NL2013207B1 - Method and apparatus for determining hardening quality. - Google Patents

Method and apparatus for determining hardening quality. Download PDF

Info

Publication number
NL2013207B1
NL2013207B1 NL2013207A NL2013207A NL2013207B1 NL 2013207 B1 NL2013207 B1 NL 2013207B1 NL 2013207 A NL2013207 A NL 2013207A NL 2013207 A NL2013207 A NL 2013207A NL 2013207 B1 NL2013207 B1 NL 2013207B1
Authority
NL
Netherlands
Prior art keywords
hardness
depth
machine part
determining
depths
Prior art date
Application number
NL2013207A
Other languages
Dutch (nl)
Inventor
Nicolaas Josephus Van Roosmalen Arnoldus
Original Assignee
Verenigde Bierens Bedrijven B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Verenigde Bierens Bedrijven B V filed Critical Verenigde Bierens Bedrijven B V
Priority to NL2013207A priority Critical patent/NL2013207B1/en
Application granted granted Critical
Publication of NL2013207B1 publication Critical patent/NL2013207B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/42Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0076Hardness, compressibility or resistance to crushing
    • G01N2203/0078Hardness, compressibility or resistance to crushing using indentation
    • G01N2203/008Residual indentation measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0298Manufacturing or preparing specimens

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

The invention relates to a method of determining the hardening quality of a hardened metal machine-component, more specifically a geared element, the method comprising: - removing a first quantity of material from the hardened metal machine-component to a first depth; - determining a first hardness value representative of the hardness of the material at the first depth; - removing a further quantity of material from the hardened metal machine-component to a further depth, different from the first depth; - determining a further hardness value representative of the hardness of the material at the further depth; - determining from the hardness values representative of the hardness at the different depth a measure representative of the hardening quality of the hardened metal machine-component.

