EP4161731A1 - Method for monitoring the compressive residual stresses of components in a shot-peening machining process - Google Patents

Method for monitoring the compressive residual stresses of components in a shot-peening machining process

Info

Publication number
EP4161731A1
EP4161731A1 EP21730856.8A EP21730856A EP4161731A1 EP 4161731 A1 EP4161731 A1 EP 4161731A1 EP 21730856 A EP21730856 A EP 21730856A EP 4161731 A1 EP4161731 A1 EP 4161731A1
Authority
EP
European Patent Office
Prior art keywords
shot peening
compressive stresses
residual compressive
magnetic parameters
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21730856.8A
Other languages
German (de)
French (fr)
Inventor
Mathias Haenel
Marco Beier
Karsten Frank
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP4161731A1 publication Critical patent/EP4161731A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0047Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring forces due to residual stresses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/10Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C3/00Abrasive blasting machines or devices; Plants
    • B24C3/08Abrasive blasting machines or devices; Plants essentially adapted for abrasive blasting of travelling stock or travelling workpieces
    • B24C3/10Abrasive blasting machines or devices; Plants essentially adapted for abrasive blasting of travelling stock or travelling workpieces for treating external surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/005Electromagnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0664Indicating or recording means; Sensing means using witness specimens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/725Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables by using magneto-acoustical effects or the Barkhausen effect

Definitions

  • the present invention relates to a method for monitoring the resulting internal compressive stresses of components in a shot peening process, with the step of introducing specimens into the shot peening process, which are processed in addition to the components.
  • the invention relates to a device for carrying out the method.
  • Shot peening is common practice when treating metal components to increase or restore fatigue resistance or component strength.
  • Spherical abrasive is made to impact the surface of a component, producing very small spherical plasticizations on the surface and introducing residual compressive stress into the component in the peened surface of the component. It is highly desirable, if not necessary, to control the intensity of the shot peening because an intensity above and below a critical intensity range can result in a component that has less optimal fatigue resistance properties or generally lower component strengths.
  • Alment test which uses an Almen strip, the curvature of which, commonly referred to as the arch height, can be used to measure intensity.
  • the Almen strips are thin precision strips (with controlled hardness and thickness) Made of 1070 steel, which are screwed to a holder that prevents the strip from flexing until the bolts are loosened. The strip is then exposed to the stream of abrasive under the same conditions as the component being blasted. After the strip has been blasted for a predetermined period of time, the strip is removed from the holder and the arch height (deflection) is measured.
  • GB 2475214 B discloses such a method for determining the shot peening intensity on a shot peening surface of a workpiece. To do this, the Almen test strip is attached to a shot peen surface. After processing, the Almen test strip is removed in order to determine the arch height and thus the shot peening intensity on the shot peening surface.
  • the Almentest has the disadvantage that it is used to determine the beam energy.
  • the direct effect on the target material is not determined, namely the compressive residual stresses that are decisive for the component strength.
  • the clamping conditions for the Almen test strips must be adhered to very precisely, which makes this measurement method time-consuming.
  • the leaflets are only locally plasticized, so that the result of the measurement of the deflection is strongly falsified and no longer meaningful.
  • a standardized material is used, which in most cases does not correspond to the material to be processed, so that it cannot be transferred.
  • the object of the invention is to provide a method with which, in the case of shot-peened components, a simpler and more precise return of the residual compressive stresses to absolute measurement methods is possible.
  • the object is achieved by a method having the features according to claim 1.
  • the invention is characterized by the steps of measuring the magnetic parameters of the specimen after the shot peening process, and determining the absolute measured values of the residual compressive stresses stored for the magnetic parameters on the basis of calibration data.
  • the magnetic parameters according to the invention are values which are determined by means of a magnetic measuring method, which are representative of the compressive residual stresses in the test body and the selected material.
  • the magnetic measuring method enables the non-destructive measurement of the relative internal compressive stresses of the specimen.
  • the magnetic parameters are determined by means of the Barkhausen noise.
  • these parameters are determined by means of the overlay permeability.
  • the absolute measured values of the residual compressive stresses are values by means of which the absolute residual compressive stresses of the test specimens are specified. These are preferably determined by means of X-ray iffractometry, which is usually a destructive measurement method.
  • the calibration data indicate a relationship between the magnetic parameters and the absolute residual compressive stresses for a certain type of component and material.
  • the calibration data are created on the basis of a large number of specimens with selected material and condition, to which the magnetic parameters are correlated with measured absolute measured values of the residual compressive stresses.
  • various absolute measured values are assigned to magnetic parameters of a component type with the selected material and condition, so that these can be used during the Operation can be determined from the magnetic parameters. This is preferably carried out on components before the shot peening process is carried out, so that the number of rejects is minimized.
  • the process parameters of the shot peening process are adapted when a deviation in the magnetic parameters is determined. Due to the constant monitoring of the magnetic parameters, a deviation can be detected during operation that is outside of a tolerance range. On the basis of this deviation, the process parameters, such as the blasting media used, the blasting pressure or the beam spread, can be varied in order to achieve the required values. This avoids the production of rejects or minimizes the number of these parts. The process can thus be carried out more economically and the quality of the components produced is improved.
