EP4178989A1 - Molécule amorceur pour une réaction d'absorption non linéaire, composition photopolymérisable activable par absorption biphotonique, et procédé d'impression 3d associé - Google Patents

Molécule amorceur pour une réaction d'absorption non linéaire, composition photopolymérisable activable par absorption biphotonique, et procédé d'impression 3d associé

Info

Publication number
EP4178989A1
EP4178989A1 EP21737479.2A EP21737479A EP4178989A1 EP 4178989 A1 EP4178989 A1 EP 4178989A1 EP 21737479 A EP21737479 A EP 21737479A EP 4178989 A1 EP4178989 A1 EP 4178989A1
Authority
EP
European Patent Office
Prior art keywords
composition
molecule
initiator
wavelength
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21737479.2A
Other languages
German (de)
English (en)
Inventor
Akos BANYASZ
Cyrille MONNEREAU
Patrice Baldeck
Caroline ARNOUX
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite Claude Bernard Lyon 1 UCBL
Ecole Normale Superieure de Lyon
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite Claude Bernard Lyon 1 UCBL
Ecole Normale Superieure de Lyon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite Claude Bernard Lyon 1 UCBL, Ecole Normale Superieure de Lyon filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP4178989A1 publication Critical patent/EP4178989A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/103Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/105Esters of polyhydric alcohols or polyhydric phenols of pentaalcohols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D135/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least another carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D135/02Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/08Polymers of acrylic acid esters, e.g. PMA, i.e. polymethylacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages

Definitions

  • the invention relates to a photopolymerizable composition activatable by two-photon absorption at nanometric resolution, and an associated 3D printing method.
  • Document D2 B. Mettra, YY Liao, T. Gallavardin, C. Armagnat, D. Pitrat, P. Baldeck, T. Le Bahers, C. Monnereau and C. Andraud, “A combined theoretical and experimental investigation on the influence of the bromine substitution pattern on the photophysics of conjugated organic chromophores”, Phys. Chem. Chem. Phys., 2018, 20, 3768, describes molecules exhibiting a certain sensitivity to two-photon absorption, in particular molecules obtained by substitution of one or more heavy atoms on a central phenyl nucleus by a branch comprising an oligomer.
  • the present invention aims to overcome at least one of the drawbacks of known initiator molecules, compositions and two-photon 3D printing methods.
  • the invention proposes a new polymerization initiator molecule, able to be excited by two photons and to generate polymerization initiator free radicals, molecule characterized in that it comprises two branches grafted onto a central phenyl nucleus in position 1 and 3, each arm comprising an oligomer of the oligo-phenylenethynylene-yl type or of the oligo2,5-dihalogenophenylenethynylene-yl type.
  • the initiator molecules according to the invention Compared to initiator molecules conventionally used in the context of photolithography by two-photon absorption in the visible range and more particularly 532 nm, for example known molecules having Pi-conjugated structures of small dimensions, the initiator molecules according to the invention have larger branches, better suited to obtaining strong non-linearities, which lead to much higher two-photon absorption (ADP) cross sections, as will be better seen later.
  • ADP two-photon absorption
  • the initiator molecules according to the invention are characterized by a very high sensitivity to ADP.
  • the number and dimensions of the branches of the initiator molecules contribute to reducing their mobility in the photopolymerizable composition, which improves the resolution in 3D printing.
  • the molecule according to the invention comprising branches grafted onto a central phenyl nucleus in position 1 and 3 has absorption and emission spectra much less shifted in the red or infrared while retaining nonlinear optical properties, including a high two-photon absorption cross section.
  • the molecule according to the invention presents in this an ideal compromise between high non-linearity and transparency in the visible, making it possible to have a significant two-photon absorption in the visible, without residual single-photon absorption, which is not the case. on linear molecules of comparable conjugation length. Biphoton absorption in the visible makes it possible to use lasers that are easier to implement.
  • each branch comprises an oligomer of the oligo2,5-dihalogenophenylenethynylene-yl type.
  • the halogen substituents preferably correspond to two bromine atoms.
  • This halogen is known to amplify intersystem crossing processes when incorporated into Pi-conjugated structures by heavy atom effect, bringing the molecule to a triplet-like excited state.
  • the triplet state with a longer lifetime, is therefore more apt to generate photochemical reactions (typically photoinduced electron transfer) at the origin of the generation of radicals.
  • photochemical reactions typically photoinduced electron transfer
  • bromine generates a markedly more marked heavy atom effect, while possessing a lower sensitivity than that of iodine to parasitic chemical reactions, allowing a easier functionalization of the target molecule.
  • each branch of an initiator molecule in accordance with the invention is terminated by a terminal phenylamine, preferably by a terminal phenylamine of the dialkylphenylamine type, and even more preferentially a dihexylphenylamine.
  • the alkyl groups substituted on the terminal functions of the phenylamine make the initiator molecule according to the invention soluble in the composition. This makes it possible to avoid the addition of organic solvent during the formulation of the resin, a process that is generally tedious, expensive and potentially toxic. Also, the alkyl groups limit the crystallization of the initiator molecule, which is favorable for use in 3D printing where the presence of crystals is a problem.
  • an initiator molecule in accordance with the invention comprises a halogen atom and two branches grafted onto the central phenyl ring, respectively in position 1, 3 and 5.
  • the two-branched initiator molecule has good sensitivity and at the same time good solubility in the photopolymerizable composition, which allows good overall reactivity of said composition.
  • the halogen atom is preferably a bromine atom, for its advantages explained above.
  • the initiator molecule is associated with a co-initiator molecule, such as an amine-derived molecule or an iodonium-derived molecule, as will be better seen below.
  • a co-initiator molecule such as an amine-derived molecule or an iodonium-derived molecule, as will be better seen below.
  • the invention also provides a photopolymerizable composition according to the invention comprising:
  • composition characterized in that the photoinitiator system comprises at least one initiator molecule as described above.
  • photochemically effective amount is meant an “amount sufficient to allow the resin to polymerize”. Said quantity depends on the photoinitiator system, in particular on its reactivity and on its solubility in the composition.
  • a measurement of the polymerization threshold and of the characteristics of the structures makes it possible to determine a minimum value and a maximum value of a “photochemically effective quantity” of the photoinitiator system; the said quantity, or the range of values of the said quantity can be, for example, expressed as a percentage of a quantity of total composition equal to 100%.
  • the polymerizable resin comprises a main monomer of vinyl monomer type, preferably an acrylate monomer or methacrylate monomer.
  • the main monomer is chosen to be highly crosslinkable, to obtain submicronic and preferably nanometric resolution.
  • the main monomer is a multifunctional acrylate monomer, for example a dipentaerythritol penta-/hexa-acrylate (DPPHA) or a Pentaerythritol triacrylate (PETA).
  • DPPHA dipentaerythritol penta-/hexa-acrylate
  • PETA Pentaerythritol triacrylate
  • the polymerizable resin may also include a solubilizing component, such as:
  • a diacrylate with at least one alkyl chain for example a Poly(ethylene glycol) diacrylate (PEGDA), or a 1,10-decanediol diacrylate (DDA), or
  • PEGDA Poly(ethylene glycol) diacrylate
  • DDA 1,10-decanediol diacrylate
  • dithiol for example a 1,10-decanedithiol (DDT).
  • DDT 1,10-decanedithiol
  • diacrylates or dithiols are also interesting for their moderate cross-linking properties, which help to complete the polymerization of the resin once the reaction of polymerization is initiated by the main monomer; the final degree of polymerization of the composition is thus improved.
  • the composition may comprise from 0.1 to 10%, preferably 0.2 to 5% and even more preferably 0.5 to 1.5% by weight of photoinitiator system. These amounts are a compromise between the amount of photoinitiator that can be dissolved directly in the resin and the overall reactivity of the composition. The latter tends to increase for increasing concentrations of photoinitiator, but the benefit is less beyond 2% by weight.
  • the composition may comprise 5 to 60%, and preferably 10 to 25% solubilizing component. These amounts are again a compromise between the amount of photoinitiator that the solubilizing component makes it possible to dissolve in the resin, and the overall reactivity of the composition.
  • the invention also relates to a three-dimensional printing process comprising a step of transforming a volume of a photopolymerizable composition activatable by two-photon absorption, composition comprising a resin polymerizable by the radical route and a photoinitiator system in a photochemically effective quantity, system photoinitiator comprising at least one initiator molecule able to be excited by two photons and to generate free radicals polymerization initiator, the transformation step consisting in irradiating the volume of composition by an irradiation source emitting an irradiation signal having a wavelength L irr between 1 and 1.5 times, and preferably between 1.1 and 1.25 times, a cut-off wavelength L Cut o ff of the initiator molecule, L Cut o ff being defined as the wavelength beyond which the molar extinction coefficient of the photoinitiator is considered negligible because it is less than 1% of the maximum value of the molar absorption coefficient of said initiator molecule.
  • the wavelength of the irradiation signal is between 1.1 and 1.25 times the cutoff wavelength Lcutoff- This makes it possible to eliminate the risk of residual single-photon absorption while ensuring the the most efficient reaction possible with the lowest possible irradiance.
  • the photopolymerizable composition is a composition according to the invention, as described above.
  • the three-dimensional irradiation step of the volume of composition can be carried out by a technique of direct writing by a laser-type irradiation source, technique implemented at a high speed, preferably at a speed greater than 50 mm/s, and even more preferably at a speed greater than 1 m/s.
  • the three-dimensional irradiation step of the volume of composition can be carried out by a parallel projection technique, of the photolithography type or of the holographic projection type, with a high number of irradiation sources, preferably a number of irradiation sources greater than ten thousand, and even more preferably greater than one million.
  • the three-dimensional irradiation step of the volume of composition can be carried out by a direct writing technique with a single beam or by a parallel projection technique with several beams.
  • the invention also relates to a three-dimensional printing device comprising means arranged for the implementation of the method according to the invention and as described above.
  • FIG. 1 presents examples of known initiator molecules
  • FIG. 2 presents a first example of initiator molecules according to the invention
  • FIG. 3 presents a variant of FIG. 2
  • figure 4 presents a variant of figure 2
  • figure 5 presents a variant of figure 2
  • figure 6 presents an example of initiator molecules close to the example of figure 2
  • 7 presents the evolution of the one-photon (OPA) and two-photon absorption of the molecule of figure 2, as a function of the wavelength of an excitation signal
  • figure 8 presents results implementation of the method according to the invention
  • FIG. 9 presents other results of implementation of the method according to the invention
  • FIG. 10 presents other results of implementation of the method according to the invention.
  • the invention relates to a photopolymerizable composition which can be activated by biphotonic absorption, composition
  • a photopolymerizable composition which can be activated by biphotonic absorption, composition
  • composition comprising:
  • radical photoinitiator system in a photochemically effective quantity, capable of being excited by several photons and capable of generating free radicals.
  • composition according to the invention is characterized in that the photoinitiator system comprises at least one initiator molecule comprising two branches grafted onto a central phenyl core in position 1 and 3, each branch comprising an oligomer of the oligo-phenylenethynylene-yl or oligo2 type, 5-dihalogen-phenylenethynylene-yl.
  • FIG. 2 presents an example of a two-armed initiator molecule, according to the invention, which will be referred to below as PA2 for simplicity.
  • Figures 3 to 5 show variants of the molecule of Figure 2.
  • Figure 6 presents an example of an initiator molecule with three branches (which will be called PA3 hereafter), close to that of figure 2.
  • each branch of a molecule according to the invention comprises (or begins with) a phenylenethynylene-yl such as:
  • a phenylenethynylene-yl (fig. 2 ), and more generally an oligo2,5 - phenylenethynylene-yl (fig. 3 with n between 0 and 4)
  • an oligo2,5-dibromo-phenylenethynylene-yl (figures 4-5 with n between 0 and 4), and more generally, an oligo2,5-dihalogeno-phenylenethynylene-yl with n between 0 and 4, and two halogens per group phenylenethynylene-yl, the halogens being for example bromine, chlorine, iodine, fluorine or astatine.
  • halogens makes it possible to increase the spin-orbit coupling within the molecule and to optimize the photoinduced formation of the photoinitiator in its triplet state initially, and of radicals in a second stage (following a transfer of 'photoinduced electrons); initiator molecules with halogens are therefore more effective than similar molecules without halogens.
  • the best results have been obtained with Bromine: tests with Bromine have in fact shown that the light-curing threshold can be reduced, compared to their unsubstituted analogues, by a factor of 1.5 to 2.
  • the free end of each branch of the initiator molecule is terminated by a terminal phenylamine (aniline), preferably a terminal phenylamine of the dialkylaminophenyl type; in the example molecules figure 2 (molecule PA2) and figures 3-5, the phenylamine end is a dihexylaminophenylethynyl end group.
  • aniline preferably a terminal phenylamine of the dialkylaminophenyl type
  • the phenylamine end is a dihexylaminophenylethynyl end group.
  • - R -[p-N, N-(dialkyl)aminophenylethynyl](oligo-phenylenethynylene-yl) or
  • - R' -[p-N, N-(dialkyl)aminophenylethinyl](oligo2,5-dihalogenophenylenethynylene-yl).
  • the initiator molecules of figures 2, 3 and 5 have two branches and include two R-type branches and a halogen atom (Bromine here) grafted onto the central phenyl ring, respectively in position 1, 3 and 5. They can be synthesized for example by the substitution by type R branches of two halogen atoms present on a phenyl ring comprising three halogen atoms in position 1, 3 and 5.
  • the initiator molecule of FIG. 4 has two branches of the R 1 type grafted onto the central phenyl ring, respectively in position 1, 3, position 5 being occupied by a Hydrogen. It can be synthesized, for example, by the substitution by branches of the R' type of two hydrogen atoms present on a phenyl ring comprising three hydrogen atoms in position 1, 3 and 5.
  • the PA3 initiator molecule in FIG. 6 has three R-type branches grafted onto the central phenyl nucleus, respectively in position 1, 3 and 5. It can be synthesized for example by the substitution by R-type branches of three hydrogen atoms present on a phenyl ring in position 1, 3 and 5.
  • the absorption spectrum of the PA2 molecule was measured using conventional techniques, for a sample of molecules dissolved in dichloromethane.
  • FIG. 7 is represented the molar extinction coefficient of the PA2 molecule.
  • the molar extinction coefficient is an intrinsic parameter of a molecule, directly proportional to the absorbance of a composition containing said molecule; more precisely, the absorbance of the molecule is obtained by multiplying the molar extinction coefficient by the concentration of the molecule in the composition used to carry out the measurement and by the length of the cuvette containing the composition used for the measurement.
  • PA2 we note:
  • L 770 nm
  • L absR 386 nm of the single-photon absorption resonance
  • the two-photon absorption cross section for a wavelength of 532 nm is of the order of 77 +/- 11 GM.
  • the sensitivity of the PA2 molecule is thus much greater than that of the BDEBP molecule commonly used today for two-photon absorption reactions, and a fortiori than those of the molecules specifically used at 532 nm (OXE2 type), of which the estimated cross section values generally vary between a few GM and a few tens of GM.
  • the invention also relates to a polymerizable resin composition incorporating an initiator molecule as described above.
  • the composition comprises a main monomer of the vinyl monomer type, preferably an acrylate monomer or a methacrylate monomer. These monomers are known for their high reactivity in radical polymerization.
  • monomers of the triacrylate type such as Pentaerythritol triacrylate (PETA) gave good results and monomers of the dipentaerythritol penta-/hexa-acrylate (DPPHA) type gave the best results in combination with the initiator molecules of type PA2.
  • PETA Pentaerythritol triacrylate
  • DPPHA dipentaerythritol penta-/hexa-acrylate
  • the initiator molecules according to the invention comprise, at the end of their branches, a terminal alkylphenylamine, one of the functions of which is to facilitate the dissolution of the molecule in the composition.
  • a solubilizing comonomer can be added such as:
  • a diacrylate with at least one alkyl chain for example a Poly(ethylene glycol) diacrylate (PEGDA), a 1,6-hexanediol diacrylate (HDODA), or a 1,10-decanediol diacrylate (DDA)
  • PEGDA Poly(ethylene glycol) diacrylate
  • HDODA 1,6-hexanediol diacrylate
  • DDA 1,10-decanediol diacrylate
  • dithiol for example a 1,10-Decanedithiol (DDT).
  • DDT 1,10-Decanedithiol
  • compositions produced and tested comprise 0.2 to 5% by weight of photoinitiator system and/or 10 to 25% by weight of solubilizing component.
  • Example 1 compositions comprising dipentaerythritol penta-/hexa-acrylate (DPPHA) and 1,10-decanediol diacrylate (DDA) monomers and the PA2 molecule, with different mass proportions (% wt or % by weight):
  • DPPHA dipentaerythritol penta-/hexa-acrylate
  • DDA 1,10-decanediol diacrylate
  • DDA makes it possible to improve the dissolution of the initiator molecule PA2 in the composition and also makes the composition less viscous, but DDA is less reactive than DPPHA during 3D printing. If all the compositions 1a to 1f give good results, composition 1c gives the best compromise.
  • Example 2 composition comprising dipentaerythritol penta-/hexa-acrylate (DPPHA) monomers, 1,10-Decanedithiol (DDT) molecules and PA2 molecules, with the following mass proportions (% wt):
  • DPPHA dipentaerythritol penta-/hexa-acrylate
  • DDT 1,10-Decanedithiol
  • PA2 PA2 molecules
  • DDT also gives good results in terms of microfabrication (threshold comparable to similar compositions with DDA instead of DDT) but more DDT than DDA must be used to achieve equivalent solubility; the composition therefore remains the best compromise.
  • Example 3 composition comprising dipentaerythritol penta-/hexa-acrylate (DPPHA) monomers, poly(ethylene glycol) diacrylate (PEGDA) monomers and PA2 molecules, with the following mass proportions (%wt):
  • DPPHA dipentaerythritol penta-/hexa-acrylate
  • PEGDA poly(ethylene glycol) diacrylate
  • PA2 molecules with the following mass proportions (%wt):
  • Example 4 compositions comprising Pentaerythritol triacrylate (PETA) and 1,10-decanediol diacrylate (DDA) monomers and the PA2 molecule, with different proportions mass (%wt):
  • PETA Pentaerythritol triacrylate
  • DDA 1,10-decanediol diacrylate
  • composition 4a PETA/DDA/PA2, mass proportions: 59.7/39.8/0.5
  • composition 4b PETA/DDA/PA2, mass proportions: 60/37/3
  • composition 4c PETA/DDA/PA2, mass proportions: 60/35/5
  • Example 5 composition comprising dipentaerythritol penta-/hexa-acrylate (DPPHA) monomers, 1,10-decanediol diacrylate (DDA) monomers and PA3 molecules, with the following mass proportions (% wt):
  • DPPHA dipentaerythritol penta-/hexa-acrylate
  • DDA 1,10-decanediol diacrylate
  • the PA3 molecule dissolves more with difficulty in the composition, an amount of 20% wt of DDA making it possible to dissolve only 0.66% wt of PA3, whereas it makes it possible to dissolve at minus l%wt of PA2.
  • the compositions with the PA3 molecules are thus less effective than those containing the PA2 molecules with the same proportions of DPPHA and DDA monomers.
  • the most reactive compositions comprise 0.5 to 1.5% by weight of photoinitiator system and/or 10 to 25% by weight of solubilizing component.
  • the photoinitiator system can also comprise a suitable co-initiator to improve the formation of radicals.
  • a co-initiator, electron acceptor, of the diphenyliodonium type for example, decomposes by generating an aryl radical.
  • Other coinitiators such as amines of the aliphatic amine type (generation of the radical by abstraction of hydrogen on the aliphatic carbon alpha to the nitrogen) or triarylamines (electronic transfer leading to the formation of a cation radical on the non-binding doublet of nitrogen) can also be considered.
  • the invention finally relates to a two-photon three-dimensional printing process comprising a step of transforming a volume of a photopolymerizable composition comprising a resin polymerizable by the radical route and a photoinitiator system in a photochemically effective quantity capable of being excited by several photons and capable of generating free radicals, photoinitiator system comprising at least one initiator molecule, the transformation step consisting in irradiating said volume of composition by an irradiation source emitting an irradiation signal having a wavelength L irr between 1 and 1.5 times, and preferably between 1.1 and 1.25 times, a cutoff wavelength L Cut o ff of the initiator molecule beyond which the molar extinction coefficient of said initiator molecule is less than 1% of the maximum value of the molar extinction coefficient of said initiator
  • the two-photon excitation is deliberately positioned close to the wavelength L absR of absorption resonance of a photon of the initiator molecule, that is to say in the zone where the sensitivity of the initiator molecule is at least as great as for a wavelength L irr close to 2 times the wavelength L absR of resonance d absorption of a photon (fig. 7), as shown by the analysis of the two-photon absorption cross sections.
  • the reaction is voluntarily positioned in the zone where the sensitivity of the initiator molecule is much greater only for a wavelength L irr close to 2 times the wavelength L abSR of absorption resonance of a photon (fig. 7).
  • the absorption cross section for L irr wavelengths below 578 nm is greater than around 1000 GM (see fig. 7), or greater than the absorption cross section for wavelengths L irr in the vicinity of twice the absorption resonance wavelength L absR of a photon of the initiator molecule (approximately 650 GM at the wavelength 770 nm- see fig. 7).
  • the absorption cross section for L irr wavelengths below 532 nm is greater than about 1500 GM, and increases further when L irr decreases.
  • the results are less interesting than for PA2; in fact, the effective absorption section, for a given wavelength, is substantially lower for PA3 compared to PA2; for example, the absorption cross section for PA3 only reaches about 740 gm at 532 nm.
  • the laser used for the tests described below is a pulsed laser with a frequency of 11.7 kHz, producing pulses of irradiation with a duration of 560 ps (picosecond). Additional tests have shown the applicability of the system on pulsed lasers producing pulses of irradiation with a duration of the order of nanoseconds (ns) and femtoseconds (fs), at wavelengths between 515 and 532 nm, with similar conclusions. Specifically, the additional lasers used have the following characteristics:
  • the polymerization threshold minimum power of the irradiation signal necessary for polymerization
  • the minimum size of the objects that can be produced by the method according to the invention It is considered that the polymerization threshold is reached when the structures photogenerated by the irradiation step can withstand a final rinsing step of the monomer residues without undergoing significant distortion.
  • a first test (Fig 8c-d) consists of printing a series of 20 ⁇ m lines spaced 4 ⁇ m apart on a substrate; the laser is focused exactly or very slightly above the substrate, for an accurate measurement of the line width while ensuring adhesion of the lines on the substrate.
  • a second test (Fig.
  • 8a-b consists of printing 13 ⁇ m lines suspended between two pads 5 ⁇ m apart, to ensure good mechanical stability of the line; the lines are positioned 1.5 ⁇ m above the substrate. This second test makes it possible to determine the height of the lines, a parameter not accessible with the first test.
  • the lines are made with decreasing irradiation powers, up to the limit of the polymerization threshold and the printing speed is the same, 40 pm/s.
  • Figures 8a to 8d show more precisely, for composition 1.e, DPPFIA/DDA/PA2 (79.2%/19.8%/1%):
  • FIG. 8a an overview of a suspended line, obtained from composition l.e, irradiated by an irradiation signal of power 103 pW,
  • FIG. 8b a top view of suspended lines, obtained from composition l.e irradiated by a power irradiation signal decreasing from top to bottom from 257 pW to 82 pW,
  • FIG. 8c a top view of a line written on a substrate, from composition 1.e, irradiated by an irradiation signal of power 85 pW
  • FIG. 8d a top view of a series of lines written on the surface of a substrate from composition 1.e, irradiated by an irradiation signal with a power increasing from left to right from 75 pW to 303 pW.
  • compositions comprising one of the three initiator molecules BDEBP, ITX and OXE2, with compositions comprising:
  • -Fig. 9a and Fig. 9b top view and enlarged top view of the periodic grid, produced by irradiating composition Ie with an irradiation signal with a power of 103 pW
  • -Fig. 9c and Fig. 9d perspective view and overall view of a structure of the photonic crystal type, called a cubic “pile of wood”, produced by irradiating composition Ic with an irradiation signal of power 125 pW.
  • the invention proposes a family of photoinitiating molecules for a photoinduced generation reaction with two photons of radicals, a composition comprising such molecules and a process for printing in three dimensions by irradiation of such photosensitive compositions, which in particular provide the following technical and economic benefits:
  • the resins according to the invention for parallel writing, that is to say to simultaneously print several structures by means of several laser beams.
  • the initial laser beam of the 3D printer can be separated into several beams by means of an optical diffractive element (EOD) placed on the optical path.
  • EOD optical diffractive element