Description

METHOD AND APPARATUS FOR DETERMINING HARDENING QUALITY
The present invention relates to a method of determining the hardening quality of a hardened metal machine-component, more specifically a geared element. in the manufacturing of metal machine components, for instance geared elements such as toothed products, gear wheels and the like, is important to apply such metallurgical and metalworking processes the machine components so that a suitable hardness of the material (metal) of the components may' be reached. A suitable hardness of the material at its outer surface and at di fferent depths relative to the outer surface of the machine components is of importance for the quality of the machine components in terms of, for instance, operating life time, wear, etc.
Hardness of a metal may be determined by7 measuring the resistance of the material of the component to an applied force, and involves the use of an indenter or similar pressure exerting element. The indenter may be an element of extremely high hardness, for instance diamond, and of fixed geometry that is kept under static load on the surface of the component. In case information about the hardness of the material should not only be obtained on the outer surface of the machine component, but also at one or more different depths relative to the outer surface, a part of the material of the component needs to be removed to expose the material at the required depth and to enable the indenter to be placed under static load on the material to be measured.
Removing a part of the material implies that the determining of the hardness is in fact a destructive method. A part of material is selected from one of the machine components in a batch of components being manufactured (involving, for instance, a forging and heat operation), transported to a laboratory and then investigated. This means that the specific machine component is destroyed and cannot be used anymore. Especially in complex and/or expensive machine components destroying the component is not a good option. Furthermore, the hardness of the selected one of the machine components may not always be representative for the hardness of the other, non-selected machine components.
It is therefore common practice to use coupons instead of the machine component itself. The coupon is taken from the original forging as the machine component and follows the same heat treatment as the machine component. After the heat treatment the coupon is destructively tested in a laboratory, resulting in a measure of the hardness quality of the coupon, for instance resulting in the hardening profile and hardening depth of the coupon selves. However, especially for larger machine components, this practice may not always give reliable results. The measured hardness of the coupon may' not be a good indicator for the actual hardness of each of the parts of the machine component.
US 4 719 793 A discloses a method and apparatus for measuring the hardness of a metal object such as a railroad wheel. The object is placed in a frame of the wheel grinding apparatus. A part of the outer surface of the wheel is polished using a grinding wheel. A testing head of a Brine! l-type measurement device is placed on the polished surface and one or more measurements are performed. A disadvantage of this known wheel grinding apparatus is that the hardness is determined only at one depth relative to the original outer surface of the railroad wheel. Furthermore, the measurement depth is relatively small and appears to be insufficient to properly determine the hardness quality of the metal railroad wheel. Furthermore the polishing arrangement suggests that quite a large area of the railroad wheel needs to be damaged by the polishing action which in some situations (for instance when the metal object has a very limited area available for measurement purposes) is not desirable, it is an object of the present invention to provide a method and apparatus wherein at least one of the disadvantages of the prior art is reduced or even removed.
It is a further object of the invention to provide a method and apparatus wherein the hardness of the machine component itself can be determined in an effi cient and accurate manner.
According to a first aspect of the invention at least one object may be achieved in a method according to claim 1.
By removing the material one or more cavities or openings, for instance one or more bores, may be realized that enable the hardness value to be determined at different depths relative to the outer surface of the original machine component. By determining the hardness at one or more positions on the original machine component and at two or more depths the accuracy may be increased without needing to resort to the use of separate elements such as coupons and without destructing the machine component, in embodiments of the invention the hardness may be determined in one or more areas at and/or near a critical part of the machine component. For instance, the hardness may be determined near the teeth of a geared element.
