EP4174301A1 - Verfahren zur verbesserung der effizienz und der reduktion der emissionen von verbrennungsmotoren - Google Patents

Verfahren zur verbesserung der effizienz und der reduktion der emissionen von verbrennungsmotoren Download PDF

Info

Publication number
EP4174301A1
EP4174301A1 EP22204197.2A EP22204197A EP4174301A1 EP 4174301 A1 EP4174301 A1 EP 4174301A1 EP 22204197 A EP22204197 A EP 22204197A EP 4174301 A1 EP4174301 A1 EP 4174301A1
Authority
EP
European Patent Office
Prior art keywords
internal combustion
combustion engine
emulsion
fuel
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22204197.2A
Other languages
English (en)
French (fr)
Inventor
Eugen Mersch
Hermann Huber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP4174301A1 publication Critical patent/EP4174301A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • F02D19/0644Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions the gaseous fuel being hydrogen, ammonia or carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0668Treating or cleaning means; Fuel filters
    • F02D19/0671Means to generate or modify a fuel, e.g. reformers, electrolytic cells or membranes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/081Adjusting the fuel composition or mixing ratio; Transitioning from one fuel to the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/12Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with non-fuel substances or with anti-knock agents, e.g. with anti-knock fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/0228Adding fuel and water emulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • F02B2043/106Hydrogen obtained by electrolysis