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

L'invention concerne une molécule amorceur de polymérisation, apte à être excitée par deux photons et à générer des radicaux libres amorceurs de polymérisation, molécule caractérisée en ce qu'elle comprend deux branches greffées sur un noyau phényle central, chaque branche comprenant un oligomère de type oligo-phenylenethynylene-yl ou de type oligo2,5-dihalogenophenylenethynylene-yl. L'invention concerne également une composition photopolymérisable activable par absorption biphotonique, composition comprenant : - une résine polymérisable par voie radicalaire et - un système photoamorceur radicalaire en quantité photochimiquement efficace, composition caractérisée en ce que le système photoamorceur comprend au moins une molécule amorceur telle que décrite ci-dessus. Enfin, l'invention concerne un procédé et un dispositif associé d'impression en trois dimensions à deux photons comprenant une étape de transformation d'un volume d'une composition photopolymérisable comprenant au moins une molécule amorceur, transformation par irradiation du dit volume de composition par une source d'irradiation lumineuse émettant un signal d'irradiation ayant une longueur d'onde Lirr comprise entre 1 et 1,5 fois, et de préférence entre 1,1 et 1,25 fois, une longueur d'onde de coupure LCutOff de la molécule amorceur. Application à l'impression 3D à deux photons à résolution submicronique.