The machine component material is removed in several steps and/or on different positions where the hardness can be measured and documented. In this way a hardness profile (diagram) and/or the hardness depth can be derived. The method may comprise determining a hardness profile of the hardness values as function of the depth relative to the outer surface of the machine-component. As will be described hereafter the hardness profile can be obtained for a single position on the machine component by making an opening in the outer surface of the component, measuring the hardness, removing material from the same opening to deepen the opening and measuring the hardness again. More generally, the method may comprise removing material from a predefined location to form a first opening with a first depth and determining a first hardness value representative of the hardness at the first depth and removing material from the same predefined location in the same opening to form a deeper opening and determining a further hardness value representative of the hardness of the metal machine-component at the same location and at the larger depth. The removal of material may be repeated at a larger depth and the hardness value may be determined once or more times to obtain a series of hardness values at respective depths.
In other embodiments, the method may comprise removing material to a first depth at a first location on the surface of the hardened metal machine -component, and removing material to a further depth at a further location, different from the first location, on the surface of the hardened metal machine-component. More specifically, the hardness profile may be based on hardness measurements made on different positions and at different depths. This can be accomplished by making different openings with different depths and measuring the hardness at the bottom of each of the openings.
Alternatively or additionally, the determining of the measure may comprise determining a hardening depth. The hardening depth may be defined as the depth relative to the outer surface of the machine tool at which the hardness has a predefined constant value. The predefined constant hardness value may be 550HV (according to the so-called Vickers hardness test). The hardness depth provides an indication of the hardening quality of the machine component.
Removal of the material from the machine component may be accomplished by use of any suitable removal technique. For instance, material removal may comprise turning away a specific amount of material from the metal machine-component. In other embodiments the removing of material may comprise dri lling and/or mi lling of material until specific depths are reached.
The material may be removed to a maximum depth corresponding to the material allowance for hardening. In embodiments of the invention the material may be removed to obtain several depths around a specified hardness layer thickness.
According to a second aspect of the invention at least one object may be achieved in an apparatus of determining the hardening quality of a hardened metal machine-component, more specifically a geared element, as claimed in claim 17.
The removal tool may comprise a mill, and/or drill configured to provide at least one bore in the surface of the metal machine-component.
The openings are made in the machine component itself. The machine component may be a one-piece component. This means that in embodiments of the in vention, the portion of the machine-component in which the openings are made and the critical portion of the component, for instance the geared portion, form a one-piece machine-component.
Further features, advantages and details of the present invention will be elucidated in the following description of several embodiments thereof. In the description reference is made to the figures, which show:
Figure 1 an example of a machine component provided with a number of openings for determining the hardening quality of the component;
Figure 2 a cross section along lines ΙΙ-Π of figure 1 of the machine component;
Figure 3 a schematic diagram of a (part of a) machine component and a hardness determining unit according to an embodiment of the present invention;
Figure 4A and 4B a top view of the machine component of figure 3 before and after the hardness determining unit has performed a hardness test;
Figure 5 a diagram of the measured hardness (HV1) as function of the depth of the opening, in case the hardness test is performed on a coupon, on a first position of the machine component and on a second position of the machine component;
Figure 6 a schematic illustration of the hardness (ITVT) as function of the depth (D), in case of the measurement is performed on a relatively smalt part of the coupon, on a relatively targe portion of the coupon and on the machine component itself;
Figures 7A-7C respective diagrams showing the measurement of the hardness at different depths.
The following description is provided to assist the reader in gaining a comprehensive understanding of the methods, apparatuses, and/or systems described herein. Accordingly, various changes, modifications, and equivalents of the methods, apparatuses, and/or systems described herein may be suggested to those of ordinary skill in the art. Also, descriptions of well-known functions and constructions may be omitted for increased clarity and conciseness.
Figure 1 shows a metal machine component 1, for instance a geared pinion, that has been forged and has undergone the usual heat treatment so as to provide a hardened machine component. The machine component 1 comprises a conical part 3 at the outer surface thereof a number of teeth 2 have been provided. As it is important to determine the hardness of the material of the machine component itself (rather than the hardness of a coupon) a number of openings (bores) 4-9 have been realized in the outer surface of the component. The openings are provided at positions close to the critical parts of the machine component. In this case the opening have been provided close at positions close to the teeth 2 of the component. As shown in figures 1 and 2, tire openings have been arranged in a circumferential area 11. More specifically, the openings are di stributed at equi distant positions along the circumference of the component.
