EP4175942A1 - Imines spéciales et leurs produits de départ, et leur utilisation lors du durcissement de résines réactives par polyaddition ou polymérisation radicalaire - Google Patents

Imines spéciales et leurs produits de départ, et leur utilisation lors du durcissement de résines réactives par polyaddition ou polymérisation radicalaire

Info

Publication number
EP4175942A1
EP4175942A1 EP21733107.3A EP21733107A EP4175942A1 EP 4175942 A1 EP4175942 A1 EP 4175942A1 EP 21733107 A EP21733107 A EP 21733107A EP 4175942 A1 EP4175942 A1 EP 4175942A1
Authority
EP
European Patent Office
Prior art keywords
coating
amino
imine
polyoxyalkylene
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21733107.3A
Other languages
German (de)
English (en)
Inventor
Christian Weinelt
Martin Vogel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fischerwerke GmbH and Co KG
Original Assignee
Fischerwerke GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fischerwerke GmbH and Co KG filed Critical Fischerwerke GmbH and Co KG
Publication of EP4175942A1 publication Critical patent/EP4175942A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/02Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of compounds containing imino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/04Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C251/06Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of a saturated carbon skeleton
    • C07C251/08Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of a saturated carbon skeleton being acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3253Polyamines being in latent form
    • C08G18/3256Reaction products of polyamines with aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/346Applications of adhesives in processes or use of adhesives in the form of films or foils for building applications e.g. wrap foil
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2475/00Presence of polyurethane