Description

DESCRIPTION
Titre de l'invention : Molécule amorceur pour une réaction d’absorption non linéaire, composition photopolymérisable activable par absorption biphotonique, et procédé d’impression 3D associé.
État de l’art
L’invention concerne une composition photopolymérisable activable par absorption biphotonique à résolution nanométrique, et un procédé d’impression 3D associé.
L’impression 3D à deux photons permet l'écriture de structures très résolues (résolution inférieure à 100 nm) mais au prix d'un temps d'écriture extrêmement conséquent. Une analyse de l’état de la technique est détaillée plus longuement dans le document DI = WO2019/025717.
Il est possible d'accélérer le processus d’impression soit i/ par parallélisation, en séparant le faisceau incident en une multitude de faisceaux secondaires (jusqu'à plusieurs millions de faisceaux), et donc autant de voxels (unité de fabrication, équivalent 3D d'un pixel) écrits en simultané soit ii/ en diminuant le temps d'exposition pour chaque voxel, et donc en augmentant la vitesse de balayage. Ces stratégies (cf par exemple Hahn, Vincent, Pascal Kiefer, Tobias Frenzel, Jingyuan Qu, Eva Blasco, Christopher Barner-Kowollik, and Martin Wegener. "Rapid assembly of small materials building blocks (Voxels) into large functional 3D metamaterials." Advanced Functional Materials (2019): 1907795) nécessitent le développement de résines beaucoup plus sensibles à l'absorption à deux photons tout en gardant leur possibilité de résolution submicronique.
Le document D2 = B. Mettra, Y. Y. Liao, T. Gallavardin, C. Armagnat, D. Pitrat, P. Baldeck, T. Le Bahers, C. Monnereau and C. Andraud, « A combined theoretical and experimental investigation on the influence of the bromine substitution pattern on the photophysics of conjugated organic chromophores », Phys. Chem. Chem. Phys., 2018, 20, 3768, décrit des molécules présentant une certaine sensibilité à l'absorption à deux photons, notamment des molécules obtenues par substitution d'un atome ou plusieurs atomes lourds sur un noyau phényle central par une branche comprenant un oligomère.
Description de l’invention La présente invention vise à pallier au moins un des inconvénients des molécules amorceurs, des compositions et des procédés d'impression 3D à deux photons connus.
A cet effet, l'invention propose une nouvelle molécule amorceur de polymérisation, apte à être excitée par deux photons et à générer des radicaux libres initiateurs de polymérisation, molécule caractérisée en ce qu'elle comprend deux branches greffées sur un noyau phényle central en position 1 et 3, chaque branche comprenant un oligomère de type oligo-phenylenethynylene-yl ou de type oligo2,5-dihalogenophenylenethynylene-yl.
Par rapport à des molécules amorceurs utilisées classiquement dans le cadre de la photolithographie par absorption biphotonique dans le domaine du visible et plus particulièrement 532 nm, par exemple des molécules connues ayant des structures Pi- conjuguées de petites dimensions, les molécules amorceurs selon l'invention ont des branches plus grandes, mieux adaptées à l'obtention de fortes non-linéarités, qui amènent a des sections efficaces d'absorption à deux photons (ADP) bien plus élevées comme on le verra mieux par la suite. Ainsi, les molécules amorceurs selon l'invention sont caractérisées par une très forte sensibilité en ADP. De plus, le nombre et les dimensions des branches des molécules amorceurs contribuent à réduire leur mobilité dans la composition photopolymérisable, ce qui améliore la résolution en impression 3D.
De plus, par rapport aux molécules décrites dans D2, et notamment par rapport aux molécules linéaires représentées figure 1 de D2 et ayant des branches de longueur identique ou proche, la molécule selon l'invention comprenant des branches greffées sur un noyau phényle central en position 1 et 3 a des spectres d’absorption et d’émission nettement moins décalés dans le rouge ou l'infrarouge tout en conservant des propriétés optiques non-linéaires, entre autres une section efficace d’absorption biphotonique élevée. La molécule selon l'invention présente en cela un compromis idéal entre non-linéarité élevée et transparence dans le visible, permettant d’avoir une absorption biphotonique significative dans le visible, sans absorption mono-photonique résiduelle, ce qui n’est pas le cas sur les molécules linéaires de longueur de conjugaison comparable. L'absorption biphotonique dans le visible permet d'utiliser des lasers plus faciles à mettre en œuvre.
Ainsi , des essais avec un laser de 532 nm ont donné des résultats particulièrement intéressants, comme on le verra mieux plus loin. Selon un mode de réalisation, chaque branche comprend un oligomère de type oligo2,5- dihalogenophenylenethynylene-yl.
Les substituants halogène correspondent de préférence à deux atomes de Brome. Cet halogène est connu pour amplifier les processus de croisement intersystème lorsqu'il est incorporé au sein de structures Pi-conjuguées par effet d'atome lourd, amenant la molécule à un état excité de type triplet. L'état triplet, de plus longue durée de vie est donc plus apte à engendrer des réactions photochimiques (typiquement transfert photoinduit d'électron) à l'origine de la génération de radicaux. Par rapport aux halogènes qui le précédent dans le tableau périodique (F, Cl), le brome génère un effet d'atome lourd nettement plus marqué, tout en possédant une sensibilité moindre que celle de l'iode à des réactions chimiques parasites, permettant une fonctionnalisation plus facile de la molécule cible.
Selon un mode de réalisation également, l'extrémité libre de chaque branche d’une molécule amorceur conforme à l’invention est terminée par une phénylamine terminale, de préférence par une phénylamine terminale de type dialkylphénylamine, et encore plus préférentiellement une dihexylphénylamine. Les groupes alkyles substitués sur les fonctions terminales de la phénylamine rendent la molécule amorceur selon l’invention soluble dans la composition. Ceci permet d’éviter l’adjonction de solvant organique lors de la formulation de la résine, processus généralement fastidieux, coûteux et potentiellement toxique. Également, les groupes alkyles limitent la cristallisation de la molécule amorceur, ce qui est favorable pour une utilisation en impression 3D où la présence de cristaux pose problème.
Selon un mode de réalisation, une molécule amorceur conforme à l’invention comprend un atome d’halogène et deux branches greffés sur le noyau phényle central, respectivement en position 1, 3 et 5. La molécule amorceur à deux branches possède une bonne sensibilité et en même temps une bonne solubilité dans la composition photopolymérisable, ce qui permet une bonne réactivité globale de ladite composition. L’atome d’halogène est de préférence un atome de Brome, pour ses avantages explicités plus haut.
Selon un autre mode de réalisation, la molécule amorceur est associée à une molécule co- amorceur, telle qu’une molécule dérivée d’amine ou une molécule dérivée d’iodonium, comme on le verra mieux plus loin. L'invention propose également une composition photopolymérisable selon l'invention comprenant :
- une résine polymérisable par voie radicalaire et
- un système photoamorceur radicalaire en quantité photochimiquement efficace, composition caractérisée en ce que le système photoamorceur comprend au moins une molécule amorceur telle que décrit ci-dessus.
Par "quantité photochimiquement efficace", on entend une "quantité suffisante pour permettre de polymériser la résine". La dite quantité dépend du système photoamorceur, notamment de sa réactivité et de sa solubilité dans la composition. Pour une composition comprenant une résine et un système photoamorceur particuliers, une mesure du seuil de polymérisation et des caractéristiques des structures permet de déterminer une valeur minimale et une valeur maximale d'une "quantité photochimiquement efficace" du système photoamorceur ; la dite quantité, ou la plage de valeurs de la dite quantité peut être par exemple exprimée en pourcentage d'une quantité de composition totale égale à 100 %.
La résine polymérisable comprend un monomère principal de type monomère vinyle, de préférence un monomère acrylate ou monomère méthacrylate. Le monomère principal est choisi pour être fortement réticulable, pour obtenir une résolution submicronique et de préférence nanométrique.
De préférence, le monomère principal est un monomère acrylate multifonctionnel, par exemple un dipentaerythritol penta-/hexa-acrylate (DPPHA) ou un Pentaerythritol triacrylate (PETA). La multifonctionnalité du monomère permet d'avoir une réticulation importante et rapide qui confère à la résine sensibilité, solidité et résolution.
La résine polymérisable peut également comprendre un composant solubilisant, tel que :
- un monoacrylate avec au moins une chaîne alkyle, par exemple un hexylacrylate,
- un diacrylate avec au moins une chaîne alkyle, par exemple un Poly(ethylene glycol) diacrylate (PEGDA), ou un 1,10-decanediol diacrylate (DDA), ou
- un dithiol, par exemple un 1,10-decanedithiol (DDT).
Outre ses propriétés solubilisantes apportées par une ou plusieurs chaînes alkyles, les diacrylates ou les dithiols sont intéressants également pour leurs propriétés modérées de réticulation, qui aident à terminer la polymérisation de la résine une fois que la réaction de polymérisation est amorcée par le monomère principal ; le taux de polymérisation final de la composition est ainsi amélioré.
La composition peut comprendre de 0,1 à 10%, de préférence 0,2 à 5% et encore plus préférentiellement 0,5 à 1,5% en poids de système photoamorceur. Ces quantités sont un compromis entre la quantité de photoamorceur qu’il est possible de dissoudre directement dans la résine et la réactivé globale de la composition. Cette dernière tend à augmenter pour des concentrations en photoamorceur croissantes, mais le bénéfice est moindre au- delà de 2% massique.
La composition peut comprendre 5 à 60%, et de préférence 10 à 25% de composant solubilisant. Ces quantités sont là encore un compromis entre la quantité de photoamorceur que le composant solubilisant permet de dissoudre dans la résine, et la réactivité globale de la composition.
L'invention concerne encore un procédé d'impression en trois dimensions comprenant une étape de transformation d'un volume d'une composition photopolymérisable activable par absorption biphotonique, composition comprenant une résine polymérisable par voie radicalaire et un système photoamorceur en quantité photochimiquement efficace, système photoamorceur comprenant au moins une molécule amorceur apte à être excitée par deux photons et à générer des radicaux libres amorceur de polymérisation, l'étape de transformation consistant à irradier le volume de composition par une source d'irradiation émettant un signal d'irradiation ayant une longueur d'onde Lirr comprise entre 1 et 1,5 fois, et de préférence entre 1,1 et 1,25 fois, une longueur d'onde de coupure LCutoff de la molécule amorceur, LCutoff étant défini comme la longueur d'onde au-delà de laquelle le coefficient d’extinction molaire du photoamorceur est considéré comme négligeable car inférieur à 1% de la valeur maximale du coefficient d’absorption molaire de ladite molécule amorceur.