As can be seen in figure 2, the depth of the openings 4-9 differs from opening to opening. Opening 4 has a relatively small depth, while opening 5 has a slightly larger depth. Openings 6-9 are made to have an ever increasing depth so that the hardness of th e material of the component can be determined at a number of different depths (i.e.in the present case at six different depths. In other situations this number may be larger or smaller). Depending on the machine component the distribution of the openings along the circumference of the component can vary. For instance, some openings may be arranged closer to each other, especially in critical areas, than other openings. Furthermore, instead of a gradually increasing depth of the openings along a circumferential area, the distribution of the depths may vary, for instance when the opening depths are randomly selected. In any case, the openings 4-9 provide the opportunity to measure the hardness of the material of the machine component at several different depths.
The determination of the hardness of the material can be done using one of a number of available hardness tests. In figures 3.4A and 4B an example is shown of the so called Vickers hardness test to measure the hardness of the machine component material. The unit of hardness given by the Vickers test is the Vickers pyramid number (HV). Figure 3 shows a typical Vickers hardness test set-up. The figure shows a metal component 17 in which an opening 14 has been machined. The hardness of the material at the bottom surface 15 of this opening 14 is to be determined. The hardness is measured by applying a predefined load upon the surface 15. The load is formed by a hardness determining unit 12. The hardness determining unit 12 comprises at its bottom an indenier, for instance a diamond 13 in the form of a square-based pyramid. The Vickers number is then determined by the ratio of the force (F) applied to the diamond and the surface area (A) of the indentation 16 resulting from the application of the di amond on the surface 15 of the opening 14. The surface area (A) may be approximated by measuring the average length (d) of the diagonal left by the indenter (
). The force (F) is in N and the diameter (d) is in mm. Expressed in kilograms-force per square millimeter (kgf/mnri) the surface the Vickers number would be
).
Figure 4A is a top view' showing the opening 14 before the diamond has been impressed upon the surface 15, while figure 4B shows the indentation 16 that the diamond 13 has left upon the surface 15 of the opening. Vickers hardness numbers are reported as xxxHVyy/zz, wherein xxx is the hardness number, HV gives the hardness scale or hardness number, yy indicates the load used and zz indicates the loading time. The HV number may be measured in kgfi'mnT or in Si units (for instance in GPa). Throughout the present application the time duration at which the diamond rests upon the surface 15 is about 10 to 15 seconds or less, and the load used to pash the diamond on the surface (i.e. the force applied) is 1 kgf. For further details of the Vickers hardness test measurement method are described in the standard ISO 6507, which is incorporated herein by reference.
In the embodiment of figures 1 and 2 the hardness values at different depths are measured at different positions along the circumferential area 11 of the machine component 1. In other embodiments the hardness values are determined at one single position only. Figures 7A-7C depict an example of such embodiments. In this embodiment the opening 14 has a first depth (In) as indicated in figure 7A. Using the hardness determining unit 12 the diamond 13 provides an indentation on the surface 15 of the bottom of the opening 14. Once the hardness of the material 16 just below' the surface 15 is determined, material from the bottom of the opening 14 is removed further until a deeper opening 14’ as shown in figure 7B has been generated. The deeper opening 14’ has a larger depth (h2) than the first opening. Using the same hardness determining unit 12 the hardness value of the material just below the surface 15’ of the opening 14’ can be determined. Once the hardness value has been correctly determined, the opening is further deepened by removing material from the bottom 15’ of the opening 14’ until the depth (h3) has been reached (figure 1C). Similarly the hardness determining unit 12 may determine the hardness value of the material 16” just below the surface 15” of the opening 14. In this manner the hardness of the material at three different depths may be determined. From this three hardness values a hardness profile as function of the depth may be calculated by interpolation of the hardness values.