  • the absolute measured values of the residual compressive stresses are preferably measured on a test specimen as required. This has the advantage that a discrepancy in the production process or in the material is recognized early on. In the case of such a deviation, the calibration data cannot provide any reliable information on the absolute measured values of the compressive stresses either. Such a discrepancy can thus be recognized at an early stage, so that the number of rejects is minimized and the quality is improved.
  • the calibration data if the calibration data deviates from the measured absolute measured values, the calibration data are updated. This replaces the previous data with new data. As a result, process-related standard deviations can be corrected, so that the accuracy of the measurement is improved.
  • the sample body is advantageously arranged at a measurement position of a dummy component in the form of the component before it is introduced into the shot peening process.
  • the dummy component has the same geometric dimensions as the component. Additionally a receptacle for introducing the specimen is formed in the dummy component.
  • the measurement position is a position on the dummy component at which the residual compressive stresses achieved for the components are to be determined. Since the geometric dimensions of the component have an effect on the residual compressive stresses achieved, the residual compressive stress achieved for the component can be determined more precisely. This can improve the quality of the components.
  • the sample body is arranged at a measuring position of the dummy component, which is inaccessible for the absolute measurement of the residual compressive stresses and / or measurement of the magnetic parameters, and is removed from this measuring position for measurement after the shot peening process.
  • An inaccessible measuring position is understood to be a position, such as the bottom of a borehole, which can only be reached for measuring by destroying the remaining areas. Destruction of the surrounding areas would, however, falsify the measurement result due to the rearrangement of the residual compressive stresses, so that no precise statement on the residual compressive stresses is possible. The residual compressive stresses can therefore also be measured precisely in inaccessible areas.
  • the surface of the sample body exposed to the shot peening process is designed to be flat.
  • a flat surface has the advantage that, in particular for an absolute measuring method such as X-ray diffraction, no processing of the surface is necessary and the residual compressive stresses can be determined more precisely.
  • the same material and / or the same size ratios and / or the same pretreatment are used for the test body as compared to the component.
  • the residual compressive stresses achieved can be determined more precisely for this material.
  • the size ratios are understood to mean that the specimen has the same material thickness as the component, for example. This can cause the material thickness Deviations in the residual compressive stresses between the component and the specimen are minimized, so that the measurement results are improved.
  • Pretreatment in the context of the invention is understood to mean treatments such as, for example, heat treatment, surface layer hardening, coatings, etc. Due to the same pretreatment of the specimens, the deviations in the residual compressive stresses caused thereby can be excluded, so that the accuracy of the measurement results can also be improved as a result.
  • the object is additionally achieved by a device for carrying out the method.
  • the device comprises a shot peening machine for shot peening components, a measuring device for measuring the magnetic parameters of specimens, a
  • Measured value processing device by means of which absolute measured values of the residual compressive stress can be output using the magnetic parameters
  • a process control device by means of which the process parameters of the shot peening machine can be controlled using the absolute measured values of the residual compressive stresses.
  • the calibration data on the basis of which the residual compressive stresses are determined, are stored in the measured value processing device.
  • the measuring device and the measured value processing device can also be arranged together in a common device. The advantages mentioned in relation to the method can be achieved with such a device.
  • FIG. 1 embodiment of a device for performing the method according to the invention
  • Figure 2 embodiment of the method according to the invention
  • Figure 3 embodiment of a component and a dummy component with sample body.
  • the device has a processing line 14 on which components 18 are arranged.
  • a sample body 22 is occasionally arranged on the processing line 14 instead of a component.
  • the device also has a shot peening machine 26 in which the components 18 and the specimens 22 are shot peened one after the other.
  • the specimens 22 are removed from the processing line 14 and fed to a measuring device 30.
  • the magnetic parameters are determined, for example, by means of the Barkhausen noise.
  • the values determined using this method are passed on to a measured value processing device 34 which, on the basis of stored calibration data, assigns absolute measured values of the residual compressive stresses to the magnetic parameters.
  • the absolute measured values of the residual compressive stresses are passed on to a process control device 38 which, if necessary, changes the process parameters of the shot peening machine 26 based on these values so that the absolute measured values obtained after the shot peening machine 26 are again within a specified tolerance range.
  • Figure 2 shows an embodiment of the method according to the invention.
  • a first step A the specimen 22 is placed in the shot peening process in addition to the components 18, so that the specimen 22 undergoes the same shot peening as the component 18.
  • the magnetic parameters of the specimen 22 are determined after the shot peening process .
  • the absolute measured values are determined in a subsequent step C, using calibration data.
  • the blasting process is adjusted in step A based on the absolute measured values.
  • step D which follows step C, but which is only carried out when required, the specimen 22 is fed to an absolute measuring method by means of which the internal compressive stresses are determined.
  • the determined values are then fed to the calibration data in step C in order to correct them if necessary.
  • FIG. 3 an exemplary embodiment of a component 18 and a dummy component 42 with sample body 22 is shown.
  • a possible embodiment of a component 18 is shown.
  • This component 18 has a deep material recess 46.
  • a substrate 50 of this material cutout 46 would be inaccessible for the magnetic measurement method and for, for example, X-ray diffractometry. Before this substrate 50 can be measured, the two sides 54 delimiting the material recess 46 would have to be removed.
  • a dummy component 42 which has a lateral shaft 58 in the area of the substrate 50, via which the sample body 22 can be inserted into and removed from the dummy component 42.
  • the sample body 22 can be measured after the shot peening without destroying the sample body 22 and thus falsifying the measurement results.
  • Partial figure c. shows an embodiment of the sample body 22. This is designed as a flat plate.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