Definitions

  • the invention relates to a special type of imines which is suitable as part of a curing system for radically polymerizable reactive resins and / or for reactive resins curable by polyaddition in coating and / or adhesive systems.
  • adhesives and coating materials on the market that are based on the one hand on free-radically curable compounds or on the other hand on compounds curable by polyaddition (such as, for example, monomers, oligomers or prepolymers carrying two or more isocyanate groups and / or epoxy groups (per molecule)).
  • the polymerisation (curing) of the adhesives and coating materials mentioned takes place in each case by means of curing systems which, in the first case, comprise free radical initiators and, in the second case, amines bearing two or more amino groups and, if appropriate, further constituents.
  • Imines and their precursors as components of such hardener systems for radically hardenable adhesives are known from WO 2016/206777 A.
  • the object was to provide further synthetic resin systems that can be replaced in a variety of ways in the field of coating and fastening technology, through which (in the case of fastening anchoring means in boreholes) improved properties - in particular increased reactivity compared to previously known and comparable systems and above all improved bond stresses - are obtained.
  • a further object was to provide an imine which is superior in its labeling to the imines commercially available up to now (namely does not require labeling) and with which very good tensile shear strengths are nevertheless obtained for bonds such as beech to beech.
  • these imines can also be used for curing, for example, epoxies or isocyanates for coatings or bonds.
  • the invention relates to an imine as mentioned above, which by reacting the amino-functionalized polyoxyalkylene (i), which in each case has a primary amino group bonded to the terminal oxyalkylene group, with an alkanaldehyde (ii), in particular a C2-Cs-alkanaldehyde, in particular one which is simply branched in the alfa position to the carbonyl group, for example carries a methyl group there.
  • an alkanaldehyde (ii) in particular a C2-Cs-alkanaldehyde, in particular one which is simply branched in the alfa position to the carbonyl group, for example carries a methyl group there.
  • Isobutyraldehyde is particularly preferred.
  • the invention relates to an imine as defined above, characterized in that the amino-functionalized polyoxyalkylene (i) has two terminal 2-aminopropyloxy groups.
  • the invention relates to an imine as defined above, characterized in that the amino-functionalized polyoxyalkylene (i) has the following formula:
  • I and n each independently on average for 1 to 10, preferably 3 to 4, in particular about 3.6; and m is 1 to 50, preferably 8 to 10, in particular about 9, stand .
  • I and n mean approximately 3.6 on average and m approximately 9 on average, with “approximately” preferably meaning a range of variation of ⁇ 0.2, in particular of ⁇ 0.1.
  • the invention relates to an imine as defined in one of the preceding embodiments, characterized in that it is an average Molecular weight of 2000 g / mol or lower, for example 1000 g / mol or lower.
  • a sixth embodiment of the invention relates to an imine as defined in one of the preceding embodiments in a (in particular equilibrium) mixture with its starting materials (i) amino-functional polyoxyalkylene and (ii) ketone and / or (preferably) aldehyde.
  • This variant is an option when it comes to radical curing (as a radical initiator).
  • a seventh embodiment of the invention relates to a mixture of (i) an amino-functional polyoxyalkylene and (ii) an aldehyde and / or ketone, preferably an aldehyde; as each defined in one of the preceding embodiments.
  • An eighth embodiment of the invention relates to a mixture as defined in the preceding paragraph as a component of a coating system or adhesive system (or adhesive).
  • the following initiator system includes:
  • case B in the case of the compounds curable by polyaddition (case B) represents the following constituent: (b2) an imine as defined in one of the preceding embodiments.
  • the invention relates to a coating system or in particular a special adhesive system, including a hardener (initiator system), as described for the ninth embodiment, and as reactive resin either (Aa) a radically polymerizable reactive resin or (Ba) a reactive resin curable by polyaddition, or a mixture of (Aa) and (Ba).
  • a hardener initiator system
  • reactive resin either (Aa) a radically polymerizable reactive resin or (Ba) a reactive resin curable by polyaddition, or a mixture of (Aa) and (Ba).
  • the invention relates to a coating system or, in particular, an adhesive system according to the preceding paragraph, in which the reactive resin is a radically curable reactive resin according to (Aa).
  • a twelfth embodiment of the invention relates to a coating or in particular adhesive system according to the penultimate paragraph, wherein the reactive resin is a reactive resin curable by polyaddition according to (Ba) (as mentioned in the tenth embodiment of the invention), in particular an oligomer containing at least two isocyanate groups and / or prepolymer.
  • the reactive resin is a reactive resin curable by polyaddition according to (Ba) (as mentioned in the tenth embodiment of the invention), in particular an oligomer containing at least two isocyanate groups and / or prepolymer.
  • the invention relates to a coating or in particular special adhesive system according to one of the last three paragraphs in the form of a multi-component, in particular two-component system, which is a reactive resin according to (Aa) or (Ba) and in one component other component includes a hardener according to the tenth embodiment.
  • a fourteenth embodiment of the invention relates to a coating or in particular adhesive system according to the twelfth embodiment in the form of a one-component system, preferably one, in particular in the presence of moisture (water, as such or in an aqueous solution with another solvent or solvent mixture), polyaddition curing lacquer or a polyaddition curing adhesive.
  • the invention relates to the use of an adhesive system as defined in one of the embodiments ten to fourteen
  • a sixteenth embodiment of the invention relates to a use according to the preceding paragraph, variant (b), the subject being a swimming pool, room, bathroom or kitchen accessory or an adapter element for receiving such an accessory; a plate or block, preferably made of metal, glass, plastic, concrete or stone; Fibers, in particular high-modulus fibers, preferably carbon fibers, in particular for reinforcing structures, for example walls, pillars, ceilings or floors; a component such as a plate, a disk or a block, for example made of stone, glass or plastic; or - each designed as a flat mat and as a free material or as a composite material or material - a fleece, a woven fabric, a knitted fabric, a flat material obtained by knitting, a material obtained by tufting, preferably each with high-modulus fibers, for example made of glass fiber , Carbon fiber and / or plastic fiber, in the case of a composite material with a plastic matrix, is to be
  • a seventeenth embodiment of the invention relates to a use according to the preceding paragraph of an adhesive system as defined in one of the embodiments ten to fourteen for gluing an anchoring element in a hole or a recess in the substrate, in particular in a borehole.
  • An eighteenth embodiment of the invention relates to a use after the penultimate paragraph of a coating system as defined in one of the embodiments ten to fourteen for coating a substrate, the substrate preferably being a building substrate.
  • this relates to a method for coating a substrate with a coating system as defined in one of the execution forms ten to fourteen, the coating system, if necessary below or after mixing of components thereof which do not harden on their own, is applied and hardened with polymerization.
  • the invention also relates to the subjects of the invention mentioned in the independent and in particular in the dependent claims, which are here preferably to be regarded as being incorporated into the description by reference.
  • weight information is given in percent (% by weight), unless otherwise stated or evident, it relates to the total mass of the reactants and additives of all components of the coating or adhesive system (liquid or paste-like in the fully formulated state), i.e. without packaging, ie the (weight) mass of the or all of the associated component parts.
  • phrases "with a hydrogen atom on the carbon atom in alpha position to the carbonyl group” means with at least one hydrogen atom on the carbon atom in the alpha position relative to the carbonyl group, preferably with one (1) or two or further three hydrogen atoms, in particular with exactly one hydrogen atom in said Alpha position (on vicinal carbon to carbonyl carbon).
  • a radically curable reactive resin (Aa) is primarily one which comprises a compound containing non-aromatic unsaturated groups (double bonds), preferably a radically curable unsaturated reactive resin with preferably at least 2 or more reactive non-aromatic unsaturated bonds, or a mixture of two or more such reactive resins.
  • Such reactive resins which comprise (radically) curable esters with one or more unsaturated carboxylic acid residues (as described, for example, in DE 102014 103 923 A1); preferably in each case propoxylated or, in particular, ethoxylated aromatic diol, such as bisphenol A, bisphenol F or novolak (especially di) (meth) acrylates; Epoxy (meth) acrylates, especially in the form of reaction products of di- or polyepoxides, for example bisphenol A, bisphenol F or novolak di- and / or poly-glycidyl ethers, with unsaturated carboxylic acids, for example C2-cyalkene carboxylic acids such as, in particular, (meth) acrylic acid; Urethane and / or urea (meth) acrylates - especially urethane (meth) acrylates, which are produced, for example, by reacting di- and / or polyisocyanates (high