Definitions

  • Another aspect that is important for economic efficiency is a low-cost, more versatile, low-emission and variable fuel for combustion in combustion engines, which is used in particular in combined heat and power plants (CHPs).
  • CHPs combined heat and power plants
  • a method for operating an internal combustion engine or an internal combustion engine is specified, the internal combustion engine being operated with an emulsion of liquid fuel and water (H 2 O).
  • the emulsion further comprises oxygen (O 2 ) and/or hydrogen (H) and/or a small proportion of ambient air.
  • the engine may draw in only a small amount of ambient air during operation.
  • the internal combustion engine is selected from or consisting of the group consisting of a diesel engine, a gasoline engine, a gas engine and a gas turbine.
  • the emulsion according to the invention can in particular contain diesel/water/HHO gas for diesel engines, petrol/water/HHO gas for petrol engines, fossil gas or synthetic gas/water/HHO gas for gas engines and fossil gas or synthetic gas/water/HHO gas for the turbine.
  • the fuel consisting of fossil or synthetic gas, water, hydrogen and oxygen is injected into the combustion chamber.
  • the injection process immediately produces a combustible gaseous fuel. Therefore, the basic principle of the present disclosure can be applied to all internal combustion engines. However, in the present disclosure, a diesel engine is mainly described.
  • the method according to the invention results in the efficiency of the internal combustion engine being significantly increased from approximately 28% when burning pure diesel or gasoline.
  • the exhaust gases contain almost no nitrogen compounds, since only a very small proportion of air is burned in the engine and the proportion of carbon compounds in the fuel is very small.
  • the exhaust gases also do not contain any sulfur compounds, since the sulfur is bound during combustion.
  • the internal combustion engine usually does not require any exhaust aftertreatment, in particular a catalytic converter or a particle filter can be dispensed with. This reduces investment and operating costs and simplifies operation significantly.
  • the internal combustion engine sucks in only very little ambient air during operation with the emulsion of a liquid fuel, water (H2O) and oxygen (O) and hydrogen (H2).
  • H2O water
  • O oxygen
  • H2 hydrogen
  • the amount of air drawn in is reduced by around 50%.
  • oxygen (O) and hydrogen (H2) are added to the emulsion in a ratio of 1:2. It is particularly advantageous if this oxygen (O) and hydrogen (H2) are obtained by electrolysis of water (H20) and the electrical energy required for this is provided by the generator of the power generator/CHP.
  • the present method is characterized in that the internal combustion engine drives a generator and that part (e.g. 20% to 10%) of the electrical power generated by the generator is used for the electrolysis of water (H20) and that the resulting electrolysis Process gases (oxygen (O) and hydrogen (H2)) are added to the emulsion.
  • part e.g. 20% to 10%
  • the electrical power generated by the generator is used for the electrolysis of water (H20) and that the resulting electrolysis Process gases (oxygen (O) and hydrogen (H2)) are added to the emulsion.
  • Fossil fuel e.g. diesel, petrol, heavy oil, ...) and/or regeneratively produced fuel (e.g. rapeseed oil, ...) and/or synthetically produced fuel can be used as liquid fuel.
  • the process gas obtained during the electrolysis is mixed with fuel from fossil or plant sources and the water to form an emulsion, which in some embodiments can also be burned in the internal combustion engine together with a proportion of ambient air.
  • liquid components (fuel and water) of the emulsion are mixed in a ratio of at least 3:1. It is particularly advantageous if the liquid components (fuel and water) of the emulsion are mixed in a ratio of 1:1 or even 1:1.5.
  • the objects of the present disclosure are further achieved by a generator driven by an internal combustion engine, e.g. a diesel engine, using two technologies:
  • the fuel according to the invention consists of several basic materials, the essential components being firstly a fossil fuel or a vegetable-based fuel (eg rapeseed oil), secondly water, thirdly at least one process gas and fourthly a small proportion of ambient air.
  • the process gas can be hydrogen, oxygen, argon, etc.
  • the aim of further system optimization is to permanently reduce the proportion of ambient air to zero. A corresponding test has shown that this goal can be achieved.
  • the process gases hydrogen and oxygen required to carry out the method according to the invention are generated by electrolysis.
  • the electrical energy required for this is provided by the generator driven by the internal combustion engine.
  • the electrolysis is not carried out with direct current, as is usual, but with pulsed direct current. This increases the performance of the electrolysis many times over. Conversely, this means that with this type of electrolysis, the same amount of process gas is achieved with a fraction of the electricity used as with the use of non-pulsed direct current.
  • the Indian researchers have shown just how much pulsed direct current can improve the performance of electrolysis Dharmaraj CH and Adis Kumar in International Journal of Energy and Environment Volume 3, Issue 1, 2012 pp. 129-136 in 2021.
  • the pulse frequency can be in the KHz range up to the MHz range. In the prototype system, the pulse frequency is around 150 kHz. It is important to find the optimal frequency for each type of electrolysis and electrolysis system. This can be done through operational testing.
  • the electricity required for the electrolysis comes from the electricity generated by the generator.
  • the generator of the prototype can produce 30 KWei with the engine at full load. Since the engine of the prototype is only run at 75% load to protect the engine, the generator only generates 22KW.
  • the percentage of electrical power diverted for electrolysis is around 20% or less in the prototype (i.e. less than 4.4 kW el are diverted for electrolysis. The remaining electrical power of 17.8 kW el or more can be fed into the stand-alone grid be fed in).
  • Electrolysis and process gas transport are subject to a pressure of 1-2 bar in the prototype. This enables exact measuring processes when measuring the flow and the gas quantity.
  • the pressure setting can be varied upwards as required.
  • the temperature in the prototype electrolysis and in the process gas transport is around room temperature, but can be increased to increase efficiency. In this respect, the prototype can be described as easy to handle and very robust.
  • the process gas is conveyed out of the electrolysis together with the electrolyte. This means that the process gas is dissolved in the electrolyte and is not transported in visible gas bubbles. As a result, the process gas completely loses its ability to explode.
  • the process gas is not fed into the emulsion mixer electrolytically until immediately before the mixer. However, this is exactly what is planned for the next prototype stage.
  • the process gas then separates from the electrolyte by providing a gas space above the electrolyte, e.g. in a vertical tube. The process gas then migrates upwards into the gas space.
  • Emulsion mixing devices are well known from the chemical and pharmaceutical industry, so that they will not be discussed separately.
  • the basic substances of the fuel are mixed into an emulsion.
  • the fuel components are mixed together at the molecular level under pressure to form an emulsion.
  • the fuel composition makes it possible to significantly increase the efficiency of the engine with conventional internal combustion engines and usually without changing them (on the non-optimized prototype to approx. 50-60%) and at the same time significantly reduce the use of vegetable or fossil fuel. In the present prototype (standard Perkins 1103A-33G diesel engine with 33 kVA generator) the engine was not changed.
  • the mixing ratio of fossil/vegetable fuel to water can be described as follows. In the combustion fuel with which the prototype was tested, an 80/20 diesel to water mixing ratio was initially successful. Air was initially added to this mixing ratio, and later process gas as well. In both cases, the internal combustion engine was able to burn the fuel-water mixture. The mix ratio was then gradually increased to where it is today at 50/50. However, the increase only worked in the combustion chamber if enough process gas was mixed into the emulsion. At the same time, the air supply was almost completely turned off. Current tests indicate that a reduction in air volume to 'zero' is feasible for continuous operation. The necessary amount of process gas increases with the increase in water content. Current tests indicate that a water content of 60% and higher is feasible. With the increase in water content, the performance of the engine also increases. By supplying the process gas, the engine in the prototype system runs "more smoothly" and with less wear. This means that the service life of the engine is increased. However, precise measurements are not yet available.
  • the prototype plant cannot successfully and efficiently burn the emulsion until the engine has reached its operating temperature. Therefore, in the first few minutes, the engine is warmed up on pure diesel or any other fuel and air, and only then switched to burning the emulsion (diesel-water-hydrogen-oxygen).
  • the prototype engine in emulsion operation only needs a fraction of the diesel.
  • the basic materials of the fuel according to the invention are made available on demand firstly in a tank for fossil/vegetable fuel, secondly in a tank for water and thirdly as process gas.
  • Purified water is used in the water tank. If waste water, contaminated water, salt water, etc. is to be used, it should be cleaned accordingly before use in the electrolysis in order not to damage the electrolysis in continuous operation.
  • the prototype can currently be operated with tap water. However, long-term studies are still pending.
  • the exhaust gases from internal combustion engines contain, among other things, carbon monoxide (CO), carbon dioxide (CO 2 ) and nitrogen oxides (NO and NO 2 ).
  • CO carbon monoxide
  • CO 2 carbon dioxide
  • NO and NO 2 nitrogen oxides
  • Diesel engines the main risk comes from carcinogenic diesel soot particles and nitrogen oxides, and from gasoline engines from CO. Since almost no air is currently being burned in the fuel according to the invention, only minimal nitrogen compounds and, due to the greatly reduced fossil or vegetable fuel, very few carbon compounds are formed.
  • FIG 1 the internal combustion engine/combustion engine 1 according to the invention is shown schematically with the associated periphery and the most important material or energy flows.
  • the internal combustion engine 1 is a diesel engine available on the market, such as is used in combined heat and power plants or emergency power generators.
  • the internal combustion engine 1 drives a generator 3 .
  • the generator 3 can be a three-phase generator. Because the electrolysis in the process gas generator 5 works with direct current DC, it is also possible for the internal combustion engine 1 to drive an additional direct current generator (not shown).
  • a process gas generator 5 approximately 10 to 20% of the mechanical power of the internal combustion engine 1 is routed to a process gas generator 5 .
  • water or another electrolyte is broken down into hydrogen and oxygen.
  • the known electrolysis is used.
  • Electrolysis works with direct current.
  • An optional DC converter 7 is provided between the process, the process gas generator 5 and the electrical generator 3 .
  • This converter 7 converts incoming alternating current into direct current. At the same time, it preferably converts this direct current into a pulsed direct current.
  • the pulsed DC voltage is fed to the process gas generator 5 .
  • process gas generator 5 is operated with pulsed direct current instead of direct current. This significantly increases the yield of process gases (hydrogen and oxygen) with the same amount of electrical energy supplied.
  • a portion of the electrolyte (water) is fed from the process gas generator 5 to an emulsion system 9 together with the process gases hydrogen and oxygen that are produced in the process.
  • An emulsion is produced in the emulsion system 9 from a liquid fuel (diesel or a synthetic fuel) and water and the process gases hydrogen and oxygen.
  • This emulsion consists of the liquid fuel dissolved in the water and, on the other hand, the process gases hydrogen and oxygen.
  • the process gases are in the form of very small bubbles.
  • the emulsion is injected into the internal combustion engine 1 instead of the usual fuel.
  • the emulsion is a liquid that, despite the very small dissolved gas bubbles, can be injected into the combustion chambers via the injection pump.
  • the internal combustion engine 1 also sucks in ambient air.
  • the emulsion After the emulsion has been injected, it expands in the combustion chambers of the internal combustion engine 1 and changes to a gaseous state.
  • the processes involved are complex. Some of the fuel burns with the intake air. The process gases hydrogen and oxygen also burn. At the same time, the water present in the emulsion suddenly changes to the gaseous state and contributes to the work of the internal combustion engine 1.
  • the internal combustion engine 1 is operational, as evidenced by an operational prototype.
  • the fuel consumption related to 1 kWh of electrical power is significantly reduced; the efficiency increases significantly.
  • the exhaust gases of the internal combustion engine 1 have no or only a very small amount of soot particles.
  • the nitrogen oxide emissions are also below the legal limits, so that exhaust gas cleaning (abdlue, catalytic converters or particle filters) can be dispensed with.
  • waste heat from the internal combustion engine 1 can be used for heating purposes or as low-temperature process heat in process engineering.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Es wird ein Verfahren beschrieben, das auf der Basis einer hocheffizienten Elektrolyse sowie einem hocheffizienten Emulsionstreibstoff einen Verbrennungsmotor mit angeschlossenem Generator antreibt. Durch dieses Verfahren reduziert sich der Treibstoff aus fossilen / pflanzlichen Quellen sehr stark. Die Verbrennung ist extrem sauber und das Abgas erfordert weder einen Katalysator noch die üblichen Filter. Das Verfahren ist für alle Verbrennungsmotoren zu Wasser, zu Lande und unter Tage einsetzbar und erzeugt einen effizient und von jeglichem Netzbetrieb autark hergestellten Strom.