The invention relates to a method for monitoring the resulting compressive residual stresses of components (18) in a shot-peening machining process. According to the invention, the method comprises the steps of: introducing (A) test specimens (22) into the shot-peening machining process, which test specimens are machined in addition to the components (18); measuring (B) the magnetic characteristics of the test specimens (22) after the shot-peening machining process; and determining (C) the absolute measurement values of the compressive residual stresses stored in association with the magnetic characteristics, on the basis of calibration data.

Description

Beschreibung description
Titel: Title:
Verfahren zur Überwachung der Druckeigenspannungen von Bauteilen eines Kugelstrahlbearbeitungsprozesses Method for monitoring the residual compressive stresses of components in a shot peening process
Die vorliegende Erfindung betrifft ein Verfahren zur Überwachung der resultierenden Druckeigenspannungen von Bauteilen bei einem Kugelstrahlbearbeitungsprozess, mit dem Schritt des Einbringens von Probenkörpern in den Kugelstrahlbearbeitungsprozess, welche zusätzlich zu den Bauteilen bearbeitet werden. Zusätzlich betrifft die Erfindung eine Vorrichtung zum Durchführen des Verfahrens. The present invention relates to a method for monitoring the resulting internal compressive stresses of components in a shot peening process, with the step of introducing specimens into the shot peening process, which are processed in addition to the components. In addition, the invention relates to a device for carrying out the method.
Stand der Technik State of the art
Kugelstrahlen ist bei der Behandlung von Metallkomponenten, um die Ermüdungsbeständigkeit bzw. Bauteilfestigkeit zu steigern oder wiederherzustellen, gängige Praxis. Kugelförmiges Strahlmittel wird zum Aufprall auf die Oberfläche einer Komponente gebracht, wobei es sehr kleine kugelförmige Plastifizierungen auf der Oberfläche erzeugt und Druckeigenspannung in die Komponente in der kugelgestrahlten Oberfläche der Komponente einleitet. Es ist höchst erwünscht, falls nicht erforderlich, die Intensität des Kugelstrahlens zu kontrollieren, weil eine Intensität oberhalb und unterhalb eines kritischen Intensitätsbereiches eine Komponente zur Folge haben kann, die weniger optimale Ermüdungsbeständigkeitseigenschaften bzw. generell geringere Bauteilfestigkeiten aufweist. Shot peening is common practice when treating metal components to increase or restore fatigue resistance or component strength. Spherical abrasive is made to impact the surface of a component, producing very small spherical plasticizations on the surface and introducing residual compressive stress into the component in the peened surface of the component. It is highly desirable, if not necessary, to control the intensity of the shot peening because an intensity above and below a critical intensity range can result in a component that has less optimal fatigue resistance properties or generally lower component strengths.
Ein Verfahren zum Kontrollieren der Kugelstrahlintensität ist der Almentest, bei welchem ein Almen-Streifen verwendet wird, anhand dessen Krümmung, die gewöhnlich als die Bogenhöhe bezeichnet wird, die Intensität messbar ist. Die Almen-Streifen sind dünne Präzisionsstreifen (mit kontrollierter Härte und Dicke) aus Stahl 1070, welche an einem Halter angeschraubt werden, die den Streifen davon abhält sich durchzubiegen, bis die Schraubenbolzen gelöst werden. Der Streifen wird dann dem Strahlmittelstrom unter den gleichen Bedingungen wie die dem Strahlen unterworfene Komponente ausgesetzt. Nachdem der Streifen für eine vorbestimmte Zeitdauer dem Strahlen unterzogen worden ist, wird der Streifen aus dem Halter entfernt und die Bogenhöhe (Durchbiegung) gemessen. One method of controlling shot peening intensity is the Alment test, which uses an Almen strip, the curvature of which, commonly referred to as the arch height, can be used to measure intensity. The Almen strips are thin precision strips (with controlled hardness and thickness) Made of 1070 steel, which are screwed to a holder that prevents the strip from flexing until the bolts are loosened. The strip is then exposed to the stream of abrasive under the same conditions as the component being blasted. After the strip has been blasted for a predetermined period of time, the strip is removed from the holder and the arch height (deflection) is measured.
Die GB 2475214 B offenbart ein solches Verfahren zum Bestimmen der Kugelstrahlintensität an einer Kugelstrahloberfläche eines Werkstücks. Dazu wird der Almen-Teststreifens an einer Kugelstrahloberfläche befestigt. Anschließend an die Bearbeitung wird der Almen-Teststreifen entfernt, um die Bogenhöhe und damit die Kugelstrahlintensität an der Kugelstrahloberfläche zu ermitteln. GB 2475214 B discloses such a method for determining the shot peening intensity on a shot peening surface of a workpiece. To do this, the Almen test strip is attached to a shot peen surface. After processing, the Almen test strip is removed in order to determine the arch height and thus the shot peening intensity on the shot peening surface.
Der Almentest hat die Nachteile, dass damit die Strahlenergie ermittelt wird. Es wird jedoch nicht die direkte Auswirkung auf das Zielmaterial bestimmt, nämlich die für die Bauteilfestigkeit ausschlaggebenden Druckeigenspannungen. Zusätzlich sind die Einspannbedingungen für den Almen-Teststreifen sehr genau einzuhalten, wodurch dieses Messverfahren aufwändig ist. Des Weiteren werden bei höherer Strahlintensität sowie konzentriertem Kugelstrahl, die Blättchen nur lokal plastifiziert, so dass das Ergebnis der Messung der Durchbiegung stark verfälscht und nicht mehr aussagekräftig ist. Zudem kommt ein standardisiertes Material zur Anwendung, was in den meisten Fällen nicht dem zu bearbeitenden Material entspricht, so dass eine Übertragbarkeit nicht gegeben ist. The Almentest has the disadvantage that it is used to determine the beam energy. However, the direct effect on the target material is not determined, namely the compressive residual stresses that are decisive for the component strength. In addition, the clamping conditions for the Almen test strips must be adhered to very precisely, which makes this measurement method time-consuming. Furthermore, with a higher jet intensity and a concentrated shot jet, the leaflets are only locally plasticized, so that the result of the measurement of the deflection is strongly falsified and no longer meaningful. In addition, a standardized material is used, which in most cases does not correspond to the material to be processed, so that it cannot be transferred.
Die Aufgabe der Erfindung ist es, ein Verfahren anzugeben, mit welchem bei kugelgestrahlten Bauteilen eine einfachere und genauere Rückführung der Druckeigenspannungen auf absolute Messverfahren möglich ist. The object of the invention is to provide a method with which, in the case of shot-peened components, a simpler and more precise return of the residual compressive stresses to absolute measurement methods is possible.
Offenbarung der Erfindung Disclosure of the invention