  • epoxy (meth) acrylates present or used in particular embodiments of the invention are those of the formula (I) where n stands for a number greater than or equal to 1 (if mixtures of different molecules with different n values are present and are represented by the formula, non-integer numbers are also possible as mean values).
  • propoxylated or, in particular, ethoxylated aromatic diol such as bisphenol A, bisphenol F or novolak (especially di -) (meth) acrylates
  • ethoxylated aromatic diol such as bisphenol A, bisphenol F or novolak (especially di -) (meth) acrylates
  • a and b each independently represent a number greater than or equal to 0 with the proviso that preferably at least one of the values is greater than 0, preferably both are 1 or greater (if mixtures of different molecules with different (a and b) values present and represented by the formula, non-integer numbers are also possible as mean values), or in the case of the propoxylated compounds with branched or unbranched oxypropylene groups instead of O-CH2-CH2- in the above formula.
  • urethane (meth) acrylates present or used in other special and preferred embodiments of the invention in free-radically curable synthetic resins based on urethane methacrylate (“vinyl ester urethanes”) in coating or adhesive systems according to the invention are those which, on the one hand, result from the reaction of a pre-extended monomeric di- or polyisocyanate and / or, on the other hand, result from the reaction of a polymeric di- or polyisocyanate (eg: PMDI, MDI) with hydroxyalkyl (meth) acrylate, such as hydroxyethyl or hydroxypropyl (meth) acrylate.
  • a polymeric di- or polyisocyanate eg: PMDI, MDI
  • hydroxyalkyl (meth) acrylate such as hydroxyethyl or hydroxypropyl (meth) acrylate.
  • a particular embodiment relates to those urethane (meth) acrylate resins which are produced by the method briefly outlined below or as described in the examples:
  • U (M) A resins urethane (meth) acrylate resins
  • U (M) A resins urethane (meth) acrylate resins
  • U (M ) A resin is an isocyanate with an average functionality of 2 or lower or in particular more than 2 (which can also be achieved by mixing isocyanates with a functionality below two can be achieved with isocyanates having a functionality greater than 2), for example from 2.0 or in particular 2.1 to 5, for example from 2.2 to 4, advantageously for example from 2.3 to 3.5, with at least one CC Double bond (non-conjugated - olefinic bond) with aliphatic alcohol, in particular a hydroxyalkyl (meth) acrylate, preferably hydroxy-lower alkyl (meth) acrylate, such as hydroxyethyl (meth) acrylate, hydroxybutyl (meth)
  • HPMA The technically available HPMA is to be seen as a mixture of 2-hydroxypropyl methacrylate and hydroxyisopropyl methacrylate - other aliphatic alcohols containing an olefinic bond can also be present as technical isomer mixtures or as pure isomers.
  • HPMA When using an excess of HPMA, the excess HPMA can also act as a reactive thinner.
  • An isocyanate with an average functionality of less than 2 or 2 or in particular more than 2, for example from 2.1 to 5, for example from 2.2 to 4, advantageously for example from 2.3 to 3.5, is for example a polyisocyanate with uretdione, isocyanurate, iminooxadiazinone, uretonimine, biuret, allophanate and / or carbodiimide structures (advantageously with a molecular weight distribution such that no single molecular species is more than 50 percent by weight and at the same time more than 50 Percentage by weight of the chains are composed of at least 3 + 1 covalently bound monomer units / reactants (see precise polymer definition according to REACH)) or preferably one (e.g.
  • crude MDI crude product of the industrial production of MDI without separation of the individual isomers, e.g. by distillation
  • (ie containing) several isomers and higher-functional homologues and, for example, an average molecular weight in the order of 200 to 800 g / mol and a functionality as indicated above, for example with an average molecular weight of 280 to 500, for example 310 to 480 and a functionality of 2.4 to 3.4, for example 3.2.
  • PMDIs are preferred which are obtained from the crude MDI itself or from the crude MDI, for example by distilling off and / or adding monomeric MDI and have an average molecular weight of 310-450 and also uretdione, isocyanurate, iminooxadiazinone , Uretonimine, biuret, allo phanate and / or carbodiimide structures can include.
  • PMDI with a molecular weight distribution such that no individual molecular species is present at more than 50% by weight is particularly preferred.
  • Frctionality is to be understood as the number of isocyanate groups per molecule, in the case of diphenylmethane diisocyanate this functionality is (essentially, ie apart from deviations due to contamination) 2, the PMDI is a (usually specified by the manufacturer) average functionality according to the formula
  • urethane (meth) acrylate resins takes place preferably in the presence of a catalyst, corresponding catalysts which catalyze the reaction between hydroxyl groups and isocyanate groups are sufficiently known to the person skilled in the art, for example a tertiary amine, such as 1,2- Dimethylimidazole, diazabicyclooctane, diazabicyclononane, or an organometallic compound (for example from K, Sn, Pb, Bi, Al and in particular also from transition metals such as Ti, Zr, Fe, Zn, Cu); as well as mixtures of two or more thereof; for example (based on the reaction mixture) in a proportion of 0.001 to 2.5% by weight; preferably in the presence of stabilizers (inhibitors), such as, for example, phenothiazine, TEMPO, TEMPOL, hydroquinone, dimethylhydroquinone, tert-butyl hydroquinone, hydroquinone monoeth
  • stabilizers
  • Suitable catalysts and stabilizers are known to the person skilled in the art, for example such as from “Polyurethane Kunststoff-Handbuch 7” by Becker, GW; Braun, D .; Oertel, G., 3rd edition, Carl Hanser Verlag, 1993, can be seen.
  • the reaction can be carried out without a solvent (the aliphatic alcohol having at least one CC double bond, in particular the hydroxy (lower) alkyl (meth) acrylate itself, then serves as the solvent) or in the presence of a suitable solvent, for example another reactive diluent.
  • “Reactive” here refers to the formulation of the adhesive and its hardening, not to the addition of the alcohol to the isocyanate.
  • the reaction can also be carried out in such a way that a prepolymer is formed via a pre-extension and only then the remaining isocyanate groups with the aliphatic alcohol having at least one CC double bond, in particular the hydroxy (lower) alkyl (meth) acrylate, as above or implemented as described below.
  • the above-mentioned isocyanates and polyols with two or more hydroxyl groups per molecule and / or polyamines with two or more amino groups per molecule or amino groups with two or more more amino and hydroxyl groups per molecule are used, or isocyanates with a functionality of 2 with polyols, polyamines or aminos with an average OH and / or amino functionality of more than 2 are used.
  • Polyols are in particular two- or higher-functional alcohols, for example secondary products of ethylene or propylene oxide, such as ethanediol, di- or triethylene glycol, propane-1,2- or 1-3-diol, Dipropylene glycol, other diols such as 1,2-, 1,3- or 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, 2-ethylpropane-1,3-diol or 2,2-bis (4-hydroxycyclohexyl) propane, triethanolamine, bisphenol A or bisphenol F or their oxyethylation, hydrogenation and / or halogenation products, higher alcohols, such as glycerol, trimethylolpropane, hexanetriol and pentaerythritol, hydroxyl-containing polyethers, for example oligomers of aliphatic or aromatic oxiranes and
  • hydroxyl compounds with aromatic structural units which cause chain stiffening such as fumaric acid, or branched or star-shaped hydroxy compounds, in particular three- or. higher functional alcohols and / or polyethers or polyesters which contain their structural units.
  • Lower alkanediols give divalent radicals -O-lower alkylene-O-) are particularly preferred.
  • Aminoies are compounds which in particular contain one or more hydroxyl and one or more amino groups in one and the same molecule.
  • Preferred examples are aliphatic amino acids, in particular hydroxy lower alkylamines (result in radicals -NH-lower alkylene-O- or -O-lower alkylene-NH-), such as ethanolamine, diethanolamine or 3-aminopropanol, or aromatic amino acids, such as 2-, 3- or 4- Aminophenol.
  • Polyamines are organic amino compounds containing 2 or more amino groups, especially hydrazine, N, N '-Dimethylhydrazin, aliphatic diamines or polyamines, in particular Niederalkandiamine (yield radicals -NH-lower alkyl-NH-) such as ethylenediamine, 1,3-diaminopropane, tetra- or hexamethylenediamine or diethylenetriamine, or aromatic di- or polyamines, such as phenylenediamine, 2,4- and 2,6-toluenediamine, or 4,4'-diaminodiphenylmethane, polyether diamines (polyethylene oxides having terminal amino groups) or Polyphenyl / polymethylene polyamines, which can be obtained by condensing anilines with formaldehyde.
  • Niederalkandiamine yield radicals -NH-lower alkyl-NH-
  • ethylenediamine 1,3-diaminopropane
  • the ratio of free isocyanate groups of the isocyanate (s) to hydroxyl groups of the hydroxy lower alkyl (meth) acrylate (s) is advantageously selected such that the isocyanate groups are converted rapidly and completely, i.e. the molar amount of the hydroxyl groups (and thus the correlated molar amount of hydroxy lower alkyl (meth) acrylate) is greater than the molar amount of isocyanate groups, for example 1.03 to 5 times as large, such as 1.05 to 4 times as large or 1.1 to 3 times as large. Excess hydroxy lower alkyl (meth) acrylate serves as a reactive diluent.
  • the U (M) A resins obtainable by means of the process are those which represent urethane (meth) acrylate resins which can be used or are present according to the invention as reactive resins based on urethane (meth) acrylate.
