, for example, to three times the distance 34.
  • the transmission-antenna elements 26 of the left-hand transmission-antenna element group 32a are controlled coherently with the same transmission signal and a defined phase offset via the corresponding transmission channels, or via the control and evaluation device 24 .
  • Corresponding individual radar signals 42e are transmitted with the transmitting antenna elements 26 .
  • the individual radar signals 42e are combined to form a group radar signal 42a.
  • the group radar signal 42a is sent with the left transmitting antenna element group 32a.
  • the direction of the group radar signal 42a can be set by appropriately specifying the phase offset.
  • the transmission antenna element group 32a is operated according to a beamforming method.
  • the group radar signal 42a is transmitted into the monitoring area 14 in relation to the group phase center 38g of the left transmitting antenna element group 32a.
  • the transmission-antenna element 26 of the right-hand transmission-antenna element group 32b is controlled via the corresponding transmission channel, or via the control and evaluation device 24, with a transmission signal which is opposite to the transmission signal of the left transmitting-antenna element group 32a is encoded.
  • the coding can be done, for example, using binary phase modulation.
  • a group radar signal 42b is transmitted with the transmitting antenna element 26 of the right transmitting antenna element group 32b.
  • the group radar signal 42b of the right transmitting-antenna element group 32b is also sent into the surveillance area 14 .
  • the group radar signals 42a and 42b meet an object 18, they are each Weil reflected as a corresponding echo 44.
  • the portions of the echoes 44 which are reflected in the direction of the radar system 12 Rich, are received by the corresponding receiving antenna elements 28 and converted into corresponding received signals. Since the transmission signal for the group radar signal 42b is encoded in relation to the transmission signal for the group radar signal 42a, the corresponding reflected group radar signals 42a and 42b, ie the echoes 44, can be distinguished on the side of the receiving antenna elements 28.
  • the distance r, the azimuth cp and the elevation Q of the corresponding target of the object 18 relative to the Radar system 12 determined.
  • the axis 46 runs, for example, parallel to the y-axis, i.e. also parallel to the transmitting antenna axis 30.
  • the fourth receiving-antenna element 28 is located, for example, above the three other receiving-antenna elements 28, i.e. above the axis 46.
  • the two bottom left receiving-antenna elements 28 in FIG. 4 are arranged at a distance 48 from one another, which, for example, corresponds to the wavelength 1 of the radar signals 42, plus or minus a tolerance, if necessary.
  • the distance 48 corresponds, for example, to twice the distance 34 between the transmitting antenna elements 26 of the transmitting antenna element group 42a on the left in FIG.
  • the bottom right receiving-antenna element 28 in FIG. 4 is arranged at a distance 50 from the middle receiving-antenna element 28 below, which is three times the wavelength l of the radar signals 42, possibly plus or minus corresponds to a tolerance.
  • the distance 50 corresponds, for example, to three times the distance 48 between the two left-hand receiving antenna elements 28.
  • the fourth receiving-antenna element 28, shown in FIG. 4 at the top, is arranged at an exemplary vertical distance 52 from the imaginary axis 46, which corresponds to 1.5 times the wavelength l of the radar signals 42, possibly plus or minus a tolerance.
  • the distance 52 corresponds, for example, to 1.5 times the distance 48 between the transmitting antenna elements 26 of the two left receiving antenna elements 28.
  • the distance 52 corresponds, for example, to half the distance 50 between the middle and the right receiving antenna element 28 at the bottom. Due to the fact that the fourth receiving-antenna element 28 is offset vertically in relation to the three other receiving-antenna elements 28, the elevation Q can also be determined with the radar system 12 in addition to the azimuth cp.
  • the fourth receiving-antenna element 28 is arranged between the middle receiving-antenna element 28 and the right receiving-antenna element of the lower row, viewed in the projection.
  • the fourth receiving-antenna element 28 is arranged at an exemplary horizontal distance 54 in the direction of the y-axis from the central receiving-antenna element 28 of the lower row, which corresponds to the wavelength l of the radar signals 42 .
  • the fourth receiving-antenna element 28 is arranged at the top at a horizontal distance 56 in the direction of the y-axis from the right receiving-antenna element 28 of the lower row, which corresponds to the double wavelength l of the radar signals 42 .
  • the upper individual receiving antenna element 28 divides the distance between the middle and the right receiving antenna element 28 of the lower row in a ratio of 1 to 2.
  • a virtual array 58 is generated, which corresponds to the antenna array 22.
  • the virtual array 58 is shown in FIG.
  • the virtual array 58 has a total of eight virtual elements 60.
  • the number V of the virtual elements 60 is determined from the total number N of the transmitting antenna elements 26, the number M of the transmitting antenna elements 26 combined for a beamforming method, namely the two left transmitting antenna elements 26, and the number K of the receiving antenna elements 28 as
  • V (N-M+1 ) * K
  • the number V of virtual elements 60 is determined from the product of the number of transmitting-antenna-element groups 32 involved, for example 2, and the number K of receiving-antenna elements 28, for example 4.
  • the axis 62 runs parallel to the y-axis, for example.
  • Two of the eight virtual elements 60 are arranged next to one another along an imaginary upper axis 64 .
  • the axis 64 also runs parallel to the y-axis above the axis 62, i.e. parallel to the axis 62.
  • a horizontal distance 66 between the two outer virtual elements 60 of the lower group is, for example, 5.5 times the wavelength 1, possibly plus or minus a tolerance.
  • the distance 66 indicates the maximum horizontal width of the virtual array 58.
  • Distance 66 defines the aperture of radar system 12. This relatively large aperture allows for correspondingly high accuracy and resolution in measuring azimuth cp.
  • a horizontal distance 68 corresponds both between the first virtual element 60 of the lower group from the left in FIG. 5 and the second virtual element 60 from the left and between the third virtual element 60 of the lower group from the left and the fourth virtual element 60 from the left of wavelength l plus or minus a tolerance.
  • a horizontal distance 70 between the second virtual element 60 of the lower group from the left and the third virtual element 60 corresponds to half the wavelength 1 plus or minus a tolerance.
  • the horizontal distance 70 results from the combination of the transmitter-side distance 40 between the group phase centers 38g of the transmitting antenna element groups 32a and 32b, which transmit group radar signals 42a and 42b which can be distinguished from one another.
  • the horizontal distance 70 in the order of half the wavelength 1 enables an unambiguous angle measurement over an azimuth angle range of, for example, 180°.
  • a respective horizontal distance 72 both between the fourth virtual element 60 of the lower group from the left in FIG. 5 and the fifth virtual element 60 from the left and between the fifth virtual element 60 of the lower group from the left and the sixth virtual element 60 from left corresponds to 1.5 times the wavelength l, plus or minus a tolerance, if necessary.
  • a vertical distance 74 between the upper axis 64 and the lower axis 62 corresponds to half the wavelength l plus or minus a tolerance, if necessary.
  • a horizontal distance 76 between the virtual elements 60 of the upper group corresponds to 1.5 times the wavelength 1 plus or minus a tolerance.
  • the virtual element 60 of the upper group on the left in FIG. which corresponds to half the wavelength 1 plus or minus a tolerance, if applicable.
  • a measurement for monitoring the surveillance area 14 with the radar system 12 two measurement sequences are carried out as an example. In this case, the overall monitoring area 14 is monitored overall. For each measurement sequence, simultaneously all transmission-antenna elements 26 are controlled with the control and evaluation device 24 via the respective transmission channels with the respective transmission signals.
  • the two transmitting antenna elements 26 of the left-hand transmitting-antenna element group 32a in FIG 42a is directed to the left in relation to the direction of travel 16.
  • the profile of the antenna gain Ga;i of the left-hand transmitting-antenna element group 32a when aligned to the left is shown in broken lines in FIG. 6 by way of example.
  • azimuth cp 0° corresponds to direction of travel 16.
  • the transmission-antenna element 26 of the right-hand transmission-antenna element group 32b is controlled with the transmission signal coded in relation to the transmission signal of the transmission-antenna element group 32a and the corresponding group radar signal 32b is transmitted into the monitoring area 14 .
  • the course of the antenna gain Gb of the right-hand transmitter antenna group 32b is shown in FIG. 6 with dots.
  • reflected echoes 44 are received with the receiving antenna elements 28 and converted into received electrical signals.
  • the received signals are subjected to signal processing. For example, Fourier transforms, for example two-dimensional fast Fourier transforms, are carried out in the signal processing. Due to the spatial arrangement of the transmitting antenna elements 26 and the receiving antenna elements 28, which lead to the virtual array 58, the distance r, the azimuth cp and the elevation Q for the targets can be determined from the received signals, i.e. the echoes 44 of the object 18 can be determined.
  • the two transmitting-antenna elements 26 of the left-hand transmitting-antenna element group 32a in FIG relative to the direction of travel 16 are directed to the right.
  • the course of the antenna gain Ga;r of the left-hand transmitting-antenna element group 32a when aligned to the right is shown in FIG. 6 as a solid line for comparison.
  • the transmitting antenna element 26 of the right transmitting antenna element group 32b is controlled simultaneously with the transmitted signal coded in relation to the transmitted signal of the transmitting antenna element group 32a and the corresponding group radar signal 32b is transmitted.
  • the reflected echoes 44 are also received in the second measurement sequence with the corresponding reception antenna elements 28 and converted into electrical reception signals.
  • the distance r, the azimuth cp and the elevation Q for the targets of the object 18 are determined from the received electrical signals, ie the echoes 44.
  • the operation of the radar system 12 according to the invention in which the beamforming method and the MIMO method are carried out simultaneously during a measurement, enables a correspondingly large aperture with simultaneously high accuracy and resolution when measuring the azimuth cp and the elevation Q.
  • the aperture of the radar system 12 is characterized by the maximum distance 66 in the virtual array 58 .
  • the aperture of the radar system 12 in the method according to the invention is significantly larger than when using a pure beamforming method without the MIMO method.
  • the inventive combination of the beamforming method and the MIMO method achieves a higher total antenna gain compared to using a pure MIMO method without beamforming.
  • measurements can be carried out continuously, for example with two measurement sequences each.
  • the measurements can also be carried out only when required.
  • a measurement can also have more than two measurement sequences.
  • the two transmitting antenna elements 26 of the left transmitting antenna element group 32a controlled according to the beamforming method, can be controlled with transmission signals with correspondingly varying phase offsets in such a way that correspondingly different propagation directions are realized for the respective group radar signal 42a .

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

The invention relates to a method for operating a radar system which is used to monitor at least one monitoring region, to a radar system, and to a vehicle. In the method, a plurality of transmission antenna elements (26) are actuated using transmission signals, and corresponding radar signals (42a, 42b, 42e) are transmitted into a monitoring region. Echoes of radar signals (42a, 42b, 42e) reflected in the monitoring region are received by a plurality of receiving antenna elements (28) and are converted into corresponding reception signals which are processed for signaling purposes. Information on objects in the monitoring region is ascertained from the reception signals. Radar signals (42a, 42b) which are at least temporarily distinguishable from one another at least by the receiving antenna elements (28) are transmitted by at least two transmission antenna element groups (32a, 32b), each of which has at least one transmission antenna element (26). The distinguishable radar signals (42a, 42b) are additionally transmitted with a different transmission power by the at least two transmission antenna element groups (32a, 32b).