Description

    Stand der Technik
  • Die Industrie und Haushalte sind im Übergang begriffen von einer fossilen Brennstoffwirtschaft hin zu einer zunehmen CO2- freien und NOX freien Wirtschaft und Mobilität. Weiterhin führen steigende Strom- und Energiepreise zu einer verstärkten Nachfrage nach preiswerten Energie- und Stromquellen. Dabei spielt der Wasserstoff eine wichtige Rolle. Die Herstellung von Wasserstoff durch die Elektrolyse von Wasser ist seit über 200 Jahren bekannt. Mit ihr kann unter Zuhilfenahme einer Gleichstromquelle Wasser oder ein anderer Elektrolyt in seine Bestandteile Wasserstoff und Sauerstoff zerlegt werden. Da die Elektrolyse hinlänglich bekannt ist, wird sie in dieser Anmeldung nicht näher erläutert. Gleichwohl sind derzeit die Kosten der Wasserstoffherstellung sehr hoch und machen viele Anwendungen von Wasserstoff unrentabel.
  • Natürlich ist man aus Gründen der Wirtschaftlichkeit und Effizienz bemüht, den Bedarf an elektrischer Energie[kWh] bei der Zerlegung von Wasser zur Erzeugung einer bestimmten Menge an Wasserstoff und Sauerstoff so gering wie möglich zu halten. Es gibt verschiedene Ansätze, den Wirkungsgrad bzw. die Effizienz der Erzeugung von Wasserstoff aus Wasser oder einem Elektrolyten zu verbessern.
  • Unter anderem werden in elektrischen Inselnetzen auf absehbare Zeit noch Stromerzeuger oder Blockheizkraftwerke auf der Basis von Verbrennungsmotoren zum Einsatz kommen. Im Zuge der immer strenger werdenden Abgasbestimmung und der zunehmend teureren flüssigen fossilen Kraftstoffe, besteht ein Bedarf an einem Verfahren zum Betreiben eines Stromerzeugers oder eines BHKWs, das effizient ist, dessen Betrieb wenig Emissionen verursacht und das vielseitig einsetzbar ist.
  • Ein weiterer für die Wirtschaftlichkeit wichtiger Aspekt ist ein kostengünstiger, vielseitig einsetzbarerer, wenig Emissionen verursachender und variierbarer Treibstoff zur Verbrennung in Verbrennungsmotoren, der insbesondere in Blockheizkraftwerken (BHKWs) zum Einsatz kommt.
  • Offenbarung der Erfindung
  • Es ist eine Aufgabe der vorliegenden Offenbarung, eine Brennkraftmaschine effizient zu betreiben. Zudem ist es eine Aufgabe der vorliegenden Offenbarung, eine effiziente Elektrolyse zu ermöglichen.
  • Diese Aufgaben werden durch den Gegenstand der unabhängigen Ansprüche gelöst. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.
  • Gemäß einem unabhängigen Aspekt der vorliegenden Offenbarung ist ein Verfahren zum Betreiben einer Brennkraftmaschine bzw. eines Verbrennungsmotors angegeben, wobei die Brennkraftmaschine mit einer Emulsion aus flüssigem Kraftstoff und Wasser (H2O) betrieben wird.
  • Vorzugsweise umfasst die Emulsion weiter Sauerstoff(O2) und/oder Wasserstoff(H) und/oder einen geringen Anteil an Umgebungsluft.
  • In einigen Ausführungsformen kann die Brennkraftmaschine während des Betriebs nur eine geringe Menge an Umgebungsluft ansaugen.
  • Vorzugsweise ist die Brennkraftmaschine aus der Gruppe ausgewählt, die einen Dieselmotor, einen Benzinmotor, einen Gasmotor und eine Gasturbine umfasst, oder die daraus besteht.
  • Die erfindungsgemäße Emulsion (auch als "Brennstoffmix" bezeichnet) kann insbesondere Diesel/Wasser/ HHO-Gas für den Dieselmotor, Benzin/Wasser/HHO-Gas für den Benzinmotor, fossiles Gas bzw. synthetisches Gas/Wasser/HHO-Gas für den Gasmotor und fossiles Gas bzw. synthetisches Gas/Wasser/HHO-Gas für die Turbine sein.
  • Im Falle der Verwendung von Gasmotoren oder Turbinen wird der Brennstoff bestehend aus fossilem oder synthetischem Gas, Wasser, Wasserstoff und Sauerstoff in den Brennraum eingedüst. Durch den Eindüsungsvorgang entsteht wie bei der Eindüsung einer Wasser-Dieselemulsion sofort ein brennbarer gasförmiger Brennstoff. Daher kann das Grundprinzip der vorliegenden Offenbarung auf alle Verbrennungsmotoren angewandt werden. In der vorliegenden Offenbarung wird jedoch hauptsächlich ein Dieselverbrennungsmotor beschrieben.
  • Das erfindungsgemäße Verfahren führt dazu, dass der Wirkungsgrad des Verbrennungsmotors von ca. 28% bei Verbrennung von reinem Diesel oder Benzin signifikant angehoben wird.
  • Es liegt ein funktionierender Prototyp vor. Über einen von dem Verbrennungsmotor angetriebenen elektrischen Generator kann sehr effizient und preiswert elektrischer Strom/elektrische Energie erzeugt werden. Beide Effekte zusammen sollen zu einer vom Netzbetrieb autarken und mobilen Stromversorgung führen.
  • Durch die wesentlich sauberere Verbrennung wird die Lebensdauer des Verbrennungsmotors signifikant gesteigert.
  • Des Weiteren enthalten die Abgase fast keine Stickstoffverbindungen, da im Motor nur ein sehr geringer Anteil an Luft verbrannt wird und der Anteil an Kohlenstoffverbindungen im Brennstoff sehr gering ist.
  • Die Abgase enthalten auch keine Schwefelverbindungen, da in der Verbrennung der Schwefel gebunden wird.
  • Die Abgase enthalten aufgrund der saubereren Verbrennung keine oder nur sehr kleine Mengen von Rußpartikeln. Siehe auch:
    https://www.umweltbundesamt.de/sites/default/files/medien/376/publikationen/polyzyklische aromatische kohlenwasserstoffe.pdf.
  • In Folge der sehr sauberen Verbrennung benötigt der Verbrennungsmotor meist keine Abgasnachbehandlung, insbesondere kann auf einen Katalysator oder einen Partikelfilter verzichtet werden. Das verringert die Investitions- und Betriebskosten und vereinfacht den Betrieb signifikant.
  • In vorteilhafter Weiterbildung saugt die Brennkraftmaschine während des Betriebs mit der Emulsion aus einem flüssigen Kraftstoff, Wasser (H2O) und Sauerstoff (O) und Wasserstoff (H2) nur sehr wenig Umgebungsluft an. Im Vergleich zum konventionellen Diesel-Luft-Betrieb wird die angesaugte Luftmenge um etwa 50% reduziert.
  • Es hat sich als vorteilhaft erwiesen, wenn der Sauerstoff (O) und der Wasserstoff (H2) der Emulsion im Verhältnis 1:2 zugegeben werden. Besonders vorteilhaft ist es, wenn dieser Sauerstoff (O) und der Wasserstoff (H2) durch eine Elektrolyse von Wasser (H20) gewonnen werden und die dazu erforderliche elektrische Energie von dem Generator des Stromerzeugers/des BHKWs bereitgestellt wird.