Whereas in the embodiments of figures 7A-7C the hardness is determined basically at the same position, in other embodiments the openings of different depths are provided at different positions on the surface of the metal piece. In other words, a first opening 14 is arranged at a first position, while the further openings are provided at different positions. In a similar manner the hardness values of the material at the bottom of each of the openings can be determined. An advan tage of these embodiments is that the measurement of the hardness of the material can be repeated in the course of time since the bottom of each opening remains available for further testing. In the embodiments of figures 7A- 7C of course when the first opening 14 has been deepened to reach the second depth, the material 16 is not anymore available for testing. An advantage of performing the measurement at a single position is that there is less damage to the outer surface of the machine component.
Figure 5 shows an example of the results of a hardness measurement performed by the hardness determining unit 12. The figure shows a diagram of the Vickers hardness value HV1 as function of the depth h. The diagram shows a number of lines which interconnect the individual measurement values resulting from the measurement of the hardness at different depths on the metal machine component. Each of the lines indicates a hardness profile obtained fay interpolation of a number of associated hardness, f ine 20 indicates the hardness profile obtained by interpolation of the hardness values of a coupon (with diameter 30 mm) which is not part of the machine component but has been forged together with the machine component as a separate element. Line 21 show's the results of the measurement of the hardness at a certain portion of the machine component. More specifically, the line shows the hardness values measured at the toe portion of the component. Similarly line 22 shows the results of the hardness measurements on a different portion of the componen t, more specifically the heel portion thereof. The three lin es clearly show that the hardness values determined in the traditional manner, i.e. determined by measuring the hardness value of a coupon, can differ considerably from the measured hardness values of the machine component itself. The lines 21 and 22 also show that even on the same component different portions thereof may show deviating hardness values and resulting hardness profiles. Line 23 indicates the amount of material allowance on the tooth surface of the machine component which will be removed after hardening.
The hardening quality of a machine component is sometimes assessed by determining the hardening depth of the component. The hardening depth may be defined as the depth at which the hardness value has a predefined value, for instance 550 HV. The hardening depth may be a single measure representative of the quality of the hardening process. Line 24 in figure 5 indicates the hardening depth (in this case the depth at which the hardness value is about 550 HV). As can be seen from figure 5, the hardness depth varies considerably among the different portions of the machine component. For instance, the hardness depth for the heel portion (i.e. the depth at which line 22 crosses line 24) is about 3.4 mm, while the hardness depth of the toe portion is about 3.8 mm. The hardness value of the coupon will be about 3.6 mm. This means that the hardness depth of the machine component at the heel portion is smaller than the hardness that would have been determined using the traditional measurements set-up wherein the hardness of a separate coupon is determined. Depending on the requirements for the machine component, the measurement would lead to different conclusions. For instance, when the hardness depth is required to be at least 3.5 mm, the use of the traditional measurement set-up would lead to an approval of the quality" of the machine component while the hardening depth of the coupon fulfills this requirement. However, when the measurement method according to embodiments of the present invention is used, the toe portion would receive approval and the heel portion would be rejected. The end result may then be that the machine component as a whole is rejected.
Referring to figure 6 a similar diagram of the hardness value (HV1) as a function of the depth (h) is depicted. The diagram show's a line 26 interconnecting the results of the measuremen ts on a relatively small coupon, more specifically' a coupon having a diameter of 30 mm. Line 27 shows the results for the measurement of the hardness of a relatively large coupon, more specifically a coupon having a diameter of about 108 mm. Line 28 interpolates the measurement results of the hardness values determined in accordance with embodiments of the present invention. The diagram shows that the hardness values measured on the machine component are generally higher than the measurement values measured on either of the coupons. For instance, the hardness depth of the small coupon, large coupon and machine component are 3.7 mm, 3.9 mm and 3.5 mm, respectively. Depending on the requirements that have been set on the hardness depth, the machine component may be accepted or rejected. Tn any way, the accuracy of the determination of the hardening quality of the machine component can be increased considerably by' using the embodiments of the present invention.
As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any' of the other several embodiments without departing from the scope of the present invention. Any recited method can be carried out in the order of events recited or in any other order which is logically possible.
It is to be understood that this invention is not limited to particular aspects described, and, as such, may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.

Claims (20)

1. Werkwijze voor het bepalen van de hardingskwaliteit van een gehard metalen machineonderdeel, specifieker een getand element, waarbij de werkwijze omvat: - het verwijderen van een eerste hoeveelheid materiaal uit het geharde metalen machineonderdeel tot een eerste diepte; - het bepalen van een eerste hardheidswaarde representatief voor de hardheid van het materiaal op de eerste diepte; gekenmerkt door - hei verwijderen van een verdere hoeveelheid materiaal uit het geharde metalen machineonderdeel tot een verdere diepte die niet gelijk is aan de eerste diepte; - het bepalen van een verdere hardheidswaarde representatief voor de hardheid van het materiaal op de verdere diepte; - het uit de voor de hardheid op de verschillende dieptes representatieve hardheidswaardes bepalen van een maat die representatief is voor de hardingskwaliteit van het geharde metalen machineonderdeel, waarbij de maat een hardheidsprofiel van de hardheidswaardes als functie van de diepte ten opzichte v an hei buitenoppervlak van het machineonderdeel omvat en het verwijderen van materiaal omvat het rangschikken van een holte in het buitenoppervlak van het metalen machineonderdeel, bijvoorbeeld een boorgat.A method for determining the curing quality of a hardened metal machine part, more specifically a toothed element, the method comprising: - removing a first amount of material from the hardened metal machine part to a first depth; - determining a first hardness value representative of the hardness of the material at the first depth; characterized by - removing a further amount of material from the cured metal machine part to a further depth that is not equal to the first depth; - determining a further hardness value representative of the hardness of the material at the further depth; - determining from the hardness values representative of the hardness at the different depths a measure representative of the hardening quality of the hardened metal machine part, the measure being a hardness profile of the hardness values as a function of the depth relative to the outer surface of the machine part and material removal comprises arranging a cavity in the outer surface of the metal machine part, for example a borehole. 2. Werkwijze volgens conclusie 1, waarbij het bepalen van de genoemde maat omvat het bepalen van een hardingsdiepte.The method of claim 1, wherein determining said size comprises determining a cure depth. 3. Werkwijze volgens conclusie 2, waarbij de hardingsdiepte gedefinieerd is als de diepte waarop de hardheidswaarde een vooraf bepaalde drempel overschrijdt.The method of claim 2, wherein the cure depth is defined as the depth at which the hardness value exceeds a predetermined threshold. 4. Werkwijze volgens één van de voorgaande conclusies, omvattende het herhalen van het verwijderen van een verdere hoeveelheid en het bepalen van een hardheidswaarde v an het metaal op één of meer verdere dieptes zodat een serie hardheidswaardes als functie van de diepte wordt verschaft.A method according to any one of the preceding claims, comprising repeating the removal of a further amount and determining a hardness value of the metal at one or more further depths so that a series of hardness values as a function of the depth is provided. 5. Werkwijze volgens één van de voorgaande conclusies, waarbij het verwijderen van materiaal op een aantal dieptes verricht wordt op in wezen dezelfde positie op het geharde metalen machineonderdeel.The method of any one of the preceding claims, wherein material removal at a plurality of depths is performed at substantially the same position on the cured metal machine part. 6. Werkwijze volgens conclusie 5, omvattende: - het verwijderen van materiaal van een vooraf bepaalde locatie om een eerste opening met een eerste diepte te vormen en het bepalen van een eerste hardheidswaarde representatief voor de hardhei d op de eerste diepte; - het verwijderen van materiaal van dezelfde vooraf bepaalde locatie uit dezelfde opening om een diepere opening te vormen en het bepalen van een verdere hardheidswaarde representatief voor de hardheid van het metalen machineonderdeel op dezelfde locatie en op de grotere diepte.The method of claim 5, comprising: - removing material from a predetermined location to form a first opening with a first depth and determining a first hardness value representative of the hardness at the first depth; - removing material from the same predetermined location from the same opening to form a deeper opening and determining a further hardness value representative of the hardness of the metal machine part at the same location and at the greater depth. 7. Werkwijze volgens conclusie 6, waarbij het verwijderen van materiaal op een grotere diepte en het bepalen van de hardheidswaarde één keer of meerdere keren wordt herhaald om een serie hardheidswaardes op respectievelijke dieptes te verkrijgen.The method of claim 6, wherein removing material at a greater depth and determining the hardness value is repeated once or more times to obtain a series of hardness values at respective depths. 8. Werkwijze volgens conclusie 6 of 7, waarbij het verwijderen van materiaal omvat het wegdraaien van een specifieke hoeveelheid materiaal van het metalen machineonderdeel.A method according to claim 6 or 7, wherein the removal of material comprises turning away a specific amount of material from the metal machine part. 9. Werkwijze volgens conclusie 6 of 7, waarbij het verwijderen van materiaal omvat het boren en/of frezen van materiaal tot specifieke dieptes zijn bereikt.A method according to claim 6 or 7, wherein material removal comprises drilling and / or milling material until specific depths are achieved. 10. Werkwijze volgens één van de voorgaande conclusies, waarbij het verwijderen van materiaal op een aantal dieptes wordt verricht op verschillende posities op het geharde metalen machineonderdeel.The method of any one of the preceding claims, wherein material removal is performed at a plurality of depths at different positions on the cured metal machine part. 11. Werkwijze volgens conclusie 12, omvattende het verwijderen van materiaal tot een eerste diepte op een eerste locatie op het oppervlak van het geharde metalen machineonderdeel, en het verwijderen van materiaal tot een verdere diepte op een verdere locatie, niet gelijk aan de eerste locatie, op het oppervlak van het geharde metalen machineonderdeel.A method according to claim 12, comprising removing material to a first depth at a first location on the surface of the hardened metal machine part, and removing material to a further depth at a further location, not equal to the first location, on the surface of the hardened metal machine part. 12. Werkwijze volgens conclusie 11, omvattende liet één keer of meerdere keren herhalen van het verwijderen van materiaal op een verdere diepte en het bepalen van de hardheidswaarde, om een serie hardheidswaardes op respectievelijke dieptes en locaties te verkrijgen.The method of claim 11, including repeating material removal at a further depth and determining the hardness value once or more to obtain a series of hardness values at respective depths and locations. 13. Werkwijze volgens één van de voorgaande conclusies, waarbij het metalen machineonderdeel een getand element is omvattende een aantal tanden, waarbij de werkwijze omvat het verwijderen van materiaal van een locatie van het getande element bij of naast minstens één tand van het getande element.A method according to any one of the preceding claims, wherein the metal machine part is a toothed element comprising a plurality of teeth, the method comprising removing material from a location of the toothed element at or adjacent at least one tooth of the toothed element. 14. Werkwijze volgens één van de voorgaande conclusies, omvattende het verwijderen van materiaal tot een maximumdiepte die overeenkomt met de materiaaltoegift (allowance) voor harding.A method according to any one of the preceding claims, comprising removing material to a maximum depth corresponding to the material allowance for curing. 15. Werkwijze volgens één van de voorgaande conclusies, omvattende het verwijderen van materiaal tot meerdere dieptes rond een gespecificeerde hardheidslaagdikte.The method of any one of the preceding claims, comprising removing material to multiple depths around a specified hardness layer thickness. 16. Werkwijze volgens één van de voorgaande conclusies, waarbij het bepalen van de hardheid verricht wordt op de vertanding van het machineonderdeel.A method according to any one of the preceding claims, wherein the determination of the hardness is performed on the toothing of the machine part. 17. Inrichting voor het bepalen van de hardingskwaliteit van een gehard metalen machineonderdeel, specifieker een getand element, waarbij de inrichting omvat: - een verwijderingswerktuig inclusief een verwijderingselement gerangschikt om hoeveelheden materiaal te verwijderen uit het geharde metalen machineonderdeel tot een aantal dieptes; - een hardheidsmetingstoestei ingericht om de hardheid te bepalen van het materiaal van het machineonderdeel op verschillende dieptes; - een bepalingstoestel ingericht om hardheidswaardes te bepalen van het metaal; met het kenmerk, dat het bepalingstoestel is ingericht om de hardheidswaardes van het metaal als functie van de verschillende dieptes te bepalen en om een maat ie bepalen die representatief is voor de hardingskwaliteit van het geharde metalen machineonderdelen, waarbij de maat een hardheidsprofiel van de hardheidswaardes als functie van de diepte ten opzichte van het buitenoppervlak van het machineonderdeel omvat.Device for determining the curing quality of a hardened metal machine part, more specifically a toothed element, the device comprising: - a removal tool including a removal element arranged to remove quantities of material from the hardened metal machine part to a number of depths; - a hardness measurement allowance adapted to determine the hardness of the material of the machine part at different depths; - a determining device adapted to determine hardness values of the metal; characterized in that the determining device is adapted to determine the hardness values of the metal as a function of the different depths and to determine a measure representative of the hardening quality of the hardened metal machine parts, the measure being a hardness profile of the hardness values as function of the depth relative to the outer surface of the machine part. 18. Inrichting volgens conclusie 17, waarbij het verwij deringswerktuig een frees en/of boor omvat ingericht om minstens één boorgat te verschaffen in het oppervlak van het metalen machineonderdeel.The device of claim 17, wherein the removal tool comprises a cutter and / or drill adapted to provide at least one borehole in the surface of the metal machine part. 19. Inrichting volgens één van de conclusies 17-19, ingericht om de werkwijze volgens één van de conclusies 1-16 te verrichten.Device as claimed in any of the claims 17-19, adapted to perform the method as claimed in any of the claims 1-16. 20. Inrichting en werkwijze volgens één van de voorgaande conclusies, waarbij het gedeelte van het machineonderdeel waarin de openingen gemaakt zijn en het getande gedeelte van het machineonderdeel een machineonderdeel uit één stuk vormen.Device and method according to any of the preceding claims, wherein the part of the machine part in which the openings are made and the toothed part of the machine part form a one-piece machine part.
NL2013207A 2014-07-17 2014-07-17 Method and apparatus for determining hardening quality. NL2013207B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2013207A NL2013207B1 (en) 2014-07-17 2014-07-17 Method and apparatus for determining hardening quality.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2013207A NL2013207B1 (en) 2014-07-17 2014-07-17 Method and apparatus for determining hardening quality.