  • the coating and adhesive systems according to the invention can, in addition to the constituents mentioned above, also contain other customary constituents (for example additives or other constituents mentioned above or below). These further constituents can, for example, be present in a total amount of up to 80, preferably between 0.01 and 65% by weight. Such customary components are also possible where “on the basis” is not expressly mentioned.
  • the only preferred synthetic resin is free-radically curable (Reactive resin) a urethane methacrylate or in particular a (meth) acrylate as described above is present.
  • Examples of further ingredients (additives) of reactive resins in coating or adhesive systems with radically polymerizable reactive resins, in particular urethane (meth) acrylates or compounds of the formula (II), or coating and adhesive systems containing these are metal salt-based or preferably amine accelerators , Inhibitors, non-reactive thinners, reactive thinners, thixotropic agents, fillers and / or other additives, or mixtures of two or more of these ingredients.
  • aminic accelerators those with sufficiently high activity come into question, such as in particular (preferably tertiary, in particular hydroxyalkylamino group-substituted) aromatic amines selected from the group consisting of epoxyalkylated anilines, toluidines or xylidines, such as ethoxylated or propoxylated toluidine, aniline or xylidine, for example N, N-bis (hydroxypropyl- or hydroxyethyl) -toluidines or dipropoxy-p-toluidine or -xylidines, such as N, N-bis (hydroxypropyl- or hydroxyethyl) -p-toluidine, N, N-bis (hydroxyethyl) -xylidine and very particularly corresponding more highly alkoxylated technical products are selected.
  • One or more such accelerators are possible.
  • the accelerators preferably have a proportion (concentration) of 0.005 to 10, in particular 0.1 to 5% by weight.
  • Non-phenolic (anaerobic) and / or phenolic inhibitors can be added as inhibitors.
  • Phenolic inhibitors come (non-alkylated or alkylated) hydroquinones, such as hydroquinone, and also mono-, di- or trimethylhydroquinone, (non-alkylated or alkylated) phenols, such as 4,4 'methylene-bis-di-tert 3.5 (2,6-di-tert-butylphenol), 1, 3,5-t rimethyl-2,4,6-tris ( -butyl-4-hydroxy- , benzyl) -benzene, (non-alkylated or alkylated) pyrocatechols such as tert-butylpyrocatechol, 3,5-di-tert-butyl-1,2-benzene diol, or mixtures of two or more thereof, in question. These preferably have a proportion of up to 1% by weight, in particular if present between 0.0001
  • Preferred non-phenolic or anaerobic (ie, in contrast to the phenolic inhibitors, also effective without oxygen) inhibitors are phenothiazine or organic nitroxyl radicals into consideration.
  • Organic nitroxyl radicals that can be added are, for example, those described in DE 199 56509, which is incorporated herein by reference in particular with regard to the compounds mentioned therein, in particular 1-oxyl-2,2,6,6-tetramethylpiperidine-4 -ol ("4-OH-TEMPO" or "TEMPOL").
  • the weight fraction of the non-phenolic inhibitors is preferably, based on the reaction resin formulation, in the range from 1 ppm (weight based) to 2% by weight, in particular, for example, in the range from 5 ppm to 1% by weight.
  • non-reactive diluents for example, vegetable oils, such as castor oil, or also bioalcohols and fatty acids and their esters, or mixtures of two or more thereof, for example in a proportion of 3 to 60% by weight, for example from 4 to 55% by weight, can be added. -%.
  • Customary rheological aids that cause thixotropy can be used as thixotropic agents, such as fumed silica or (e.g. with silanes) surface-treated silica.
  • thixotropic agents such as fumed silica or (e.g. with silanes) surface-treated silica.
  • they can be added in a weight proportion of from 0.01 to 50% by weight, for example from 0.5 to 20% by weight.
  • Usual fillers with a larger medium grain size in particular chalk, gypsum, quicklime, sand, such as quartz sand, quartz flour, corundum, glass (also as hollow spheres), porcelain, ceramics, silicates, clays or barite, which are available as powder in granular form or in Can be added in the form of molded bodies, or others, such as kernel meal or shell meal from plants, which increases the biogenic carbon content, such as olive meal, coconut shell meal or walnut shell meal, or mixtures of two or more thereof, the fillers also or in particular can also be silanized.
  • chalk, gypsum, quicklime, sand such as quartz sand, quartz flour, corundum, glass (also as hollow spheres), porcelain, ceramics, silicates, clays or barite, which are available as powder in granular form or in Can be added in the form of molded bodies, or others, such as kernel meal or shell meal from plants, which increases the biogenic carbon content, such as olive meal, coconut
  • the fillers can be present in one or more components of a multi-component synthetic resin fastening system according to the invention, for example one or both components of a corresponding two-component kit; the proportion of fillers is preferably 0 to 90% by weight, for example 10 to 50% by weight (whereby the covering material destroyed when anchoring elements are introduced (e.g. shattered glass or shattered plastic), for example shards from cartridges, are also included as fillers can).
  • hydraulically hardenable fillers such as gypsum, quicklime or cement (eg clay or Portland cement), water glasses or active aluminum hydroxides, or two or more thereof, can also be added.
  • Fillers can be contained in one or, in the case of multi-component compositions, in several components of a synthetic resin fastening system according to the invention, for example in the form of a multi-component kit (in particular two-component kit).
  • Their proportion is preferably 0 to 80% by weight, in particular 5 to 80, for example 40 to 70% by weight.
  • Further additives can also be added, such as non-reactive diluents, flexibilizers, stabilizers, rheological aids, wetting and dispersing agents, coloring additives such as dyes or especially pigments, for example for different coloring of the components for better control of their mixing, or also plasticizers, or Mixtures of two or more of them.
  • Such further additives can preferably be added in total in proportions by weight of a total of 0 to 90%, for example from 0 to 40% by weight.
  • One or more radically hardening unsaturated reactive thinners in biogenic or non-biogenic form can be added as “reactive thinners”, which are primarily to be understood as those that are organic as free-radically hardening (which includes “hardenable (e.g. before addition of hardener”) components) Contain compounds with unsaturated (e.g. olefinic) radicals or in particular consist of such compounds, e.g.
  • (meth) acrylate or (meth) acrylamide monomers such as acrylic acid and / or methacrylic acid or preferably their esters (referred to as (meth) acrylates) or amides
  • (meth) acrylates such as mono-, di-, tri- or poly (meth) acrylates (including hydroxy-lower alkyl (meth) acrylates, which are also obtained from the U (M)
  • a resin production according to the invention even in excess as reactive diluents can be included, such as hydroxypropyl (meth) acrylate or hydroxyethyl (meth) acrylate, alkyl (meth) acrylates with 1 to 10 (meth) acrylate groups, such as mono-, di-, tr i-, tetra-, penta-, hexa- or poly (meth) acrylates, e.g.
  • alkyl di or tri (meth) acrylates such as 1,2-ethanediol di (meth) acrylate, butanediol di (meth) acrylate, such as 1,3- or in particular 1,4-butanediol di (meth) acrylate, hexanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, diethyl glycol di (meth) acrylate, particularly preferably oligoalkylene glycol di (meth) acrylates, as in DE 102014 109355 A1, which is incorporated herein by reference, trimethylolpropane tri (meth) acrylate, glycerol tri (meth) acrylate, polyglycerol poly (meth) acrylate, polyethylene glycol di (meth) acrylate, the reaction product of the acylation of glycerol formal (an equilibrium mixture of 5 -Hydroxy-1,
  • the free-radically curable oligoalkylene glycol di (meth) acrylates mentioned are in particular those of the formula I, in which the radicals R independently of one another represent C CyAlkyl, in particular methyl, and in which n is on average from 2.5 to 13, preferably from 3.5 to 10, in particular from 4 to 8 and especially from 4.2 to 7, in particular stands for 4,5 and 6.
  • the curable components (including reactive resin and the associated hardener (hardener component) according to the invention) of a coating or adhesive system according to the invention are stored separately from one another in a two- or further multi-component system or kit before they are used are mixed with one another at the desired location (for example at or in a hole or gap, such as a borehole).
  • a multicomponent system is in particular a two- or (further) multicomponent kit (preferably a two-component kit) comprising one (or in the case of the two-component system consisting of one) component (K1) which contains one or more reactive resins, as described above and below, and the respective associated hardener as component (K2) as defined above and below, whereby further additives can be provided in one or both of the components, preferably a two- or further multi-chamber device, to be understood in which the mutually reactive components (K1) and (K2 ) and, if necessary, further separate components are contained in such a way that their components do not come into contact with each other during storage before use, but this allows components (K1) and (K2) and possibly other components to be attached to the desired location , for example directly in front of or in a hole, to be mixed and requiredfa lls to be brought in so that the hardening reaction can take place there.
  • K1 which contains one or more reactive resins, as described above and below
  • K2
  • Cartridges are also suitable, for example cartridges nested in one another, such as ampoules; as well as in particular multi-component or in particular two-component cartridges (which are also particularly preferred), in whose chambers the several or preferably two components (in particular (K1) and (K2)) of the coating or adhesive system according to the invention with compositions mentioned above and below for storage are included before use, a static mixer preferably also belonging to the corresponding kit.