Die Aufgabe wird durch ein Verfahren mit den Merkmalen nach Anspruch 1 gelöst. Die jeweils rückbezogenen abhängigen Ansprüche geben vorteilhafte Weiterbildungen der Erfindung wieder. Die Erfindung zeichnet sich aus durch die Schritte des Messens der magnetischen Kenngrößen der Probenkörper nach dem Kugelstrahlbearbeitungsprozess, und des Ermittelns der zu den magnetischen Kenngrößen hinterlegten absoluten Messwerte der Druckeigenspannungen anhand von Kalibrierungsdaten. The object is achieved by a method having the features according to claim 1. The dependent claims that refer back in each case reproduce advantageous developments of the invention. The invention is characterized by the steps of measuring the magnetic parameters of the specimen after the shot peening process, and determining the absolute measured values of the residual compressive stresses stored for the magnetic parameters on the basis of calibration data.
Die magnetischen Kenngrößen gemäß der Erfindung sind dabei Größen, welche mittels eines magnetischen Messverfahrens ermittelt werden, die repräsentativ für die Druckeigenspannungen in dem Probenkörper und dem gewählten Material sind. Das magnetisches Messverfahren ermöglicht dabei ein zerstörungsfreies Messen der relativen Druckeigenspannungen des Probenkörpers. In einem bevorzugten Ausführungsbeispiel werden die magnetischen Kenngrößen mittels des Barkhausenrauschens ermittelt. Alternativ werden diese Kenngrößen mittels der Überlagerungspermeabilität bestimmt. The magnetic parameters according to the invention are values which are determined by means of a magnetic measuring method, which are representative of the compressive residual stresses in the test body and the selected material. The magnetic measuring method enables the non-destructive measurement of the relative internal compressive stresses of the specimen. In a preferred embodiment, the magnetic parameters are determined by means of the Barkhausen noise. Alternatively, these parameters are determined by means of the overlay permeability.
Die absoluten Messwerte der Druckeigenspannungen sind dabei Werte, über welche die absoluten Druckeigenspannungen der Probenkörper angegeben werden. Diese werden vorzugsweise mittels Röntgend iffraktometrie bestimmt, welches zumeist ein zerstörendes Messverfahren ist. The absolute measured values of the residual compressive stresses are values by means of which the absolute residual compressive stresses of the test specimens are specified. These are preferably determined by means of X-ray iffractometry, which is usually a destructive measurement method.
Die Kalibrierungsdaten geben dabei zu einer bestimmten Bauteil- und Materialart eine Abhängigkeit zwischen den magnetischen Kenngrößen und den absoluten Druckeigenspannungen an. Dadurch kann mittels der während des laufenden Betriebs einfach durchführbaren Ermittlung der magnetischen Kenngrößen, eine genauere Bestimmung der absoluten Messwerte der Druckeigenspannungen ermittelt werden. Es ist dadurch nicht notwendig auf eine zeitaufwändig Messung der absoluten Kenngrößen zu warten, so dass ein solches Verfahren wirtschaftlicher durchführbar ist. The calibration data indicate a relationship between the magnetic parameters and the absolute residual compressive stresses for a certain type of component and material. As a result, by means of the determination of the magnetic parameters, which can be easily carried out during operation, a more precise determination of the absolute measured values of the residual compressive stresses can be determined. It is therefore not necessary to wait for a time-consuming measurement of the absolute parameters, so that such a method can be carried out more economically.
In einer bevorzugten Ausführung der Erfindung werden die Kalibrierungsdaten anhand einer Vielzahl an Probenkörpern mit gewählten Material und Zustand erstellt, zu welchen die magnetischen Kenngrößen mit gemessenen absoluten Messwerten der Druckeigenspannungen korreliert werden. Dadurch werden magnetischen Kenngrößen einer Bauteilart mit gewähltem Material und Zustand verschiedene absolute Messwerte zugeordnet, so dass diese während des Betriebs aus den magnetischen Kenngrößen ermittelt werden können. Dies wird vorzugsweise vor der Durchführung des Kugelstrahlbearbeitungsprozesses an Bauteilen durchgeführt, so dass die Anzahl an Ausschussteilen minimiert wird. In a preferred embodiment of the invention, the calibration data are created on the basis of a large number of specimens with selected material and condition, to which the magnetic parameters are correlated with measured absolute measured values of the residual compressive stresses. As a result, various absolute measured values are assigned to magnetic parameters of a component type with the selected material and condition, so that these can be used during the Operation can be determined from the magnetic parameters. This is preferably carried out on components before the shot peening process is carried out, so that the number of rejects is minimized.
In einer weiteren bevorzugten Ausführung der Erfindung werden bei einer ermittelten Abweichung der magnetischen Kenngrößen die Prozessparameter des Kugelstrahlbearbeitungsprozesses angepasst. Durch die ständige Überwachung der magnetischen Kenngrößen kann während des Betriebs eine Abweichung festgestellt werden, die außerhalb eines Toleranzbereichs liegt. Anhand dieser Abweichung können die Prozessparameter, wie beispielsweise das verwendete Strahlmittel, der Strahldruck oder die Strahlspreizung variiert werden, um die geforderten Werte zu erzielen. Dadurch kann vermieden werden, dass Ausschussteile produziert werden, oder die Anzahl dieser Teile minimiert wird. Das Verfahren kann dadurch wirtschaftlicher durchgeführt werden und die Qualität der produzierten Bauteile wird verbessert. In a further preferred embodiment of the invention, the process parameters of the shot peening process are adapted when a deviation in the magnetic parameters is determined. Due to the constant monitoring of the magnetic parameters, a deviation can be detected during operation that is outside of a tolerance range. On the basis of this deviation, the process parameters, such as the blasting media used, the blasting pressure or the beam spread, can be varied in order to achieve the required values. This avoids the production of rejects or minimizes the number of these parts. The process can thus be carried out more economically and the quality of the components produced is improved.
Vorzugsweise werden bedarfsabhängig bei einem Probenkörper zusätzlich zu den magnetischen Kenngrößen die absoluten Messwerte der Druckeigenspannungen gemessen. Dies hat den Vorteil, dass eine Abweichung in dem Produktionsprozess oder bei dem Material frühzeitig erkannt wird. Bei einer solchen Abweichung können auch die Kalibrierungsdaten keine verlässliche Angaben zu den absoluten Messwerten der Druckspannungen liefern. Eine solche Abweichung kann dadurch frühzeitig erkannt werden, so dass die Anzahl an Ausschussteilen minimiert und die Qualität verbessert wird. In addition to the magnetic parameters, the absolute measured values of the residual compressive stresses are preferably measured on a test specimen as required. This has the advantage that a discrepancy in the production process or in the material is recognized early on. In the case of such a deviation, the calibration data cannot provide any reliable information on the absolute measured values of the compressive stresses either. Such a discrepancy can thus be recognized at an early stage, so that the number of rejects is minimized and the quality is improved.
In einer vorteilhaften Weiterbildung werden bei einer Abweichung der Kalibrierungsdaten zu den gemessenen absoluten Messwerte, die Kalibrierungsdaten aktualisiert. Die vorherigen Daten werden dadurch durch neue Daten ersetzt. Dadurch können prozessbedingte Standardabweichungen korrigiert werden, so dass die Genauigkeit der Messung verbessert wird. In an advantageous development, if the calibration data deviates from the measured absolute measured values, the calibration data are updated. This replaces the previous data with new data. As a result, process-related standard deviations can be corrected, so that the accuracy of the measurement is improved.