Publications (1)

Publication Number Publication Date
NL2013207B1 true NL2013207B1 (en) 2016-04-29

Family

ID=51493008

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2013207A NL2013207B1 (en) 2014-07-17 2014-07-17 Method and apparatus for determining hardening quality.

Country Status (1)

Country Link
NL (1) NL2013207B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4719793A (en) * 1986-12-08 1988-01-19 Amsted Industries Incorporated Hardness testing apparatus
US20120325028A1 (en) * 2011-06-24 2012-12-27 Akira Tanaka Synthetic resin material test method and synthetic resin material test apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4719793A (en) * 1986-12-08 1988-01-19 Amsted Industries Incorporated Hardness testing apparatus
US20120325028A1 (en) * 2011-06-24 2012-12-27 Akira Tanaka Synthetic resin material test method and synthetic resin material test apparatus

Similar Documents

Publication Publication Date Title
Dobmann et al. Industrial applications of 3MA–micromagnetic multiparameter microstructure and stress analysis
Bertini et al. Fretting fatigue tests on shrink-fit specimens and investigations into the strength enhancement induced by deep rolling
EP1721703B1 (en) Method for process control of burnishing
Maiß et al. Hybrid machining of roller bearing inner rings by hard turning and deep rolling
Jurko et al. Accompanying phenomena in the cutting zone machinability during turning of stainless steels
Gronostajski et al. Application of the reverse 3D scanning method to evaluate the wear of forging tools divided on two selected areas
NL2013207B1 (en) Method and apparatus for determining hardening quality.
Krömer et al. Surface characteristics of hobbed gears
Pilz et al. Investigation of fatigue strength of tool steels in sheet-bulk metal forming
Meier et al. Hard broaching of case hardened SAE 5120
Meyer et al. Influence of residual stress depth distribution on lifecycle behaviour of AISI4140
EP1451484B1 (en) Method for verifying the manufacturing quality of sliding elements in belts therefor
Zeilmann et al. Characterization of edge preparation processes and the impact on surface integrity after milling of AISI P20 steel
Studenets’ et al. The influence of deformation conditions on the structure and hardening of cast iron surface layer in machining with combined carbide broaches
Gomez-Gras et al. Experimental characterization of the influence of lateral pass width on results of a ball burnishing operation
Dyl The burnishing process of the stainless steel in aspect of the reduction roughness and surface hardening
RU2325260C2 (en) Method of electromechanic preparation of steel and cast iron product surfaces for application of coatings
Sidun et al. The method of fretting wear assessment with the application of 3D laser measuring microscope
RU2616436C1 (en) Method of determining adhesive metal coating strength to the steel surface
WO2021245074A1 (en) Method for monitoring the compressive residual stresses of components in a shot-peening machining process
SEDLAK et al. RESIDUAL STRESS WHEN FACE MILLING ALUMINIUM ALLOYS.
Gegner et al. Possibilities and extension of XRD material response analysis in failure research for the advanced evaluation of the damage level of Hertzian loaded components
Dudnikov et al. Improving the technology of part machining by surface plastic deformation
Klein et al. Taking the distortion of component parts along a manufacturing chain into consideration during planning
Najafabadi Development of the Burnishing Process: Moving Towards Increasing the Quality and Surface Hardness of Aluminum alloy 2024

Legal Events

Date Code Title Description
PD Change of ownership

Owner name: VERENIGDE BIERENS BEDRIJVEN B.V.; NL

Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), OVERDRACHT; FORMER OWNER NAME: BIERENS MACHINEFABRIEKEN B.V.

Effective date: 20160921

MM Lapsed because of non-payment of the annual fee

Effective date: 20230801