  • Das vorliegende Verfahren ist dadurch gekennzeichnet, dass die Brennkraftmaschine einen Generator antreibt, und dass ein Teil (z.B. 20% bis 10%) der von dem Generator erzeugten elektrischen Leistung zur Elektrolyse von Wasser (H20) eingesetzt wird, und dass die bei der Elektrolyse entstehenden Prozessgase (Sauerstoff (O) und Wasserstoff(H2)) der Emulsion zugemischt werden.
  • Bezüglich der Zerlegung von Wasser in Sauerstoff und Wasserstoff wird auf die am 09. Juli 2021 beim DPMA eingereichte Patentanmeldung DE102021117828.2 des gleichen Anmelders verwiesen.
  • Um den Verbrennungsmotor auf einfache Weise auf Betriebstemperatur zu bringen, wird in einigen Ausführungsformen vorgeschlagen, die Brennkraftmaschine zunächst unter Einspritzung von flüssigem Kraftstoff und dem Ansaugen von Umgebungsluft zu betreiben.
  • Als flüssiger Kraftstoff kann fossiler Kraftstoff (z.B. Diesel, Benzin, Schweröl, ...) und/oder regenerativ erzeugter Kraftstoff (z.B. Rapsöl, ...) und/oder synthetisch erzeugter Kraftstoff eingesetzt werden.
  • Das bei der Elektrolyse gewonnene Prozessgas wird zusammen mit Treibstoff aus fossilen oder pflanzlichen Quellen und dem Wasser zu einer Emulsion gemischt, die in einigen Ausführungsformen noch zusammen mit einem Anteil Umgebungsluft im Verbrennungsmotor verbrannt werden kann.
  • Es hat sich bewährt, wenn die flüssigen Bestandteile (Kraftstoff und Wasser) der Emulsion in einem Verhältnis von mindestens 3:1 gemischt sind. Besonders vorteilhaft ist es, wenn die flüssigen Bestandteile (Kraftstoff und Wasser) der Emulsion in einem Verhältnis von 1:1 oder sogar von 1:1,5 gemischt sind.
  • Die Aufgaben der vorliegenden Offenbarung wird weiter durch einen von einer Brennkraftmaschine, z.B. einem Dieselmotor, angetriebenen Generator durch zwei Technologien gelöst:
    Der erfindungsgemäße Treibstoff besteht aus mehreren Grundstoffen, wobei die wesentlichen Bestandteile erstens ein fossiler Brennstoff bzw. ein auf pflanzlicher Basis hergestellter Brennstoff (Z.B. Rapsöl), zweitens Wasser, drittens wenigstens ein Prozessgas und viertens ein geringer Anteil Umgebungsluft sind. Das Prozessgas kann Wasserstoff, Sauerstoff, Argon etc. sein. Ziel der weiteren Anlagenoptimierung ist es, den Anteil an Umgebungsluft dauerhaft auf null zu senken. Ein entsprechender Versuch hat gezeigt, dass dieses Ziel realisierbar ist.
  • Es ist bekannt, dass Diesel mit Wasser zu einer Emulsion aufbereitet und in den Brennraum geleitet werden kann. Vgl.: https://www.bonapart.de/nachrichten/beitrag/deutz-545-faehrtschadstoffarm-mit-kraftstoff-wasser-emulsion.html
    https://www.bosch-presse.de/pressportal/de/de/bosch-wassereinspritzung-59777.html
  • Erfahrungsgemäß beträgt der Wasseranteil dann im fossilen Treibstoff zwischen 10%-20%.Bereits dieser Wasseranteil führt zu einer Leistungssteigerung des Motors von bis zu 15%.
  • Bei dem erfindungsgemäßen Verfahren ist es jedoch möglich, den Anteil des Wassers (bezogen auf den flüssigen Kraftstoff) auf über 33% und sogar auf über 50% zu erhöhen. Das erhöht die Effizienz und verringert die Schadstoffe im Abgas.
  • Die zur Durchführung des erfindungsgemäßen Verfahrens benötigten Prozessgase Wasserstoff und Sauerstoff werden durch Elektrolyse erzeugt. Die dazu erforderliche elektrische Energie stellt der von dem Verbrennungsmotor angetriebene Generator bereit.
  • Um den Wirkungsgrad der Elektrolyse signifikant zu erhöhen, wird die Elektrolyse nicht, wie üblich, mit Gleichstrom, sondern mit gepulstem Gleichstrom durchgeführt. Dadurch wird die Leistung der Elektrolyse um ein Vielfaches angehoben. Umgekehrt bedeutet dies, dass durch einen Bruchteil des Stromeinsatzes bei dieser Art der Elektrolyse die gleiche Prozessgasmenge erreicht wird wie bei der Verwendung von ungepulstem Gleichstrom. Wie sehr gepulster Gleichstrom die Leistung der Elektrolyse verbessern kann, haben die indischen Forscher Dharmaraj C.H und Adis Kumar im International Journal of Energy and Environment Volume 3, Issue 1, 2012 pp. 129-136 im Jahr 2021 ausführlich beschrieben. (Journal homepage: www.IJEE.IEEFoundation.orgISSN 2076-2895 (Print), ISSN 2076-2909 (Online) ©2012 International Energy & Environment Foundation: Economical hydrogen production by electrolysis using nano pulsed DC). In ihrem Laborversuch konnte die Gasmenge bei gleichem Stromeinsatz um das 30-fache gesteigert werden. Vgl. ebenso REVIEWOFPULSEDPOWERFOREFFICIENTHYDROGENPRODUCTIONby NigelMonkun d Simon Watson(https://core.ac.uk/download/pdf/288373965.pdf) mit weiteren Nachweisen.
  • Die Pulsfrequenz kann im KHz-Bereich bis hin zum MHz-Bereich liegen. In der Prototyp-Anlage liegt die Pulsfrequenz etwa bei 150 KHz. Wichtig ist es, für jede Elektrolyseform und Elektrolyseanlage die optimale Frequenz zu finden. Das kann durch Betriebstests erfolgen.
  • Der für die Elektrolyse notwendige Strom stammt aus dem vom Generator erzeugten Strom. Der Generator des Prototyps kann bei Volllast des Motors 30 KWei erzeugen. Da der Motor des Prototyps motorschonend nur zu 75% Last gefahren wird, erzeugt der Generator nur 22KW. Der Prozentsatz der für die Elektrolyse abgezweigten elektrischen Leistung liegt bei dem Prototypen bei etwa 20% und darunter (d.h.es werden weniger als 4,4 kWel für die Elektrolyse abgezweigt. Die restliche elektrische Leistung von 17,8 kWel oder mehr kann in das Inselnetz eingespeist werden).
  • D.h. für die Elektrolyse werden aus den erzeugten 22KWel ca.4 KWel der Elektrolyse zugeführt. Durch das Verfahren der gepulsten Elektrolyse entsteht ein Vielfaches an Prozessgas (Wasserstoff/Sauerstoff) im Vergleich zu der herkömmlichen ungepulsten Elektrolyse. Dadurch wird mit einem geringen Einsatz an gepulstem Gleichstrom (ca. 4 KW) die für die Emulsion benötigte Menge an Prozessgas ohne Zwischenlagerung, sondern "on demand" bereitgestellt.
  • Dies verringert die Gefahren der Zwischen-Lagerung der bei der Elektrolyse entstehenden Prozessgase Sauerstoff und Wasserstoff. Es ist aber auch möglich, die Prozessgase zwischenzulagern. Das kann vor allem dann von Vorteil sein, wenn das Verhältnis zwischen der vom Generator eingespeisten elektrischen Leistung und der Abwärme des Verbrennungsmotors (z. B. zur Gebäudeheizung oder als Prozesswärme) variiert werden soll.