Vorteilhafterweise wird der Probenkörper vor dem Einbringen in den Kugelstrahlbearbeitungsprozess bei einer Messposition eines in Form des Bauteils ausgebildeten Dummy-Bauteil angeordnet. Das Dummy-Bauteil weist dabei die gleichen geometrischen Abmessungen auf, wie das Bauteil. Zusätzlich ist bei dem Dummy-Bauteil eine Aufnahme zum Einbringen des Probenkörpers ausgebildet. Die Messposition ist dabei eine Position an dem Dummy-Bauteil an der die erzielten Druckeigenspannungen für die Bauteile bestimmt werden sollen. Da die geometrischen Abmessungen des Bauteils sich auf die erzielten Druckeigenspannungen auswirken, kann dadurch die für das Bauteil erzielten Druckeigenspannung genauer bestimmt werden. Die Qualität der Bauteile kann dadurch verbessert werden. The sample body is advantageously arranged at a measurement position of a dummy component in the form of the component before it is introduced into the shot peening process. The dummy component has the same geometric dimensions as the component. Additionally a receptacle for introducing the specimen is formed in the dummy component. The measurement position is a position on the dummy component at which the residual compressive stresses achieved for the components are to be determined. Since the geometric dimensions of the component have an effect on the residual compressive stresses achieved, the residual compressive stress achieved for the component can be determined more precisely. This can improve the quality of the components.
Bei einer weiteren vorteilhaften Ausführung wird der Probenkörper an einer Messposition des Dummy-Bauteils angeordnet, welche für die absolute Messung der Druckeigenspannungen und/oder Messung der magnetischen Kenngrößen unzugänglich ist, und wird von dieser Messposition nach dem Kugelstrahlbearbeitungsprozess zur Messung entnommen. Als unzugängliche Messposition wird eine Position, wie beispielsweise ein Bohrlochgrund, verstanden, die lediglich durch eine Zerstörung übriger Bereiche zum Messen erreichbar ist. Durch eine Zerstörung der umliegenden Bereiche würde jedoch durch Umlagerung der Druckeigenspannungen das Messergebnis verfälscht, so dass keine genaue Aussage zu den Druckeigenspannungen möglich ist. Die Druckeigenspannungen können dadurch auch an unzugänglichen Bereichen genau gemessen werden. In a further advantageous embodiment, the sample body is arranged at a measuring position of the dummy component, which is inaccessible for the absolute measurement of the residual compressive stresses and / or measurement of the magnetic parameters, and is removed from this measuring position for measurement after the shot peening process. An inaccessible measuring position is understood to be a position, such as the bottom of a borehole, which can only be reached for measuring by destroying the remaining areas. Destruction of the surrounding areas would, however, falsify the measurement result due to the rearrangement of the residual compressive stresses, so that no precise statement on the residual compressive stresses is possible. The residual compressive stresses can therefore also be measured precisely in inaccessible areas.
Gemäß einer zweckmäßigen Ausführung wird die dem Kugelstrahlbearbeitungsprozess ausgesetzte Oberfläche des Probenkörpers eben ausgebildet. Eine ebene Oberfläche hat dabei den Vorteil, dass insbesondere für ein absolutes Messverfahren, wie beispielsweise Röntgend iffraktometrie, keine Bearbeitung der Oberfläche notwendig ist und die Druckeigenspannungen genauer bestimmbar sind. According to an expedient embodiment, the surface of the sample body exposed to the shot peening process is designed to be flat. A flat surface has the advantage that, in particular for an absolute measuring method such as X-ray diffraction, no processing of the surface is necessary and the residual compressive stresses can be determined more precisely.
Gemäß einer weiteren zweckmäßigen Ausführung wird für den Probenkörper im Vergleich zu dem Bauteil das gleiche Material und/oder die gleichen Größenverhältnisse und/oder die gleiche Vorbehandlung verwendet. Durch die Verwendung des gleichen Materials können die erzielten Druckeigenspannungen genauer für dieses Material bestimmt werden. Unter den Größenverhältnisse wird verstanden, der Probenkörper beispielsweise die gleiche Materialstärke wie das Bauteil aufweist. Dadurch können die durch die Materialstärke verursachten Abweichungen der Druckeigenspannungen zwischen dem Bauteil und dem Probenkörper minimiert werden, so dass die Messergebnisse verbessert werden. According to a further expedient embodiment, the same material and / or the same size ratios and / or the same pretreatment are used for the test body as compared to the component. By using the same material, the residual compressive stresses achieved can be determined more precisely for this material. The size ratios are understood to mean that the specimen has the same material thickness as the component, for example. This can cause the material thickness Deviations in the residual compressive stresses between the component and the specimen are minimized, so that the measurement results are improved.
Unter der Vorbehandlung im Sinne der Erfindung werden Behandlungen, wie beispielweise Wärmebehandlung, Randschichthärten, Beschichtungen etc. verstanden. Durch die gleiche Vorbehandlung der Probenkörper, können die dadurch verursachten Abweichungen der Druckeigenspannungen ausgeschlossen werden, so dass auch hierdurch die Genauigkeit der Messergebnisse verbessert werden. Pretreatment in the context of the invention is understood to mean treatments such as, for example, heat treatment, surface layer hardening, coatings, etc. Due to the same pretreatment of the specimens, the deviations in the residual compressive stresses caused thereby can be excluded, so that the accuracy of the measurement results can also be improved as a result.
Die Aufgabe wird zusätzlich gelöst durch eine Vorrichtung zum Durchführen des Verfahrens. Die Vorrichtung umfasst dabei eine Kugelstrahlbearbeitungsanlage, zum Kugelstrahlen von Bauteilen, eine Messeinrichtung, zum Messen der magnetischen Kenngrößen von Probenkörpern, eineThe object is additionally achieved by a device for carrying out the method. The device comprises a shot peening machine for shot peening components, a measuring device for measuring the magnetic parameters of specimens, a
Messwertverarbeitungseinrichtung, mittels welcher anhand der magnetischen Kenngrößen, absoluten Messwerte der Druckeigenspannung ausgebbar sind, und eine Prozesssteuereinrichtung, mittels welcher anhand der absoluten Messwerte der Druckeigenspannungen die Prozessparameter der Kugelstrahlbearbeitungsanlage steuerbar sind. Measured value processing device, by means of which absolute measured values of the residual compressive stress can be output using the magnetic parameters, and a process control device, by means of which the process parameters of the shot peening machine can be controlled using the absolute measured values of the residual compressive stresses.