  • the chambers of the multi-component or, in particular, two-component cartridges can be constructed purely from plastics or as foil bags (in particular multilayer foil bags).
  • Plastics can be used as the material for a film bag that can be used according to the invention, such as compostable plastics, e.g. based on starch, polyester, polyesteramides, polyurethanes, polyvinyl alcohols, cellulose, lignocellulose, polylactic acid, polyhydroxyalkanoates, or mixtures of two or more such materials. Preference is given to materials impermeable to water, moisture and water vapor, in particular those which are metallized (e.g. by vapor deposition) and / or are composite foils made from a plastic and a metal, in particular aluminum, foil.
  • compostable plastics e.g. based on starch, polyester, polyesteramides, polyurethanes, polyvinyl alcohols, cellulose, lignocellulose, polylactic acid, polyhydroxyalkanoates, or mixtures of two or more such materials.
  • the coating or adhesive systems according to the invention can comprise, as synthetic resin, those which contain compounds curable by polyaddition (Ba), especially those which (preferably per molecule contain at least an average of two or more epoxy groups (Ba1) or in particular isocyanate groups (Ba2). It is assumed, without this assumption being binding, that upon contact with moisture, for example in aqueous solvents or with atmospheric humidity, imines according to the invention are split into the associated amines and ketones or aldehydes with absorption of water, the amino groups then react with reaction with the epoxy or isocyanato groups with polyaddition.
  • the hardeners and imines according to the invention can also be included or used for hardening compounds curable by polyaddition such as synthetic resins (Ba2) containing isocyanate groups in particular, and in particular in coating or adhesive systems according to the invention.
  • the reactive synthetic resins based on epoxy (Ba1) (reactive synthetic resins with epoxy groups) that can be used in coating or adhesive systems used according to the invention contain, as epoxy components, those based on glycidyl compounds, for example those with an average glycidyl group functionality of 1.5 or greater, in particular of 2 or greater, for example from 2 to 10, which can optionally contain further glycidyl ethers as reactive diluents.
  • the epoxides of the epoxy component are preferably poly (including di) glycidyl ethers of at least one polyhydric alcohol or phenol, such as novolak, bisphenol F or bisphenol A, or mixtures of such epoxides, for example obtainable by reacting the corresponding polyhydric alcohols with Epichlorohydrin.
  • polyhydric alcohol or phenol such as novolak, bisphenol F or bisphenol A
  • Examples are trimethylolpropane triglycidyl ether, novolak epoxy resins, bisphenol A epichlorohydrin resins and / or bisphenol F epichlorohydrin resins, for example with an average molecular weight of ⁇ 2000 Da.
  • the epoxy resins can, for example, have an epoxy equivalent of 120 to 2000, preferably 150 to 400, such as in particular 155 to 195, for example 165 to 185.
  • the proportion of the total mass of the reactants and additives of the injection synthetic mortar system is preferably 5 to less than 100% by weight, in particular 10 to 80% by weight, 10 to 70% by weight or 10 to 60% by weight. Mixtures of two or more such epoxy components are also possible.
  • Suitable epoxy resins, reactive thinners and hardeners can also be found in the standard work by Lee H and Neville K, "Handbook of Epoxy Resins" (New. York: McGraw-Hill), 1982 (these compounds are incorporated herein by reference).
  • the reactive synthetic resins which can be used in the coating or adhesive systems used according to the invention and which contain isocyanate groups (Ba2) are preferably those in which the isocyanates are defined as above for an “isocyanate with an average functionality of 2 or more than 2”. Particularly preferred are those reactive resins which meet the REACH condition as defined above, and some contain a low content of the monomeric isocyanate groups to be avoided as far as possible, including prepolymers.
  • Isocyanate prepolymers according to the invention or to be used according to the invention are, in particular, by reaction with polyols with polyfunctional, in particular di-functional isocyanates (“monomers”, which have a production-related residual content (e.g. 5% by weight or less, in particular 1% by weight) .-% or less) of oligomers) such as, for example, MDI, particularly preferably TDI which can be or are produced.
  • monomers which have a production-related residual content (e.g. 5% by weight or less, in particular 1% by weight) .-% or less) of oligomers)
  • MDI particularly preferably TDI which can be or are produced.
  • polyols used here are polyols, in particular difunctional polyols such as polyester polyols or, particularly preferably, polyalkylene glycol polyols such as polyethylene glycol, polypropylene glycol or polytetramethylene glycol polyols.
  • the isocyanate prepolymers can preferably be prepared or in particular prepared by reacting the polyols with a molar excess of isocyanates, in a molar ratio of NCO: OH groups of preferably 1.2 to 3: 1, particularly preferably close to 2: 1, thereafter Distilling off excess isocyanate monomers to a content of ⁇ 1%, for example 0.5% and very particularly preferably ⁇ 0.1%, for example by high vacuum or thin-film distillation.
  • the reaction preferably takes place (as a further distinction to the multi-stage reaction in DE 10055 786 A1) in one reaction stage without further reaction, ie the reaction product “isocyanate prepolymer” is not (with prior removal of residual isocyanate monomers still present) in a second Reaction of some of the isocyanate groups still present with di- or polyol to form a further prepolymer with fewer isocyanate groups.
  • compositions or additives for a component comprising epoxy or isocyanate groups containing reactive resin (Ba) and the hardener component are in particular accelerators, inhibitors, stabilizers, reactive thinners, thixotropic agents, fillers and other additives.
  • Suitable accelerators are those with a sufficiently high activity, such as heavy metal salts, organic tin, titanium, bismuth and antimony compounds or the like; or (especially in the case of reactive hearts containing epoxy groups) amine accelerators.
  • One or more such accelerators are possible.
  • the accelerators preferably have a proportion (concentration) of 0.005 to 10, in particular 0.1 to 5% by weight.
  • DABCO 1,4-diazabicyclo [2.2.2] octane
  • dibutyltin dilaurate or DBU are particularly preferred.
  • HALS stabilizers as described in “Polyurethane, Kunststoff Handbuch”, Chapter 3.4.8 Antioxidants, p. 121, 3rd edition, 1993, ed. Gerhard W.
  • the proportion by weight of the stabilizers is preferably in the range from 0.1 ppm to 2% by weight, preferably in the range from 1 ppm to 1% by weight.
  • Customary rheological aids which cause thixotropy can be used as thixotropic agents, such as pyrogenic silica (if necessary surface-treated with hydrophobization) or hydrogenated (solid at room temperature) or modified castor oils.
  • thixotropic agents such as pyrogenic silica (if necessary surface-treated with hydrophobization) or hydrogenated (solid at room temperature) or modified castor oils.
  • they can be added in a weight proportion of from 0.01 to 50% by weight, for example from 1 to 20% by weight.
  • Customary fillers in particular cements (e.g. Portland cements or high-alumina cements), chalks, sand, quartz sand, aluminum silicates, quartz flour or the like, which can be added as powder, in granular form or in the form of shaped bodies, are used as fillers, or others, such as mentioned in WO 02/079341 and WO 02/079293 (which are hereby incorporated by reference in this regard), or mixtures thereof, wherein the fillers can furthermore or in particular also be silanized.
  • the fillers can be present in one or more components of an adhesive system according to the invention, for example one or both components of a corresponding two-component kit.
  • hydraulically hardenable fillers such as gypsum (e.g. anhydrite), quicklime or cement (e.g. high alumina or Portland cement), water glasses or active aluminum hydroxides, or two or more of them, can be added as fillers.
  • the fillers can be in any form, for example as powder or flour, or as shaped bodies, for example in cylindrical, ring, spherical, hollow spherical, platelet, rod, saddle or crystal form, or also in fiber form, and the corresponding base particles preferably have a maximum diameter of 0.0001 to 10 mm.
  • the proportion of fillers is preferably 0 to 90% by weight, for example 10 to 90% by weight.
  • additives can also be added, such as drying agents (e.g. zeolite) to increase the storage stability of the moisture-sensitive component, plasticizers such as phthalic or sebacic acid esters, non-reactive diluents (e.g. solvents such as lower alkyl ketones, e.g. acetone, di-lower alkyl-lower alkanoylamides , how Dimethylacetamide, lower alkylbenzenes, such as xylenes or toluene, or paraffins, or water), flexibilizers, stabilizers, rheological aids, wetting agents, pigments or dyes, or mixtures of two or more of these additives, or the like.
  • drying agents e.g. zeolite
  • plasticizers such as phthalic or sebacic acid esters
  • non-reactive diluents e.g. solvents such as lower alkyl ketones, e.g. acetone, di-lower al
  • radical-forming peroxides for example organic peroxides such as diacyl peroxides, for example dibenzoyl peroxide, ketone peroxides such as methyl ethyl ketone peroxide or cyclohexanone peroxide, or alkyl peresters such as tert-butyl perbenzoate, Inorganic peroxides such as persulfates or perborates, azides, azo compounds or photoinitiators are added, ie the subject matter of the invention manages without such compounds (they are free of them). It cannot be ruled out that occasional peroxides arise incidentally during storage or the reaction (for example also through reaction with atmospheric oxygen), but there is no intentional active addition "from outside”.