  • Elektrolyse und Prozessgastransport unterliegen im Prototypen einem Druck von 1-2 bar. Dies ermöglicht exakte Messvorgänge bei der Messung des Durchflusses und der Gasmenge. Die Druckeinstellung kann jedoch nach Bedarf nach oben variiert werden. Die Temperatur in der Prototyp-Elektrolyse und im Prozessgastransport liegt etwa bei Zimmertemperatur, kann jedoch zur Effizienzerhöhung gesteigert werden. Insofern kann der Prototyp als einfach zu handhaben und als sehr robust bezeichnet werden.
  • Das Prozessgas wird im Prototyp aus der Elektrolyse heraus zusammen mit dem Elektrolyten befördert. D.h. das Prozessgas ist im Elektrolyten aufgelöst und wird nicht in sichtbaren Gasblasen transportiert. Dadurch verliert das Prozessgas vollständig seine Explosionsfähigkeit.
  • Derzeit erfolgt aus messtechnischen Gründen der Prozessgasmengenmessung beim derzeitigen Prototypen die Zuführung des Prozessgases in den Emulsionsmischer noch nicht bis unmittelbar vor dem Mischer elektrolyt-geführt. Im nächsten Prototypstadium ist jedoch genau dies geplant.
  • Kurz vor dem Emulsionsmischer löst sich dann das Prozessgas vom Elektrolyten, indem über dem Elektrolyten z.B. in einem senkrechten Rohr ein Gasraum bereitgestellt wird. Das Prozessgas wandert dann nach oben in den Gasraum.
  • Emulsionsmischgeräte sind aus der chemischen und pharmazeutischen Industrie hinlänglich bekannt, sodass hierauf nicht gesondert eingegangen wird.
  • Die Grundstoffe des Treibstoffs werden zu einer Emulsion gemischt.
  • In bevorzugter Ausgestaltung der Erfindung werden die Treibstoffkomponenten auf molekularer Ebene unter Druckmiteinander zu einer Emulsion vermischt. Dadurch bleibt die Emulsion für einige Minuten stabil-genügend Zeit, um sie dem Motor zuzuführen und dort zu verbrennen. Die Treibstoffzusammensetzung ermöglicht es, mit herkömmlichen Verbrennungsmotoren und in der Regel ohne deren Veränderung den Wirkungsgrad des Motors signifikant zu erhöhen (am nicht optimierten Prototyp auf ca. 50-60%) und gleichzeitig den Einsatz des pflanzlichen oder fossilen Brennstoffs signifikant zu verringern. Im vorliegenden Prototyp (Standard Perkins 1103A-33G Dieselmotor mit 33 kVA Generator) wurde der Motor nicht verändert.
  • Das bedeutet, dass bereits in Betrieb befindliche Stromerzeuger oder BHKWs ohne weiteres auch mit der erfindungsgemäßen Emulsion betrieben werden können. Lediglich der Mischer und der Elektrolyseur müssen ergänzt werden.
  • Das Mischungsverhältnis von fossilem/pflanzlichem Treibstoff zu Wasser lässt sich wie folgt beschreiben. Im Verbrennungstreibstoff, mit dem der Prototyp getestet wurde, war anfangs ein Mischverhältnis von Diesel zu Wasser von 80/20 erfolgreich. Zu diesem Mischverhältnis wurde anfangs Luft zugeführt, später noch zusätzlich Prozessgas. In beiden Fällen konnte der Verbrennungsmotor das Treibstoff-Wasser-Gemisch verbrennen. Das Mischverhältnis wurde dann schrittweise erhöht bis zu einem heutigen Stand von 50/50. Die Erhöhung funktionierte im Brennraum jedoch nur, wenn genügend Prozessgas mit in die Emulsion gemischt wurde. Parallel dazu wurde die Luftzufuhr fast vollständig abgedreht. Derzeitige Versuche deuten darauf hin, dass eine Reduktion der Luftmenge auf 'null' für den Dauerbetrieb realisierbar ist. Die notwendige Menge an Prozessgas erhöht sich mit der Steigerung des Wasseranteils. Derzeitige Versuche deuten darauf hin, dass ein Wasseranteil von 60% und höher realisierbar ist. Mit der Steigerung des Wasseranteils steigt auch die Leistung des Motors. Durch die Zuführung des Prozessgases läuft der Motor in der Prototyp-Anlage "runder" und verschleißärmer. D.h. die Lebensdauer des Motors wird gesteigert. Genaue Messungen liegen jedoch noch nicht vor.
  • Die Prototyp-Anlage kann jedoch die Emulsion erst dann erfolgreich und effizient verbrennen, wenn der Motor seine Betriebstemperatur erreicht hat. Daher wird der Motor in den ersten Minuten mit reinem Diesel oder einem anderen Kraftstoff und Luft warm gefahren und erst dann auf die Verbrennung der Emulsion (Diesel-Wasser-Wasserstoff-Sauerstoff) umgeschaltet.
  • Im Vergleich zum reinen Dieselbetrieb benötigt der Prototyp-Motor im Emulsionsbetrieb nur noch einen Bruchteil an Diesel.
  • Eine Reduktion des Verbrauchs an flüssigem Kraftstoff gegenüber dem Normalbetrieb um 50% wurde schon bei den ersten Versuchen erreicht. Voraussichtlich kann der Kraftstoffverbrauch auf 20% oder sogar auf ca. 10%reduziert werden. Genaue Messungen erfolgen in nächster Zeit.
  • Die Grundstoffe des erfindungsgemäßen Treibstoffs werden erstens in einem Tank für fossilen/pflanzlichen Treibstoff, zweitens in einem Tank für Wasser und drittens als Prozessgas on demand zur Verfügung gestellt.
  • Im Wassertank wird gereinigtes Wasser verwendet. Soweit Abfallwasser, kontaminiertes Wasser, Salzwasser etc. zur Verwendung kommen soll, sollte es vor der Verwendung in der Elektrolyse entsprechend gereinigt werden, um die Elektrolyse nicht im Dauerbetrieb zu beschädigen. Der Prototyp lässt sich derzeit mit Leitungswasser betreiben. Langzeitstudien stehen jedoch noch aus.
  • Die Abgase von Verbrennungsmotoren enthalten unter anderem Kohlenmonoxid (CO), Kohlendioxid (CO2) und Stickoxide (NO und NO2). Die Gefährdung geht bei der Verwendung von Dieselmotoren im Wesentlichen von den krebserzeugenden Dieselrußpartikeln sowie den Stickoxiden und bei Benzinmotoren vom CO aus. Da im erfindungsgemäßen Treibstoff derzeit bereits fast keine Luft verbrannt wird, entstehen nur minimale Stickstoffverbindungen und aufgrund des starkreduzierten fossilen bzw. pflanzlichen Brennstoff sehr wenige Kohlenstoffverbindungen.
  • Dadurch, dass bei der Verbrennung im Motor derzeit zum einen die Luft fast vollständig durch Prozessgas ersetzt wird, findet eine verbesserte Verbrennung im Motor statt und die Auspuffgase enthalten nur sehr geringe Mengen oder sogar keine Rußpartikel. Zum anderen wird dieser Effekt dadurch unterstützt, dass nur ein sehr geringer Anteil am Treibstoff aus fossilen oder pflanzlichen Quellen stammt. Siehe dazu auch:
    https://www.umweltbundesamt.de/sites/default/files/medien/376/publikationen/polyzyklische_ar omatische_kohlenwasserstoffe.pdf:,, Die Zugabe von Prozessgas und die Reduktion von Luft bewirkt eine wesentlich verbesserte Verbrennung im Motor, das dazu führt weniger bis keine Rußentwicklung mehr zu erzeugen".
  • Folgende Messstellen sind am Prototyp mit am Markt verfügbaren Messgeräten versehen:
    1. 1. Elektrolyse: Messung Eingangsstrom
    2. 2. Prozessgas-Generator: Gasdruckmesser des erzeugten Prozessgases zur Regelung des Betriebsdrucks auf 1 bis 2 bar.
    3. 3. Emulsion: Masse-Messer für Mischverhältnis Diesel-Wasser
    4. 4. Emulsion: Mengen-Messer für Treibstoffmenge
    5. 5. Emulsion: Temperaturmesser für Treibstofftemperatur
    6. 6. Motor: Wärmeleistungsmesser im Kühlwasser
    7. 7. Motor: Ansaugmengen-Messer der Luft zum Nachweis der Luftmenge im reinen Dieselbetrieb und zum Nachweis des luftreduzierten und schließlich luftlosen Verbrennungsbetriebs
    8. 8. Motor: Unterdruckmessung im Ansaugtrakt
    9. 9. Motor: Messung Abgastemperatur
    10. 10. Stromgenerator: Messung Ausgangsstrom.
    11. 11. Zusätzlich kann auch noch der an den Prozessgas-Generator gelieferte Strom gemessen werden.
  • Genaue Messungen über den Langzeitbetrieb der Prototyp-Anlage liegen derzeit noch nicht vor, werden jedoch in Bälde erfolgen.
  • Kurze Beschreibung der Zeichnungen
  • Es zeigen:
    • Figur1: eine schematische Darstellung des erfindungsgemäßen Block(heiz)kraftwerks und
    • Figur2: eine Schaltung zur Erzeugung eines gepulsten Gleichstroms für die Elektrolyse.
    Ausführungsformen der Offenbarung
  • In der Figur 1 ist die erfindungsgemäße Brennkraftmaschine/der Verbrennungsmotor 1 mit der zugehörigen Peripherie und den wichtigsten Stoff- bzw. Energieströmen schematisch dargestellt.
  • Der Verbrennungsmotor 1 ist ein am Markt verfügbarer Dieselmotor, wie er beispielsweise in Blockheizkraftwerken oder Notstromaggregaten zum Einsatz kommt.
  • Der Verbrennungsmotor 1 treibt einen Generator 3 an. Der Generator 3 kann ein Drehstromgenerator sein. Weil die Elektrolyse in dem Prozessgasgenerator 5 mit Gleichstrom DC arbeitet, ist es auch möglich, dass der Verbrennungsmotor 1 einen zusätzlichen Gleichstromgenerator (nicht dargestellt) antreibt.
  • Unabhängig von der Art des Generators werden geht etwa 10 bis 20 % der mechanischen Leistung des Verbrennungsmotors 1 an einen Prozessgasgenerator 5 geleitet. In dem Prozessgasgenerator 5 wird Wasser oder ein anderer Elektrolyt in Wasserstoff und Sauerstoff zerlegt. Dabei kommt die an sich bekannte Elektrolyse zum Einsatz.
  • Die Elektrolyse arbeitet mit Gleichstrom. Zwischen dem Prozess dem Prozessgasgenerator 5 und dem elektrischen Generator 3 ist eine optionaler DC Wandler 7 vorgesehen. Dieser Wandler 7wandelt ankommenden Wechselstrom in Gleichstrom um. Gleichzeitig setzt er diesen Gleichstrom bevorzugt in eine gepulste Gleichspannung um. Die gepulste Gleichspannung wird dem Prozessgasgenerator 5 zugeführt.
  • Es hat sich als vorteilhaft erwiesen, wenn anstelle von Gleichstrom der Prozessgasgenerator 5 mit gepulstem Gleichstrom betrieben wird. Dadurch wird die Ausbeute an Prozessgasen (Wasserstoff und Sauerstoff) bei gleicher zugeführter elektrischer Energie deutlich erhöht.
  • Wenn bei dem DC Wandler 7 schon Gleichstrom ankommt, dann wandelt er diesen Gleichstrom in gepulsten Gleichstrom um.
  • Aus dem Prozessgasgenerator 5 wird ein Teil des Elektrolyten (Wasser) zusammen mit den dabei entstehenden Prozessgasen Wasserstoff und Sauerstoff einer Emulsionsanlage 9 zugeführt.
  • In der Emulsionsanlage 9 wird aus einem flüssigen Brennstoff (Diesel oder ein synthetischer Kraftstoff) sowie Wasser und den Prozessgasen Wasserstoff und Sauerstoff eine Emulsion hergestellt. Diese Emulsion besteht aus dem in dem Wassergelösten flüssigen Brennstoff und andererseits auch den Prozessgasen Wasserstoff und Sauerstoff. Die Prozessgase liegen in Form sehr kleiner Blasen vor.
  • Die Emulsion wird in den Verbrennungsmotor 1 anstelle des sonst üblichen Kraftstoffs eingespritzt. Die Emulsion ist eine Flüssigkeit, die trotz der sehr kleinen gelösten Gasbläschen über die Einspritzpumpe in die Brennräume eingespritzt werden kann.
  • Der Verbrennungsmotor 1 saugt auch noch Umgebungsluft an.
  • Nach dem Einspritzen der Emulsion expandiert diese in den Brennräumen des Verbrennungsmotors 1 und geht in einen gasförmigen Zustand über. Die dabei ablaufenden Vorgänge sind komplex. Teilweise verbrennt der Kraftstoff mit der angesaugten Luft. Auch die Prozessgase Wasserstoff und Sauerstoff verbrennen. Gleichzeitig geht auch das in der Emulsion vorhandene Wasser schlagartig in den gasförmigen Zustand über und leistet einen Beitrag zur Arbeit des Verbrennungsmotors 1.
  • Letztendlich ist der Verbrennungsmotor 1 arbeitsfähig, wie durch einen im Betrieb befindlichen Prototyp belegt wurde.
  • Der Kraftstoffverbrauch bezogen auf 1 kWh elektrischer Leistung wird deutlich reduziert; der Wirkungsgrad steigt deutlich an.
  • Die Abgase des Verbrennungsmotors 1 weisen keine oder nur eine sehr geringe Menge an Rußpartikeln auf. Die Stickoxidemissionen sind ebenfalls unterhalb der gesetzlichen Grenzwerte, sodass auf eine Abgasreinigung (abdlue, Katalysatoren oder Partikelfilter) verzichtet werden kann.
  • Bei Bedarf kann die Abwärme des Verbrennungsmotors 1 zu Heizzwecken oder als Niedertemperatur-Prozesswärme in der Verfahrenstechnik eingesetzt werden.
  • Im Ergebnis ergibt sich dadurch eine schadstoffarme, effiziente und daher umweltschonende Betriebsweise des Verbrennungsmotors 1.
  • In der Figur 2 ist ein Beispiel für eine elektrische Schaltung in dem DC Generator 7 dargestellt. Diese Schaltung setzt den Gleichstrom in einen gepulsten Gleichstrom um, der dann wiederum den Prozessgasgenerator 5 mit gepulstem Gleichstrom versorgt. Details dieser Schaltung und der Zerlegung von Wasser (Elektrolyseur) in dem Prozessgasgenerator 5 mit Hilfe des DC Wandlers 7 sind in der Patentanmeldung DE 10 2021 117828.2 des gleichen Anmelders beschrieben.