In der Messwertverarbeitungseinrichtung sind dabei die Kalibrierungsdaten hinterlegt anhand derer die Druckeigenspannungen ermittelt werden. In einer bevorzugten Ausführung können die Messeinrichtung und die Messwertverarbeitungseinrichtung auch zusammen in einer gemeinsamen Einrichtung angeordnet sein. Mit einer solchen Vorrichtung können die zu dem Verfahren genannten Vorteile erzielt werden. The calibration data, on the basis of which the residual compressive stresses are determined, are stored in the measured value processing device. In a preferred embodiment, the measuring device and the measured value processing device can also be arranged together in a common device. The advantages mentioned in relation to the method can be achieved with such a device.
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigt: Embodiments of the invention are shown in the drawing and explained in more detail in the description below. It shows:
Figur 1 Ausführungsbeispiel einer Vorrichtung zum Durchführen des erfindungsgemäßen Verfahrens, Figure 1 embodiment of a device for performing the method according to the invention,
Figur 2 Ausführungsbeispiel des erfindungsgemäßen Verfahrens, und Figur 3 Ausführungsbeispiel eines Bauteils und eines Dummy-Bauteils mit Probenkörper. Figure 2 embodiment of the method according to the invention, and Figure 3 embodiment of a component and a dummy component with sample body.
In Figur 1 ist ein Ausführungsbeispiel einer Vorrichtung zum Durchführen des erfindungsgemäßen Verfahrens gezeigt. Die Vorrichtung weist in diesem Ausführungsbeispiel eine Bearbeitungsstraße 14 auf, auf welcher Bauteile 18 angeordnet sind. Zusätzlich zu den Bauteilen 18 sind gelegentlich anstelle eines Bauteils ein Probenkörper 22 auf der Bearbeitungsstraße 14 angeordnet. Die Vorrichtung weist zusätzlich eine Kugelstrahlbearbeitungsanlage 26 auf, in welcher die Bauteile 18 und die Probenkörper 22 nacheinander kugelgestrahlt werden. In Figure 1, an embodiment of a device for performing the method according to the invention is shown. In this exemplary embodiment, the device has a processing line 14 on which components 18 are arranged. In addition to the components 18, a sample body 22 is occasionally arranged on the processing line 14 instead of a component. The device also has a shot peening machine 26 in which the components 18 and the specimens 22 are shot peened one after the other.
Nach dem Kugelstrahlen werden die Probenkörper 22 von der Bearbeitungsstraße 14 genommen und einer Messeinrichtung 30 zugeführt. In der Messeinrichtung 30 werden die magnetischen Kenngrößen beispielsweise mittels des Barkhausenrauschens ermittelt. Die über dieses Verfahren ermittelten Werte werden an eine Messwertverarbeitungseinrichtung 34 weitergegeben, welche anhand von hinterlegten Kalibrierungsdaten den magnetischen Kenngrößen absolute Messwerte der Druckeigenspannungen zuordnet. After the shot peening, the specimens 22 are removed from the processing line 14 and fed to a measuring device 30. In the measuring device 30, the magnetic parameters are determined, for example, by means of the Barkhausen noise. The values determined using this method are passed on to a measured value processing device 34 which, on the basis of stored calibration data, assigns absolute measured values of the residual compressive stresses to the magnetic parameters.
Die absoluten Messwerte der Druckeigenspannungen werden an eine Prozesssteuereinrichtung 38 weitergegeben, welche anhand dieser Werte gegebenenfalls die Prozessparameter der Kugelstrahlbearbeitungsanlage 26 verändert, so dass die nach der Kugelstrahlbearbeitungsanlage 26 erzielten absoluten Messwerte wieder in einem vorgegebenen Toleranzbereich liegen. The absolute measured values of the residual compressive stresses are passed on to a process control device 38 which, if necessary, changes the process parameters of the shot peening machine 26 based on these values so that the absolute measured values obtained after the shot peening machine 26 are again within a specified tolerance range.
Figur 2 zeigt ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens. In einem ersten Schritt A wird der Probenkörper 22 zusätzlich zu den Bauteilen 18 in den Kugelstrahlbearbeitungsprozess gegeben, so dass der Probenkörper 22 die gleiche Kugelstrahlbearbeitung erfährt, wie das Bauteil 18. In einem nächsten Schritt B werden nach dem Kugelstrahlbearbeitungsprozess die magnetischen Kenngrößen der Probenkörper 22 ermittelt. Anhand dieser magnetischen Kenngrößen werden in einem darauf folgenden Schritt C, anhand von Kalibrierungsdaten die absoluten Messwerte ermittelt. Anhand der absoluten Messwerte wird der Strahlprozess in Schritt A angepasst. In einem sich an Schritt C anschließenden Schritt D, welcher jedoch lediglich bei Bedarf ausgeführt wird, wird der Probenkörper 22 einem absoluten Messverfahren zugeführt, über welchen die Druckeigenspannungen ermittelt werden. Die ermittelten Werte werden anschließend den Kalibrierungsdaten in Schritt C zugeführt, um diese gegebenenfalls zu korrigieren. Figure 2 shows an embodiment of the method according to the invention. In a first step A, the specimen 22 is placed in the shot peening process in addition to the components 18, so that the specimen 22 undergoes the same shot peening as the component 18. In a next step B, the magnetic parameters of the specimen 22 are determined after the shot peening process . Using these magnetic parameters, the absolute measured values are determined in a subsequent step C, using calibration data. The blasting process is adjusted in step A based on the absolute measured values. In a step D which follows step C, but which is only carried out when required, the specimen 22 is fed to an absolute measuring method by means of which the internal compressive stresses are determined. The determined values are then fed to the calibration data in step C in order to correct them if necessary.
In Figur 3 ist ein Ausführungsbeispiel eines Bauteils 18 und eines Dummy- Bauteils 42 mit Probenkörper 22 gezeigt. In Teilfigur a. ist ein mögliches Ausführungsbeispiel eines Bauteils 18 gezeigt. Dieses Bauteil 18 weist eine tiefe Materialaussparung 46 auf. Ein Bodengrund 50 dieser Materialaussparung 46 wäre für das magnetische Messverfahren und für die beispielsweise Röntgend iffraktometrie, unzugänglich. Bevor dieser Bodengrund 50 vermessen werden kann, müssten die beiden die Materialaussparung 46 begrenzenden Seiten 54 entfernt werden. In FIG. 3, an exemplary embodiment of a component 18 and a dummy component 42 with sample body 22 is shown. In part a. a possible embodiment of a component 18 is shown. This component 18 has a deep material recess 46. A substrate 50 of this material cutout 46 would be inaccessible for the magnetic measurement method and for, for example, X-ray diffractometry. Before this substrate 50 can be measured, the two sides 54 delimiting the material recess 46 would have to be removed.
In Teilfigur b. ist ein Dummy-Bauteil 42 gezeigt, welches im Bereich des Bodengrundes 50 einen seitlichen Schacht 58 aufweist, über die der Probenkörper 22 in das Dummy-Bauteil 42 eingesetzt und entnommen werden kann. Dadurch kann der Probenkörper 22 nach dem Kugelstrahlen ohne eine Zerstörung der Probenkörpers 22 und damit Verfälschung der Messergebnisse vermessen werden. Teilfigur c. zeigt ein Ausführungsbeispiel des Probenkörpers 22. Dieser ist dabei als ebene Platte ausgebildet. In part b. a dummy component 42 is shown, which has a lateral shaft 58 in the area of the substrate 50, via which the sample body 22 can be inserted into and removed from the dummy component 42. As a result, the sample body 22 can be measured after the shot peening without destroying the sample body 22 and thus falsifying the measurement results. Partial figure c. shows an embodiment of the sample body 22. This is designed as a flat plate.