Description

Beschreibung description
Verfahren zum Betreiben eines Radarsystems, Radarsystem und Fahrzeug mit wenigstens einem Radarsystem Method for operating a radar system, radar system and vehicle with at least one radar system
Technisches Gebiet technical field
Die Erfindung betrifft ein Verfahren zum Betreiben eines Radarsystems, welches zur Überwachung wenigstens eines Überwachungsbereichs dient, wobei bei dem Verfahren eine Mehrzahl von Sende-Antennenelementen mit Sendesignalen angesteuert wird und entsprechende Radarsignale in einen Überwachungsbereich gesendet werden, mit einer Mehrzahl von Empfangs-Antennenelementen Echos von im Überwachungsbe reich reflektierten Radarsignalen empfangen und in entsprechende Empfangssignale um gewandelt werden, welche signaltechnisch verarbeitet werden, aus den Empfangssignalen Informationen über Objekte in dem Überwachungsbereich ermittelt werden. The invention relates to a method for operating a radar system, which is used to monitor at least one monitoring area, in which method a plurality of transmitting antenna elements are controlled with transmission signals and corresponding radar signals are sent into a monitoring area, with a plurality of receiving antenna elements echoes from radar signals reflected in the monitoring area are received and converted into corresponding received signals, which are signal-processed, and information about objects in the monitored area can be determined from the received signals.
Ferner betrifft die Erfindung ein Radarsystem zur Überwachung wenigstens eines Über wachungsbereichs, welches aufweist eine Mehrzahl von Sende-Antennenelementen, die mit Sendesignalen angesteuert wer den können und mit denen entsprechende Radarsignale in einen Überwachungsbereich gesendet werden können, eine Mehrzahl von Empfangs-Antennenelementen, mit denen Echos von im Überwa chungsbereich reflektierten Radarsignalen empfangen und in entsprechende Empfangs signale umgewandelt werden können, und wenigstens eine Steuer- und Auswerteeinrichtung, mit der die Sende-Antennenele- mente und die Empfangs-Antennenelemente angesteuert werden können und mit denen aus empfangenen Echos ermittelte Empfangssignale ausgewertet werden können. Furthermore, the invention relates to a radar system for monitoring at least one surveillance area, which has a plurality of transmitting antenna elements that can be controlled with transmission signals and with which corresponding radar signals can be sent into a surveillance area, a plurality of receiving antenna elements with which Echoes of radar signals reflected in the monitoring area can be received and converted into corresponding received signals, and at least one control and evaluation device with which the transmitting antenna elements and the receiving antenna elements can be controlled and with which received signals determined from received echoes can be evaluated can become.
Außerdem betrifft die Erfindung ein Fahrzeug mit wenigstens einem Radarsystem zur Überwachung wenigstens eines Überwachungsbereichs, wobei das wenigstens eine Ra darsystem aufweist eine Mehrzahl von Sende-Antennenelementen, die mit Sendesignalen angesteuert wer den können und mit denen entsprechende Radarsignale in einen Überwachungsbereich gesendet werden können, eine Mehrzahl von Empfangs-Antennenelementen, mit denen Echos von im Überwa- chungsbereich reflektierten Radarsignalen empfangen und in entsprechende Empfangs signale umgewandelt werden können, und wenigstens eine Steuer- und Auswerteeinrichtung, mit der die Sende-Antennenele- mente und die Empfangs-Antennenelemente angesteuert werden können und mit denen aus empfangenen Echos ermittelte Empfangssignale ausgewertet werden können. The invention also relates to a vehicle with at least one radar system for monitoring at least one monitoring area, the at least one radar system having a plurality of transmitting antenna elements that can be controlled with transmission signals and with which corresponding radar signals can be sent into a monitoring area, a number of receiving antenna elements with which echoes from rechungsbereich reflected radar signals can be received and converted into corresponding received signals, and at least one control and evaluation device with which the transmitting antenna elements and the receiving antenna elements can be controlled and with which determined from received echoes received signals can be evaluated.
Stand der Technik State of the art
Aus der DE 10 2006 032 539 A1 ist ein FMCW-Radarsensor mit mehreren Antennenele menten und einer Speiseschaltung zum Einspeisen von Sendesignalen mit rampenförmig modulierten Frequenzen in die Antennenelemente bekannt. Der FMCW-Radarsensor ist gekennzeichnet durch eine Umschalteinrichtung zum Umschalten der Speiseschaltung zwischen einem Nahbereichsmodus, in dem die den einzelnen Antennenelementen zu geführten Sendesignale einen bestimmten Frequenzversatz aufweisen, und einem Fern bereichsmodus, in dem die Frequenzen der Sendesignale identisch sind. DE 10 2006 032 539 A1 discloses an FMCW radar sensor with a plurality of antenna elements and a feed circuit for feeding transmission signals with ramp-shaped modulated frequencies into the antenna elements. The FMCW radar sensor is characterized by a switching device for switching the feed circuit between a short-range mode in which the transmission signals routed to the individual antenna elements have a specific frequency offset, and a long-range mode in which the frequencies of the transmission signals are identical.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren, ein Radarsystem und ein Fahr zeug der eingangs genannten Art zu gestalten, bei denen Radarmessungen in Bezug auf die Richtungsmessgenauigkeit und die Detektionsreichweite verbessert werden können. The invention is based on the object of designing a method, a radar system and a vehicle of the type mentioned at the outset, in which radar measurements can be improved with regard to the direction measurement accuracy and the detection range.
Offenbarung der Erfindung Disclosure of Invention
Diese Aufgabe wird erfindungsgemäß bei dem Verfahren dadurch gelöst, dass mit we nigstens zwei Sende-Antennenelementgruppen, welche jeweils wenigstens ein Sende- Antennenelement aufweisen, Radarsignale gesendet werden, die zumindest auf der Seite der Empfangs-Antennenelemente zumindest temporär voneinander unterscheidbar sind, wobei die unterscheidbaren Radarsignale mit den wenigstens zwei Sende-Anten nenelementgruppen zusätzlich mit unterschiedlicher Sendeleistung gesendet werden. According to the invention, this object is achieved in the method in that radar signals are transmitted with at least two transmitting-antenna element groups, each of which has at least one transmitting-antenna element Radar signals are also sent with the at least two transmitting antennae element groups with different transmission power.
Erfindungsgemäß werden mit den wenigstens zwei Sende-Antennenelementgruppen un terscheidbare Radarsignale gesendet, welche zusätzlich unterschiedliche Sendeleistun gen aufweisen. According to the invention, the at least two transmitting-antenna element groups are used to transmit un distinguishable radar signals, which also have different transmission power levels.
Aufgrund der Unterscheidbarkeit der Radarsignale können die entsprechenden reflektier ten Echos auf der Empfängerseite den entsprechenden Sende-Antennenelementgrup- pen zugeordnet werden. Auf diese Weise kann ein Aufwand an Sende-Antennenelemen- ten für eine Richtungsmessung verringert werden. Due to the distinguishability of the radar signals, the corresponding reflected echoes on the receiver side can correspond to the corresponding transmit antenna element group. be assigned to pen. In this way, the expenditure on transmitting antenna elements for a direction measurement can be reduced.
Die unterscheidbaren Radarsignale werden zusätzlich mit unterschiedlicher Sendeleis tung gesendet. Dabei sendet eine der wenigstens zwei Sende-Antennenelementgruppe mit einer größeren Sendeleistung als die entsprechend andere Sende-Antennenelement gruppe. Auf diese Weise kann durch die verstärkte Sendeleistung die Detektionsreich weite des Radarsystems insgesamt vergrößert werden. The distinguishable radar signals are also sent with different transmission power. In this case, one of the at least two transmission-antenna element groups transmits with a higher transmission power than the corresponding other transmission-antenna element group. In this way, the detection range of the radar system can be increased overall by the increased transmission power.
Aus den Empfangssignalen werden Informationen über Objekte in dem Überwachungs bereich ermittelt. Bei den Informationen kann es sich um Entfernungen, Richtungen und/oder Geschwindigkeiten von Objektzielen relativ zum Radarsystem handeln. Objekt ziele sind Bereiche von Objekten, an denen Radarsignale reflektiert werden können. Information about objects in the monitored area is determined from the received signals. The information can be distances, directions and/or speeds of object targets relative to the radar system. Object targets are areas of objects where radar signals can be reflected.
Mithilfe der Erfindung können Richtungsmessungen mit hoher Genauigkeit und gleich zeitig großer Detektionsreichweite durchgeführt werden. Hierzu ist keine Umschaltung zwischen einem Nahbereichsmodus und einem Fernbereichsmodus erforderlich, wie dies bei dem Radarsensor erforderlich ist , der aus dem Stand der Technik bekannt ist. With the aid of the invention, direction measurements can be carried out with high accuracy and at the same time a large detection range. This does not require switching between a short-range mode and a long-range mode, as is required with the radar sensor known from the prior art.
Ein weiterer Vorteil der Erfindung ist, dass die Geometrie der Antennenelemente sowohl für die Erhöhung der Richtungsgenauigkeit als auch die Erhöhung der Detektionsreich weite gleichermaßen besser ausgelegt werden kann. Es ist kein Kompromiss zwischen einem Reichweitenmodus und einem Nahbereichsmodus erforderlich, wie dies bei dem Radarsensor aus dem Stand der Technik der Fall ist. A further advantage of the invention is that the geometry of the antenna elements can be designed better both for increasing the directional accuracy and for increasing the detection range. No compromise is required between a range mode and a short range mode as is the case with the prior art radar sensor.
Das Radarsystem kann Mittel zur Steuerung der Sende-Antennenelement, insbesondere zur Erzeugung von Sendesignalen, aufweisen. Ferner kann das Radarsystem Mittel zur signaltechnischen Verarbeitung der Empfangssignale aufweisen. Die Mittel zur Steue rung und/oder zur signaltechnischen Verarbeitung können mit einer gemeinsamen Steuer- und Auswerteeinrichtung auf softwaretechnischem und/oder hardwaretechni schem Wege realisiert sein. Die Steuer- und Auswerteeinrichtung kann hierzu entspre chende Sendekanäle für die Sendesignale und/oder Empfangskanäle für die Empfangs signale aufweisen. Die Sendesignale und/oder die Empfangssignale können elektrische Signale sein. Auf diese Weise können elektronische Mittel zur Steuerung und/oder Aus wertung verwendet werden. The radar system can have means for controlling the transmitting antenna element, in particular for generating transmission signals. Furthermore, the radar system can have means for signal processing of the received signals. The means for controlling and/or for signal processing can be implemented with a common control and evaluation device using software and/or hardware. For this purpose, the control and evaluation device can have corresponding transmission channels for the transmission signals and/or reception channels for the reception signals. The transmission signals and / or the reception signals can be electrical be signals. In this way electronic means can be used for control and/or evaluation.
Die Erfindung kann bei einem Radarsystem eines Fahrzeugs, insbesondere eines Kraft fahrzeugs, verwendet werden. Vorteilhafterweise kann die Erfindung bei einem Landfahr zeug, insbesondere einem Personenkraftwagen, einem Lastkraftwagen, einem Bus, ei nem Motorrad oder dergleichen, einem Luftfahrzeug und/oder einem Wasserfahrzeug verwendet werden. Die Erfindung kann auch bei Fahrzeugen eingesetzt werden, die au tonom oder wenigstens teilautonom betrieben werden können. Die Erfindung ist jedoch nicht beschränkt auf Fahrzeuge. Sie kann auch bei Radarsystemen im stationären Be trieb eingesetzt werden. The invention can be used in a radar system of a vehicle, particularly a motor vehicle. The invention can advantageously be used in a land vehicle, in particular a passenger car, a truck, a bus, a motorcycle or the like, an aircraft and/or a watercraft. The invention can also be used in vehicles that can be operated autonomously or at least partially autonomously. However, the invention is not limited to vehicles. It can also be used in stationary radar systems.
Das Radarsystem kann vorteilhafterweise mit wenigstens einer elektronischen Steuer vorrichtung des Fahrzeugs, insbesondere einem Fahrerassistenzsystem und/oder einer Fahrwerksregelung und/oder einer Fahrer-Informationseinrichtung und/oder einem Par kassistenzsystem und/oder einer Gestenerkennung oder dergleichen, verbunden oder Teil einer solchen sein. Auf diese Weise kann das Fahrzeug autonom oder teilautonom betrieben werden. The radar system can advantageously be connected to at least one electronic control device of the vehicle, in particular a driver assistance system and/or chassis control and/or a driver information device and/or a parking assistance system and/or gesture recognition or the like, or be part of such. In this way, the vehicle can be operated autonomously or semi-autonomously.