  • radical-forming peroxides for example organic peroxides such as diacyl peroxides, for example dibenzoyl peroxide, ketone peroxides such as methyl ethyl ketone peroxide or cyclohexanone per
  • the hardener for a free-radically polymerizing system consists of an initiator system comprising
  • the hardener (b2) contains an imine as defined in one of the preceding embodiments.
  • aldehydes, ketones, amines, aldimines or ketimines contained or used according to the invention are known or can be prepared / obtainable by processes known per se or are preferably obtained thereafter, see also WO 2016/206777 A1 in this regard.
  • an amino-functionalized polyoxyalkylene whose polyoxyalkylene chains are a copolymer of oxyethylene and oxypropylene units, it is preferably either one where the oxyethylene and oxypropylene (which in particular is 2-methyl- oxyethylene means) randomly distributed in the polyoxyalkylene chain and / or as blocks. It is particularly preferred to use compounds with a poly (oxyethylene) portion which is bound with oligo (propyleneoxy) radicals (in particular oligo (2-methyl) at both ends - ethyleneoxy) and is "endcapped" at the outer chain ends with a primary amino group.
  • the aldehydes and / or ketones are compounds which have at least one or more (primary and / or secondary) hydrogen atoms on the a-carbon atom to the carbonyl group.
  • Aldehydes are preferred over ketones. Examples of such aldehydes are propanal, valeraldehyde, isovaleraldehyde, or methoxyacetaldehyde, or 3,7-dimethyl-6-octenal (citronellal) or 3,7-dimethyl-7-hydroxyoctanal (hydroxycitronellal).
  • methyl isobutyl ketone, acetone, or methyl ethyl ketone or 6-methyl-5-hepten-2-one may also be mentioned here by way of example.
  • the aldehydes (which are preferred over ketones) and / or ketones are particularly preferably compounds which have a double bond and / or branch on the a-carbon atom to the carbonyl group.
  • the particularly preferred aldehydes and / or ketones only have one (tertiary) hydrogen atom on the a-carbon atom attached to the carbonyl group.
  • aldehydes are isobutyraldehyde (very particularly preferred), 2-ethylhexanal, 2-methylbutanal, 2-ethylbutanal, 2-methylvaleraldehyde, 2,3-dimethylvaleraldehyde, cyclohexylcarboxaldehyde, or 3,7-dimethyl-2,6-octadienal (Citral ), 3- (4-tert-butylphenyl) -2-methylpropanal (Lilial, Lysmeral), tetrahydrofuran-3-carboxaldehyde, tetrahydro-2-furancarboxaldehyde, 4-formyltetrahydropyran, tetrahydro-2H-pyran-2-carbaldehyde or tetrahydropyran -3-carbaldehyde.
  • isobutyraldehyde very particularly preferred
  • 2-ethylhexanal 2-methylbutanal
  • ketones are, for example, diisopropyl ketone, 3-methyl-2-pentanone, 2-methylcyclohexanone or ⁇ -ionones.
  • the ingredients used in the activators in the form of a metal salt are preferably one or more metal salts or in particular one or more salts of organic and / or inorganic acids with metals, e.g. selected from copper and iron , Vanadium, manganese, cerium, cobalt, zirconium, or bismuth, or mixtures of two or more thereof.
  • the metal salts are selected from the group consisting of vanadium, iron, manganese and copper, in particular in the form of salts or complexes with inorganic acid residues, such as sulfate and / or carbonate residues and / or organic acid residues, for example carboxylate residues -
  • the organic acids are preferably saturated - such as carboxylates with CH 3 , C2-C2o-alkyl, a C6-C24-aryl radical or CyCso-aralkyl radical, for example octoate, for example 2-ethylhexanoate (isooctanoate), neodecanoate, or acetylacetonate.
  • Manganese carboxylates such as Mn acetate or Mn octoate, copper carbonates such as copper octoate or copper naphthenate, copper quinolates, iron carboxylates such as iron octoate and / or vanadium carboxylates and / or the group of metal salts with inorganic acids, which for example iron chloride, iron sulfate, are particularly preferred , Copper sulfate and copper chloride includes.
  • Such activators are known or can be prepared by processes known per se and are preferably present in a proportion of 0.01 to 20, for example 0.1 to 5% by weight.
  • the proportion of imine in a possible preferred embodiment of the invention in the case of radical polymerization is 0.5 to 90% by weight, in particular 0.9 to 30% by weight, in the case of polymerization by polyaddition at 5 to 95% by weight, preferably at 10 to 80% by weight.
  • the total proportion of the hardener in a coating or adhesive system according to the invention is preferably in a range from 1 to 60% by weight, e.g. 2 to 50% by weight.
  • Anchoring elements when used without a drill hole or gap (which also includes a “recess”), are elements to be fastened over a large area, such as adapters etc. (such as columns) are those made of metal, such as undercut anchors, threaded rods, screws, drill anchors, bolts or the like, and it can also be nails or other pin-shaped connecting elements. Parameters, insofar as they are mentioned in the context of the present application, are determined by methods known to the person skilled in the art, in particular as described in the examples.
  • the respective unmarked components of the model formulations are mixed beforehand. Polymerization is triggered by adding and mixing in the component marked with an “x”.
  • the gel time is determined manually with a commercially available stopwatch and a commercially available thermometer at room temperature (approx. 23 ° C). For this purpose, all components are mixed and the temperature of the sample is measured immediately after mixing. The sample itself is in a plastic beaker. The evaluation is based on DIN 16945 (1989-03). The gel time is the time it takes for the temperature to rise above 35 ° C. This corresponds to a temperature increase of approx. 10 K.
  • drill holes are made in a horizontal concrete test body (concrete type C20 / 25) with a hammer drill.
  • the drill holes are cleaned with a hand blower and a hand brush.
  • the boreholes are then filled to two thirds with the respective hardenable compound to be tested for fastening purposes.
  • a threaded rod is pressed in by hand for each borehole.
  • the excess mortar is removed with a spatula. After 1 hour at room temperature, the threaded rod is pulled until failure while measuring the failure load.
  • the surfaces to be bonded can be exposed to the mixture from the adhesive system over the entire common area or only in certain areas.
  • Example 1 General Working Instructions I: Synthesis of Aldimines The respective amine is placed in a round bottom flask. The aldehyde is slowly added from a dropping funnel with vigorous stirring, the mixture heating up. For the use of the aldimine according to the invention as an initiator, the volatile constituents do not have to be removed. The resulting water of reaction separates from the aldimine depending on the amine used (“hydrophobic” amines). The residual water remaining in the aldimine does not interfere with the use as an initiator. When using “hydrophilic” amines, there is no phase separation. For use as a hardener for polyaddition-curable reactive resins, the volatile constituents are removed by distillation under reduced pressure.
  • the aldimine is also dried over a molecular sieve.
  • the aldehyde can also be initially charged and the amine added dropwise.
  • the conversion freedom from carbonyl or imine groups detectable by IR spectroscopy is checked by means of FT-IR.
  • Example 3 Determination of the gel times of the aldimine according to the invention in comparison to VPLS2142 with radical starter b2)
  • aldimine according to the invention as a hardener system imine-metal salt for cold-curing vinyl ester resins compared to commercially available aldimines and ketimines, example formulations with the above-described resin formulation I and various metal salts are created.
  • the aldimine according to the invention made from isobutyraldehyde in a mixture with Jeffamine ED600 is used as a free-radical initiator.
  • the commercially available aldimine (CSTICO®phen VP LS 2142) consists of isobutyraldehyde and Isophoronediamine and the sample ketimine (Desmophen VPLS2965A) consist of methyl isobutyl ketone and isophoronediamine.
  • the following table 3 lists the gel times and the maximum temperatures reached during the polymerizations:
  • Example 4 Gel times of the amine according to the invention with radical initiators b1) and varying metal salts
  • gel times are determined using radical starters b1) in combination with varying metal salts.
  • a pure polyoxypropylenediamine (D230) is used as a comparison amine in order to reinforce the above-mentioned theory.
  • Example formulations are produced with resin formulation I and various metal salts. Table 4 below shows the gel times and the maximum temperatures reached during the curing reactions.
  • Table 4 shows that the aldimine or amine according to the invention, which is a copolymer of oxyethylene and oxypropylene units, triggers significantly more exothermic and faster polymerizations. Here, too, equimolar amounts of imine are used.
  • Table 4 shows that radical initiators b1) in combination with metal salts also trigger polymerizations of unsaturated reactive resins at room temperature.
  • Table 5 Formulations in% by weight for carrying out setting tests and determined bond stresses with radical starters b2) x added as a hardening trigger
  • the starting materials of the aldimines can be assigned accordingly on the basis of the abbreviations used in the designations and the abovementioned Table 1 for abbreviations.
  • Table 5 shows that the copolymer structure of the aldimine or amine according to the invention from oxyethylene and oxypropylene units leads to higher bond stresses in direct comparison with pure oxypropylene (D230) and oxyethylene (EDR148) aldimines or amines.
  • Example 6 Tensile shear strengths of the aldimine according to the invention (b2) with polyaddition-curable reactive resins (Ba2)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Paints Or Removers (AREA)

Abstract

L'invention concerne une imine, pouvant être obtenue par réaction (i) d'un polyoxyalkylène fonctionalisé par amino, les chaînes de polyoxyalkylène étant un copolymère qui est constitué d'unités oxyéthylène et oxypropylène, et ces chaînes de polyoxyalkylène portent (de préférence par molécule deux terminaisons) des groupes amino primaires, et (ii) d'une cétone et/ou d'un aldéhyde avec un atome d'hydrogène au niveau de l'atome de carbone en position alpha par rapport au carbone carbonyle. L'invention concerne également diverses inventions basées sur celle-ci, en particulier concernant des systèmes de revêtement ou d'adhésif.
EP21733107.3A 2020-07-02 2021-06-14 Imines spéciales et leurs produits de départ, et leur utilisation lors du durcissement de résines réactives par polyaddition ou polymérisation radicalaire Pending EP4175942A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102020117416 2020-07-02
DE102021114890.1A DE102021114890A1 (de) 2020-07-02 2021-06-09 Spezielle Imine und ihre Edukte, sowie Verwendung bei der Härtung von Reaktivharzen durch Polyaddition oder radikalische Polymerisation
PCT/EP2021/065917 WO2022002567A1 (fr) 2020-07-02 2021-06-14 Imines spéciales et leurs produits de départ, et leur utilisation lors du durcissement de résines réactives par polyaddition ou polymérisation radicalaire