Claims

Ansprüche Expectations
1. Verfahren zur Überwachung der resultierenden Druckeigenspannungen von Bauteilen (18) bei einem Kugelstrahlbearbeitungsprozess, umfassend die Schritte: 1. A method for monitoring the resulting internal compressive stresses of components (18) in a shot peening process, comprising the steps:
Einbringen (A) von Probenkörpern (22) in denIntroducing (A) specimens (22) into the
Kugelstrahlbearbeitungsprozess, welche zusätzlich zu den Bauteilen (18) bearbeitet werden, gekennzeichnet durch, Shot peening processes, which are processed in addition to the components (18), characterized by,
Messen (B) der magnetischen Kenngrößen der Probenkörper (22) nach dem Kugelstrahlbearbeitungsprozess, und Measuring (B) the magnetic parameters of the specimens (22) after the shot peening process, and
Ermitteln (C) der zu den magnetischen Kenngrößen hinterlegten absoluten Messwerte der Druckeigenspannungen anhand vonDetermination (C) of the absolute measured values of the residual compressive stresses stored for the magnetic parameters using
Kalibrierungsdaten. Calibration data.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Kalibrierungsdaten anhand einer Vielzahl an Probenkörpern (22) erstellt werden, zu welchen die magnetischen Kenngrößen mit gemessenen absoluten Messwerten der Druckeigenspannungen korreliert werden. 2. The method according to claim 1, characterized in that the calibration data are created on the basis of a large number of specimens (22), for which the magnetic parameters are correlated with measured absolute measured values of the residual compressive stresses.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass bei einer ermittelten Abweichung der magnetischen Kenngrößen die Prozessparameter des Kugelstrahlbearbeitungsprozesses angepasst werden. 3. The method according to claim 1 or 2, characterized in that the process parameters of the shot peening process are adapted when a deviation is determined in the magnetic parameters.
4. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass bedarfsabhängig bei einem Probenkörper (22) zusätzlich zu den magnetischen Kenngrößen die absoluten Messwerte der Druckeigenspannungen gemessen werden. 4. The method according to any one of the preceding claims, characterized in that in addition to the magnetic parameters, the absolute measured values of the residual compressive stresses are measured on a sample body (22) as required.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass bei einer Abweichung der Kalibrierungsdaten zu den gemessenen absoluten Messwerte, die Kalibrierungsdaten aktualisiert werden. 5. The method according to claim 4, characterized in that if the calibration data deviates from the measured absolute measured values, the calibration data are updated.
6. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Probenkörper (22) vor dem Einbringen in den Kugelstrahlbearbeitungsprozess bei einer Messposition eines in Form des Bauteils (18) ausgebildeten Dummy-Bauteil (42) angeordnet wird. 6. The method according to any one of the preceding claims, characterized in that the sample body (22) is arranged before being introduced into the shot peening process at a measuring position of a dummy component (42) in the form of the component (18).
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der Probenkörper (22) an einer Messposition des Dummy-Bauteils (42) angeordnet wird, welche für die absolute Messung der Druckeigenspannungen und/oder Messung der magnetischen Kenngrößen unzugänglich ist, und von dieser Messposition nach dem Kugelstrahlbearbeitungsprozess zur Messung entnommen wird. 7. The method according to claim 6, characterized in that the sample body (22) is arranged at a measurement position of the dummy component (42) which is inaccessible for the absolute measurement of the residual compressive stresses and / or measurement of the magnetic parameters, and from this measurement position is removed for measurement after the shot peening process.
8. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die dem Kugelstrahlbearbeitungsprozess ausgesetzte Oberfläche des Probenkörpers (22) eben ausgebildet wird. 8. The method according to any one of the preceding claims, characterized in that the surface of the sample body (22) exposed to the shot peening process is designed to be flat.
9. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass für den Probenkörper (22) im Vergleich zu dem Bauteil (18) das gleiche Material und/oder die gleichen Größenverhältnisse und/oder die gleiche Vorbehandlung verwendet wird. 9. The method according to any one of the preceding claims, characterized in that the same material and / or the same size ratios and / or the same pretreatment is used for the sample body (22) compared to the component (18).
10. Vorrichtung zum Durchführen des Verfahrens nach einem der vorherigen Ansprüche, umfassend: 10. Device for performing the method according to one of the preceding claims, comprising:
Eine Kugelstrahlbearbeitungsanlage (26), zum Kugelstrahlen von Bauteilen (18), A shot peening machine (26) for shot peening components (18),
Eine Messeinrichtung (30), zum Messen der magnetischen Kenngrößen von Probenkörpern (22), A measuring device (30) for measuring the magnetic parameters of specimens (22),
Eine Messwertverarbeitungseinrichtung (34), mittels welcher anhand der magnetischen Kenngrößen, absoluten Messwerte der Druckeigenspannung ausgebbar sind, und A measured value processing device (34) by means of which absolute measured values of the residual compressive stress can be output on the basis of the magnetic parameters, and
Eine Prozesssteuereinrichtung (38), mittels welcher anhand der absoluten Messwerte der Druckeigenspannungen die Prozessparameter der Kugelstrahlbearbeitungsanlage steuerbar sind. A process control device (38) by means of which the process parameters of the shot peening machine can be controlled on the basis of the absolute measured values of the residual compressive stresses.
EP21730856.8A 2020-06-03 2021-06-01 Method for monitoring the compressive residual stresses of components in a shot-peening machining process Pending EP4161731A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020206906.9A DE102020206906A1 (en) 2020-06-03 2020-06-03 Method for monitoring the residual compressive stresses of components in a shot peening process
PCT/EP2021/064665 WO2021245074A1 (en) 2020-06-03 2021-06-01 Method for monitoring the compressive residual stresses of components in a shot-peening machining process

Publications (1)

Publication Number Publication Date
EP4161731A1 true EP4161731A1 (en) 2023-04-12

Family

ID=76325519

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21730856.8A Pending EP4161731A1 (en) 2020-06-03 2021-06-01 Method for monitoring the compressive residual stresses of components in a shot-peening machining process

Country Status (4)

Country Link
EP (1) EP4161731A1 (en)
CN (1) CN115697633A (en)
DE (1) DE102020206906A1 (en)
WO (1) WO2021245074A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7911205B2 (en) * 2007-09-25 2011-03-22 General Electric Company Electromagnetic resonance frequency inspection systems and methods
US7735350B2 (en) 2008-09-29 2010-06-15 General Electric Co. Measuring intensity of shot peening in areas with difficult accessibility
WO2012086845A1 (en) * 2010-12-21 2012-06-28 Sintokogio, Ltd. Surface property magnetic evaluation device and method
BR112016016597B1 (en) * 2014-01-20 2020-12-01 Sintokogio, Ltd. surface feature examination method
KR102501482B1 (en) * 2017-06-30 2023-02-21 신토고교 가부시키가이샤 shot handling device
JP7031109B2 (en) * 2017-07-10 2022-03-08 新東工業株式会社 Surface property evaluation method, surface property evaluation device and surface property evaluation system

Also Published As

Publication number Publication date
WO2021245074A1 (en) 2021-12-09
DE102020206906A1 (en) 2021-12-09
CN115697633A (en) 2023-02-03

Similar Documents

Publication Publication Date Title
EP1919658B1 (en) Machining device comprising a measuring device for a model
DE102007026540A1 (en) Sample surface testing method, involves comparing data obtained for test sample with sample data, and testing condition of internal stress produced in test sample based on condition of internal stress of test sample
DE102009049155B4 (en) Method for determining the edge crack sensitivity of a sheet metal material and apparatus for producing a test piece from this sheet metal material
EP2360447A1 (en) Method for determining the surface coverage obtained by shot peening
EP3930949B1 (en) Method for grinding or polishing a gearwheel or a workpiece with a gearwheel-like profile in a grinding or polishing machine
CH700883A1 (en) Method for producing a with a slot as test plan provided body.
EP4161731A1 (en) Method for monitoring the compressive residual stresses of components in a shot-peening machining process
DE19511882B4 (en) Method for solidifying workpiece surfaces
DE102020108680B4 (en) Method and arrangement for the surface treatment of a workpiece
DE102018200514A1 (en) Method and device for determining a pressure load of a sample caused by a shock wave
EP2773933B1 (en) Method for determining a machining result during surface machining of components
DE19847210C2 (en) Method and device for mechanically checking the valve plate of ceramic valves
DE102008035257B4 (en) Tribological process
EP2706351B1 (en) Method, device and use of the device for non-destructive quantitative determination of layer thicknesses of a body with layers
EP1604782B1 (en) Grinding tool with integrated micromagnetic sensors
Wegener et al. Calibration and validation of micromagnetic data for non-destructive analysis of near-surface properties after hard turning
WO2014067648A1 (en) Method and device for ascertaining an edge layer characteristic of a component
DE102007011728B4 (en) Method and device for determining parameters during thermal spraying
DE4316754C2 (en) Device for grinding predetermined positions on workpieces
DE3710741A1 (en) Method and device for the computer-controlled determination of the hardness of, in particular, metallic materials
EP3891467B1 (en) Method for testing a quality of a workpiece and computing apparatus
DE19502936C2 (en) Hardness measuring method and device for determining the hardness of a test specimen
DE3726937C2 (en)
DE102004018586A1 (en) Method for compacting surface using bead blasting with intensity and pressure programmed to match geometry of workpiece
DE10161231B4 (en) Method for monitoring or controlling the surface processing of a workpiece and its use

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)