Mit dem Radarsystem können Ziele von stehenden oder bewegten Objekte, insbeson dere Fahrzeugen, Personen, Tieren, Pflanzen, Hindernisse, Fahrbahnunebenheiten, ins besondere Schlaglöchern oder Steinen, Fahrbahnbegrenzungen, Verkehrszeichen, Frei räumen, insbesondere Parklücken, Niederschlag oder dergleichen, erfasst werden. With the radar system, targets of stationary or moving objects, in particular vehicles, people, animals, plants, obstacles, bumps in the road, in particular potholes or stones, road boundaries, traffic signs, free spaces, in particular parking spaces, precipitation or the like, can be detected.
Bei einer vorteilhaften Ausgestaltung des Verfahrens können mit wenigstens zwei be nachbarten Sende-Antennenelementen wenigstens einer der Sende-Antennenelement- gruppen gleiche Einzel-Radarsignale ausgesendet werden, welche zu Gruppen-Radar- signalen dieser wenigstens einen Sende-Antennenelementgruppe zusammengesetzt werden können. Auf diese Weise kann die Sendeleistung im Vergleich zu einem einzel nen Sende-Antennenelement vergrößert werden. Für den Fall, dass jedes Sende-Anten- nenelement die gleiche Sendeleistung ausstrahlt, kann so die Sendeleistung für die zu sammengesetzten Gruppen-Radarsignale entsprechend verdoppelt werden. In an advantageous embodiment of the method, identical individual radar signals can be transmitted with at least two adjacent transmitting antenna elements of at least one of the transmitting antenna element groups, which can be combined to form group radar signals of this at least one transmitting antenna element group. In this way, the transmission power can be increased in comparison to an individual transmission-antenna element. In the event that each transmitting antenna element emits the same transmission power, the transmission power for the composite group radar signals can be doubled accordingly.
Bei einer weiteren vorteilhaften Ausgestaltung des Verfahrens können mit wenigstens zwei benachbarten Sende-Antennenelementen wenigstens einer der Sende-Antennene- lementgruppen kohärente Einzel-Radarsignale ausgesendet werden, welche zu Grup- pen-Radarsignalen dieser wenigstens einen Sende-Antennenelementgruppe zusam mengesetzt werden. Auf diese Weise können durch Überlagerung der entsprechenden Einzel-Radarsignale zu Gruppen-Radarsignalen Interferenzen realisiert werden. In a further advantageous embodiment of the method can with at least two adjacent transmission-antenna elements of at least one of the transmission-antenna element groups, coherent individual radar signals are transmitted, which are combined to form group radar signals of this at least one transmission-antenna element group. In this way, interference can be realized by superimposing the corresponding individual radar signals to form group radar signals.
Bei einer weiteren vorteilhaften Ausgestaltung des Verfahrens können mit wenigstens zwei benachbarten Sende-Antennenelementen wenigstens einer der Sende-Antennene- lementgruppen gleiche Einzel-Radarsignale mit vorgegebenen Phasen-Offsets ausge sendet werden, welche zu Gruppen-Radarsignalen dieser wenigstens einen Sende-An tennenelementgruppe zusammengesetzt werden können. Auf diese Weise kann durch entsprechende Wahl der Phasen-Offsets die Richtung der zusammengesetzten Grup- pen-Radarsignale beeinflusst werden. Durch die entsprechenden Phasen-Offsets kann der Sichtbereich des Radarsystems insbesondere bezogen auf die entsprechende Sende-Antennenelementgruppe eingestellt werden. In a further advantageous embodiment of the method, at least one of the transmitting antenna element groups can be used to transmit identical individual radar signals with predetermined phase offsets using at least two adjacent transmitting antenna elements, which antenna element groups are combined to form group radar signals of this at least one transmitting antenna element group be able. In this way, the direction of the composite group radar signals can be influenced by appropriate selection of the phase offsets. The field of view of the radar system can be set, in particular in relation to the corresponding transmission-antenna element group, by means of the corresponding phase offsets.
Bei einer weiteren vorteilhaften Ausgestaltung des Verfahrens können die Phasen-Off sets zwischen wenigstens zwei Messungen verändert werden. Auf diese Weise kann die Richtung der entsprechenden zusammengesetzten Gruppen-Radarsignale verändert werden. Bei der Sendung der Gruppen-Radarsignale kann die Sendeleistung, welche sich aus den Sendeleistungen der benachbarten Sende-Antennenelement zusammen setzt, auf die Richtung konzentriert werden, welche durch die jeweiligen Phasen-Offsets vorgegeben werden kann. So kann die Detektionsreichweite in der durch die Phasen- Offsets vorgegebene Richtung entsprechend vergrößert werden. In a further advantageous embodiment of the method, the phase offsets can be changed between at least two measurements. In this way, the direction of the respective composite array radar signals can be changed. When transmitting the group radar signals, the transmission power, which is made up of the transmission powers of the adjacent transmission-antenna elements, can be concentrated on the direction that can be specified by the respective phase offsets. In this way, the detection range can be correspondingly increased in the direction specified by the phase offsets.
Vorteilhafterweise können wenigstens zwei benachbarte Sende-Antennenelemente we nigstens einer der Sende-Antennenelementgruppen nach einem Beamforming-Verfahren arbeiten. Bei einem Beamforming-Verfahren kann von mehreren Sendekanälen jeweils kohärent über eng benachbarte Sende-Antennenelemente dasselbe Radarsignal mit de finierten Phasen-Offsets gesendet werden. Advantageously, at least two adjacent transmitting-antenna elements, at least one of the transmitting-antenna element groups, can operate according to a beamforming method. In a beamforming method, the same radar signal with defined phase offsets can be transmitted from a plurality of transmission channels in each case coherently via closely adjacent transmission antenna elements.
Die benachbarten Sende-Antennenelemente einer Sende-Antennenelementgruppe kön nen im Abstand von etwa der Hälfte der Wellenlänge der ausgesendeten Radarsignale angeordnet sein. Auf diese Weise ergibt sich ein gerichtetes Gruppen-Radarsignal mit einer sehr hohen Sendeleistung. Da sich beim Beamforming-Verfahren jeweils die Feld stärken der einzelnen Sende-Antennenelemente addieren, entspricht der maximale Beamforming-Gewinn, also die Leistung, dem Quadrat der Anzahl der Sende-Antennen elemente. Die Richtungsmessung erfolgt beim reinen Beamforming-Verfahren aus schließlich über die Empfangskanäle. The adjacent transmitting-antenna elements of a transmitting-antenna element group can be arranged at a distance of about half the wavelength of the transmitted radar signals. In this way, a directional group radar signal is obtained a very high transmission power. Since the field strengths of the individual transmitting antenna elements add up in the beamforming process, the maximum beamforming gain, i.e. the power, corresponds to the square of the number of transmitting antenna elements. In the case of the pure beamforming method, the direction is measured exclusively via the receiving channels.
Bei der Erfindung kann zusätzlich zu der Sende-Antennenelementgruppe, die nach dem Beamforming-Verfahren arbeitet, eine zweite Sende-Antennenelementgruppe mit der ersten Sende-Antennenelementgruppe nach einem MIMO-Verfahren betrieben werden. Bei dem MIMO-Verfahren werden von den beiden Sende-Antennenelementgruppen je weilige Gruppen-Radarsignale gesendet, welche zumindest auf der Empfängerseite zu mindest temporär unterscheidbar sind. Auf diese Weise kann zusätzlich die Genauigkeit bei der Richtungsmessung verbessert werden. So können Ziele mit einer hohen Rich tungsgenauigkeit und einer gleichermaßen hohen Detektionsreichweite erfasst werden. In the case of the invention, in addition to the transmitting-antenna element group that works according to the beamforming method, a second transmitting-antenna element group can be operated with the first transmitting-antenna element group according to a MIMO method. In the MIMO method, the two transmit-antenna element groups transmit respective group radar signals, which can be distinguished at least temporarily, at least on the receiver side. In this way, the accuracy of the direction measurement can also be improved. In this way, targets can be detected with high directional accuracy and an equally high detection range.
Vorteilhafterweise kann das Radarsystem, insbesondere HD- Radarsystem, nach einem kombinierten Beamforming-MIMO-Verfahren betrieben werden. Auf diese Weise können hohe Winkelauflösungen und hohe Detektionsreichweiten erzielt werden. Mit der Erfin dung kann ein virtuelles Array mit einer hohen Anzahl an virtuellen Elementen durch eine geometrische Faltung der Positionen von Sende-Antennenelementen und Empfangs-An tennenelementen, insbesondere von deren Phasenzentren, erzielt werden. Advantageously, the radar system, in particular HD radar system, can be operated using a combined beamforming MIMO method. In this way, high angular resolutions and large detection ranges can be achieved. With the inventions, a virtual array with a large number of virtual elements can be achieved by geometric folding of the positions of transmitting antenna elements and receiving antenna elements, in particular of their phase centers.
Bei einer weiteren vorteilhaften Ausgestaltung des Verfahrens können wenigstens zwei benachbarte Sende-Antennenelemente wenigstens einer Sende-Anten nenelementgruppe in einem räumlichen Abstand zueinander angeordnet werden, wel cher der Hälfte der Wellenlänge der Radarsignale, gegebenenfalls zuzüglich oder abzü glich einer Toleranz, entspricht, und/oder die Phasenzentren der Sende-Antennenelementgruppen, mit welchen die unterscheid baren Radarsignale gesendet werden, können in einem räumlichen Abstand zueinander angeordnet werden, welcher wenigstens so groß ist wie das 1 ,5-fache der Wellenlänge der Radarsignale, gegebenenfalls zuzüglich oder abzüglich einer Toleranz zueinander. Die Sende-Antennenelemente, welche einen Abstand von einer halben Wellenlänge auf weisen, können nach einem Beamforming-Verfahren zusammen betrieben werden. So kann mit diesen Sende-Antennenelementen eine entsprechend große Detektionsreich weite erzielt werden. In a further advantageous embodiment of the method, at least two adjacent transmitting antenna elements of at least one transmitting antenna element group can be arranged at a spatial distance from one another which corresponds to half the wavelength of the radar signals, possibly plus or minus a tolerance, and/or the phase centers of the transmission-antenna element groups, with which the distinguishable radar signals are transmitted, can be arranged at a spatial distance from one another which is at least as large as 1.5 times the wavelength of the radar signals, possibly plus or minus a tolerance from one another. The transmitting-antenna elements, which are half a wavelength apart, can be operated together using a beamforming method. A correspondingly large detection range can thus be achieved with these transmitting antenna elements.
Die Sende-Antennenelementgruppen, welche einen Abstand von wenigstens dem 1 ,5- fachen der Wellenlänge zwischen den Phasenzentren aufweisen und unterscheidbare Radarsignale aussenden können für eine MIMO-Antennenanordnung eingesetzt werden. Auf diese Weise können entsprechende Winkelauflösungen bei der Richtungsbestim mung erreicht werden. The transmitting antenna element groups, which have a distance of at least 1.5 times the wavelength between the phase centers and emit distinguishable radar signals, can be used for a MIMO antenna arrangement. In this way, corresponding angular resolutions can be achieved when determining the direction.
Vorteilhafterweise kann das Radarsystem eine Mehrzahl von Sende-Antennenelementen aufweisen, von denen eine Untermenge zur Realisierung eines Beamforming-Verfahrens genutzt wird. Die Sende-Antennenelemente, welche für das Beamforming-Verfahren ge nutzt werden, können einen räumlichen Abstand aufweisen, der der Hälfte der Wellen länge der Radarsignale, gegebenenfalls zuzüglich oder abzüglich einer Toleranz, ent spricht. Die verbleibenden Sende-Antennenelemente, welche nicht für das Beamforming- Verfahren verwendet werden, können in einem größeren räumlichen Abstand, insbeson dere größer als das 1 ,5-fache der Wellenlänge, zueinander angeordnet sein. Auf diese Weise kann sowohl ein Beamforming-Verfahren als auch ein MIMO-Verfahren gleichzei tig, also ein kombiniertes Beamforming-MIMO-Verfahren, realisiert werden. Auf diese Weise können die Vorteile des Beamforming-Verfahrens, nämlich die größere Detekti onsreichweite, mit den Vorteilen des MIMO-Verfahrens, nämlich die größere Richtungs auflösung, kombiniert werden. Advantageously, the radar system can have a plurality of transmitting antenna elements, a subset of which is used to implement a beamforming method. The transmitting-antenna elements, which are used for the beamforming method, can have a spatial distance that corresponds to half the wavelength of the radar signals, possibly plus or minus a tolerance. The remaining transmitting antenna elements, which are not used for the beamforming method, can be arranged at a greater spatial distance from one another, in particular greater than 1.5 times the wavelength. In this way, both a beamforming method and a MIMO method, ie a combined beamforming-MIMO method, can be implemented at the same time. In this way, the advantages of the beamforming method, namely the greater detection range, can be combined with the advantages of the MIMO method, namely the greater directional resolution.
