EP4181977A1 - Dispositif de purification d'air - Google Patents

Dispositif de purification d'air

Info

Publication number
EP4181977A1
EP4181977A1 EP21746384.3A EP21746384A EP4181977A1 EP 4181977 A1 EP4181977 A1 EP 4181977A1 EP 21746384 A EP21746384 A EP 21746384A EP 4181977 A1 EP4181977 A1 EP 4181977A1
Authority
EP
European Patent Office
Prior art keywords
housing
air
purification device
fan
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21746384.3A
Other languages
German (de)
English (en)
Inventor
Henrik Victor HENDRIKSEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Respired Ltd
Original Assignee
Respired Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Respired Ltd filed Critical Respired Ltd
Publication of EP4181977A1 publication Critical patent/EP4181977A1/fr
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L47/00Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics
    • F16L47/06Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics with sleeve or socket formed by or in the pipe end
    • F16L47/08Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics with sleeve or socket formed by or in the pipe end with sealing rings arranged between the outer surface of one pipe end and the inner surface of the sleeve or socket, the sealing rings being placed previously in the sleeve or socket
    • F16L47/10Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics with sleeve or socket formed by or in the pipe end with sealing rings arranged between the outer surface of one pipe end and the inner surface of the sleeve or socket, the sealing rings being placed previously in the sleeve or socket the sealing rings being maintained in place by additional means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/022Filtration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/52Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material
    • B01D46/521Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material using folded, pleated material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/003Ventilation in combination with air cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/22Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using UV light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/11Apparatus for controlling air treatment
    • A61L2209/111Sensor means, e.g. motion, brightness, scent, contaminant sensors