L’expérience a montré que le choix d’un signal d’irradiation dont la longueur d’onde Lirr, tout en restant non-résonnante à un photon, est proche (1 * LCutoff < Lirr < 1,5 * LCutoff) de la plage d’absorption monophotonique (L < LCutoff) des molécules amorceurs du système photoamorceur permet de réduire fortement l’irradiance (quantité d'énergie par unité temps et de surface irradiée, en W.cm-2) nécessaire pour induire par absorption biphotonique la génération de radicaux libres, comme on le verra mieux plus loin. De préférence, la longueur d'onde du signal d'irradiation est comprise entre 1,1 et 1,25 fois la longueur d'onde de coupure Lcutoff- Ceci permet d'éliminer le risque d'une absorption monophotonique résiduelle tout en assurant la réaction la plus efficace possible avec une irradiance la plus faible possible.
Selon un mode de mise en oeuvre du procédé, la composition photopolymérisable est une composition selon l'invention, telle que décrite ci-dessus.
De préférence, le signal d'irradiation est issu d'un laser de longueur d'onde comprise entre 508 et 578 nm, par exemple Lirr = 532 nm. Une irradiation près du seuil de polymérisation permet d'obtenir des largeurs et hauteurs de lignes nanométriques de typiquement 100 nm et 200 nm. Dans ces conditions, le procédé d'impression selon l'invention permet des nanostructurations spatiales avec des périodes de 250 nm dans le plan horizontal et de 350 nm dans le plan vertical, comme on le verra mieux plus loin dans des exemples.
L'étape d'irradiation en trois dimensions du volume de composition peut être réalisée par une technique d'écriture directe par une source d'irradiation de type laser, technique mise en oeuvre à une vitesse élevée, de préférence à une vitesse supérieure à 50 mm/s, et encore plus préférentiellement à une vitesse supérieure à 1 m/s. Selon une variante, l'étape d'irradiation en trois dimensions du volume de composition peut être réalisée par une technique de projection parallèle, de type photolithographie ou de type projection holographique, avec un nombre de sources d'irradiation élevé, de préférence un nombre de sources d'irradiation supérieur à dix milles, et encore plus préférentiellement supérieur à un million. Selon une variante encore, l'étape d'irradiation en trois dimensions du volume de composition peut être réalisée par une technique d'écriture directe avec un seul faisceau ou par une technique de projection parallèle avec plusieurs faisceaux.
Enfin, l'invention concerne également un dispositif d'impression en trois dimensions comprenant des moyens agencés pour la mise en œuvre du procédé selon l'invention et tel que décrit ci-dessus.
Brève description des figures
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée d'exemples de réalisation de l'invention, donnés à titre d'exemple uniquement, et en référence aux dessins annexés dans lesquels : la figure 1 présente des exemples de molécules amorceurs connues, la figure 2 présente un premier exemple de molécules amorceurs selon l'invention la figure 3 présente une variante de la figure 2, selon l'invention la figure 4 présente une variante de la figure 2, selon l'invention la figure 5 présente une variante de la figure 2, selon l'invention, la figure 6 présente un exemple de molécules amorceurs proches de l'exemple de la figure 2 la figure 7 présente l'évolution de l'absorption à un photon (OPA) et deux photons de la molécule de la figure 2, en fonction de la longueur d’onde d’un signal d’excitation, la figure 8 présente des résultats de mise en œuvre du procédé selon l’invention, la figure 9 présente d’autres résultats de mise en œuvre du procédé selon l’invention, la figure 10 présente d’autres résultats de mise en œuvre du procédé selon l’invention.
Description détaillée de modes de réalisation de l'invention
Comme dit précédemment, l'invention concerne une composition photopolymérisable activable par absorption biphotonique, composition comprenant :
- une résine polymérisable par voie radicalaire et
- un système photoamorceur radicalaire en quantité photochimiquement efficace, apte à être excité par plusieurs photons et capable de générer des radicaux libres.
La composition selon l'invention est caractérisée en ce que le système photoamorceur comprend au moins une molécule amorceur comprenant deux branches greffées sur un noyau phényl central en position 1 et 3, chaque branche comprenant un oligomère de type oligo-phenylenethynylene-yl ou oligo2,5-dihalogene-phenylenethynylene-yl.
La figure 2 présente un exemple d'une molécule amorceur à deux branches, selon l'invention, qu'on appellera par la suite PA2 pour simplifier. Les figures 3 à 5 présentent des variantes de la molécule de la figure 2.
La figure 6 présente un exemple de molécule amorceur à trois branches (qu'on appellera par la suite PA3), proche de celle de la figure 2. Dans ces exemples, chaque branche d'une molécule selon l'invention comprend (ou commence par) un phenylenethynylene-yl tel que :
- un phenylenethynylene-yl (fig. 2 ), et plus généralement un oligo2,5 - phenylenethynylene-yl (fig. 3 avec n entre 0 et 4)
- un oligo2,5-dibromo-phenylenethynylene-yl (figures 4-5 avec n entre 0 et 4), et plus généralement, un oligo2,5-dihalogeno-phenylenethynylene-yl avec n entre 0 et 4, et deux halogènes par groupement phenylenethynylene-yl, les halogènes étant par exemple du Brome, du Chlore, de l'Iode, du Fluor ou de l'Astate.
L'allongement de la structure phenylenethynylene-yl facilite l'obtention d'absorption non- linéaire, mais nuit à la dissolution des molécules amorceurs dans la composition. Ainsi, l’expérience montre que, au-delà de n = 4, la dissolution des molécules n’est plus suffisante pour que la réactivité globale de la composition soit intéressante.
La présence d’halogènes permet d'augmenter le couplage spin-orbite au sein de la molécule et d'optimiser la formation photoinduite du photoamorceur à son état triplet dans un premier temps, et de radicaux dans un second temps (consécutivement à un transfert d'électrons photoinduit) ; les molécules amorceurs avec halogènes sont donc plus efficaces que les molécules similaires sans halogènes. Et en particulier, les meilleurs résultats ont été obtenus avec le Brome : les essais avec le Brome ont en effet montré que le seuil de photopolymérisation pouvait être réduit, par rapport à leurs analogues non substitués, d'un facteur 1,5 à 2.
En revanche, la présence des halogènes limite la solubilité de la molécule dans la résine d'intérêt. Un compromis doit donc être fait entre efficacité de la molécule amorceur et présence (nombre) d’halogènes.
Selon un mode de réalisation de l’invention, l'extrémité libre de chaque branche de la molécule amorceur est terminée par une phénylamine (aniline) terminale, de préférence une phénylamine terminale de type dialkylaminophényle ; dans les exemples de molécules figure 2 (molécule PA2) et figures 3-5, la terminaison phénylamine est un groupement terminal dihexylaminophénylethynyle. La présence de ces chaînes carbonées grasses (deux groupements alkyles) permet la dissolution directe des molécules amorceurs. Lors des essais, les groupements héxyles (cf les exemples représentés avec deux groupements héxyles) ont donné les meilleurs résultats. Les branches des molécules amorceurs selon l'invention sont ainsi de type :
- R = -[p-N, N-(dialkyl)aminophénylethynyl](oligo-phenylenethynylene-yl) ou
- R' = -[p-N, N-(dialkyl)aminophénylethinyl](oligo2,5-dihalogenophenylenethynylene-yl).
Les molécules amorceurs des figures 2, 3 et 5 ont deux branches et comprennent deux branches de type R et un atome d'halogène (du Brome ici) greffées sur le noyau phényle central, respectivement en position 1, 3 et 5. Elles peuvent être synthétisées par exemple par la substitution par des branches de type R de deux atomes d'halogène présents sur un noyau phényle comprenant trois atomes d'halogène en position 1, 3 et 5.
La molécule amorceur de la figure 4 a deux branches de type R1 greffées sur le noyau phényle central, respectivement en position 1, 3, la position 5 étant occupée par un Hydrogène. Elle peut être synthétisée par exemple par la substitution par des branches de type R' de deux atomes d'hydrogène présents sur un noyau phényle comprenant trois atomes d'hydrogène en position 1, 3 et 5.
La molécule amorceur PA3 de la figure 6 a quant à elle trois branches de type R greffées sur le noyau phényle central, respectivement en position 1, 3 et 5. Elle peut être synthétisée par exemple par la substitution par des branches de type R de trois atomes d'hydrogène présents sur un noyau phényle en position 1, 3 et 5.
Des essais ont été réalisés sur les molécules amorceurs selon l'invention et les compositions intégrant des molécules amorceurs selon l'invention, et plus particulièrement sur la molécule PA2 de la figure 2. Des essais similaires ont également été réalisés sur une molécule amorceur proche, la molécule PA3, ainsi que sur des molécules connues, commercialisées et couramment utilisées dans des compositions photosensibles, en l'espèce les molécules:
- Molécule 4,4'-Bis(N,N-diethylamino)benzophenone de type NORRISH II, représentée sur la figure la, qu'on appellera par la suite BDEBP,
- Molécule 2-lsopropylthioxanthone, de type NORRISH II, représentée sur la figure lb, qu'on appellera par la suite ITX,
- Molécule [l-[9-ethyl-6-(2-methylbenzoyl)carbazol-3-yl]ethylideneamino] acetate, de type NORRISH I, représentée sur la figure le, qu'on appellera par la suite OXE2.
Les essais, et leurs comparaisons, ont permis de mettre en évidence les points suivants. Le spectre d’absorption de la molécule PA2 a été mesuré selon des techniques classiques, pour un échantillon de molécules dissoutes dans du dichlorométhane. Sur la figure 7 est représenté le coefficient d’extinction molaire de la molécule PA2. Le coefficient d’extinction molaire est un paramètre intrinsèque d’une molécule, directement proportionnel à l’absorbance d’une composition contenant ladite molécule ; plus précisément, l’absorbance de la molécule est obtenue en multipliant le coefficient d’extinction molaire par la concentration de la molécule dans la composition utilisée pour réaliser la mesure et par la longueur de la cuvette contenant la composition utilisée pour la mesure. Pour la molécule PA2, on note :
- un pic d’absorption (ou une résonance d’absorption monophotonique) à la longueur d’onde LabSR = 386 nm,
- une longueur d’onde de coupure d’absorption d’un photon LCutoff = 462 nm, longueur d’onde à partir de laquelle l'absorption monophotonique peut être considérée comme négligeable, car le coefficient d’extinction molaire de la molécule est inférieur à 1% de la valeur maximale du coefficient d’extinction molaire (pic d’absorption) sur la bande d’absorption, la bande d’absorption correspondant à la plage de longueurs d’onde des signaux que la molécule peut absorber.
Par comparaison, la mesure du spectre d'absorption de PA3 dissous dans du dichlorométhane montre des résultats similaires à ceux obtenus pour la molécule PA2, et la longueur d'onde de résonance d'absorption monophotonique mesurée dans les mêmes conditions pour les molécules BDEBP, ITX et OXE2 est égale respectivement à LabsR = 362 nm, LabsR = 386 nm et LabsR = 340 nm.
L'absorption à deux photons a également été étudiée pour la molécule amorceur PA2, en utilisant une technique connue de l'homme du métier, la technique de mesure dite "Z- scan", permettant une mesure des sections efficaces d’absorption biphotonique des molécules amorceurs, y compris non-luminescentes, sur de larges gammes de longueur d'onde. Cette technique est notamment décrite dans la publication Measurements of Third-Order Optical Nonlinearity using Z-Scan Technique: A Review, Vijender Singh* et al, AIP Conférence Proceedings 2142, 140035 (2019). Pour étudier la molécule PA2, une mesure unique a été effectuée à chaque longueur d'onde à une puissance donnée (mesure appelée "WL scan"), ce qui permet de quantifier ce qui est absorbé en fonction de la longueur d'onde. En complément, plusieurs mesures sont effectuées pour une longueur d'onde donnée en variant la puissance (mesure appelée "Power scan") afin de vérifier qu'on suit bien une loi quadratique et que donc ce que mesure le Z-scan est bien une absorption à deux photons. La mesure est effectuée sur une plage de longueurs d’onde allant de 490 à 960 nm (Fig. 7 pour la molécule PA2, échelle de droite section efficace d'absorption à deux photons), soit la gamme la plus large possible en évitant l’absorption à un photon (donc en restant au-dessus de LCutoff= 462 nm - cf fig. 7, échelle de gauche, la courbe correspondant au coefficient d'extinction molaire e). L’analyse montre ainsi un pic d’absorption biphotonique aux environs de L = 770 nm, ce qui correspond à deux fois la longueur d’onde LabsR = 386 nm de la résonance d’absorption monophotonique. Ce résultat est cohérent avec la pratique usuelle qui consiste à utiliser des sources d’irradiation ayant une longueur d’onde approximativement égale au double de la longueur d’onde de résonance d’absorption à un photon pour provoquer des réactions à deux photons impliquant une transition électronique vers ce même état excité. Mais l’analyse montre également (Fig. 7) que la section efficace d’absorption biphotonique augmente fortement lorsque la longueur d’onde diminue, et se rapproche de la limite d’absorption à un photon. Par exemple, pour une longueur d’onde L = 770 nm, la section efficace d’absorption biphotonique pour une molécule PA2 est de l’ordre de 650 GM (1 GM = 10-50 cm4 .s. photon-1), alors que pour une longueur d’onde de 532 nm, la section efficace d’absorption biphotonique pour une molécule PA2 atteint 1500 +/- 200 GM. Ces sections efficaces dépassent 2000 GM à 500 nm pour la molécule PA2 tout en restant strictement biphotonique.
Par comparaison, pour la molécule BDEBP, la section efficace d’absorption biphotonique pour une longueur d’onde de 532 nm est de l’ordre de 77 +/- 11 GM. La sensibilité de la molécule PA2 est ainsi bien plus importante que celle de la molécule BDEBP couramment utilisée aujourd'hui pour des réactions d'absorption à deux photons, et a fortiori que celles des molécules spécifiquement utilisées à 532 nm (type OXE2), dont les valeurs de section efficaces estimées varient généralement entre quelques GM et quelques dizaines de GM.
Ces résultats sont d'autant plus intéressants qu'ils permettent d'envisager d'irradier des molécules avec des sources d'irradiation dans le domaine du visible (longueurs d'onde inférieures à 750 nm), y compris des molécules généralement utilisées dans le proche infrarouge (classiquement à une longueur d'onde double de celle de leur résonance monophotonique (LabsR). Les sources d’irradiation dans le domaine du visible offrent de manière générale une meilleure résolution que des sources infrarouges et, en plus, comme le montre l’invention, elles apportent une plus grande efficacité d'absorption à deux photons, contrairement au paradigme en vigueur, du fait de l'augmentation de la section efficace proche de la résonance.
L'invention concerne également une composition de résine polymérisable intégrant une molécule amorceur telle que décrite ci-dessus. La composition comprend un monomère principal de type monomère vinyle, de préférence un monomère acrylate ou un monomère méthacrylate. Ces monomères sont connus pour leur forte réactivité en polymérisation radicalaire. Parmi les compositions testées, les monomères de type triacrylate tels que le Pentaerythritol triacrylate (PETA) ont donné de bons résultats et les monomères de type dipentaerythritol penta-/hexa-acrylate (DPPHA) ont donné les meilleurs résultats en combinaison avec les molécules amorceurs de type PA2.
Comme on l'a vu plus haut, les molécules amorceurs selon l'invention comprennent, à l'extrémité de leurs branches, une alkylphénylamine terminale dont une des fonctions est de faciliter la dissolution de la molécule dans la composition. Pour améliorer encore cette dissolution, un comonomère solubilisant peut être ajouté tel que :
- un monoacrylate avec au moins une chaîne alkyle, par exemple un hexylacrylate,
- un diacrylate avec au moins une chaîne alkyle, par exemple un Poly(ethylene glycol) diacrylate (PEGDA), un 1,6-hexanediol diacrylate (HDODA), ou un 1,10-decanediol diacrylate (DDA)
- un dithiol, par exemple un 1,10-Decanedithiol (DDT).
Différentes compositions ont été réalisées et testées, avec les composants et proportions en poids (%wt) suivantes :
- 0,1 à 10% en poids (%wt) d'un système photoamorceur comprenant une molécule amorceur,
- 5 à 60% en poids d'un composant diluant, et
- le complément à 100% en poids de monomères principaux. Parmi les compositions réalisées et testées, les compositions les plus intéressantes comprennent 0,2 à 5% en poids de système photoamorceur et / ou 10 à 25% en poids de composant solubilisant. Quelques exemples parmi les plus remarquables sont donnés ci- dessous.
Exemple 1 : compositions comprenant des monomères dipentaerythritol penta-/hexa- acrylate (DPPHA) et 1,10-decanediol diacrylate (DDA) et la molécule PA2, avec différentes proportions massiques (% wt ou % en poids) :
-composition la. DPPHA/DDA/PA2, proportions massiques : 79,6/19,1/0,5
- composition lb. DPPHA/DDA/PA2, proportions massiques : 59,7/39,8/0,5
- composition le. DPPHA/DDA/PA2, proportions massiques : 89,55/9,95/0,5
- composition le. DPPHA/DDA/PA2, proportions massiques : 79,2/19,8/1
- composition lf. DPPHA/DDA/PA2, proportions massiques : 58,9/36,1/5
Le DDA permet d'améliorer la dissolution de la molécule amorceur PA2 dans la composition et rend la composition moins visqueuse également, mais le DDA est moins réactif que le DPPHA lors de l'impression 3D. Si toutes les compositions la à lf donnent de bons résultats, la composition le donne le meilleur compromis.
Exemple 2 : composition comprenant des monomères dipentaerythritol penta-/hexa- acrylate (DPPHA), des molécules 1,10-Decanedithiol (DDT) et des molécules PA2, avec les proportions massiques (%wt) suivantes :
- composition 2. DPPHA/DDT/PA2, proportions massiques : 67,04/32,11/0,85
L'utilisation de DDT donne également de bons résultats en terme de microfabrication (seuil comparable à compositions similaires avec DDA à la place de DDT) mais il faut mettre plus de DDT que de DDA pour atteindre une solubilité équivalente ; la composition le reste donc le meilleur compromis.
Exemple 3 : composition comprenant des monomères dipentaerythritol penta-/hexa- acrylate (DPPHA), des monomères Poly(éthylène glycol) diacrylate (PEGDA) et des molécules PA2, avec les proportions massiques (%wt) suivantes :
- composition 3. DPPHA/PEGDA/PA2, proportions massiques : 49,9/49,9/0,2
Exemple 4 : compositions comprenant des monomères Pentaerythritol triacrylate (PETA) et 1,10-decanediol diacrylate (DDA) et la molécule PA2, avec différentes proportions massiques (%wt) :
- composition 4a. PETA/DDA/PA2, proportions massiques : 59,7/39,8/0,5
- composition 4b. PETA/DDA/PA2, proportions massiques : 60/37/3
- composition 4c. PETA/DDA/PA2, proportions massiques : 60/35/5
Exemple 5 : composition comprenant des monomères dipentaerythritol penta-/hexa- acrylate (DPPHA), des monomères 1,10-decanediol diacrylate (DDA) et des molécules PA3, avec les proportions massiques (%wt) suivantes :
- composition 5. DPPHA/DDA/PA3 proportions massiques : 79,47/19,87 /0, 66
Par comparaison avec l'exemple le, on constate que la molécule PA3 se dissout plus difficilement dans la composition, une quantité de 20%wt de DDA permettant de dissoudre seulement 0,66%wt de PA3, alors qu'elle permet de dissoudre au moins l%wt de PA2. En dépit de caractéristiques légèrement supérieures du photoamorceur, les compositions avec les molécules PA3 sont ainsi moins efficaces que celles contenant les molécules PA2 avec les mêmes proportions de monomères DPPHA et DDA.
Des différents essais, et parmi les compositions les plus intéressantes, les compositions les plus réactives comprennent 0,5 à 1,5% en poids de système photoamorceur et / ou 10 à 25% en poids de composant solubilisant.
En plus d'une molécule amorceur telle que décrite ci-dessus, le système photoamorceur peut également comprendre un co-amorceur adapté pour améliorer la formation de radicaux. Un co-amorceur, accepteur d'électrons, type diphényliodonium par exemple, se décompose en générant un radical aryle. D'autres co-amorceurs tels que des amines de type amine aliphatique (génération du radical par abstraction d'hydrogène sur le carbone aliphatique en alpha de l'azote) ou des triarylamines (transfert électronique conduisant à la formation d'une radical cation sur le doublet non liant de l'azote) peuvent également être envisagés. Ils ne sont toutefois pas indispensables du fait des terminaisons alkylphénylamine aux extrémités de chaque branche des molécules amorceurs selon l’invention, qui jouent le même rôle. L'invention concerne enfin un procédé d'impression en trois dimensions à deux photons comprenant une étape de transformation d'un volume d'une composition photopolymérisable comprenant une résine polymérisable par voie radicalaire et un système photoamorceur en quantité photochimiquement efficace apte à être excité par plusieurs photons et capable de générer des radicaux libres, système photoamorceur comprenant au moins une molécule amorceur, l'étape de transformation consistant à irradier ledit volume de composition par une source d'irradiation émettant un signal d'irradiation ayant une longueur d'onde Lirr comprise entre 1 et 1,5 fois, et de préférence entre 1,1 et 1,25 fois, une longueur d'onde de coupure LCutoff de la molécule amorceur au- delà de laquelle le coefficient d'extinction molaire de ladite molécule amorceur est inférieure à 1% de la valeur maximale du coefficient d'extinction molaire de ladite molécule amorceur.
En choisissant une longueur d'onde Lirr supérieure à la longueur d'onde LCutoff, le risque d'une prévalence d'une absorption à un photon par rapport à une absorption à deux photons lors d'irradiation de la composition est limité. Mieux, en choisissant une longueur d'onde Lirr supérieure à 1,1 fois la longueur d'onde LCutoff , le risque d'apparition d'une réaction d'absorption à un photon est même nul, ainsi que démontré par des tests Z-scan à puissance variable (power scan, figure7).
En choisissant une longueur d'onde Lirr inférieure à 1,5 fois la longueur d'onde LCutoff, l'excitation biphotonique est volontairement positionnée proche de la longueur d’onde LabsR de résonance d’absorption d’un photon de la molécule amorceur, c'est-à-dire dans la zone où la sensibilité de la molécule amorceur est au moins aussi importante que pour une longueur d'onde Lirr proche de 2 fois la longueur d'onde LabsR de résonance d'absorption d'un photon (fig. 7), comme l'a montré l'analyse des sections efficaces d'absorption biphotonique. Mieux, en choisissant une longueur d'onde Lirr inférieure à 1,25 fois la longueur d'onde LCutoff de la molécule amorceur, la réaction est volontairement positionnée dans la zone où la sensibilité de la molécule amorceur est bien plus importante que pour une longueur d'onde Lirr proche de 2 fois la longueur d'onde LabSR de résonance d'absorption d'un photon (fig. 7).
Selon un mode de mise en œuvre préféré, la molécule amorceur est une molécule selon l'invention telle que décrite ci-dessus. Il est ainsi possible de choisir une source d'irradiation lumineuse de longueur d'onde Lirr = 532 nm, compris entre 508 nm (= 1,1 * LCutoff, avec LCutoff = 462 nm, cf fig. 7), et 578 nm (= 1,25 * LCutoff).
En particulier dans l’exemple de la molécule PA2, la section efficace d’absorption pour des longueurs d’onde Lirr inférieures à 578 nm (= 1,25 * Lcutoff) est supérieure à environ 1000 GM (cf fig. 7), soit supérieure à la section efficace d’absorption pour des longueurs d’onde Lirr au voisinage de deux fois la longueur d’onde LabsR de résonance d’absorption d’un photon de la molécule amorceur (environ 650 GM à la longueur d’onde 770 nm- cf fig. 7). Mieux, la section efficace d’absorption pour des longueurs d’onde Lirr inférieures à 532 nm est supérieure à environ 1500 GM, et augmente encore lorsque Lirr diminue. Pour la molécule PA3, les résultats sont moins intéressants que pour PA2; en effet la section efficace d’absorption, pour une longueur d’onde donnée est sensiblement inférieure pour PA3 par rapport à PA2 ; par exemple, la section efficace d’absorption pour PA3 atteint seulement 740 GM environ à 532 nm.
Des essais d'impression plus que concluants ont été réalisés avec un laser de longueur d'onde Lirr = 532 nm. Plus précisément, le laser utilisé pour les essais décrits ci-dessous est un laser pulsé de fréquence 11,7 kHz, produisant des puises d'irradiation de durée 560 ps (picoseconde). Des tests complémentaires ont montré l'applicabilité du système sur des lasers pulsés produisant des puises d’irradiation de durée de l’ordre de la nanoseconde (ns) et de la femtoseconde (fs), à des longueurs d’ondes comprises entre 515 et 532 nm, avec des conclusions similaires. Plus précisément, les lasers supplémentaires utilisés ont les caractéristiques suivantes :
- longueur d’onde 515nm, fréquence de 1 Hz à 2 MHz, puise de 280 fs
- longueur d’onde 522 nm, fréquence de 63 MHz, puise de 250 fs
- longueur d’onde 532 nm, fréquence de 500 Hz, puise de 400 ps.
Afin de déterminer l’efficacité des molécules et des compositions selon l’invention, a notamment été analysé le seuil de polymérisation (puissance minimale du signal d’irradiation nécessaire à la polymérisation) et la taille minimale des objets réalisables par le procédé selon l’invention. On considère que le seuil de polymérisation est atteint lorsque les structures photogénérées par l’étape d’irradiation peuvent supporter une étape de rinçage final des résidus de monomères sans subir de distorsion significative. Pour cette analyse, deux essais ont été réalisés. Un premier essai (Fig 8c-d) consiste à imprimer une série de lignes de 20 pm espacées de 4 pm sur un substrat ; le laser est focalisé exactement ou très légèrement au-dessus du substrat, pour une mesure précise de la largeur de ligne tout en assurant une adhérence des lignes sur le substrat. Un deuxième essai (Fig. 8a-b) consiste à imprimer des lignes de 13 pm suspendues entre deux plots distants de 5 pm, pour assurer une bonne stabilité mécanique de la ligne ; les lignes sont positionnées 1,5 pm au-dessus du substrat. Ce deuxième essai permet de déterminer la hauteur des lignes, paramètre non accessible avec le premier essai.
Pour les deux essais, les lignes sont réalisées avec des puissances d'irradiation décroissantes, jusqu'à la limite du seuil de polymérisation et la vitesse d'impression est la même, 40 pm / s.
En comparant les deux essais (ligne sur substrat et ligne suspendue), on constate que, pour une même composition de résine et à une puissance donnée, les différences entre les largeurs de lignes ne sont pas significatives, ce qui montre la reproductibilité du procédé d'impression et la robustesse des protocoles de mesure.
Les figures 8a à 8d montrent plus précisément, pour la composition l.e, DPPFIA/DDA/PA2 (79,2%/19,8%/l%) :
- Fig. 8a : une vue d'ensemble d'une ligne suspendue, obtenue à partir de la composition l.e, irradiée par un signal d'irradiation de puissance 103 pW,
- Fig. 8b : une vue de dessus de lignes suspendues, obtenues à partir de la composition l.e irradiée par un signal d'irradiation de puissance décroissant de haut en bas de 257 pW à de 82 pW,
- Fig. 8c : une vue de dessus d'un ligne écrite sur un substrat, à partir de la composition l.e, irradiée par un signal d'irradiation de puissance 85 pW
- Fig. 8d : une vue de dessus d'une série de lignes écrites sur la surface d'un substrat à partir de la composition l.e, irradiée par un signal d'irradiation d'une puissance croissant de gauche à droite de 75 pW à 303 pW.
Les deux essais (lignes sur substrat et lignes suspendues) ont été réalisés également pour des compositions comprenant l'une des trois molécules amorceurs BDEBP, ITX et OXE2, avec des compositions comprenant :
- DPPHA / DDA, en proportion massique 80/20, dans laquelle est ajouté - 5,4 pmol d'une molécule amorceur, BDEBP, ITX ou OXE2, par gramme de composition.
Les essais réalisés avec des puissances décroissantes (fig. 8b et 8d pour PA2) ont permis de déterminer le seuil minimal de polymérisation pour chacune des compositions basées sur le mélange DPPFIA/DDA en proportion massique 80/20 et l'ajout de 5,4 pmol de molécule amorceur par gramme de composition :
- PA2 : 120 pW
- BDEBP : 550 pW
- ITX : 690 pW
- OXE2 : 480 pW
Le choix d’ajouter 5,4 pmol de molécule amorceur au mélange DPPFIA/DDA en proportion massique 80/20 a été fait de sorte à dissoudre la même quantité de molécules amorceurs PA2, BDEBP, ITX ou OXE2 dans le mélange. D’autres essais plus spécifiquement avec la molécule PA2 ont montré qu’il est possible d’abaisser encore le seuil à 85 pW, en ajoutant 10,9 pmol de molécule amorceur PA2.
Les essais confirment ainsi des seuils de polymérisation sensiblement plus bas, d’un facteur 4 à 6, pour les molécules amorceurs à deux branches type PA2 par rapport aux molécules amorceurs connues (BDEBP, ITX, OXE2). Ceci s'explique essentiellement par la très forte amélioration de la capacité des molécules à deux branches type PA2 à absorber simultanément deux photons, comme le montre la valeur importante de leur section efficace d’absorption pour une longueur d’onde Lirr = 532 nm.
Enfin, pour analyser la résolution de l'impression, à une puissance d'irradiation proche du seuil de polymérisation, ont été fabriqués des réseaux périodiques comme une grille (figures 9a-9b) dont les lignes sont espacées de 250 nm et des structures tridimensionnelles de type cristal photonique, dites en « tas de bois » (figures 9c-9d), ayant au moins une dimension inférieure à 100 nm. Plus précisément, les figures 9a-d montrent des structures obtenues par irradiation de la composition l.e, à une vitesse de 40 pm / s par une source d'irradiation lumineuse de longueur d'onde Lirr = 532 nm :
- Fig. 9a et Fig. 9b : vue de dessus et vue de dessus agrandie de la grille périodique, réalisée par irradiation de la composition l.e par un signal d'irradiation de puissance 103 pW, - Fig. 9c et Fig. 9d : vue en perspective et vue d'ensemble d'une structure de type cristal photonique, dite en « tas de bois » cubique, réalisée par irradiation de la composition l.e avec un signal d'irradiation de puissance 125 pW.
Lors de ces essais, une résolution latérale de l'ordre de 80 nm, une résolution axiale (hauteur de ligne) de l'ordre de 190 nm ont pu être obtenues et une interdistance latérale de l'ordre de 250 nm.
En synthèse, l'invention propose une famille de molécules photoinitiatrices pour une réaction de génération photoinduite à deux photons de radicaux, une composition comprenant de telles molécules et un procédé d'impression en trois dimensions par irradiation de telles compositions photosensibles, qui apportent notamment les bénéfices techniques et économiques suivants :
- des molécules amorceurs à très forte sensibilité, notamment pour des longueurs d'onde dans le domaine du visible,
- des molécules amorceurs plus faciles à dissoudre dans une résine photosensible, permettant d'obtenir des compositions fortement réactives car intégrant une quantité importante de molécules amorceurs,
- l'utilisation d'une source d'irradiation dans le domaine du visible, et à un niveau de puissance d'irradiation sensiblement plus faible que dans l'art antérieur,
- une qualité d'impression (résolution) inférieure à 100 nm et une vitesse d'impression au moins aussi bonne qu'avec des molécules amorceurs connues.
Comme précisé dans l'état de l'art, il est possible d'utiliser les résines selon l’invention pour l'écriture en parallèle, c'est-à-dire pour imprimer simultanément plusieurs structures par le biais de plusieurs faisceaux laser. Pour cela, le faisceau laser initial de l'imprimante 3D peut être séparé en plusieurs faisceaux au moyen d'un élément optique d iffractif (EOD) placé sur le chemin optique. Des essais avec parallélisation de l'écriture en utilisant un élément optique diffractif 11 X 11 divisant le faisceau incident en 121 faisceaux de moindre puissance ont ainsi permis d'imprimer (cf Fig. 10) simultanément 121 structures identiques espacées de 1.85 pm avec un EOD séparant le faisceau laser en un réseau de 11 x 11 faisceaux en utilisant la formulation de composition l.e (DPPFIA/DDA/PA2, proportions massiques : 79,2/19,8/1).

Claims

REVENDICATIONS
1. Molécule amorceur de polymérisation, apte à être excitée par deux photons et à générer des radicaux libres amorceurs de polymérisation, molécule caractérisée en ce qu'elle comprend deux branches greffées sur un noyau phényle central en position 1 et 3, chaque branche comprenant un oligomère de type oligo-phenylenethynylene-yl ou de type oligo2,5-dihalogene-phenylenethynylene-yl.
2. Molécule selon la revendication 1, dans laquelle chaque branche comprend un oligomère de type oligo2,5-dihalogene-phenylenethynylene-yl, le dihalogène correspondant à deux atomes de Brome.
3. Molécule selon l'une des revendications 1 à 2, dans laquelle l'extrémité libre de chaque branche est terminée par une phénylamine terminale, de préférence par une phénylamine terminale de type dialkylphénylamine, par exemple une dihexylphénylamine.
4. Molécule selon l’une des revendications 1 à 3, dans laquelle chaque branche est une branche de type R = -[p-N, N-(dialkyl)aminophénylethinyl](oligo-phenylenethynylene-yl) ou R1 = -[p-N, N-(dialkyl)aminophénylethinyl](oligo2,5-dihalogene-phenylenethynylene-yl).
5. Molécule selon l’une des revendications 1 à 4 comprenant un atome d’halogène, de préférence deux branches greffées sur le noyau phényle central et un atome de Brome, respectivement en position 1, 3 et 5.
6. Composition photopolymérisable activable par absorption biphotonique, composition comprenant :
- une résine polymérisable par voie radicalaire et
- un système photoamorceur radicalaire en quantité photochimiquement efficace, composition caractérisée en ce que le système photoamorceur comprend au moins une molécule amorceur selon l’une des revendications 1 à 5.
7. Composition selon la revendication précédente dans laquelle la résine polymérisable comprend un monomère principal de type monomère vinyle, de préférence un monomère acrylate ou un monomère méthacrylate.
8. Composition selon la revendication 7 dans laquelle le monomère principal est un monomère acrylate multifonctionnel par exemple un dipentaerythritol penta-/hexa- acrylate (DPPHA) ou un pentaerythritol triacrylate (PETA).
9. Composition selon l'une des revendications 6 à 8 dans laquelle la résine polymérisable comprend également un composant solubilisant, tel que :
- un monoacrylate avec au moins une chaîne alkyle, par exemple un hexylacrylate
- un diacrylate avec au moins une chaîne alkyle, par exemple un Poly(éthylène glycol) diacrylate (PEGDA), ou un 1,10-decanediol diacrylate (DDA), ou
- un dithiol, par exemple un 1,10-Decanedithiol (DDT).
10. Composition selon l'une des revendications 6 à 9 dans laquelle la composition comprend 0,1 à 10%, de préférence 0,2 à 5% et encore plus préférentiellement 0,5 à 1,5 % en poids de système photoamorceur.
11. Composition selon la revendication 9 en combinaison avec la revendication 10, comprenant 5 à 60%, et de préférence 10 à 25% de composant solubilisant.
12. Procédé d'impression en trois dimensions à deux photons comprenant une étape de transformation d'un volume d'une composition photopolymérisable activable par absorption biphotonique, composition comprenant une résine polymérisable par voie radicalaire et un système photoamorceur radicalaire en quantité photochimiquement efficace, système photoamorceur comprenant au moins une molécule amorceur apte à être excitée par deux photons et à générer des radicaux libres amorceurs de polymérisation, l'étape de transformation consistant à irradier le volume de composition par une source d'irradiation émettant un signal d'irradiation ayant une longueur d'onde Lin- comprise entre 1 et 1,5 fois, et de préférence entre 1,1 et 1,25 fois, une longueur d'onde de coupure LCutoff de la molécule amorceur au-delà de laquelle le coefficient d'extinction molaire de la molécule amorceur est inférieure à 1% de la valeur maximale du coefficient d'extinction molaire sur une bande d'absorption de ladite molécule amorceur.
13. Procédé d'impression selon la revendication 12, dans lequel la composition photopolymérisable est une composition selon l'une des revendications 6 à 11.
14. Procédé d'impression selon l'une des revendications 12 à 13, dans lequel le signal d'irradiation est issu d'un laser de longueur d'onde comprise entre 508 et 578 nm, par exemple Lirr = 532 nm.
15. Procédé selon l'une des revendications 12 à 14, dans lequel l'étape d'irradiation en trois dimensions du volume de composition est réalisée par une technique d'écriture directe par une source d'irradiation de type laser, technique mise en oeuvre à une vitesse élevée, de préférence supérieure à 50 mm/s, et encore plus préférentiellement supérieure à 1 m/s.
16. Procédé selon l'une des revendications 12 à 15, dans lequel l'étape d'irradiation en trois dimensions du volume de composition est réalisée par une technique de projection parallèle, de type photolithographie ou de type projection holographique, avec un nombre de sources d'irradiation élevé, de préférence un nombre de sources supérieur à dix milles, et encore plus préférentiellement supérieur à un million.
17. Dispositif d'impression en trois dimensions comprenant des moyens agencés pour la mise en œuvre du procédé selon l'une des revendications 12 à 16.
EP21737479.2A 2020-07-09 2021-07-08 Molécule amorceur pour une réaction d'absorption non linéaire, composition photopolymérisable activable par absorption biphotonique, et procédé d'impression 3d associé Pending EP4178989A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2007303A FR3112345B1 (fr) 2020-07-09 2020-07-09 Molécule amorceur pour une réaction d'absorption non linéaire, composition photopolymérisable activable par absorption biphotonique, et procédé d'impression 3D associé.
PCT/EP2021/069034 WO2022008673A1 (fr) 2020-07-09 2021-07-08 Molécule amorceur pour une réaction d'absorption non linéaire, composition photopolymérisable activable par absorption biphotonique, et procédé d'impression 3d associé

Publications (1)

Publication Number Publication Date
EP4178989A1 true EP4178989A1 (fr) 2023-05-17

Family

ID=73013585

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21737479.2A Pending EP4178989A1 (fr) 2020-07-09 2021-07-08 Molécule amorceur pour une réaction d'absorption non linéaire, composition photopolymérisable activable par absorption biphotonique, et procédé d'impression 3d associé

Country Status (4)

Country Link
US (1) US20230250296A1 (fr)
EP (1) EP4178989A1 (fr)
FR (1) FR3112345B1 (fr)
WO (1) WO2022008673A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140012A1 (fr) * 2022-01-24 2023-07-27 パナソニックIpマネジメント株式会社 Composé, matériau d'absorption de lumière, matériau d'absorption de lumière non linéaire, support d'enregistrement, procédé d'enregistrement d'informations et procédé de lecture d'informations

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3069862B1 (fr) 2017-08-02 2019-11-01 Ecole Normale Superieure De Lyon Composition photopolymerisable, materiau obtenu par polymerisation d'une telle composition et procede d'impression 3d utilisant une telle composition
FR3079517B1 (fr) * 2018-03-28 2021-01-01 Ecole Centrale Marseille Procede pour la realisation d’un objet tridimensionnel par un processus de photo-polymerisation multi-photonique et dispositif associe

Also Published As

Publication number Publication date
WO2022008673A1 (fr) 2022-01-13
US20230250296A1 (en) 2023-08-10
FR3112345B1 (fr) 2023-04-21
FR3112345A1 (fr) 2022-01-14

Similar Documents

Publication Publication Date Title
FR3069862B1 (fr) Composition photopolymerisable, materiau obtenu par polymerisation d&#39;une telle composition et procede d&#39;impression 3d utilisant une telle composition
Grebner et al. Size-dependent properties of oligothiophenes by picosecond time-resolved spectroscopy
EP4178989A1 (fr) Molécule amorceur pour une réaction d&#39;absorption non linéaire, composition photopolymérisable activable par absorption biphotonique, et procédé d&#39;impression 3d associé
FR2731081A1 (fr) Procede d&#39;obtention d&#39;un article transparent a gradient d&#39;indice de refraction
Soppera et al. Photopolymerization with microscale resolution: Influence of the physico‐chemical and photonic parameters
EP3519448A1 (fr) Procédé pour la réalisation d&#39;un objet tridimensionel par un processus de photo-polymérisation multi-photonique et dispositif associé
Ibrahim et al. Optimization of a photopolymerizable material based on a photocyclic initiating system using holographic recording
EP3774933A1 (fr) Procédé pour la réalisation d&#39;un objet tridimensionnel par un processus de photopolymérisation multi-photonique et dispositif associé
EP3590159A1 (fr) Source laser pour l&#39;emission d&#39;un groupe d&#39;impulsions
US7964333B1 (en) FRET-based two photon three dimensional optical data storage
Yokoyama et al. Two-photon-induced polymerization in a laser gain medium for optical microstructure
EP2701147B1 (fr) Lame de calibration
EP1788036B1 (fr) Procédé de réalisation d&#39;agrégats J
JP2015512061A (ja) 陰性造影組成物を用いた多光子硬化方法
JP2007231178A (ja) 光重合性組成物及び光重合方法
Steinberg et al. Use of forbidden singlet–triplet electron transitions in photopolymer material for holographic recording with high intensity nanosecond laser pulses
Boiko et al. Threshold enhancement in two-photon photpolymerization
Vestberg et al. Novel dendrimer-capped Pt-acetylides for optical power limiting
Steinberg et al. Two-photon recording of microholograms in photopolymer materials with new cationic thioxanthone photoinitiators
Peinado et al. Fluorescent probes for monitoring the pulsed‐laser‐induced photocuring of poly (urethane acrylate)‐based adhesives
Forman et al. Materials development for photo-inhibited super-resolution (PINSR) lithography
EP0692740B1 (fr) Procédé et dispositif de fabrication d&#39;un composant optique
FR3099479A1 (fr) Procédé de fabrication d’un objet tridimensionnel, ou de modification de l’état de surface d’un objet préformé, par photo-polymérisation
Glimsdal et al. Photo-physical properties and OPL of some novel thiophenyl Pt (II)-ethynyl derivatives
Sabol et al. Photokinetic study of Irgacure 784 dye in an epoxy resin photopolymer

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230106

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230802

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)