Bei einer weiteren vorteilhaften Ausgestaltung des Verfahrens kann wenigstens eine Sende-Antennenelementgruppe aus einem Sende-Antennenelement gebildet werden und/oder wenigstens eine Sende-Antennenelementgruppe kann aus wenigstens zwei Sende-Antennenelementen gebildet werden. In a further advantageous embodiment of the method, at least one transmitting antenna element group can be formed from one transmitting antenna element and/or at least one transmitting antenna element group can be formed from at least two transmitting antenna elements.
Jede Sende-Antennenelementgruppe kann wenigstens ein Sende-Antennenelement auf weisen. Falls diese eine Sende-Antennenelementgruppe aus lediglich einem Sende-An tennenelement besteht, kann diese Sende-Antennenelementgruppe mit dem Phasen zentrum dieses einen Sende-Antennenelements charakterisiert werden. Falls eine Sende-Antennenelementgruppe aus mehreren Sende-Antennenelementen besteht, kann die Sende-Antennenelementgruppe durch das Phasenzentrum der Sende-Anten nenelementgruppe charakterisiert werden, welches zwischen den jeweiligen Phasenzen tren der einzelnen Sende-Antennenelemente liegt. Each transmitting antenna element group can have at least one transmitting antenna element. If this one transmitting antenna element group consists of only one transmitting antenna element, this transmitting antenna element group can be characterized with the phase center of this one transmitting antenna element. If one Transmitting-antenna element group consists of several transmitting-antenna elements, the transmitting-antenna element group can be characterized by the phase center of the transmitting-antenna element group, which lies between the respective phase centers of the individual transmitting-antenna elements.
Bei einer weiteren vorteilhaften Ausgestaltung des Verfahrens können mit wenigstens zwei Sende-Antennenelementgruppen unterschiedlich codierte Radarsignale gesendet werden, die auf der Seite der Empfangs-Antennenelemente wenigstens temporär vonei nander unterschieden werden können. Auf diese Weise können die reflektierten Radar signale, also die Echos, auf der Seite der Empfangs-Antennenelemente den jeweiligen Sende-Antennenelementgruppen und/oder Sende-Antennenelementen zugeordnet wer den. In a further advantageous embodiment of the method, differently encoded radar signals can be transmitted with at least two transmitting-antenna element groups, which can be distinguished from one another at least temporarily on the side of the receiving-antenna elements. In this way, the reflected radar signals, ie the echoes, can be assigned to the respective transmitting antenna element groups and/or transmitting antenna elements on the side of the receiving antenna elements.
Vorteilhafterweise können die Sendesignale zur Erzeugung der unterscheidbaren Radar signale insbesondere mittels Phasenmodulationen zueinander codiert werden. Auf diese Weise kann eine zumindest temporäre signaltechnische Orthogonalität zwischen den Sendesignalen und/oder den Empfangssignalen erzielt werden. So können die Radarsig nale, respektive die Sendesignale, und die entsprechenden Echos, respektive die Emp fangssignale, voneinander unterscheidbar gemacht werden. Advantageously, the transmission signals for generating the distinguishable radar signals can be encoded with respect to one another, in particular by means of phase modulations. In this way, an at least temporary orthogonality in terms of signaling technology can be achieved between the transmission signals and/or the reception signals. In this way, the radar signals, or the transmitted signals, and the corresponding echoes, or the received signals, can be made distinguishable from one another.
Vorteilhafterweise können die Empfangssignale auf der Empfängerseite durch entspre chende Auswertung, insbesondere mithilfe von Fourier-Transformationen, ausgewertet werden. Advantageously, the received signals can be evaluated on the receiver side by appropriate evaluation, in particular with the help of Fourier transformations.
Ferner wird die Aufgabe erfindungsgemäß bei dem Radarsystem dadurch gelöst, dass das Radarsystem Mittel aufweist zur Durchführung des erfindungsgemäßen Verfahrens. Furthermore, the object is achieved according to the invention with the radar system in that the radar system has means for carrying out the method according to the invention.
Bei einer vorteilhaften Ausführungsform kann die Steuer- und Auswerteeinrichtung Mittel aufweisen, mit denen wenigstens zwei Sende-Antennenelementgruppen, welche jeweils wenigstens ein Sende-Antennenelement aufweisen, mit Sendesignalen angesteuert wer den können zum Senden von Radarsignalen, die zumindest auf der Seite der Empfangs- Antennenelemente zumindest temporär voneinander unterscheidbar sind. Auf diese Weise können die empfangenen Echos den entsprechenden Sende-Antennenelement gruppen zugeordnet werden. Vorteilhafterweise können die Sendesignale zueinander codiert sein. Auf diese Weise können die entsprechenden Empfangssignale voneinander unterschieden werden. In an advantageous embodiment, the control and evaluation device can have means with which at least two transmitting-antenna element groups, each having at least one transmitting-antenna element, can be controlled with transmission signals for transmitting radar signals, which are at least on the side of the receiving-antenna elements are at least temporarily distinguishable from each other. In this way, the received echoes can be assigned to the corresponding transmit-antenna element groups. The transmission signals can advantageously be encoded in relation to one another. In this way, the corresponding received signals can be distinguished from one another.
Bei einer weiteren vorteilhaften Ausführungsform kann wenigstens eine Sende-Anten- nenelementgruppe wenigstens zwei eng benachbarte Sende-Antennenelemente aufwei sen. Auf diese Weise können die Radarsignale der jeweiligen Sende-Antennenelemente zu einem gemeinsamen Gruppen-Radarsignal mit einer größeren Sendeleistung zusam mengeführt werden. In a further advantageous embodiment, at least one transmitting antenna element group can have at least two closely adjacent transmitting antenna elements. In this way, the radar signals of the respective transmission-antenna elements can be combined to form a common group radar signal with a higher transmission power.
Bei einer vorteilhaften Ausführungsform können wenigstens zwei benachbarte Sende-Antennenelemente wenigstens einer Sende-Anten- nenelementgruppe in einem räumlichen Abstand zueinander angeordnet sein, welcher der Hälfte der Wellenlänge der Radarsignale, gegebenenfalls zuzüglich oder abzüglich einer Toleranz, entspricht, und/oder die Phasenzentren der Sende-Antennenelementgruppen, mit welchen die unterscheid baren Radarsignale gesendet werden, können in einem räumlichen Abstand zueinander angeordnet sein, welcher wenigstens so groß ist wie das 1 ,5-fache der Wellenlänge der Radarsignale, gegebenenfalls zuzüglich oder abzüglich einer Toleranz zueinander. Auf diese Weise kann das Radarsystem mit einem kombinierten Beamforming-MIMO- Verfahren betrieben werden. In an advantageous embodiment, at least two adjacent transmission-antenna elements of at least one transmission-antenna element group can be arranged at a spatial distance from one another which corresponds to half the wavelength of the radar signals, possibly plus or minus a tolerance, and/or the phase centers of the transmission -Antenna element groups with which the distinguishable radar signals are transmitted can be arranged at a spatial distance from one another which is at least as large as 1.5 times the wavelength of the radar signals, possibly plus or minus a tolerance from one another. In this way, the radar system can be operated with a combined beamforming MIMO method.
Außerdem wird die Aufgabe erfindungsgemäß bei dem Fahrzeug dadurch gelöst, dass das Radarsystem Mittel aufweist zur Durchführung des erfindungsgemäßen Verfahrens. In addition, the object is achieved according to the invention in the vehicle in that the radar system has means for carrying out the method according to the invention.
Im Übrigen gelten die im Zusammenhang mit dem erfindungsgemäßen Verfahren, dem erfindungsgemäßen Radarsystem und dem erfindungsgemäßen Fahrzeug und deren je weiligen vorteilhaften Ausgestaltungen aufgezeigten Merkmale und Vorteile untereinan der entsprechend und umgekehrt. Die einzelnen Merkmale und Vorteile können selbst verständlich untereinander kombiniert werden, wobei sich weitere vorteilhafte Wirkungen einstellen können, die über die Summe der Einzelwirkungen hinausgehen. Otherwise, the features and advantages shown in connection with the method according to the invention, the radar system according to the invention and the vehicle according to the invention and their respective advantageous configurations apply to one another and vice versa. The individual features and advantages can, of course, be combined with one another, in which case further advantageous effects can arise that go beyond the sum of the individual effects.
Kurze Beschreibung der Zeichnungen Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nach folgenden Beschreibung, in der Ausführungsbeispiele der Erfindung anhand der Zeich nung näher erläutert werden. Der Fachmann wird die in der Zeichnung, der Beschreibung und den Ansprüchen in Kombination offenbarten Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen. Es zei gen schematisch Brief description of the drawings Further advantages, features and details of the invention will become apparent from the following description in which the exemplary embodiments of the invention are explained in more detail with reference to the undersigned statement. The person skilled in the art will expediently also consider the features disclosed in combination in the drawing, the description and the claims individually and combine them into further meaningful combinations. It shows schematically
Figur 1 ein Kraftfahrzeug in der Vorderansicht mit einem Fahrerassistenzsystem und einem Radarsystem zu Überwachung eines Überwachungsbereichs in Fahrtrichtung vor dem Kraftfahrzeug; FIG. 1 shows a front view of a motor vehicle with a driver assistance system and a radar system for monitoring a monitoring area in front of the motor vehicle in the direction of travel;
Figur 2 eine Draufsicht auf das Kraftfahrzeug aus der Figur 1 ; FIG. 2 shows a plan view of the motor vehicle from FIG. 1;
Figur 3 eine Seitenansicht des Kraftfahrzeugs aus den Figuren 1 und 2; FIG. 3 shows a side view of the motor vehicle from FIGS. 1 and 2;
Figur 4 eine Vorderansicht auf Sende-Antennenelemente und Empfangs-Anten nenelemente eines Antennenarrays des Radarsystems aus den Figuren 1 bis 3; FIG. 4 shows a front view of transmitting antenna elements and receiving antenna elements of an antenna array of the radar system from FIGS. 1 to 3;
Figur 5 eine Darstellung eines dem Antennenarray aus der Figur 4 entsprechenden virtuellen Arrays; FIG. 5 shows a representation of a virtual array corresponding to the antenna array from FIG. 4;
Figur 6 Antennendiagramme des Radarsystems aus den Figuren 1 bis 3 in unter schiedlichen Betriebsmodi. FIG. 6 shows antenna diagrams of the radar system from FIGS. 1 to 3 in different operating modes.
In den Figuren sind gleiche Bauteile mit gleichen Bezugszeichen versehen. The same components are provided with the same reference symbols in the figures.
Ausführungsform(en) der Erfindung embodiment(s) of the invention
In der Figur 1 ist ein Kraftfahrzeug 10 in Form eines Personenkraftwagens in der Vorder ansicht gezeigt. Figur 2 zeigt das Kraftfahrzeug 10 in einer Draufsicht. In Figur 3 ist das Kraftfahrzeug 10 in einer Seitenansicht dargestellt. FIG. 1 shows a front view of a motor vehicle 10 in the form of a passenger car. FIG. 2 shows motor vehicle 10 in a plan view. In Figure 3, the motor vehicle 10 is shown in a side view.
Das Kraftfahrzeug 10 verfügt über ein Radarsystem 12. Das Radarsystem 12 ist beispiel haft in der vorderen Stoßstange des Kraftfahrzeugs 10 angeordnet. Mit dem Radarsys tem 12 kann ein Überwachungsbereich 14 in Fahrtrichtung 16 vor dem Kraftfahrzeug 10 auf Objekte 18 hin überwacht werden. Das Radarsystem 12 kann auch an anderer Stelle am Kraftfahrzeug 10 angeordnet und anders ausgerichtet sein. Mit dem Radarsystem 12 können Entfernungen r und Richtungen, beispielsweise in Form des Azimut cp und der Elevation Q, von Zielen von Objekten 18 relativ zum Kraftfahrzeug 10, respektive zum Radarsystem 12, ermittelt werden. Das Ziel eines Objekts 18 ist ein Teil des Objekts 18, an dem Radarstrahlen reflektiert werden können. The motor vehicle 10 has a radar system 12. The radar system 12 is arranged in the front bumper of the motor vehicle 10, for example. With the radar system 12, a monitoring area 14 in the direction of travel 16 in front of the motor vehicle 10 can be monitored for objects 18. The radar system 12 can also be arranged at a different location on the motor vehicle 10 and oriented differently. With the radar system 12, distances r and directions, for example in the form of the azimuth cp and the elevation Q, of targets of objects 18 relative to the motor vehicle 10 or to the Radar system 12 are determined. The target of an object 18 is a part of the object 18 from which radar beams can be reflected.
Bei den Objekten 18 kann es sich um stehende oder bewegte Objekte, beispielsweise um andere Fahrzeuge, Personen, Tiere, Pflanzen, Hindernisse, Fahrbahnunebenheiten, beispielsweise Schlaglöcher oder Steine, Fahrbahnbegrenzungen, Verkehrszeichen, Freiräume, Beispielweise Parklücken, Niederschlag oder dergleichen handeln. The objects 18 can be stationary or moving objects, for example other vehicles, people, animals, plants, obstacles, bumps in the road, for example potholes or stones, road boundaries, traffic signs, open spaces, for example parking spaces, precipitation or the like.
Der besseren Orientierung wegen sind in den Figuren 1 bis 5 die entsprechenden Koor dinatenachsen eines kartesischen x-y-z-Koordinatensystems eingezeichnet. Bei dem ge zeigten Ausführungsbeispiel erstreckt sich die x-Achse in Richtung einer Fahrzeuglängs achse des Kraftfahrzeugs 10, die y-Achse erstreckt sich entlang einer Fahrzeugquer achse und die z-Achse erstreckt sich senkrecht zur x-y-Ebene nach räumlich oben. Wenn das Kraftfahrzeug 10 sich betriebsgemäß auf einer horizontalen Fahrbahn befindet, er strecken sich die x-Achse und die y-Achse räumlich horizontal und die z-Achse räumlich vertikal. For better orientation, the corresponding coordinate axes of a Cartesian x-y-z coordinate system are shown in FIGS. In the embodiment shown, the x-axis extends in the direction of a vehicle longitudinal axis of motor vehicle 10, the y-axis extends along a vehicle transverse axis, and the z-axis extends spatially upward perpendicular to the x-y plane. When the motor vehicle 10 is operational on a horizontal roadway, the x-axis and y-axis extend horizontally in space and the z-axis extends vertically in space.
Das Radarsystem 12 ist als frequenzmoduliertes Dauerstrichradar auf Basis eines Beam- forming-MIMO-Radarsystems ausgestaltet. Frequenzmodulierte Dauerstrichradare wer den in Fachkreisen auch als FMCW (Frequency modulated continuous wave) Radare bezeichnet. Mit dem Radarsystem 12 können Objekte 18 in großen Entfernungen r mit großen Winkelauflösungen in Bezug auf Azimut Q und Elevation cp erfasst werden. The radar system 12 is designed as a frequency-modulated continuous wave radar based on a beam-forming MIMO radar system. Frequency-modulated continuous wave radars are also referred to in technical circles as FMCW (Frequency modulated continuous wave) radars. The radar system 12 can be used to detect objects 18 at large distances r with large angular resolutions in relation to azimuth Q and elevation cp.
Das Radarsystem 12 ist mit einem Fahrerassistenzsystem 20 verbunden. Mit dem Fah rerassistenzsystem 20 kann das Kraftfahrzeug 10 autonom oder teilautonom betrieben werden. The radar system 12 is connected to a driver assistance system 20 . Motor vehicle 10 can be operated autonomously or partially autonomously with driver assistance system 20 .
Das Radarsystem 12 umfasst ein Antennenarray 22 und eine Steuer- und Auswerteein richtung 24. The radar system 12 includes an antenna array 22 and a control and evaluation device 24.
Das Antennenarray 22 verfügt beispielhaft über drei Sende-Antennenelemente 26 und vier Empfangs-Antennenelemente 28. Beispielhaft sind die Empfangs-Antennenele mente 28 räumlich unterhalb der Sende-Antennenelemente 26 angeordnet. Die Emp- fangs-Antennenelemente 28 können jedoch auch oberhalb, neben oder wenigstens teil weise zwischen den Sende-Antennenelemente 26 angeordnet sein. The antenna array 22 has, for example, three transmitting antenna elements 26 and four receiving antenna elements 28. For example, the receiving antenna elements 28 are spatially arranged below the transmitting antenna elements 26. The However, catch antenna elements 28 can also be arranged above, next to or at least partially between the transmitting antenna elements 26 .
Jedes Sende-Antennenelement 26 ist mit einem entsprechenden Sendekanal verbun den. Über die Sendekanäle können die jeweiligen Sende-Antennenelemente 26 mit ent sprechenden elektrischen Sendesignalen angesteuert werden. Entsprechend ist jedes Empfangs-Antennenelement 28 mit einem entsprechenden Empfangskanal verbunden. Über die Empfangskanäle können elektrische Empfangssignale von den Empfangs-An tennenelementen 28 übermittelt werden. Die Sendekanäle und die Empfangskanäle kön nen beispielsweise in der Steuer- und Auswerteeinrichtung 24 integriert sein. Each transmit antenna element 26 is connected to a corresponding transmit channel. The respective transmission antenna elements 26 can be controlled with corresponding electrical transmission signals via the transmission channels. Correspondingly, each receiving antenna element 28 is connected to a corresponding receiving channel. Electrical reception signals can be transmitted from the reception antenna elements 28 via the reception channels. The transmission channels and the reception channels can be integrated in the control and evaluation device 24, for example.
Mit den Sende-Antennenelementen 26 können durch Ansteuerung mit den elektrischen Sendesignalen entsprechende Radarsignale 42 gesendet werden. Die Radarsignale 42 sind in der Figur 4 der besseren Unterscheidbarkeit wegen entsprechend ihrer Zugehö rigkeit zu den jeweiligen Sende-Antennenelementen 26 beziehungsweise zu weiter unten erläuterten Sende-Antennenelementgruppen 32a und 32b mit den Indices a, b und e ge kennzeichnet. In der Figur 4 beziehen sich die Symbole für die Radarsignale 42 im Un terschied zu den Figuren 2 und 3 nicht auf deren Ausbreitungsrichtung. Corresponding radar signals 42 can be transmitted with the transmission antenna elements 26 by activation with the electrical transmission signals. The radar signals 42 are marked in FIG. 4 with the indices a, b and e to make them easier to distinguish because they belong to the respective transmitting-antenna elements 26 or to transmitting-antenna element groups 32a and 32b explained further below. In contrast to FIGS. 2 and 3, the symbols for the radar signals 42 in FIG. 4 do not relate to their direction of propagation.
Die Position jedes Sende-Antennenelements 26 wird durch sein jeweiliges Einzel-Pha senzentrum 38e definiert. Die Sende-Antennenelemente 26, respektive die Einzel-Pha senzentren 38e, sind beispielhaft nebeneinander entlang einer gedachten Sendeanten nenachse 30 angeordnet. Die Sendeantennenachse 30 verläuft beispielhaft parallel zur y-Achse. The position of each transmit antenna element 26 is defined by its respective single phase center 38e. The transmission antenna elements 26, or the individual phase centers 38e, are arranged next to one another along an imaginary transmission antenna axis 30, for example. The transmission antenna axis 30 runs, for example, parallel to the y-axis.
Die Sende-Antennenelemente 26 sind in zwei Sende-Antennenelementgruppen 32 grup piert, welche der Unterscheidung wegen mit den Indices a und b gekennzeichnet sind. The transmitting-antenna elements 26 are grouped into two transmitting-antenna element groups 32, which are marked with the indices a and b for the sake of differentiation.
Die in der Figur 4 linke Sende-Antennenelementgruppe 32a umfasst zwei der Sende- Antennenelemente 26. Die Einzel-Phasenzentren 38e dieser Sende-Antennenelemente 26 sind in einem Abstand 34 zueinander angeordnet, welcher beispielhaft der halben Wellenlänge l der Radarsignale 42 entspricht, die mit den Sende-Antennenelementen 26 ausgesendet werden. Der Abstand 34 kann gegebenenfalls der halben Wellenlänge l zuzüglich oder abzüglich einer Toleranz entsprechen. Die Position der linken Sende-An- tennenelementgruppe 32a ist durch ein entsprechendes Gruppen-Phasenzentrum 38g charakterisiert, welches sich beispielhaft zwischen den beiden Einzel-Phasenzentren 38e der Sende-Antennenelemente 26 befindet. The transmitting-antenna element group 32a on the left in FIG Transmission antenna elements 26 are sent out. The distance 34 can optionally be half the wavelength l plus or minus a tolerance. The position of the left-hand transmitting antenna element group 32a is characterized by a corresponding group phase center 38g, which is located between the two individual phase centers 38e of the transmitting antenna elements 26, for example.
Die in der Figur 4 rechte Sende-Antennenelementgruppe 32b umfasst lediglich eines der Sende-Antennenelemente 26. Die rechte Sende-Antennenelementgruppe 32b besteht also aus dem entsprechenden Sende-Antennenelement 26. Die Position der rechten Sende-Antennenelementgruppe 32b ist durch das entsprechende Gruppen-Phasenzent rum 38g definiert, welches in diesem Fall identisch ist mit dem Einzel-Phasenzentren 38e des Sende-Antennenelements 26. The transmitting-antenna element group 32b on the right in FIG rum 38g, which in this case is identical to the single phase center 38e of the transmitting antenna element 26.
Die Gruppen-Phasenzentren 38g der beiden Sende-Antennenelementgruppen 32a und 32b sind in einem Abstand 40 zueinander angeordnet, welcher beispielhaft der 1 ,5-fa- chen Wellenlänge l der Radarsignale 42 entspricht. Der Abstand 40 kann gegebenenfalls der 1 ,5-fachen Wellenlänge l zuzüglich oder abzüglich einer Toleranz entsprechen. Der Abstand 40 entspricht beispielhaft dem dreifachen Abstand 34. The group phase centers 38g of the two transmission-antenna element groups 32a and 32b are arranged at a distance 40 from one another, which, for example, corresponds to 1.5 times the wavelength l of the radar signals 42 . The distance 40 can optionally correspond to 1.5 times the wavelength 1 plus or minus a tolerance. The distance 40 corresponds, for example, to three times the distance 34.
Die Sende-Antennenelemente 26 der der linken Sende-Antennenelementgruppe 32a werden über die entsprechenden Sendekanäle, respektive über die Steuer- und Auswer teeinrichtung 24, kohärent mit dem selben Sendesignal sowie einem definierten Phasen- Offset angesteuert. Mit den Sende-Antennenelementen 26 werden entsprechende Ein zel-Radarsignale 42e gesendet. Die Einzel-Radarsignale 42e setzen sich zu einem Grup- pen-Radarsignal 42a zusammen. Insgesamt wird mit der linken Sende-Antennenele mentgruppe 32a das Gruppen-Radarsignal 42a gesendet. Durch entsprechende Vorgabe des Phasen-Offsets kann die Richtung des Gruppen-Radarsignals 42a eingestellt wer den. Die Sende-Antennenelementgruppe 32a wird nach einem Beamforming-Verfahren betrieben. Das Gruppen-Radarsignal 42a wird bezogen auf das Gruppen-Phasenzent rum 38g der linken Sende-Antennenelementgruppe 32a in den Überwachungsbereich 14 gesendet. The transmission-antenna elements 26 of the left-hand transmission-antenna element group 32a are controlled coherently with the same transmission signal and a defined phase offset via the corresponding transmission channels, or via the control and evaluation device 24 . Corresponding individual radar signals 42e are transmitted with the transmitting antenna elements 26 . The individual radar signals 42e are combined to form a group radar signal 42a. Overall, the group radar signal 42a is sent with the left transmitting antenna element group 32a. The direction of the group radar signal 42a can be set by appropriately specifying the phase offset. The transmission antenna element group 32a is operated according to a beamforming method. The group radar signal 42a is transmitted into the monitoring area 14 in relation to the group phase center 38g of the left transmitting antenna element group 32a.
Das Sende-Antennenelement 26 der rechten Sende-Antennenelementgruppe 32b wird über den entsprechenden Sendekanal, respektive über die Steuer- und Auswerteeinrich tung 24, mit einem Sendesignal angesteuert, welches gegenüber dem Sendesignal der linken Sende-Antennenelementgruppe 32a codiert ist. Die Codierung kann beispiels weise mittels binärer Phasenmodulation erfolgen. Mit dem Sende-Antennenelement 26 der rechten Sende-Antennenelementgruppe 32b wird ein Gruppen-Radarsignal 42b ge sendet. Das Gruppen-Radarsignal 42b der rechten Sende-Antennenelementgruppe 32b wird ebenfalls in den Überwachungsbereich 14 gesendet. The transmission-antenna element 26 of the right-hand transmission-antenna element group 32b is controlled via the corresponding transmission channel, or via the control and evaluation device 24, with a transmission signal which is opposite to the transmission signal of the left transmitting-antenna element group 32a is encoded. The coding can be done, for example, using binary phase modulation. A group radar signal 42b is transmitted with the transmitting antenna element 26 of the right transmitting antenna element group 32b. The group radar signal 42b of the right transmitting-antenna element group 32b is also sent into the surveillance area 14 .
Sofern die Gruppen-Radarsignale 42a und 42b auf ein Objekt 18 treffen, werden sie je weils als entsprechendes Echo 44 reflektiert. Die Anteile der Echos 44, welche in Rich tung des Radarsystems 12 reflektiert werden, werden von den entsprechenden Emp fangs-Antennenelementen 28 empfangen und in entsprechende Empfangssignale um gewandelt. Da das Sendesignal für das Gruppen-Radarsignal 42b gegenüber dem Sen designal für das Gruppen-Radarsignal 42a codiert ist, sind die entsprechenden reflektier ten Gruppen-Radarsignale 42a und 42b, also die Echos 44, auf der Seite der Empfangs- Antennenelemente 28 unterscheidbar. Aus den Radarsignalen 42a und 42b, respektive den entsprechenden Sendesignalen, und den Echos 44, respektive den entsprechenden Empfangssignalen, werden mithilfe der Steuer- und Auswerteeinrichtung 24 die Entfer nung r, der Azimut cp und die Elevation Q des entsprechenden Ziels des Objekts 18 relativ zum Radarsystem 12 ermittelt. If the group radar signals 42a and 42b meet an object 18, they are each Weil reflected as a corresponding echo 44. The portions of the echoes 44, which are reflected in the direction of the radar system 12 Rich, are received by the corresponding receiving antenna elements 28 and converted into corresponding received signals. Since the transmission signal for the group radar signal 42b is encoded in relation to the transmission signal for the group radar signal 42a, the corresponding reflected group radar signals 42a and 42b, ie the echoes 44, can be distinguished on the side of the receiving antenna elements 28. The distance r, the azimuth cp and the elevation Q of the corresponding target of the object 18 relative to the Radar system 12 determined.
Drei der vier Empfangs-Antennenelemente 28 sind nebeneinander entlang einer gedach ten Achse 46 angeordnet. Die Achse 46 verläuft beispielhaft parallel zur y-Achse, also auch parallel zur Sendeantennenachse 30. Das vierte Empfangs-Antennenelement 28 befindet sich beispielhaft oberhalb der drei anderen Empfangs-Antennenelemente 28 also oberhalb der Achse 46. Three of the four receiving antenna elements 28 are arranged side by side along an axis 46 thought th. The axis 46 runs, for example, parallel to the y-axis, i.e. also parallel to the transmitting antenna axis 30. The fourth receiving-antenna element 28 is located, for example, above the three other receiving-antenna elements 28, i.e. above the axis 46.
Die beiden in der Figur 4 linken Empfangs-Antennenelemente 28 unten sind in einem Abstand 48 zueinander angeordnet, welcher beispielhaft der Wellenlänge l der Radar signale 42 gegebenenfalls zuzüglich oder abzüglich einer Toleranz entspricht. Der Ab stand 48 entspricht beispielhaft dem doppelten Abstand 34 zwischen den Sende-Anten- nenelementen 26 der in der Figur 4 linken Sende-Antennenelementgruppe 42a. The two bottom left receiving-antenna elements 28 in FIG. 4 are arranged at a distance 48 from one another, which, for example, corresponds to the wavelength 1 of the radar signals 42, plus or minus a tolerance, if necessary. The distance 48 corresponds, for example, to twice the distance 34 between the transmitting antenna elements 26 of the transmitting antenna element group 42a on the left in FIG.
Das in der Figur 4 rechte Empfangs-Antennenelement 28 unten ist in einem Abstand 50 zu dem mittleren Empfangs-Antennenelement 28 unten angeordnet, welcher dem dreifa chen der Wellenlänge l der Radarsignale 42 gegebenenfalls zuzüglich oder abzüglich einer T oieranz entspricht. Der Abstand 50 entspricht beispielhaft dem dreifachen Abstand 48 der beiden linken Empfangs-Antennenelemente 28. The bottom right receiving-antenna element 28 in FIG. 4 is arranged at a distance 50 from the middle receiving-antenna element 28 below, which is three times the wavelength l of the radar signals 42, possibly plus or minus corresponds to a tolerance. The distance 50 corresponds, for example, to three times the distance 48 between the two left-hand receiving antenna elements 28.
Das vierte Empfangs-Antennenelement 28, der Figur 4 oben, ist in einem beispielhaft vertikalen Abstand 52 zu der gedachten Achse 46 angeordnet, welcher dem 1 ,5 fachen der Wellenlänge l der Radarsignale 42 gegebenenfalls zuzüglich oder abzüglich einer Toleranz entspricht. Der Abstand 52 entspricht beispielhaft dem 1 ,5 fachen Abstand 48 zwischen den Sende-Antennenelementen 26 der beiden linken Empfangs-Antennenele mente 28. Außerdem entspricht der Abstand 52 beispielhaft dem halben Abstand 50 zwi schen den mittleren und dem rechten Empfangs-Antennenelement 28 unten. Dadurch, dass das vierte Empfangs-Antennenelement 28 gegenüber den drei anderen Empfangs- Antennenelementen 28 vertikal versetzt ist, kann mit dem Radarsystem 12 zusätzlich zum Azimut cp auch die Elevation Q ermittelt werden. The fourth receiving-antenna element 28, shown in FIG. 4 at the top, is arranged at an exemplary vertical distance 52 from the imaginary axis 46, which corresponds to 1.5 times the wavelength l of the radar signals 42, possibly plus or minus a tolerance. The distance 52 corresponds, for example, to 1.5 times the distance 48 between the transmitting antenna elements 26 of the two left receiving antenna elements 28. In addition, the distance 52 corresponds, for example, to half the distance 50 between the middle and the right receiving antenna element 28 at the bottom. Due to the fact that the fourth receiving-antenna element 28 is offset vertically in relation to the three other receiving-antenna elements 28, the elevation Q can also be determined with the radar system 12 in addition to the azimuth cp.
Außerdem ist das vierte Empfangs-Antennenelement 28 in der Projektion betrachtet zwi schen dem mittleren Empfangs-Antennenelement 28 und dem rechten Empfangs-Anten nenelement der unteren Reihe angeordnet. Dabei ist das vierte Empfangs-Antennenele ment 28 in einem beispielhaft horizontalen Abstand 54 in Richtung der y-Achse zu dem mittleren Empfangs-Antennenelement 28 der unteren Reihe angeordnet, welcher der Wellenlänge l der Radarsignale 42 entspricht. Ferner ist das vierte Empfangs-Antennen element 28 oben in einem horizontalen Abstand 56 in Richtung der y-Achse zu dem rech ten Empfangs-Antennenelement 28 der unteren Reihe angeordnet, welcher der zweifa chen Wellenlänge l der Radarsignale 42 entspricht. In horizontaler Richtung, also in Rich tung der y-Achse betrachtet, teilt das obere einzelne Empfangs-Antennenelement 28 den Abstand zwischen dem mittleren und dem rechten Empfangs-Antennenelement 28 der unteren Reihe im Verhältnis 1 zu 2. In addition, the fourth receiving-antenna element 28 is arranged between the middle receiving-antenna element 28 and the right receiving-antenna element of the lower row, viewed in the projection. The fourth receiving-antenna element 28 is arranged at an exemplary horizontal distance 54 in the direction of the y-axis from the central receiving-antenna element 28 of the lower row, which corresponds to the wavelength l of the radar signals 42 . Furthermore, the fourth receiving-antenna element 28 is arranged at the top at a horizontal distance 56 in the direction of the y-axis from the right receiving-antenna element 28 of the lower row, which corresponds to the double wavelength l of the radar signals 42 . In the horizontal direction, i.e. viewed in the direction of the y-axis, the upper individual receiving antenna element 28 divides the distance between the middle and the right receiving antenna element 28 of the lower row in a ratio of 1 to 2.
Aus einer geometrischen Faltung der Positionen der Gruppen-Phasenzentren 38g der Sende-Antennenelementgruppen 32a und 32b und der Positionen der Empfangs-Anten nenelemente 28 wird ein virtuelles Array 58 erzeugt, welches dem Antennenarray 22 ent spricht. Das virtuelle Array 58 ist in der Figur 5 dargestellt. From a geometric convolution of the positions of the group phase centers 38g of the transmitting antenna element groups 32a and 32b and the positions of the receiving antenna elements 28, a virtual array 58 is generated, which corresponds to the antenna array 22. The virtual array 58 is shown in FIG.
Das virtuelle Array 58 verfügt insgesamt über acht virtuelle Elemente 60. Die Anzahl V der virtuellen Elemente 60 bestimmt sich aus der Gesamtzahl N der Sende-Antennene- lemente 26, der Anzahl M der für ein Beamforming- Verfahren zusammengefassten Sende-Antennenelemente 26, nämlich der zwei linken Sende-Antennenelemente 26, und der Anzahl K der Empfangs-Antennenelemente 28 als The virtual array 58 has a total of eight virtual elements 60. The number V of the virtual elements 60 is determined from the total number N of the transmitting antenna elements 26, the number M of the transmitting antenna elements 26 combined for a beamforming method, namely the two left transmitting antenna elements 26, and the number K of the receiving antenna elements 28 as
V = (N-M+1 )*K. V = (N-M+1 ) * K
Anders ausgedrückt bestimmt sich die Anzahl V der virtuellen Elemente 60 aus dem Pro dukt der Anzahl der beteiligten Sende-Antennenelementgruppen 32, beispielhaft 2, und der Anzahl K der Empfangs-Antennenelemente 28, beispielhaft 4. In other words, the number V of virtual elements 60 is determined from the product of the number of transmitting-antenna-element groups 32 involved, for example 2, and the number K of receiving-antenna elements 28, for example 4.
Sechs der acht virtuellen Elemente 60 sind nebeneinander entlang einer gedachten un teren Achse 62 angeordnet. Die Achse 62 verläuft beispielhaft parallel zur y-Achse. Zwei der acht virtuellen Elemente 60 sind nebeneinander entlang einer oberen gedachten Achse 64 angeordnet. Die Achse 64 verläuft oberhalb der Achse 62 ebenfalls parallel zur y-Achse, also parallel zur Achse 62. Six of the eight virtual elements 60 are arranged side by side along an imaginary axis 62 below. The axis 62 runs parallel to the y-axis, for example. Two of the eight virtual elements 60 are arranged next to one another along an imaginary upper axis 64 . The axis 64 also runs parallel to the y-axis above the axis 62, i.e. parallel to the axis 62.
Ein horizontaler Abstand 66 zwischen den beiden äußeren virtuellen Elemente 60 der unteren Gruppe beträgt beispielhaft das 5,5-fache der Wellenlänge l gegebenenfalls zu züglich oder abzüglich einer Toleranz. Der Abstand 66 gibt die maximale horizontale Breite des virtuellen Arrays 58 an. Der Abstand 66 definiert die Apertur des Radarsystems 12. Diese verhältnismäßig große Apertur ermöglicht eine entsprechend große Genauig keit und Auflösung bei der Messung des Azimut cp. A horizontal distance 66 between the two outer virtual elements 60 of the lower group is, for example, 5.5 times the wavelength 1, possibly plus or minus a tolerance. The distance 66 indicates the maximum horizontal width of the virtual array 58. Distance 66 defines the aperture of radar system 12. This relatively large aperture allows for correspondingly high accuracy and resolution in measuring azimuth cp.
Ein horizontaler Abstand 68 sowohl zwischen dem in der Figur 5 ersten virtuellen Element 60 der unteren Gruppe von links und dem zweiten virtuellen Element 60 von links als auch zwischen dem dritten virtuellen Element 60 der unteren Gruppe von links und dem vierten virtuellen Element 60 von links entspricht der Wellenlänge l zuzüglich oder abzü glich einer Toleranz. A horizontal distance 68 corresponds both between the first virtual element 60 of the lower group from the left in FIG. 5 and the second virtual element 60 from the left and between the third virtual element 60 of the lower group from the left and the fourth virtual element 60 from the left of wavelength l plus or minus a tolerance.
Ein horizontaler Abstand 70 zwischen dem zweiten virtuellen Element 60 der unteren Gruppe von links und dem dritten virtuellen Element 60 entspricht der halben Wellenlänge l zuzüglich oder abzüglich einer Toleranz. Der horizontaler Abstand 70 ergibt sich aus der Kombination des senderseitigen Abstands 40 zwischen den Gruppen-Phasenzentren 38g der Sende-Antennenelementgruppen 32a und 32b, welche voneinander unterscheid bare Gruppen-Radarsignale 42a und 42b senden. Der horizontaler Abstand 70 in der Größenordnung der halben Wellenlänge l ermöglicht eine eindeutige Winkelmessung über einen Azimut-Winkelbereich beispielsweise von 180°. A horizontal distance 70 between the second virtual element 60 of the lower group from the left and the third virtual element 60 corresponds to half the wavelength 1 plus or minus a tolerance. The horizontal distance 70 results from the combination of the transmitter-side distance 40 between the group phase centers 38g of the transmitting antenna element groups 32a and 32b, which transmit group radar signals 42a and 42b which can be distinguished from one another. The horizontal distance 70 in the order of half the wavelength 1 enables an unambiguous angle measurement over an azimuth angle range of, for example, 180°.
Ein jeweiliger horizontaler Abstand 72 sowohl zwischen dem in der Figur 5 vierten virtu ellen Element 60 der unteren Gruppe von links und dem fünften virtuellen Element 60 von links als auch zwischen dem fünften virtuellen Element 60 der unteren Gruppe von links und dem sechsten virtuellen Element 60 von links entspricht dem 1 ,5-fachen der Wellen länge l gegebenenfalls zuzüglich oder abzüglich einer Toleranz. A respective horizontal distance 72 both between the fourth virtual element 60 of the lower group from the left in FIG. 5 and the fifth virtual element 60 from the left and between the fifth virtual element 60 of the lower group from the left and the sixth virtual element 60 from left corresponds to 1.5 times the wavelength l, plus or minus a tolerance, if necessary.
Ein vertikaler Abstand 74 zwischen der oberen Achse 64 und der unteren Achse 62, also ein vertikaler Abstand 74 zwischen den virtuellen Elementen 60 der oberen Gruppe und den virtuellen Elementen 60 der unteren Gruppe, entspricht der halben Wellenlänge l gegebenenfalls zuzüglich oder abzüglich einer Toleranz. A vertical distance 74 between the upper axis 64 and the lower axis 62, ie a vertical distance 74 between the virtual elements 60 of the upper group and the virtual elements 60 of the lower group, corresponds to half the wavelength l plus or minus a tolerance, if necessary.
Ein horizontaler Abstand 76 zwischen den virtuellen Elementen 60 der oberen Gruppe entspricht dem 1 ,5 fachen der Wellenlänge l zuzüglich oder abzüglich einer Toleranz. A horizontal distance 76 between the virtual elements 60 of the upper group corresponds to 1.5 times the wavelength 1 plus or minus a tolerance.
Das in der Figur 5 linke virtuelle Element 60 der oberen Gruppe befindet sich in der Pro jektion mittig zwischen dem dritten und dem vierten virtuellen Element 60 von links der unteren Gruppe, also in einem vertikalen Abstand 78 von dem dritten virtuellen Element 60 der unteren Gruppe, welcher der halben Wellenlänge l gegebenenfalls zuzüglich oder abzüglich einer Toleranz entspricht. The virtual element 60 of the upper group on the left in FIG. which corresponds to half the wavelength 1 plus or minus a tolerance, if applicable.
Das in der Figur 5 rechte virtuelle Element 60 der oberen Gruppe befindet sich in der Projektion zwischen dem vierten und dem fünften virtuellen Element 60 von links der un teren Gruppe in einem vertikalen Abstand 80 zu dem fünften virtuellen Element 60, wel cher der halben Wellenlänge l gegebenenfalls zuzüglich oder abzüglich einer Toleranz entspricht. The virtual element 60 of the upper group on the right in FIG where appropriate, plus or minus a tolerance.
Bei einer Messung zur Überwachung des Überwachungsbereichs 14 mit dem Radarsys tem 12 werden beispielhaft zwei Messsequenzen durchgeführt. Dabei wird insgesamt der Gesamtüberwachungsbereich 14 überwacht. Bei jeder Messsequenz werden simultan alle Sende-Antennenelemente 26 mit der Steuer- und Auswerteeinrichtung 24 über die jeweiligen Sendekanäle mit den jeweiligen Sendesignalen angesteuert. In a measurement for monitoring the surveillance area 14 with the radar system 12, two measurement sequences are carried out as an example. In this case, the overall monitoring area 14 is monitored overall. For each measurement sequence, simultaneously all transmission-antenna elements 26 are controlled with the control and evaluation device 24 via the respective transmission channels with the respective transmission signals.
Bei einer beispielhaft ersten Messsequenz der Messung werden die beiden Sende-An tennenelemente 26 der in der Figur 4 linken Sende-Antennenelementgruppe 32a gemäß einem Beamforming-Verfahren kohärent mit demselben Sendesignal sowie einem defi nierten Phasen-Offset so angesteuert, dass das resultierende Gruppen-Radarsignal 42a bezogen auf die Fahrtrichtung 16 nach links gerichtet ist. Der Verlauf des Antennenge winns Ga;i der linken Sende-Antennenelementgruppe 32a bei der Ausrichtung nach links ist beispielhaft in der Figur 6 gestrichelt gezeigt. In der Figur 6 entspricht Azimut cp = 0° der Fahrtrichtung 16. In an exemplary first measurement sequence of the measurement, the two transmitting antenna elements 26 of the left-hand transmitting-antenna element group 32a in FIG 42a is directed to the left in relation to the direction of travel 16. The profile of the antenna gain Ga;i of the left-hand transmitting-antenna element group 32a when aligned to the left is shown in broken lines in FIG. 6 by way of example. In Figure 6, azimuth cp = 0° corresponds to direction of travel 16.
Simultan wird das Sende-Antennenelement 26 der rechten Sende-Antennenelement gruppe 32b mit dem gegenüber dem Sendesignal der Sende-Antennenelementgruppe 32a codierten Sendesignal angesteuert und das entsprechende Gruppen-Radarsignal 32b in den Überwachungsbereich 14 gesendet. Der Verlauf des Antennengewinns Gb der rechten Sender Antennengruppe 32b ist in der Figur 6 gepunktet gezeigt. Simultaneously, the transmission-antenna element 26 of the right-hand transmission-antenna element group 32b is controlled with the transmission signal coded in relation to the transmission signal of the transmission-antenna element group 32a and the corresponding group radar signal 32b is transmitted into the monitoring area 14 . The course of the antenna gain Gb of the right-hand transmitter antenna group 32b is shown in FIG. 6 with dots.
An Zielen eines Objekts 18 reflektierte Echos 44 werden mit den Empfangs-Antennene lementen 28 empfangen und in elektrische Empfangssignale umgewandelt. Mit der Steuer- und Auswerteeinrichtung 24 werden die Empfangssignale einer Signalverarbei tung unterzogen. Bei der Signalverarbeitung werden beispielsweise Fourier-Transforma tionen, beispielsweise zweidimensionale schnelle Fourier-Transformation, durchgeführt. Aufgrund der räumlichen Anordnung der Sende-Antennenelemente 26 und der Emp fangs-Antennenelemente 28, welche zu dem virtuellen Array 58 führen, kann aus den Empfangssignalen, also den Echos 44, jeweils die Entfernung r, der Azimut cp und die Elevation Q für die Ziele des Objekts 18 bestimmt werden. At targets of an object 18 reflected echoes 44 are received with the receiving antenna elements 28 and converted into received electrical signals. With the control and evaluation device 24, the received signals are subjected to signal processing. For example, Fourier transforms, for example two-dimensional fast Fourier transforms, are carried out in the signal processing. Due to the spatial arrangement of the transmitting antenna elements 26 and the receiving antenna elements 28, which lead to the virtual array 58, the distance r, the azimuth cp and the elevation Q for the targets can be determined from the received signals, i.e. the echoes 44 of the object 18 can be determined.
Dabei ermöglicht die Kombination der Sende-Antennenelemente 26 der linken Sende- Antennenelementgruppe 32a gemäß dem Beamforming-Verfahren eine Vergrößerung des Antennengewinns Ga;i und entsprechend der Detektionsreichweite im Azimut-Win kelbereich zwischen cp = 0° und cp = -80°. Simultan ermöglicht der Betrieb der linken Sende-Antennenelementgruppe 32a und der rechten Sende-Antennenelementgruppe 32b nach einem MIMO-Verfahren eine größere Winkelauflösung über den gesamten Azi mut-Winkelbereich des Überwachungsbereichs 14 zwischen cp = -80° und cp = +80°. The combination of the transmitting-antenna elements 26 of the left-hand transmitting-antenna element group 32a according to the beamforming method enables an increase in the antenna gain Ga ;i and correspondingly the detection range in the azimuth angle range between cp=0° and cp=−80°. Simultaneous operation enables the left transmission antenna element group 32a and the right transmission antenna element group 32b according to a MIMO method, a greater angular resolution over the entire azimuth angle range of the monitoring area 14 between cp=−80° and cp=+80°.
Bei einer zweiten Messsequenz der Messung werden die beiden Sende-Antennenele- mente 26 der in der Figur 4 linken Sende-Antennenelementgruppe 32a gemäß dem Beamforming-Verfahren mit demselben Sendesignal sowie einem definierten Phasen- Offset kohärent so angesteuert, dass das resultierende Gruppen-Radarsignal 42a bezo gen auf die Fahrtrichtung 16 nach rechts gerichtet sind. Der Verlauf des Antennenge winns Ga;r der linken Sende-Antennenelementgruppe 32a bei der Ausrichtung nach rechts ist zum Vergleich in der Figur 6 durchgezogen gezeigt. In a second measurement sequence of the measurement, the two transmitting-antenna elements 26 of the left-hand transmitting-antenna element group 32a in FIG relative to the direction of travel 16 are directed to the right. The course of the antenna gain Ga;r of the left-hand transmitting-antenna element group 32a when aligned to the right is shown in FIG. 6 as a solid line for comparison.
Auch bei der zweiten Messsequenz wird simultan das Sende-Antennenelement 26 der rechten Sende-Antennenelementgruppe 32b mit dem gegenüber dem Sendesignal der Sende-Antennenelementgruppe 32a codierten Sendesignal angesteuert und das ent sprechende Gruppen-Radarsignal 32b ausgesendet. Also in the second measurement sequence, the transmitting antenna element 26 of the right transmitting antenna element group 32b is controlled simultaneously with the transmitted signal coded in relation to the transmitted signal of the transmitting antenna element group 32a and the corresponding group radar signal 32b is transmitted.
Die reflektierten Echos 44 werden auch bei der zweiten Messsequenz mit den entspre chenden Empfangs-Antennenelementen 28 empfangen und in elektrische Empfangssig nale umgewandelt. Aus den elektrischen Empfangssignalen, also den Echos 44, werden jeweils die Entfernung r, der Azimut cp und die Elevation Q für die Ziele des Objekts 18 bestimmt. The reflected echoes 44 are also received in the second measurement sequence with the corresponding reception antenna elements 28 and converted into electrical reception signals. The distance r, the azimuth cp and the elevation Q for the targets of the object 18 are determined from the received electrical signals, ie the echoes 44.
Bei der zweiten Messsequenz können aufgrund des vergrößerten Antennengewinns Ga;r der nach rechts in den Überwachungsbereich 14 gerichteten linken Sende-Antennenele mentgruppe 32a auch Ziele im Azimut-Winkelbereich zwischen cp = 0° und cp = +80° in größerer Reichweite erfasst werden, welche bei der ersten Messsequenz, bei der die linke Sende-Antennenelementgruppe 32a nach links in den Überwachungsbereich 14 ge richtet war, nicht erfasst werden konnten. Umgekehrt können Ziele im Azimut-Winkelbe- reich zwischen cp = 0° und cp = -80° in größerer Entfernung, welche bei der ersten Mess sequenz noch erfasst werden konnten, bei der zweiten Messsequenz nicht erfasst wer den, da die Ziele sich bei der zweiten Messsequenz außerhalb der Reichweite der nach rechts gerichteten linken Sende-Antennenelementgruppe 32a befinden. Mit den zwei Messsequenzen kann der Überwachungsbereich 14 über den gesamten Azimut-Winkel bereich zwischen cp = -80° und cp = +80° mit entsprechend vergrößerter Reichweite und entsprechend großer Winkelauflösung überwacht werden. In the second measurement sequence, targets in the azimuth angle range between cp = 0° and cp = +80° can also be detected at a greater range due to the increased antenna gain Ga;r of the left-hand transmitting-antenna element group 32a directed to the right into the monitoring area 14, which could not be detected in the first measurement sequence, in which the left transmitting-antenna element group 32a was directed to the left into the monitoring area 14. Conversely, targets in the azimuth angle range between cp = 0° and cp = -80° at a greater distance, which could still be detected in the first measurement sequence, cannot be detected in the second measurement sequence, since the targets are in the second measurement sequence are located outside the range of the left-hand transmitting antenna element group 32a pointing to the right. With the two measurement sequences, the monitoring area 14 can cover the entire azimuth angle range between cp=−80° and cp=+80° with a correspondingly increased range and correspondingly large angular resolution can be monitored.
Durch den erfindungsgemäßen Betrieb des Radarsystems 12, bei dem bei einer Mes sung simultan das Beamforming-Verfahren und das MIMO-Verfahren durchgeführt wird, wird eine entsprechend große Apertur bei gleichzeitig hoher Genauigkeit und Auflösung bei der Messung des Azimut cp und der Elevation Q ermöglicht. Die Apertur des Radar systems 12 wird im virtuellen Array 58 durch den maximalen Abstand 66 charakterisiert. Die Apertur des Radarsystems 12 bei dem erfindungsgemäßen Verfahren ist deutlich größer als beim Einsatz eines reinen Beamforming-Verfahrens ohne MIMO-Verfahren. Ferner wird durch die erfindungsgemäße Kombination des Beamforming-Verfahrens und des MIMO-Verfahrens im Vergleich zum Einsatz eines reinen MIMO-Verfahrens ohne Beamforming ein höherer gesamter Antennengewinn erzielt. Bei dem beschriebenen Ausführungsbeispiel bei drei linear angeordneten Sende-Antennenelementen beträgt beispielhaft der gesamte Antennengewinn G =22+1 =5. Bei einem reinen MIMO-Verfahren entspricht der Antennengewinn bei linear angeordneten Sende-Antennenelementen der Anzahl der Sende-Antennenelemente. Bei drei Sende-Antennenelemente wäre bei ei nem reinen MIMO-Verfahren der Antennengewinn G = 3. Durch den vergrößerten Anten nengewinnen G bei der erfindungsgemäßen Kombination von Beamforming-Verfahren und MIMO-Verfahren wird eine gleichzeitige Erhöhung von Winkelauflösung und Detek tionsreichweite ermöglicht. The operation of the radar system 12 according to the invention, in which the beamforming method and the MIMO method are carried out simultaneously during a measurement, enables a correspondingly large aperture with simultaneously high accuracy and resolution when measuring the azimuth cp and the elevation Q. The aperture of the radar system 12 is characterized by the maximum distance 66 in the virtual array 58 . The aperture of the radar system 12 in the method according to the invention is significantly larger than when using a pure beamforming method without the MIMO method. Furthermore, the inventive combination of the beamforming method and the MIMO method achieves a higher total antenna gain compared to using a pure MIMO method without beamforming. In the exemplary embodiment described with three linearly arranged transmitting antenna elements, the total antenna gain is G=2 2 +1=5, for example. In a pure MIMO method, the antenna gain corresponds to the number of transmitting antenna elements in the case of linearly arranged transmitting antenna elements. With three transmitting antenna elements, the antenna gain would be G=3 in a pure MIMO method.
Um den Überwachungsbereich 14 fortlaufend zu überwachen, können fortlaufend Mes sungen beispielhaft jeweils mit zwei Messsequenzen durchgeführt werden. Die Messun gen können auch lediglich bei Bedarf durchgeführt werden. Statt zwei Messsequenzen kann eine Messung auch mehr als zwei Messsequenzen aufweisen. Dabei können bei jeder Messsequenz die beiden nach dem Beamforming-Verfahren angesteuerten Sende- Antennenelemente 26 der linken Sende-Antennenelementgruppe 32a mit Sendesignalen mit entsprechend variierenden Phasen-Offsets so angesteuert werden, dass für das je weilige Gruppen-Radarsignal 42a entsprechend unterschiedliche Ausbreitungsrichtun gen realisiert werden. In order to continuously monitor the monitoring area 14, measurements can be carried out continuously, for example with two measurement sequences each. The measurements can also be carried out only when required. Instead of two measurement sequences, a measurement can also have more than two measurement sequences. In each measurement sequence, the two transmitting antenna elements 26 of the left transmitting antenna element group 32a, controlled according to the beamforming method, can be controlled with transmission signals with correspondingly varying phase offsets in such a way that correspondingly different propagation directions are realized for the respective group radar signal 42a .

Claims

Ansprüche Expectations
1. Verfahren zum Betreiben eines Radarsystems (12), welches zur Überwachung we nigstens eines Überwachungsbereichs (14) dient, wobei bei dem Verfahren eine Mehrzahl von Sende-Antennenelementen (26) mit Sendesignalen angesteuert werden und entsprechende Radarsignale (42a, 42b, 42e) in einen Überwachungsbe reich (14) gesendet werden, mit einer Mehrzahl von Empfangs-Antennenelementen (28) Echos (44) von im Über wachungsbereich (14) reflektierten Radarsignalen (42a, 42b, 42e) empfangen und in entsprechende Empfangssignale umgewandelt werden, welche signaltechnisch ver arbeitet werden, aus den Empfangssignalen Informationen (r, f, Q) über Objekte (18) in dem Überwa chungsbereich (14) ermittelt werden, dadurch gekennzeichnet, dass mit wenigstens zwei Sende-Antennenelementgruppen (32a, 32b), welche jeweils we nigstens ein Sende-Antennenelement (26) aufweisen, Radarsignale (42a, 42b) ge sendet werden, die zumindest auf der Seite der Empfangs-Antennenelemente (28) zumindest temporär voneinander unterscheidbar sind, wobei die unterscheidbaren Radarsignale (42a, 42b) mit den wenigstens zwei Sende-Antennenelementgruppen (32a, 32b) zusätzlich mit unterschiedlicher Sendeleistung gesendet werden. 1. Method for operating a radar system (12), which is used to monitor at least one monitoring area (14), in which method a plurality of transmitting antenna elements (26) are controlled with transmission signals and corresponding radar signals (42a, 42b, 42e) are sent into a surveillance area (14), echoes (44) of radar signals (42a, 42b, 42e) reflected in the surveillance area (14) are received with a plurality of receiving antenna elements (28) and converted into corresponding received signals which are processed, information (r, f, Q) about objects (18) in the monitoring area (14) is determined from the received signals, characterized in that with at least two transmitting-antenna element groups (32a, 32b), which each have at least have a transmitting antenna element (26), radar signals (42a, 42b) are sent which are at least temporarily separated from one another at least on the side of the receiving antenna elements (28). are distinguishable, the distinguishable radar signals (42a, 42b) with the at least two transmitting-antenna element groups (32a, 32b) being additionally transmitted with different transmission power.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass mit wenigstens zwei benachbarten Sende-Antennenelementen (26) wenigstens einer der Sende-Anten nenelementgruppen (32a) gleiche Einzel-Radarsignale (42e) ausgesendet werden, welche zu Gruppen-Radarsignalen (42a) dieser wenigstens einen Sende-Antennen- elementgruppe (32a) zusammengesetzt werden. 2. The method according to claim 1, characterized in that with at least two adjacent transmitting antenna elements (26) at least one of the transmitting antenna element groups (32a) identical individual radar signals (42e) are transmitted, which form group radar signals (42a) of these at least one transmitting-antenna element group (32a) can be assembled.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass mit wenigstens zwei benachbarten Sende-Antennenelementen (26) wenigstens einer der Sende-An tennenelementgruppen (32a) kohärente Einzel-Radarsignale (42e) ausgesendet wer den, welche zu Gruppen-Radarsignalen (42a) dieser wenigstens einen Sende-Anten- nenelementgruppe (32a) zusammengesetzt werden. 3. The method as claimed in claim 1 or 2, characterized in that at least one of the transmitting antenna element groups (32a) transmits coherent individual radar signals (42e) with at least two adjacent transmitting antenna elements (26) which form group radar signals ( 42a) of this at least one transmitting antenna element group (32a) are assembled.
4. Verfahren nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass mit wenigstens zwei benachbarten Sende-Antennenelementen (26) wenigstens einer der Sende-Antennenelementgruppen (32a) gleiche Einzel-Radarsignale (42e) mit vorge gebenen Phasen-Offsets ausgesendet werden, welche zu Gruppen-Radarsignalen (42a) dieser wenigstens einen Sende-Antennenelementgruppe (32a) zusammenge setzt werden. 4. The method according to any one of the preceding claims, characterized in that with at least two adjacent transmitting antenna elements (26) at least one of Transmission-antenna element groups (32a) transmit identical individual radar signals (42e) with predetermined phase offsets, which form group radar signals (42a) of this at least one transmission-antenna element group (32a).
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Phasen-Offsets zwischen wenigstens zwei Messungen verändert werden. 5. The method according to claim 4, characterized in that the phase offsets are changed between at least two measurements.
6. Verfahren nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass wenigstens zwei benachbarte Sende-Antennenelemente (26) wenigstens einer Sende-Antennenelementgruppe (32a) in einem räumlichen Abstand (34) zueinander angeordnet werden, welcher der Hälfte der Wellenlänge (l) der Radarsignale (42a, 42b, 42e), gegebenenfalls zuzüglich oder abzüglich einer Toleranz, entspricht, und/oder die Phasenzentren (38g) der Sende-Antennenelementgruppen (32a, 32b), mit wel chen die unterscheidbaren Radarsignale (42a, 42b) gesendet werden, in einem räum lichen Abstand (40) zueinander angeordnet werden, welcher wenigstens so groß ist wie das 1 ,5-fache der Wellenlänge (l) der Radarsignale (42a, 42b, 42e), gegebenen falls zuzüglich oder abzüglich einer Toleranz zueinander. 6. The method according to any one of the preceding claims, characterized in that at least two adjacent transmitting antenna elements (26) of at least one transmitting antenna element group (32a) are arranged at a spatial distance (34) from one another which is half the wavelength (l) of the corresponds to radar signals (42a, 42b, 42e), possibly plus or minus a tolerance, and/or the phase centers (38g) of the transmitting antenna element groups (32a, 32b) with which the distinguishable radar signals (42a, 42b) are transmitted, are arranged at a spatial distance (40) from one another which is at least as large as 1.5 times the wavelength (l) of the radar signals (42a, 42b, 42e), where appropriate plus or minus a tolerance from one another.
7. Verfahren nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass we nigstens eine Sende-Antennenelementgruppe (32b) aus einem Sende-Antennenele- ment (26) gebildet wird und/oder wenigstens eine Sende-Antennenelementgruppe (32a) aus wenigstens zwei Sende-Antennenelementen (26) gebildet wird. 7. The method according to any one of the preceding claims, characterized in that at least one transmitting antenna element group (32b) is formed from a transmitting antenna element (26) and/or at least one transmitting antenna element group (32a) consists of at least two transmitting Antenna elements (26) is formed.
8. Verfahren nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass mit wenigstens zwei Sende-Antennenelementgruppen (32a, 32b) unterschiedlich co dierte Radarsignale (42a, 42b) gesendet werden, die auf der Seite der Empfangs- Antennenelemente (28) wenigstens temporär voneinander unterschieden werden können. 8. The method according to any one of the preceding claims, characterized in that with at least two transmitting-antenna element groups (32a, 32b) differently coded radar signals (42a, 42b) are transmitted, which are at least temporarily separated on the side of the receiving-antenna elements (28). can be distinguished.
9. Radarsystem (12) zur Überwachung wenigstens eines Überwachungsbereichs (14), welches aufweist eine Mehrzahl von Sende-Antennenelementen (26), die mit Sendesignalen angesteu ert werden können und mit denen entsprechende Radarsignale (42a, 42b, 42e) in einen Überwachungsbereich (14) gesendet werden können, eine Mehrzahl von Empfangs-Antennenelementen (28), mit denen Echos (44) von im Überwachungsbereich (14) reflektierten Radarsignalen (42a, 42b, 42e) empfangen und in entsprechende Empfangssignale umgewandelt werden können, und wenigstens eine Steuer- und Auswerteeinrichtung (24), mit der die Sende-Anten- nenelemente (26) und die Empfangs-Antennenelemente (28) angesteuert werden können und mit denen aus empfangenen Echos (44) ermittelte Empfangssignale aus gewertet werden können, dadurch kennzeichnet, dass das Radarsystem (12) Mittel aufweist zur Durchführung des Verfahrens nach einem- der vorigen Ansprüche. 9. Radar system (12) for monitoring at least one monitoring area (14), which has a plurality of transmitting antenna elements (26), which can be controlled with transmission signals and with which corresponding radar signals (42a, 42b, 42e) can be transmitted into a surveillance area (14), a plurality of receiving antenna elements (28), with which echoes (44) of radar signals (42a, 42b, 42e) reflected in the monitoring area (14) can be received and converted into corresponding received signals, and at least one control and evaluation device (24) with which the transmitting antenna elements (26 ) and the receiving antenna elements (28) can be controlled and with which received echoes (44) determined received signals can be evaluated, characterized in that the radar system (12) has means for carrying out the method according to one of the preceding claims.
10. Radarsystem nach Anspruch 9, dadurch gekennzeichnet, dass die Steuer- und Auswerteeinrichtung (24) Mittel aufweist, mit denen wenigstens zwei Sende-Anten- nenelementgruppen (32a, 32b), welche jeweils wenigstens ein Sende-Antennenele- ment (26) aufweisen, mit Sendesignalen angesteuert werden können zum Senden von Radarsignalen (42a, 42b, 42e), die zumindest auf der Seite der Empfangs-An tennenelemente (28) zumindest temporär voneinander unterscheidbar sind. 10. Radar system according to claim 9, characterized in that the control and evaluation device (24) has means with which at least two transmitting antenna element groups (32a, 32b) each having at least one transmitting antenna element (26). , Can be controlled with transmission signals for transmitting radar signals (42a, 42b, 42e), which are at least temporarily distinguishable from one another at least on the side of the receiving antenna elements (28).
11. Radarsystem nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass wenigstens eine Sende-Antennenelementgruppe (32a) wenigstens zwei eng benachbarte Sende- Antennenelemente (26) aufweist. 11. Radar system according to claim 9 or 10, characterized in that at least one transmitting antenna element group (32a) has at least two closely adjacent transmitting antenna elements (26).
12. Radarsystem nach einem der Ansprüche 9 bis 11 , dadurch gekennzeichnet, dass wenigstens zwei benachbarte Sende-Antennenelemente (26) wenigstens einer Sende-Antennenelementgruppe (32a) in einem räumlichen Abstand (34) zueinander angeordnet sind, welcher der Hälfte der Wellenlänge (l) der Radarsignale (42a, 42b, 42e), gegebenenfalls zuzüglich oder abzüglich einer Toleranz, entspricht, und/oder die Phasenzentren (38g) der Sende-Antennenelementgruppen (32a, 32b), mit wel chen die unterscheidbaren Radarsignale (42a, 42b) gesendet werden, in einem räum lichen Abstand (40) zueinander angeordnet sind, welcher wenigstens so groß ist wie das 1 ,5-fache der Wellenlänge der Radarsignale (42a, 42b, 42e), gegebenenfalls zu züglich oder abzüglich einer Toleranz zueinander. 12. Radar system according to one of claims 9 to 11, characterized in that at least two adjacent transmitting antenna elements (26) of at least one transmitting antenna element group (32a) are arranged at a spatial distance (34) from one another which is half the wavelength (l ) of the radar signals (42a, 42b, 42e), possibly plus or minus a tolerance, and/or the phase centers (38g) of the transmitting antenna element groups (32a, 32b) with which the distinguishable radar signals (42a, 42b) are transmitted are arranged in a spatial union distance (40) to each other, which is at least as large as 1.5 times the wavelength of the radar signals (42a, 42b, 42e), possibly plus or minus a tolerance to one another.
13. Fahrzeug (10) mit wenigstens einem Radarsystem (12) zur Überwachung wenigstens eines Überwachungsbereichs (14), wobei das wenigstens eine Radarsystem (12) auf weist eine Mehrzahl von Sende-Antennenelementen (26), die mit Sendesignalen angesteu ert werden können und mit denen entsprechende Radarsignale (42a, 42b, 42e) in einen Überwachungsbereich (14) gesendet werden können, eine Mehrzahl von Empfangs-Antennenelementen (28), mit denen Echos (44) von im Überwachungsbereich (14) reflektierten Radarsignalen (42a, 42b, 42e) empfangen und in entsprechende Empfangssignale umgewandelt werden können, und wenigstens eine Steuer- und Auswerteeinrichtung (24), mit der die Sende-Anten- nenelemente (26) und die Empfangs-Antennenelemente (28) angesteuert werden können und mit denen aus empfangenen Echos (44) ermittelte Empfangssignale aus gewertet werden können, dadurch gekennzeichnet, dass das Radarsystem (12) Mittel aufweist zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 8. 13. Vehicle (10) with at least one radar system (12) for monitoring at least one monitoring area (14), wherein the at least one radar system (12) has a plurality of transmitting antenna elements (26) that can be controlled with transmission signals and with which corresponding radar signals (42a, 42b, 42e) can be sent into a surveillance area (14), a plurality of receiving antenna elements (28) with which echoes (44) of radar signals (42a, 42b, 42e) can be received and converted into corresponding received signals, and at least one control and evaluation device (24) with which the transmitting antenna elements (26) and the receiving antenna elements (28) can be controlled and with which received echoes (44) determined received signals can be evaluated, characterized in that the radar system (12) has means for carrying out the method according to one of Claims 1 to 8.
EP21749604.1A 2020-07-29 2021-07-27 Method for operating a radar system, radar system, and vehicle comprising at least one radar system Pending EP4189434A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020119934.1A DE102020119934A1 (en) 2020-07-29 2020-07-29 Method for operating a radar system, radar system and vehicle with at least one radar system
PCT/EP2021/070912 WO2022023298A1 (en) 2020-07-29 2021-07-27 Method for operating a radar system, radar system, and vehicle comprising at least one radar system

Publications (1)

Publication Number Publication Date
EP4189434A1 true EP4189434A1 (en) 2023-06-07

Family

ID=77180014

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21749604.1A Pending EP4189434A1 (en) 2020-07-29 2021-07-27 Method for operating a radar system, radar system, and vehicle comprising at least one radar system

Country Status (6)

Country Link
EP (1) EP4189434A1 (en)
JP (1) JP2023535511A (en)
KR (1) KR20230043992A (en)
CN (1) CN116348787A (en)
DE (1) DE102020119934A1 (en)
WO (1) WO2022023298A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022101753A1 (en) 2022-01-26 2023-07-27 Valeo Schalter Und Sensoren Gmbh Radar system for a vehicle, vehicle and method of operating a radar system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004059915A1 (en) * 2004-12-13 2006-06-14 Robert Bosch Gmbh radar system
DE102006032539A1 (en) 2006-07-13 2008-01-17 Robert Bosch Gmbh FMCW radar sensor
DE102011113015A1 (en) 2011-09-09 2013-03-14 Astyx Gmbh Imaging radar sensor with synthetic magnification of the antenna taper and two-dimensional beam sweep
JP6801214B2 (en) 2016-04-14 2020-12-16 ソニー株式会社 MIMO radar device and vehicle
DE102016108756A1 (en) * 2016-05-12 2017-11-16 Valeo Schalter Und Sensoren Gmbh Radar sensor device for a motor vehicle, driver assistance system, motor vehicle and method for detecting an object
KR102167084B1 (en) * 2018-04-09 2020-10-16 주식회사 만도 Radar Apparatus and Antenna Apparatus therefor
DE102018118238A1 (en) 2018-07-27 2020-01-30 Valeo Schalter Und Sensoren Gmbh Method for operating a radar device and radar device

Also Published As

Publication number Publication date
WO2022023298A1 (en) 2022-02-03
DE102020119934A1 (en) 2022-02-03
CN116348787A (en) 2023-06-27
KR20230043992A (en) 2023-03-31
JP2023535511A (en) 2023-08-17

Similar Documents

Publication Publication Date Title
EP3004923B1 (en) Multi-functional radar assembly
EP1922562B1 (en) Motor vehicle radar system comprising horizontal and vertical resolution
DE112010005193T5 (en) Obstacle detection device
EP3818390A1 (en) Method for determining at least one item of object information about at least one target object sensed by means of a radar system, in particular of a vehicle, radar system, and driver assistance system
WO2018137835A1 (en) Method for determining at least one piece of object information about at least one object sensed by means of a radar system, in particular of a vehicle, radar system, and driver assistance system
EP3410145B1 (en) Method for calibrating a radar sensor of a motor vehicle during a movement of the motor vehicle, radar sensor, driver assistance system and motor vehicle
WO2021115984A1 (en) Radar system and method for operating a radar system
DE102018118238A1 (en) Method for operating a radar device and radar device
EP4189434A1 (en) Method for operating a radar system, radar system, and vehicle comprising at least one radar system
DE102019200127A1 (en) Radar sensor architecture
EP3646055A1 (en) Near-field radar device, land vehicle, aircraft or watercraft, use of a radar device, method for operating a radar device, and computer program
WO2007077062A1 (en) Radar device
WO2022023296A2 (en) Radar system, antenna array for a radar system, vehicle, and method for operating a radar system
WO2022023297A2 (en) Radar system, antenna array for a radar system, vehicle having at least one radar system, and method for operating at least one radar system
WO2021115989A1 (en) Radar system and method for operating a radar system
DE102018130450B4 (en) Method for determining object information of at least one object and radar system
DE10355249B4 (en) Driver assistance system for a motor vehicle
WO2023144107A1 (en) Radar system for a vehicle, vehicle, and method for operating a radar system
DE102020125323A1 (en) Radar system for monitoring a surveillance area, antenna arrangement for a radar system, vehicle with a radar system and method for operating a radar system
WO2023144173A1 (en) Method for operating a multi-range radar system for a vehicle
WO2023041499A1 (en) Method for determining at least one elevation variable of an object target using a motor vehicle radar system
EP4248234A1 (en) Radar system for monitoring at least one monitoring region, vehicle comprising at least one radar system and method for operating a radar system
WO2024115247A1 (en) Antenna assembly for a radar system, radar system, driver assistance system, vehicle, and method for operating a radar system
EP4073540A1 (en) Method for determining at least one piece of object information about at least one object sensed by means of a radar system and radar system
DE102008034572B4 (en) receiving device

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)