Publications (1)

Publication Number Publication Date
EP4175942A1 true EP4175942A1 (fr) 2023-05-10

Family

ID=79019731

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21733107.3A Pending EP4175942A1 (fr) 2020-07-02 2021-06-14 Imines spéciales et leurs produits de départ, et leur utilisation lors du durcissement de résines réactives par polyaddition ou polymérisation radicalaire

Country Status (4)

Country Link
US (1) US20230323008A1 (fr)
EP (1) EP4175942A1 (fr)
DE (1) DE102021114890A1 (fr)
WO (1) WO2022002567A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11849791B1 (en) * 2022-06-30 2023-12-26 Createme Technologies Inc. Methods of assembling apparel products having imine adhesives
WO2024099783A1 (fr) 2022-11-10 2024-05-16 Fischerwerke Gmbh & Co. Kg Mortier haute performance à base de tbx et analogues
DE102023118527A1 (de) 2022-11-10 2024-05-16 Fischerwerke Gmbh & Co. Kg Hochleistungsmörtel mit TBX und Analogen

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR10F (fr) 1960-09-06 1962-03-24 Henri Griffon Nouveau médicament a base de levure vivante.
DE3940309A1 (de) 1989-12-06 1991-06-13 Hilti Ag Moertelmasse
DE4111828A1 (de) 1991-04-11 1992-10-15 Basf Ag Patrone fuer die chemische befestigungstechnik
DE19956509A1 (de) 1999-11-24 2001-01-18 Basf Ag Inhibitorkomposition zur Stabilisierung von ethylenisch ungesättigten Verbindungen gegen vorzeitige radikalische Polymerisation
DE10055786A1 (de) 2000-11-10 2002-05-29 Henkel Kgaa Haftungsverstärker für monomerfreie reaktive Polyurethane
DE10115591A1 (de) 2001-03-29 2002-10-02 Fischer Artur Werke Gmbh Mehrkomponentenkits und Kombinationen, ihre Verwendung und erhältliche Kunstmörtel
DE10115587B4 (de) 2001-03-29 2017-06-14 Fischerwerke Gmbh & Co. Kg Verwendung eines Harzes mit bestimmten härtbaren Harnstoffderivaten zur Befestigung mit Hilfe von Verankerungsmitteln
KR20210022156A (ko) * 2013-01-22 2021-03-02 시카 테크놀러지 아게 장쇄 알디민을 포함하는 지붕을 위한 액체 도포된 방수막
WO2015018466A1 (fr) 2013-04-05 2015-02-12 Fischerwerke Gmbh & Co. Kg Adhésif à base de résine synthétique comportant des diluants réactifs et des résines biogènes
DE102014109355A1 (de) 2014-07-04 2016-01-07 Fischerwerke Gmbh & Co. Kg Reaktivverdünner für die chemische Befestigung
DE102015118134A1 (de) * 2015-10-23 2017-04-27 Fischerwerke Gmbh & Co. Kg Aldimine und Ketimine als Initiatoren in Härtersystemen und entsprechende Harzzusammensetzungen unter anderem für die Befestigungstechnik
US10544235B2 (en) 2015-06-26 2020-01-28 Fischerwerke Gmbh & Co. Kg Aldimines and ketimines as initiators in hardener systems and corresponding resin compositions inter alia for fixing technology
US20170204223A1 (en) * 2016-01-15 2017-07-20 International Flavors & Fragrances Inc. Polyalkoxy-polyimine adducts for use in delayed release of fragrance ingredients

Also Published As

Publication number Publication date
DE102021114890A1 (de) 2022-01-05
US20230323008A1 (en) 2023-10-12
WO2022002567A1 (fr) 2022-01-06

Similar Documents

Publication Publication Date Title
EP3000792B1 (fr) Systemes de fixation au moyen de charges a fines particules
DE10115587B4 (de) Verwendung eines Harzes mit bestimmten härtbaren Harnstoffderivaten zur Befestigung mit Hilfe von Verankerungsmitteln
EP4175942A1 (fr) Imines spéciales et leurs produits de départ, et leur utilisation lors du durcissement de résines réactives par polyaddition ou polymérisation radicalaire
EP3164432B1 (fr) Diluant réactif pour la fixation chimique
EP3129441B1 (fr) Composés ch-acide et sels métalliques utilisables comme système durcisseur et compositions de résines correspondantes, destinées entre autres à la technologie de la fixation
EP2912078B1 (fr) Mélange de résines à base de résine vinylester, mortier de résine composite le contenant, ainsi que son utilisation
WO2015018466A1 (fr) Adhésif à base de résine synthétique comportant des diluants réactifs et des résines biogènes
WO2002079341A1 (fr) Kits a plusieurs composants et combinaisons, leur utilisation et mortiers synthetiques pouvant etre obtenus avec ceux-ci
EP2981583B1 (fr) Diluants biogènes liquides non réactifs dans des agents adhésifs en résine synthétique
EP3313896A1 (fr) Aldimines et cétimines comme initiateurs dans des systèmes durcisseurs et compositions de résine correspondantes, notamment pour la technique de fixation
CN110831997A (zh) 可自由基固化的化合物的混合物及其用途
EP3365383B1 (fr) Système de fixation à base de résine synthétique contenant des vinylester-uréthanestels que des (méth)acrylates d'uréthane à base de matières premières renouvelables
WO2013156356A2 (fr) Utilisation de radicaux nitroxyde ss-phosphorylés en tant qu'inhibiteurs pour des résines réactives, résines réactives les contenant et leur utilisation
EP3882291A1 (fr) Systèmes de fixation en résine comprenant un diluant réactif mono fonctionnel, leur production et utilisations
EP0591803A1 (fr) Cartouche prévue pour la technique de fixation chimique
EP4049990B1 (fr) Mélanges de résines à identité sécurisée pour la technique de fixation, leur fabrication et leur utilisation
EP3818026A1 (fr) Utilisation d'un kit exempt de phtalate pour fixer des éléments d'ancrage dans le domaine de la construction
DE102021129647A1 (de) Identitätsgesicherte Kunstharzmischungen für die Befestigungstechnik, ihre Herstellung und Verwendung
WO2023194122A1 (fr) Composés à base de composés recyclés, pour des systèmes de résines réactives multicomposants pour fixation chimique
EP4261196A1 (fr) Substance de mortier à deux composants et son utilisation
DE102020128717A1 (de) Michael-Additions-härtendes Kunstharz für die chemische Befestigungstechnik
WO2017067621A1 (fr) Aldéhydes et cétones utilisés comme amorceurs dans des systèmes durcisseurs et compositions de résine correspondantes, notamment pour la technique de fixation

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)