Claims (14)

  1. Verfahren zum Betreiben einer Brennkraftmaschine (1), dadurch gekennzeichnet, dass die Brennkraftmaschine (1) mit einer Emulsion aus flüssigem Kraftstoff und Wasser (H2O) betrieben wird, wobei an die Brennkraftmaschine (1) ein elektrischer Generator (3) angepflanzt ist, der die mechanische Leistung der Brennkraftmaschine (1) in elektrische Energie umsetzt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Emulsion weiter Sauerstoff (O2) und Wasserstoff (H) umfasst, und/oder dass die Brennkraftmaschine (1) während des Betriebs mit der Emulsion eine Menge an Umgebungsluft ansaugt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Brennkraftmaschine (1) während des Betriebs mit der Emulsion so viel Umgebungsluft ansaugt, dass der flüssige Kraftstoffverbrannt wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Sauerstoff (O) und der Wasserstoff (H2) der Emulsion im Verhältnis 1:2 zu gegeben werden.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Sauerstoff (O) und der Wasserstoff (H2) durch eine Elektrolyse von Wasser (H20) gewonnen werden.
  6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Brennkraftmaschine (1) zunächst unter Einspritzung von flüssigem Kraftstoff und dem Ansaugen von Umgebungsluft betrieben und auf Betriebstemperatur gebracht wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Brennkraftmaschine (1) einen Generator (5) antreibt, und dass ein Teil der von dem Generator (G5erzeugten elektrischen Leistung zur Elektrolyse von Wasser (H20) eingesetzt wird, und dass die bei der Elektrolyse entstehenden Prozessgase, insbesondere Sauerstoff(O) und Wasserstoff(H2), der Emulsion zugemischt werden.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Elektrolyse von Wasser (H20) mit gepulstem Gleichstrom erfolgt.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass als flüssiger Kraftstoff fossiler Kraftstoff, insbesondere Diesel, Benzin oder Schweröl, und/oder regenerativ erzeugter Kraftstoff, insbesondere Rapsöl, und/oder synthetisch erzeugter Kraftstoff eingesetzt wird.
  10. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass das Prozessgas zusammen mit Treibstoff aus fossilen oder pflanzlichen Quellen und zusammen mit Wasser zu der Emulsion gemischt wird, die in der Brennkraftmaschine (1) optional zusammen mit einem Anteil angesaugter Umgebungsluft verbrannt wird.
  11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass flüssige Bestandteile der Emulsion, insbesondere der Kraftstoff und das Wasser, in einem Verhältnis von mindestens 3:1 gemischt sind.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die flüssigen Bestandteile der Emulsion, insbesondere der Kraftstoff und das Wasser, in einem Verhältnis von 1:1 oder von 1:1,5 gemischt sind.
  13. Brennkraftmaschine, dadurch gekennzeichnet, dass die Brennkraftmaschine eingerichtet ist, mit einer Emulsion aus flüssigem Kraftstoff und Wasser (H2O) sowie Sauerstoff (O) und Wasserstoff (H2) und Umgebungsluft betrieben zu werden.
  14. Brennkraftmaschine nach Anspruch 13, dadurch gekennzeichnet, dass sie einen Generator antreibt.
EP22204197.2A 2021-10-28 2022-10-27 Verfahren zur verbesserung der effizienz und der reduktion der emissionen von verbrennungsmotoren Pending EP4174301A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102021128102.4A DE102021128102A1 (de) 2021-10-28 2021-10-28 Verfahren zur Verbesserung der Effizienz und der Reduktion der Emissionen von Verbrennungsmotoren

Publications (1)

Publication Number Publication Date
EP4174301A1 true EP4174301A1 (de) 2023-05-03

Family

ID=84361457

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22204197.2A Pending EP4174301A1 (de) 2021-10-28 2022-10-27 Verfahren zur verbesserung der effizienz und der reduktion der emissionen von verbrennungsmotoren

Country Status (2)