Definitions

  • the present invention relates to an air purification device.
  • the present invention more particularly relates to a portable air purification device.
  • viruses vary in diameter from 20 nm to 400 nm. Accordingly, even though many prior art air purification devices comprise an efficiency standard of air filter such as a high-efficiency particulate air (HEPA) filter, these purification devices cannot effectively disinfect viruses due to the small size of viruses. Accordingly, the prior art air purification devices cannot be used to protect from airborne or aerosolised pathogens.
  • HEPA high-efficiency particulate air
  • Filters meeting the HEPA standard must remove from the air that passes through the filter at least 99.95% (European Standard) or 99.97% (ASME, U.S. DOE), respectively, of particles whose diameter is equal to 0.3 pm. It is an object of the present invention to provide an air purification device that can efficiently purify virus containing air and thus reduce the risk for infecting vulnerable people with viruses that cause infectious diseases.
  • the purification device according to the invention is a purification device for disinfecting and filtering intake air, wherein the purification device comprises:
  • a housing provided with a number of inlet perforations for allowing the intake air to enter the housing and a number of air outlet perforations for allowing air purified by the purification device to leave the housing;
  • a fan arranged inside the housing to suck the intake air into the housing and blow the purified air out of the housing;
  • an ultraviolet radiation lamp arranged inside the housing to irradiate the intake air
  • HEPA high-efficiency particulate air
  • the purification device provides a more efficient purification of virus containing air. Accordingly, by using the purification device to purify the air that vulnerable people is exposed to (e.g. in a hospital room or a room in a nursing home) it is possible to reduce the risk for infecting vulnerable people with viruses that cause infectious diseases.
  • the angle between adjacent pleats is 28 degrees.
  • the angle between adjacent pleats is 26 degrees.
  • the angle between adjacent pleats is 24 degrees.
  • the angle between adjacent pleats is 22 degrees.
  • the angle between adjacent pleats is 20 degrees.
  • the angle between adjacent pleats is 18 degrees.
  • the angle between adjacent pleats is 16 degrees.
  • the angle between adjacent pleats is 15 degrees.
  • the angle between adjacent pleats is 14 degrees.
  • the angle between adjacent pleats is 12 degrees.
  • the angle between adjacent pleats is 10 degrees.
  • the angle between adjacent pleats is 8 degrees or less.
  • the number of pleats is inversely related to the angle between adjacent pleats. Accordingly, it is possible to achieve a small angle between adjacent pleats by applying a large number of pleats.
  • the total filter area is proportional to the number of pleats. Accordingly, it is possible to increase the total filter area by increasing the number of pleats. It is an advantage to have a large filter area because the filtering capacity (the maximum flow velocity) is proportional to the filter area.
  • the purification unit has a unique ability to maintain virus particles inside the space surrounded by the filter and irradiate the virus particles with ultraviolet radiation that destroys the virus particles.
  • the filter does not allow any virus particles to pass the filter and since any virus particles present at the inside surface of the filter is killed by the ultraviolet radiation from the ultraviolet radiation lamp, the filter contains no virus particles when the filter has to be replaced (during maintenance). Accordingly, it is not required for service personnel to wear a hazmat suit or biohazard suit when replacing the filter. Moreover, service personnel can remove the filter without risking infection and the filter will not contain any virus particles when the purification device is turned off. Accordingly, it is safe to move the purification device from one room to another.
  • the unique ability to maintain virus particles inside the space surrounded by the filter and irradiate the virus particles with ultraviolet radiation that destroys the virus particles provides a surprising increase in efficiency.
  • the testing protocols shows that the device can reduce the number of viral airborne particles in a room by 99.98—% after 15 minutes and after 30 minutes it is not possible to detect viral particles.
  • the HEPA filter has a viral load below the detection limit after 15 minutes ⁇ as such the invention provides an efficient way to ensure purification of an area, and to ensure safety of personal performing maintenance.
  • the distance from the UV lamp and the inside part of the HEPA filer is less than 20 cm.
  • the distance from the UV lamp and the inside part of the HEPA filer is less than 18 cm.
  • the distance from the UV lamp and the inside part of the HEPA filer is less than 16 cm.
  • the distance from the UV lamp and the inside part of the HEPA filer is less than 14 cm.
  • the housing is cylindrical.
  • the housing is box-shaped.
  • the HEPA filter area is 2 square meters or more. In one embodiment, the HEPA filter area is 3 square meters or more.
  • the HEPA filter area is 4 square meters or more.
  • the lowest position of the UV lamp is the distal portion of the UV lamp, wherein an air gap is provided between the bottom plate of the housing and the distal portion of the UV lamp.
  • the light irradiation portion of the UV lamp extends vertically.
  • the housing comprises a bottom portion and a top portion configured to be detachably attached to the bottom portion.
  • the fan is arranged in the top portion and the light irradiation portion of the UV lamp is arranged in the bottom portion.
  • the fan is arranged in the top portion and the light irradiation portion of the UV lamp is arranged in the bottom portion.
  • the inlet perforations are provided in the top portion, whereas the outlet perforations are provided in the bottom portion.
  • the inlet perforations are provided in the top portion, whereas the outlet perforations are provided in the bottom portion.
  • the fan has a horizontally orientated intake portion and a vertical output portion so that air pressurised by the fan leaves the fan in a downwardly vertical direction. Since the intake air enters the purification device in the top portion of the purification device, the intake air will not suck particles from floor level into the purification device. The purified air will leave the purification device in a lower level than the level at which intake air enters the purification device.
  • the purification device Since the intake air enters the purification device in the top portion of the purification device, which is more than 200 mm above floor level, the purification device meets the requirements for being used in Scandinavian hospitals, in which the floor zone and the zone extending 200 mm above the floor are considered to be contaminated.
  • the intake air enters the purification device in the top portion of the purification device, which is more than 400 mm above floor level.
  • the height of the purification device is 60-100 cm.
  • the height of the purification device is 70-90 cm.
  • the height of the purification device is 75-85 cm such as 80 cm.
  • the purification device is cylindrical and has a diameter in the range 30-55 cm.
  • the purification device is cylindrical and has a diameter in the range 35-50 cm.
  • the purification device is cylindrical and has a diameter in the range 40-45cm such as 42 cm.
  • the fan is configured to deliver a flow up to 600 m 3 /hour.
  • the fan is configured to deliver a flow up to 560 m 3 /hour.
  • an additional layer is arranged at the outside of the filter.
  • the additional layer comprises activated carbon. It may be advantageous that an additional layer is sandwiched between the housing and the filter, wherein the additional layer comprises activated carbon.
  • the activated carbon can remove unwanted odours by acting as an adsorbent which will trap the odour inside the activated carbon and retain it.
  • the additional layer can prevent UV light from escaping to the surroundings.
  • the top portion comprises a coarse filter slidably arranged in one or more filter tracks extending axially near the rim of the top portion.
  • a coarse filter slidably arranged in one or more filter tracks extending axially near the rim of the top portion.
  • the top portion comprises two, three or four separated filter segments constituting a coarse filter, wherein the filter segments are slidably arranged in filter tracks extending axially near the rim of the top portion.
  • the top portion comprises four coarse filter segments that are slidably arranged in filter tracks extending axially near the rim of the top portion.
  • the purification device comprises a particle sensor arranged to detect the level of particles in the air.
  • the particle sensor is arranged inside the housing.
  • the particle sensor can detect the level of particles in the intake air entering the housing.
  • the particle sensor is arranged inside the top portion of the housing.
  • the particle sensor can detect the level of particles in the intake air entering the top portion of the housing.
  • the particle sensor is arranged inside the bottom portion of the housing.
  • the particle sensor can detect the level of particles in the intake air entering the bottom portion of the housing.
  • the purification device comprises a smoke alarm. Accordingly, the purification device can alert the people being in the same room as the purification device in case of a fire.
  • the smoke alarm is arranged inside the housing.
  • the smoke alarm can detect the level of smoke in the intake air entering the housing.
  • the smoke alarm is arranged inside the top portion of the housing.
  • the smoke alarm can detect the level of smoke in the intake air entering the top portion of the housing.
  • the smoke alarm is arranged inside the bottom portion of the housing.
  • the smoke alarm can detect the level of smoke in the intake air entering the bottom portion of the housing.
  • the purification device comprises a control unit configured to control the speed of the fan in dependence of the detected level of particles in the air.
  • control unit is configured to control the speed of the fan in dependence of measurements made by the smoke alarm.
  • control unit is configured to turn on the fan if the particle content of the intake air exceeds the predefined level. In one embodiment, the control unit is configured to turn on the UV lamp if the particle content of the intake air exceeds the predefined level.
  • control unit is configured to turn on the fan and the UV lamp if the particle content of the intake air exceeds the predefined level.
  • control unit is configured to regulate the speed of the fan in dependency of the detected level of particle content (detected by the particle sensor).
  • control unit is configured to adjust the speed of the fan to take one of two or more predefined non-zero levels.
  • control unit is configured to adjust the speed of the fan to take one of three or more predefined non-zero levels.
  • control unit is configured to adjust the speed of the fan in an ungraduated manner on the basis of the detected level of particle content. This may be done by fitting the fan with a permanent magnet motor and a frequency converter. This will furthermore allow the provision of the lowest possible energy consumption.
  • the predefined particle content level is a default quantity. In another embodiment, however, the predefined particle content level can be adjusted by using a control unit of the purification device.
  • the method according to the invention is a method for disinfecting and filtering intake air, wherein the method comprises the following steps:
  • the method comprises the step of applying a filter that comprises a plurality of pleats arranged in such a manner that the angle between adjacent pleats is 30 degrees or less.
  • the method provides a way of purifying the air that vulnerable people is exposed to (e.g. in a hospital room or a room in a nursing home) in an improved manner. Accordingly, the method makes it possible to reduce the risk for infecting vulnerable people with viruses that cause infectious diseases.
  • the angle between adjacent pleats is 28 degrees.
  • the angle between adjacent pleats is 26 degrees.
  • the angle between adjacent pleats is 24 degrees.
  • the angle between adjacent pleats is 22 degrees.
  • the angle between adjacent pleats is 20 degrees.
  • the angle between adjacent pleats is 18 degrees.
  • the angle between adjacent pleats is 16 degrees.
  • the angle between adjacent pleats is 15 degrees.
  • the angle between adjacent pleats is 14 degrees.
  • the angle between adjacent pleats is 12 degrees.
  • the angle between adjacent pleats is 10 degrees.
  • the angle between adjacent pleats is 8 degrees or less.
  • the number of pleats is inversely related to the angle between adjacent pleats. Accordingly, it is possible to achieve a low angle between adjacent pleats by applying more pleats.
  • the total filter area is proportional to the number of pleats, it is possible to increase the total filter area by increasing the number of pleats.
  • the irradiation is carried out by using a UV lamp, wherein the lowest position of the UV lamp is the distal portion of the UV lamp, wherein an air gap is provided between the bottom plate of the housing and the distal portion of the UV lamp.
  • shadow areas non-irradiated intake air leaving the housing
  • particles that fall down to the bottom plate of the housing will be exposed to UV irradiation from the UV lamp.
  • the light irradiation is carried out by using a UV lamp that extends vertically.
  • the method applies a housing that comprises a bottom portion and a top portion configured to be detachably attached to the bottom portion.
  • the method comprises the step of applying a fan that is arranged in the top portion, wherein the light irradiation portion of the UV lamp is arranged in the bottom portion.
  • the method is carried out by using inlet perforations that are provided in the top portion of the housing and outlet perforations that are provided in the bottom portion of the housing.
  • the method comprises the step of applying a fan that has a horizontally orientated intake portion and a vertical output portion so that air pressurised by the fan leaves the fan in a downwardly vertical direction.
  • the method comprises the step of applying an additional layer arranged at the outside of the filter.
  • the method comprises the step of applying an additional layer that comprises activated carbon.
  • the method comprises the step of applying an additional layer that is sandwiched between the housing and the filter, wherein the additional layer comprises activated carbon.
  • the activated carbon can remove unwanted odours by acting as an adsorbent which will trap the odour inside the activated carbon and retain it.
  • the additional layer can prevent UV light from escaping to the surroundings.
  • the method comprises the step of applying a coarse filter to filter the intake air before the intake air is sucked into the fan.
  • the method comprises the step of applying a particle sensor arranged to detect the level of particles in the air. In one embodiment, the method comprises the step of applying a particle sensor arranged inside the housing. Hereby, the particle sensor can detect the level of particles in the intake air entering the housing. In one embodiment, the method comprises the step of applying a particle sensor arranged inside the top portion of the housing. Hereby, the particle sensor can detect the level of particles in the intake air entering the top portion of the housing.
  • the method comprises the step of applying a particle sensor arranged inside the bottom portion of the housing.
  • the particle sensor can detect the level of particles in the intake air entering the bottom portion of the housing.
  • the method comprises the step of applying a smoke alarm to detect the smoke content in the air.
  • the method comprises the step of applying a smoke alarm that is arranged inside the housing.
  • the smoke alarm can detect the level of smoke in the intake air entering the housing.
  • the smoke alarm is arranged inside the top portion of the housing.
  • the smoke alarm can detect the level of smoke in the intake air entering the top portion of the housing.
  • the method comprises the step of applying a smoke alarm arranged inside the bottom portion of the housing.
  • the smoke alarm can detect the level of smoke in the intake air entering the bottom portion of the housing.
  • the method comprises the step of controlling the speed of the fan in dependence of the detected level of particles in the air.
  • the method comprises the step of applying a control unit that is configured to control the speed of the fan in dependence of measurements made by the smoke alarm.
  • the method comprises the step of applying a control unit that is configured to turn on the fan if the particle content of the intake air exceeds the predefined level.
  • the method comprises the step of applying a control unit that is configured to turn on the UV lamp if the particle content of the intake air exceeds the predefined level.
  • the method comprises the step of applying a control unit that is configured to turn on the fan and the UV lamp if the particle content of the intake air exceeds the predefined level.
  • the method comprises the step of applying a control unit that is configured to regulate the speed of the fan in dependency of the detected level of particle content (detected by the particle sensor).
  • control unit is configured to adjust the speed of the fan to take one of two or more predefined non-zero levels.
  • the method comprises the step of applying a control unit that is configured to adjust the speed of the fan to take one of three or more predefined non-zero levels.
  • the method comprises the step of applying a control unit that is configured to adjust the speed of the fan in an ungraduated manner on the basis of the detected level of particle content. This may be done by fitting the fan with a permanent magnet motor and a frequency converter. This will furthermore allow the provision of the lowest possible energy consumption.
  • the predefined particle content level is a default quantity. In another embodiment, however, the predefined particle content level can be adjusted by using a control unit of the purification device.
  • Fig. 1 shows a perspective side view of an air purification device according to the invention
  • Fig. 2 shows a perspective top view of the purification device shown in Fig. 1;
  • Fig. 3A shows a schematic top view of a filter according to the invention
  • Fig. 3B shows a close-up view of the filter shown in Fig. 3A;
  • Fig. 3C shows a prior art filter
  • Fig. 4 shows a blown up (close-up) cross-sectional view of a portion of the inner space surrounded by a filter of a purification device according to the invention
  • Fig. 5 shows a cross-sectional view of the bottom portion of a purification device according to the invention
  • Fig. 6 shows a flow chart illustrating how the purification device according to the invention can be autonomously controlled by means of a particle sensor
  • Fig. 7A shows a graph illustrating the concentration as function of time
  • Fig. 7B shows a graph illustrating the relative concentration as function of time
  • Fig. 8 shows a table with test results
  • Fig 9 shows the setup used in the testing.
  • FIG. 1 An air purification device 2 of the present invention is illustrated in Fig. 1.
  • Fig. 1 is a perspective side view of an air purification device 2 according to the invention.
  • the air purification device 2 comprises a housing 10 having a bottom portion 16 and a top portion 18 configured to be detachably attached to the bottom portion 16.
  • the bottom portion 16 is equipped with wheels 24 for improving the mobility of the air purification device 2.
  • the top portion 18 is cylindrical and comprises a panel 28 provided on the top of the top portion 18. In one embodiment, both comprise a display and one or more buttons.
  • the top portion 18 comprises a coarse filter 26 separated into four filter segments that are slidably arranged in filter tracks extending axially near the rim of the top portion 18.
  • a plurality of air inlet perforation 8 are provided in the cylindrical outer surface of the top portion 18.
  • the coarse filter 26 is adapted to prevent objects larger than a predefined size (e.g. 5 og 20 pm) to enter the inner space of the top portion 18.
  • An electrically driven fan 12 is arranged inside the inner space of the top portion 18.
  • the fan 12 is an axial fan designed to cause intake air 4 to flow through the fan 12 in an axial direction, parallel to the shaft about which the blades of the fan 12 rotate.
  • the fan 12 has a horizontally orientated intake portion and a vertical output portion so that air pressurised by the fan 12 leaves the fan 12 in a downwardly vertical direction.
  • the bottom portion 16 comprises an inner space 22 defined by an enclosing cylindrical high-efficiency particulate air (HEPA) filter.
  • An ultraviolet radiation lamp 14 is centrally arranged in the inner space 22.
  • the ultraviolet radiation lamp 14 is a germicidal lamp (an ultraviolet C lamp). This may be an advantage since ultraviolet C light (wherein the wavelength in the range of 100 to 280 nm) is capable of destroying and thus inactivating bacteria, viruses, and protozoa.
  • the UV C lamp 14 is arranged to irradiate the intake air 4 flowing into the inner space 22 of the bottom portion 16. Accordingly, the UV C lamp 14 is capable of disinfecting the intake air 4 flowing into the inner space 22 of the bottom portion 16.
  • the purification device is configured to receive intake air 4 through air inlet perforations 8 and allow the intake air 4 to flow through the filter 20 and leave the bottom portion 16 through air outlet perforations 8' provided in the housing 10.
  • air inlet perforations 8 In the top portion 18, four coarse filter segments 26 are slidably arranged in filter tracks extending axially near the rim of the top portion.
  • Fig. 2 illustrates a perspective top view of the purification device 2 shown in Fig. 1.
  • the purification device 2 comprises an electrical plug 30 for electrically connecting the purification device 2 to the mains.
  • the fan inside the housing 10 of the purification device 2 can be powered.
  • the top portion is provided with a plurality of air inlet perforations 8.
  • the bottom portion is provided with a plurality of air outlet perforations 8'.
  • Fig. 3A illustrates a schematic top view of a filter 20 according to the invention.
  • the filter 20 comprises a plurality of pleats.
  • Fig. 3B illustrates a close-up view of the filter 20 shown in Fig. 3A, wherein Fig. 3C illustrates a prior art filter 20'.
  • the angle a between the air flow direction 42 and the side portion of the adjacent pleat 32 of the filter 20 shown in Fig. 3B is smaller than the angle b between the air flow direction 42 and the side portion of the adjacent pleat 32 of the prior filter 20 shown in Fig. 3C.
  • the angle Q between adjacent pleats 32 of the filter 20 in the purification device 2 according to the invention is smaller than the angle w between adjacent pleats 32 of the prior art filter 20 shown in Fig. 3C.
  • the retention capability of the filter 20 is increased by having an increased number of pleats 32 compared to the prior art filter shown in Fig. 3C.
  • the angle Q is 30 degrees or less.
  • the angle Q is 28 degrees or less. In one embodiment, the angle Q is 26 degrees or less. In one embodiment, the angle Q is 24 degrees or less. In one embodiment, the angle Q is 22 degrees or less. In one embodiment, the angle Q is 20 degrees or less.
  • the angle Q is 18 degrees or less. In one embodiment, the angle Q is 16 degrees or less. In one embodiment, the angle Q is 14 degrees or less. In one embodiment, the angle Q is 12 degrees or less. In one embodiment, the angle Q is 10 degrees or less. In one embodiment, the angle Q is 8 degrees or less.
  • the number of pleats 32 is inversely related to the angle Q. Accordingly, it is possible to achieve a low angle Q by applying more pleats 32. Moreover, the total filter area is proportional to the number of pleats 32. Accordingly, it is possible to increase the total filter area by increasing the number of pleats 32.
  • Fig. 4 illustrates a blown-up cross-sectional view of a portion of the inner space surrounded by a filter 20 of a purification device according to the invention. It can be seen that the filter 20 comprises a through- going opening 38 configured to retain large sized virus particles inside the inner space and allow small sized particle to pass through the filter 20 through the through-going opening 38.
  • a large number of virus particles 36 are placed near the entry to the through-going opening 38.
  • the virus particles 36 are interconnected and arranged in a cloud-formed formation 34 comprising virus particles 36 and airway mucus. Accordingly, the cloud-formed formation 34 cannot escape through the through-going opening 38 even though the size of the individual virus particles 36 is smaller than the width D of the through-going opening 38. In fact, the cloud-formed formation 34 comprising virus particles 36 and airway mucus will stick to the inside surface of the filter 20.
  • the virus particles 36 are irradiated with UV light from a UV lamp (preferably a UV C) arranged to irradiate the air and particles present in the inner space. Since the virus particles 36 are trapped inside the space defined by the inner surface of the filter 20, there is sufficient time available to destroy the virus particles 36 by the ultraviolet (UV) light 50.
  • a UV lamp preferably a UV C
  • Fig. 5 illustrates a cross-sectional view of the bottom portion of a purification device 2 according to the invention.
  • the purification device 2 comprises a housing 10 provided with a plurality of air outlet perforations 8' for allowing purified air 6 to leave the purification device 2.
  • the purification device 2 is configured to blow intake air 4 downwards into the inner space of the bottom portion of the purification device 2. Since the intake air 4 enters the purification device 2 in the top portion of the purification device 2, the intake air 4 will typically not suck particles from floor level into the purification device 2. The purified air 6 leaves the purification device 2 in a lower level than the level at which intake air 4 enters the purification device 2.
  • the purification device 2 comprises a UV light source (preferably a UV C lamp) 14 configured to irradiate the intake air 4 flowing into the inner space 22 of the bottom portion of the purification device 2. Hereby, it is possible to disinfect the intake air inside the inner space 22 of the bottom portion of the purification device 2.
  • a UV light source preferably a UV C lamp
  • the purification device 2 comprises a HEPA filter 20 having a large number of pleats (as explained with reference to Fig. 3B) in order to achieve a small angle a (e.g. of 15 degrees or less as shown in and explained with reference to Fig. 3B) and a large total filter area.
  • the lowest position of the UV lamp 14 is the distal portion of the UV lamp 14 which is provided at a distance above the bottom plate 44 of the housing 10. Accordingly, an air gap 44 is provided between the bottom plate 46 of the housing 10 and the distal portion of the UV lamp 14. Wheels are rotatably attached to the bottom plate 46.
  • An additional layer 40 may optionally be arranged at the outside of the filter 20.
  • the additional layer 40 may be a layer that comprises activated carbon. Activated carbon can remove unwanted odours by acting as an adsorbent which will trap the odour inside the activated carbon and retain it.
  • An additional layer 40 may furthermore prevent UV light 50 from escaping to the surroundings.
  • the additional layer 40 is an additional layer 40 sandwiched between the housing 10 and the filter 20, wherein the additional layer 40 comprises activated carbon.
  • Fig. 6 is a flow chart illustrating how the purification device according to the invention can be autonomously controlled by means of a particle sensor.
  • the purification device is turned on.
  • the particle sensor of the purification device is turned on as default. In one embodiment, the particle sensor of the purification device is turned on and cannot be turned off.
  • the particle sensor of the purification device is configured to measure the particle content of the intake air. If the particle content of the intake air exceeds a predefined level, the fan of the purification device is turned on (or kept turned on if the fan has already been turned on).
  • the fan of the purification device is turned off (or kept turned off if the fan has already been turned off).
  • both the fan and the UV lamp are turned on if the particle content of the intake air exceeds the predefined level.
  • the speed of the fan is selected in dependency of the detected level of particle content. In one embodiment, the speed of the fan can be set to two or more predefined non-zero levels.
  • the speed of the fan can be set to three or more predefined non-zero levels.
  • the speed of the fan can be steplessly adjusted on the basis of the detected level of particle content. This may be done by fitting the fan with a permanent magnet motor and a frequency converter. This will furthermore allow the provision of the lowest possible energy consumption.
  • the predefined particle content level is a default quantity. In another embodiment, however, the predefined particle content level can be adjusted by using a control unit of the purification device.
  • Fig. 7A and Fig. 7B show graphs that illustrate the results of a study performed by Danish Technologic Institute using a modified ISO 16000- 36:2018 method with the purpose of determining the efficacy of the invention (air purification device) to reduce the concentration of active aerosolized Emesvirus zinderi (MS2) bacteriophages.
  • Fig. 7A shows a graph illustrating the concentration of active MS2 over time for the product test and the reference experiment.
  • the y-axis scale is logarithmic.
  • the air purification device is able to reduce the concentration of active aerosolized MS2 bacteriophages to below the detection limit.
  • Fig. 7B shows a graph wherein the relative concentration is plotted against time.
  • the reduction rates are calculated as described in ISO 16000-36:2018 section 8.3.
  • Fig. 8 shows a table of the results of test to determine the virucidal activity of the air purifiers UV-C photolysis system.
  • virus is captured in the HEPA filter of the device as the device removes aerosolized MS2 bacteriophages from the air, whereafter the virus is exposed to the UV-C light inside the device.
  • the test is designed to examine if virus remains active on the filter following removal from the air.
  • the amount of viral load is reduced to below the detection limit.
  • Fig. 9 shows the setup used in the testing.
  • the testing was conducted in an airtight room having a volume of 20m 3 .
  • a nebuliser 54 arranged in the room was used to generate aerosols.
  • a mixing fan 52 was placed in the room in order to provide air circulation.
  • the purification device 2 was centrally arranged on the floor in the room and the sampling points 56 were located on a wall in the room.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Filtering Materials (AREA)

Abstract

L'invention concerne un dispositif de purification (2) pour désinfecter et filtrer l'air d'admission (4). Le dispositif de purification (2) comprend un boîtier (10) pourvu d'un certain nombre de perforations d'entrée (8) pour permettre à l'air d'admission (4) d'entrer dans le boîtier (10) et un certain nombre de perforations de sortie d'air (8') pour permettre à l'air (6) purifié par le dispositif de purification (2) de quitter le boîtier (10). Le dispositif de purification (2) comprend en outre un ventilateur (12) disposé à l'intérieur du boîtier (10) pour aspirer l'air d'admission (4) dans le boîtier (10) et souffler l'air purifié (6) hors du boîtier (10). Le dispositif de purification (2) comprend en outre une lampe à rayonnement ultraviolet (14) disposée à l'intérieur du boîtier (10) pour irradier l'air d'admission (4). Le dispositif de purification (2) comprend également un filtre à air à haute efficacité (HEPA) (20) agencé pour filtrer l'air d'admission (4) avant que l'air d'admission (4) quitte le boîtier (10) sous forme d'air purifié (6). Le filtre (20) comprend une pluralité de plis (32) agencés de telle sorte que l'angle (θ) entre des plis adjacents (32) est de 30 degrés ou moins.
EP21746384.3A 2020-07-16 2021-07-12 Dispositif de purification d'air Pending EP4181977A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB2010969.0A GB2597254B (en) 2020-07-16 2020-07-16 Air Purification Device
PCT/EP2021/069259 WO2022013119A1 (fr) 2020-07-16 2021-07-12 Dispositif de purification d'air

Publications (1)

Publication Number Publication Date
EP4181977A1 true EP4181977A1 (fr) 2023-05-24

Family

ID=72339129

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21746384.3A Pending EP4181977A1 (fr) 2020-07-16 2021-07-12 Dispositif de purification d'air

Country Status (6)

Country Link
EP (1) EP4181977A1 (fr)
JP (1) JP2023533997A (fr)
KR (1) KR20230038284A (fr)
CA (1) CA3184693A1 (fr)
GB (1) GB2597254B (fr)
WO (1) WO2022013119A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1010502B (el) * 2022-06-28 2023-07-07 Γεωργιος Κωνσταντινου Νικολαϊδης Νεος αποστειρωτης αερα υπεριωδους ακτινοβολιας (uvc), εστιασμενης ανακλασης και πολλαπλης περιθλασης (uvc-rfmdi) με φιλτρο ηερα μεγαλης γωνιας (wide angle hepa)
KR20240037444A (ko) * 2022-09-14 2024-03-22 삼성전자주식회사 공기청정기

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5997619A (en) * 1997-09-04 1999-12-07 Nq Environmental, Inc. Air purification system
WO2003068273A1 (fr) * 2002-02-14 2003-08-21 Henrik Hendriksen Unite de desinfection d'air
US6783578B2 (en) * 2002-12-17 2004-08-31 Isolate, Inc. Air purification unit
US20040166037A1 (en) * 2003-02-25 2004-08-26 Youdell Harry F. Air filtration and treatment apparatus
US20040184949A1 (en) * 2003-03-17 2004-09-23 Mcellen John J. Air treatment system for localized and personal use
KR100508312B1 (ko) * 2004-03-02 2005-08-17 주식회사코네트인더스트리 공기정화기
US20130239803A1 (en) * 2006-05-24 2013-09-19 American Innovative Research Corp. System and Method For Air Replacement and Positive Air Pressure Isolation
CN205227572U (zh) * 2015-11-26 2016-05-11 宁波博来净化科技有限公司 室内空气净化器
CN205948667U (zh) * 2016-05-03 2017-02-15 中山进成环保科技有限公司 一种空气净化装置
CN207162759U (zh) * 2017-01-17 2018-03-30 天津鑫启智科技有限公司 一种空气净化器
CN209386448U (zh) * 2018-11-20 2019-09-13 何成有 一种多功能空气净化器

Also Published As

Publication number Publication date
WO2022013119A1 (fr) 2022-01-20
GB202010969D0 (en) 2020-09-02
GB2597254B (en) 2022-08-03
GB2597254A (en) 2022-01-26
CA3184693A1 (fr) 2022-01-20
KR20230038284A (ko) 2023-03-17
JP2023533997A (ja) 2023-08-07

Similar Documents

Publication Publication Date Title
AU2013213528B2 (en) A mobile disinfection unit for disinfecting a given facility or equipment and a method of using said unit
US8747737B2 (en) Air decontamination unit
US20060057020A1 (en) Cleaning of air
EP4181977A1 (fr) Dispositif de purification d'air
US20120118150A1 (en) Air treatment system and method
RU2730066C1 (ru) Способ обеззараживания кабины лифта УФ-облучением
GB2515842A (en) Apparatus for purifying air
US11666845B2 (en) Air purification device
KR20210142252A (ko) 복합살균식 공기 살균기
KR20180012021A (ko) 방역형 공기정화 시스템
KR20150123037A (ko) 공기청정기능이 구비된 해충 트랩 장치
US20210372637A1 (en) Methods and Systems for Air Management to Reduce or Block Exposure to Airborne Pathogens
JP2008228597A (ja) 感染防止隔離装置
KR102408197B1 (ko) 음압기 겸용 공기정화살균기
KR102548992B1 (ko) 주방 실내공기 오염물질 분해정화 살균 시스템
US20240001278A1 (en) Central controller for completely cleaning indoor air pollution
JP7478436B2 (ja) 空気浄化装置
EP4098284A2 (fr) Appareil, procede et systeme de filtrage d'air
CN111795449A (zh) 一种应用于室内的新型空气净化杀菌系统
JP2520944Y2 (ja) 空気圧縮装置
WO2024039854A1 (fr) Dispositif de désinfection de salle médicale
WO2021220318A2 (fr) Dispositif et procédé de désinfection
KR20230000430U (ko) 간이 음압 환기 장치
EP4262899A1 (fr) Unité de stérilisation d'air

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)