Country Link
EP (1) EP4174301A1 (de)
DE (1) DE102021128102A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6401445B1 (en) * 1999-12-07 2002-06-11 Northern Research & Engineering Corp. Electrolysis system and method for improving fuel atomization and combustion
EP2476889A2 (de) * 2011-01-12 2012-07-18 Karl Meyer Verbrennungsmotor mit Drittmedieneinspeisung
WO2013159755A1 (en) * 2012-04-25 2013-10-31 Get Energy Prime Island Ltd. Generator assembly with internal combustion engine having energy efficiency increasing means
US20140020652A1 (en) * 2012-03-21 2014-01-23 MayMaan Research, LLC Internal combustion engine using a water-based mixture as fuel and method for operating the same
EP2876290A1 (de) * 2013-11-26 2015-05-27 Nanotechlab S.A. Verfahren zur Regelung der Verbrennung in dem Brennraum einer Brennkraftmaschine oder in einem Brenner
WO2015084192A1 (en) * 2013-12-04 2015-06-11 Get Energy Prime Italy Srl Fuel & power assembly

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021117828A1 (de) 2021-07-09 2023-01-12 Eugen Mersch Verfahren und Vorrichtung zur Elektrolyse von Wasser oder einem Elektrolyten, bei der der Elektrolyt durch ionisiertes Gas (kaltes Plasma) aktiviert wird

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6401445B1 (en) * 1999-12-07 2002-06-11 Northern Research & Engineering Corp. Electrolysis system and method for improving fuel atomization and combustion
EP2476889A2 (de) * 2011-01-12 2012-07-18 Karl Meyer Verbrennungsmotor mit Drittmedieneinspeisung
US20140020652A1 (en) * 2012-03-21 2014-01-23 MayMaan Research, LLC Internal combustion engine using a water-based mixture as fuel and method for operating the same
WO2013159755A1 (en) * 2012-04-25 2013-10-31 Get Energy Prime Island Ltd. Generator assembly with internal combustion engine having energy efficiency increasing means
EP2876290A1 (de) * 2013-11-26 2015-05-27 Nanotechlab S.A. Verfahren zur Regelung der Verbrennung in dem Brennraum einer Brennkraftmaschine oder in einem Brenner
WO2015084192A1 (en) * 2013-12-04 2015-06-11 Get Energy Prime Italy Srl Fuel & power assembly

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"International Energy & Environment Foundation: Economical hydrogen", JOURNAL HOMEPAGE, ISSN: 2076-2909, Retrieved from the Internet <URL:www.IJEE.IEEFoundation.orglSSN>
ADISHKUMAR S DHARMARAJ ET AL: "Economical hydrogen production by electrolysis using nano pulsed DC", INTERNATIONAL JOURNAL OF ENERGY AND ENVIRONMENT, vol. 3, no. 1, January 2012 (2012-01-01), pages 129 - 136, XP055331320 *
FORSCHER DHARMARAJ C.HADIS KUMAR, INTERNATIONAL JOURNAL OF ENERGY AND ENVIRONMENT, vol. 3, 2012, pages 129 - 136

Also Published As

Publication number Publication date
DE102021128102A1 (de) 2023-05-04

Similar Documents

Publication Publication Date Title
DE2738638A1 (de) Mit wasserstoff betriebene verbrennungskraftmaschinen sowie verfahren zum betreiben dieser
EP3377815B1 (de) Verfahren und vorrichtung zur einstellung der zündeigenschaft eines brennstoffs, insbesondere zur senkung des schadstoffausstosses von verbrennungseinrichtungen
DE3110511A1 (de) &#34;verfahren und vorrichtung zur thermochemischen wasserstoff-sauerstoff-verbrennungseinleitung&#34;
EP2220438B1 (de) Verfahren zum betrieb einer kombikraftwerkseinheit mit einer gasturbinenanlage unter verwendung eines zweiten, wasserstoffreichen brennstoffs
EP2486111A1 (de) Verfahren zur in-situ-herstellung von treibstoff-wasser-gemischen in verbrennungsmotoren
CH710999A2 (de) Verfahren zur Nutzung der inneren Energie eines Aquiferfluids in einer Geothermieanlage.
DE2811728A1 (de) Verfahren und vorrichtung zum erzeugen eines zusatz-gasgemisches zum kraftstoff-luftgemisch einer brennkraftmaschine
EP2438982A1 (de) Verfahren zur Bereitstellung und zum Einsetzen eines Alkohols und Verwendung des Alkohols zur Wirkungsgrad- und Leistungssteigerung einer Verbrennungskraftmaschine
EP3642394A1 (de) Energiewandlungseinrichtung zur umwandlung elektrischer energie in chemische energie, stromnetz mit einer solchen energiewandlungseinrichtung, und verfahren zum betreiben einer solchen energiewandlungseinrichtung
WO2014000737A1 (de) Verfahren und einrichtung zur speicherung von elektroenergie
WO2021191116A1 (de) Co2-neutraler flüssigkraftstoff
EP2682450B1 (de) Verfahren zum katalytischen methanisieren und methanisierungsanlage
EP3859138A1 (de) Verfahren zum betrieb eines dieselmotors als zweistoffmotor mit dieselöl oder gemischen von ammoniak und wasserstoff
EP4174301A1 (de) Verfahren zur verbesserung der effizienz und der reduktion der emissionen von verbrennungsmotoren
DE10229309A1 (de) Verfahren zur Nutzung von Wasser, auch Schwarz- und/oder Grauwasser bei der Aufbereitung von Brennstoffen für Hochtemperatur-Brennstoffzellen
EP2803846A1 (de) Antriebsvorrichtung sowie Verfahren zum Betreiben derselben unter Verwendung eines partiell oxidierten Dieselkraftstoffs
DE102015215939B4 (de) Verfahren zum Erzeugen einer Brennstoffzusammensetzung und zum Betreiben einer Brennkraftmaschine
DE102017218746A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine und Brennkraftmaschine für ein solches Verfahren
EP3789474A1 (de) Emissionsfreie vorrichtungen und verfahren zur verrichtung mechanischer arbeit und zur erzeugung von elektrischer und thermischer energie
EP2553243B1 (de) Verfahren zum emissionsmindern von verbrennungskraftmaschinen und verbrennungskraftmaschine
DE102013107683B4 (de) Biogasanlage zur Erzeugung von Biogas aus nicht-pumpbarer Biomasse sowie Verfahren zu ihrem Betrieb
DE102022125444B4 (de) Verfahren zur Entfernung eines Methananteils aus Offgas und Biogasanlage
EP2706052A2 (de) Verfahren und Vorrichtung zur Verwendung von Methanol in einem Verbrennungsmotor, insbesondere einem Verbrennungsmotor mit Selbstzündung
DE102007026008A1 (de) Verfahren zur Wasserstoffgewinnung aus Dissoziation, sowie Dissoziationseinrichtung selbst
AT507783B1 (de) Verfahren zum katalytischen herstellen von bio-rohöl

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230603

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231030

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR