EP4143083A1 - Aircraft - Google Patents

Aircraft

Info

Publication number
EP4143083A1
EP4143083A1 EP21722198.5A EP21722198A EP4143083A1 EP 4143083 A1 EP4143083 A1 EP 4143083A1 EP 21722198 A EP21722198 A EP 21722198A EP 4143083 A1 EP4143083 A1 EP 4143083A1
Authority
EP
European Patent Office
Prior art keywords
rotor
wing
rotation
wings
aircraft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21722198.5A
Other languages
German (de)
French (fr)
Inventor
Dimitry BREGA
Sylvain ROLDAN DE PERERA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP4143083A1 publication Critical patent/EP4143083A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • B64C27/24Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft with rotor blades fixed in flight to act as lifting surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • B64C27/26Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft characterised by provision of fixed wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/54Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
    • B64C27/58Transmitting means, e.g. interrelated with initiating means or means acting on blades
    • B64C27/59Transmitting means, e.g. interrelated with initiating means or means acting on blades mechanical
    • B64C27/605Transmitting means, e.g. interrelated with initiating means or means acting on blades mechanical including swash plate, spider or cam mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D35/00Transmitting power from power plants to propellers or rotors; Arrangements of transmissions
    • B64D35/04Transmitting power from power plants to propellers or rotors; Arrangements of transmissions characterised by the transmission driving a plurality of propellers or rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/02Hub construction
    • B64C11/04Blade mountings
    • B64C11/06Blade mountings for variable-pitch blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/30Blade pitch-changing mechanisms
    • B64C11/32Blade pitch-changing mechanisms mechanical
    • B64C11/325Blade pitch-changing mechanisms mechanical comprising feathering, braking or stopping systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/02Gyroplanes
    • B64C27/021Rotor or rotor head construction
    • B64C27/026Devices for converting a fixed wing into an autorotation rotor and viceversa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • B64C27/28Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft with forward-propulsion propellers pivotable to act as lifting rotors

Definitions

  • the present invention relates to an aircraft having an evolutionary wing able to go from a fixed wing configuration to a rotary wing configuration and vice versa.
  • US Pat. No. 8,070,090 describes an aircraft suitable for switching from a helicopter mode with a rotary wing to an airplane mode with a fixed wing.
  • the orientation of the aircraft during flight is controlled by servomotors placed in the wings and adapted to modify the angle of incidence.
  • Application WO 2014/089604 discloses an aircraft of the same type.
  • the aircraft In rotary wing flight configuration, the aircraft can be piloted by means of a swashplate device.
  • the airfoil has blades with a symmetrical profile, that is to say that the leading edge has the same shape as the trailing edge. Aerodynamic performance is not entirely satisfactory in a fixed wing flight configuration.
  • the invention aims to answer them.
  • the invention achieves this thanks to an aircraft comprising at least one wing with two wings integral with a rotor equipped with a swashplate control device, the wing being able to pass from a fixed wing configuration where the rotor is immobilized by relative to the aircraft fuselage and the wings oriented with their leading edge turned in the direction of travel of the aircraft, to a rotary wing configuration where the rotor is rotated relative to the fuselage, or even vice versa, at least one of the wings undergoing, during the passage from the fixed wing configuration to the rotary wing configuration, a rotation on itself relative to the rotor so that the two wings of the airfoil form blades having their leading edge oriented in the direction of rotation of the rotor.
  • the wings By changing the orientation of at least one of the wings, it is possible to use non-symmetrical profile wings, leading to superior aerodynamic performance in flight with the fixed wing configuration.
  • the wings can present an optimized profile for flight in this configuration, reducing drag and improving range.
  • the swashplate control allows precise piloting in a rotary airfoil configuration.
  • the wing change from fixed wing configuration to rotary wing configuration, and vice versa, can be done while the aircraft is in flight. This passage can be done automatically, without an operator intervening manually on the wings.
  • the rotary wing configuration can be used during takeoff and / or landing of the aircraft.
  • the aircraft can allow the transport of passengers or as a variant constitute a drone.
  • Only one of the two wings can include a mechanism which transforms the movement of an actuator integrated in the wing into a rotation of the wing on itself so as to modify the orientation of its leading edge between the wings.
  • Fixed wing and rotary wing configurations Only one of the two wings can include a mechanism which transforms the movement of an actuator integrated in the wing into a rotation of the wing on itself so as to modify the orientation of its leading edge between the wings.
  • the leading edges of the wings are on the same side in the fixed wing configuration, and are turned in opposite directions in the rotary wing configuration.
  • the aircraft is more economical to design since it does not require all the wings to be equipped with such a mechanism.
  • the two wings of the rotary airfoil are fitted with it.
  • the angle of rotation of the wing on itself to switch from one configuration to another is substantially equal to 180 °.
  • At least one of the wings may include an actuator controlling the rotation of the wing on itself relative to a mast connecting it to the rotor during the passage from the fixed wing configuration to the rotary wing configuration, and the control device Swashplate control can control the rotation of the mast on itself during the rotation of the rotor in the rotary airfoil configuration.
  • the swashplate control can control the angle of attack of the wing and thus modify the lift thrust in order to pilot the aircraft.
  • the wing may include a second actuator making it possible to move a movable lock relative to the wing between a first position allowing the wing to rotate under the action of the first actuator relative to the mast and a second locking position of the wing. the wing opposing a rotation of the wing relative to the mast.
  • This lock makes it possible to lock the wing in the rotary airfoil configuration after it has performed a rotation on itself to pass from the fixed airfoil configuration to the rotary airfoil configuration. Such locking helps to lock the wing in rotation relative to the mast when in the rotary airfoil configuration.
  • only one of the two wings of the airfoil is equipped with such a lock.
  • both wings are equipped with it.
  • the lock engages, in the locking position, on an arm rigidly linked to the mast and rotating with the latter.
  • This arm rigidly linked to the mast is for example substantially parallel to the root of the wing.
  • the lock is axially movable, but other locking movements are possible.
  • the swashplate controller may include an incidence control arm whose end is substantially the same distance from the axis of rotation of the mast on itself as the latch.
  • the rotation of at least one wing on itself can be obtained by a mechanism which transforms a movement of an actuator into an axial displacement of two parts relative to each other, these two parts being provided with cooperating reliefs. configured to transform the axial displacement of one relative to the other into a rotation of one relative to the other, one of the parts being integral with the rotor and the other with the wing.
  • the rotation of the wing on itself can thus be precisely controlled by the actuator.
  • One of the parts may include at least one helical slot and the other at least one lug moving in this slot, such that an axial displacement of one parts in the slot is accompanied by a rotation of one of the parts relative to the other.
  • the swashplate control device may include a plate mounted on a ball joint allowing it to tilt relative to the axis of rotation of the rotor, the plate being connected to rods controlling the incidence of the wings during the rotation of the rotor.
  • the device comprising two rods for controlling the inclination of the plate along the pitch and roll axes respectively, arranged at approximately 90 ° to each other around the axis of rotation of the rotor.
  • the swashplate control device can then include a single actuator controlling the collective pitch.
  • the swashplate control device comprises a plate mounted on a ball joint allowing it to tilt relative to the axis of rotation of the rotor, the plate being connected to rods controlling the incidence of the wings during the rotation of the rotor, the device comprising at least three rods for controlling the orientation of the plate.
  • the swashplate control device may advantageously comprise four control rods for controlling the orientation of the plate arranged at substantially 90 ° to each other around the axis of rotation of the rotor. The presence of these four links allows good mechanical strength of the swashplate control device.
  • the aircraft has a thruster at the rear, preferably a thruster with two contra-rotating propellers, which makes it possible to gain efficiency.
  • the rotor can be rotated by a motor in the rotary airfoil configuration.
  • the rotor is arranged at the rear of the fuselage in a fixed wing configuration and the axis of rotation of the rotor is substantially coaxial with the longitudinal axis of the fuselage.
  • the aircraft may include at least one propeller driven in rotation by the same engine as the rotor in the fixed wing configuration.
  • the aircraft may also include a planetary gear transmission allowing the engine to selectively drive the propellant rotor or propeller.
  • the axis of rotation of the rotor is substantially perpendicular to the longitudinal axis of the fuselage.
  • the aircraft comprises a second wing with two wings integral with a second rotor, this second wing being able to pass from a fixed-wing configuration where the second rotor is immobilized relative to the aircraft fuselage and the wings oriented with their leading edge facing in the direction of travel of the aircraft, to a rotary-wing configuration where the second rotor is rotated relative to the fuselage, and conversely, at least one of the wings undergoing during the passage from the fixed-wing configuration to the rotary-wing configuration a rotation on itself relative to the second rotor so that the wings form blades each having its leading edge oriented in the direction of rotation of the second rotor.
  • This second rotor makes it possible in particular to stabilize the aircraft in the rotary airfoil configuration.
  • the two rotors can be driven by separate transmissions.
  • the two rotors can be desynchronized, which can be useful in particular to have an additional possibility of controlling the relative lift of each rotor.
  • the aircraft comprises at least two fixed low wings.
  • Such low wings facilitate the transition between the two flight configurations.
  • they make it possible to optimize the lift of the aircraft once it has reached a sufficient flight speed in the rotary or fixed wing configuration.
  • These complementary fixed wings also make it possible to limit the diameter of the rotor discs.
  • the two fixed low wings can each be fitted with a thruster, control of the aircraft around the yaw axis then being easily obtained by varying the differential thrust exerted by the two thrusters.
  • These thrusters are preferably propeller thrusters, which may be of smaller size than those of the aforementioned stern thruster.
  • FIG. 1 schematically represents in perspective an example of an aircraft according to the invention, in a fixed wing configuration
  • FIG 2 is a top view of the aircraft of Figure 1
  • FIG. 3 represents the aircraft of FIG. 1 in the rotary wing configuration
  • Figure 4 is a top view of the aircraft of Figure 3
  • FIG. 5 is a perspective view, schematic and partial, of an example of a swashplate control device of an aircraft according to the invention
  • Figure 6 shows the device of Figure 5 from another viewing angle
  • Figure 7 shows an example of a mechanism for changing the orientation of the leading edge of a wing relative to the rotor
  • FIG 8 shows a top view of the mechanism of Figure 7,
  • FIG. 9 partially and schematically shows in side view, an aircraft variant, in rotary wing configuration
  • Figure 10 is a view similar to Figure 9 when changing to the fixed wing configuration
  • FIG. 11 is a view similar to FIG. 9 with the wings in the fixed wing configuration,
  • Figure 12 schematically shows the aircraft of Figure 11 in top view
  • Figure 13 is a partial and schematic view of the rotor drive mechanism.
  • Figures 1 to 4 show an aircraft 1 suitable for transporting passengers or goods.
  • It comprises two wings 10a and 10b adapted to pass from a fixed wing configuration, illustrated in Figures 1 and 2, to a rotary wing configuration, illustrated in Figures 3 and 4. These wings 10a, 10b are carried by a rotor.
  • the axis of rotation of the rotor is substantially perpendicular to the longitudinal axis of the fuselage 2.
  • the aircraft 1 comprises a second wing similar to the first, having two wings 10 'carried by a second rotor.
  • This second wing can also change from a fixed wing configuration to a rotary wing configuration.
  • the axis of rotation of the second rotor is substantially perpendicular to the longitudinal axis of the fuselage 2.
  • the two rotors can turn in opposite directions.
  • the aircraft 1 has two low wings 11 which are fixed. These may have an inverted arrow configuration, as shown.
  • the wings 11 facilitate the transition from one flight configuration to another. They also provide better lift in a fixed wing flight configuration.
  • the wings 11 can each be equipped with a thruster, for example with a propeller 7. These propellers 7 can rotate at different speeds, and the resulting thrust differential makes it possible to control the aircraft 1 around the yaw axis. .
  • the aircraft 1 has a thruster at the rear.
  • this thruster comprises two contra-rotating propellers 13 each having three blades.
  • the wings 10a, 10b are fixed relative to the fuselage, which allows the aircraft to evolve like an airplane, in rapid flight.
  • the leading edges 12 of the wings 10a, 10b are turned in the direction of travel of the aircraft 1.
  • the wings 10a, 10b form blades each having its leading edge 12 oriented in the direction of rotation R of the rotor.
  • the leading edges 12 of the two wings are turned in opposite directions.
  • the aircraft 1 comprises a swashplate control device 20, making it possible to control its evolution in the rotary wing configuration.
  • a swashplate control device 20 makes it possible to control its evolution in the rotary wing configuration.
  • An example of this device is shown in Figures 5 and 6, knowing that any known swashplate control device can be used.
  • the device 20 comprises in the example illustrated in Figures 5 and 6 a plate 21, mounted by means of bearings 28 on a ball joint 29, allowing it to tilt relative to the axis of rotation of the shaft 23 of the rotor.
  • a lever 323 integral with the rotor shaft 23 rotates the plate 21 while allowing it to pivot about an axis perpendicular to the axis of rotation of the rotor shaft 23.
  • the plate 21 is connected by rods 24, visible in FIG. 5, to the wings 10a and 10b, so as to be able to control the incidence of these during the rotation of the rotor as a function of the inclination given to the plate. 21, in a conventional manner as is done for helicopters.
  • the rods 24 move up or down along the axis of rotation of the shaft 23.
  • the device 20 also comprises two rods 25 for controlling the inclination of the plate 21, along the pitch and roll axes respectively.
  • These two links 25 are arranged at substantially 90 ° to each other around the axis of rotation 23 of the rotor, and are connected to respective actuators, not shown.
  • the device 20 also comprises a rod 27 allowing action on a lever 26 for controlling the collective pitch.
  • This lever 26 is carried by a support part 30 fixed to the fuselage 2 and traversed by the shaft 23 of the rotor. The rotation of the lever 26 makes it possible to raise or lower the plate 21 on the shaft 23 of the rotor, and in doing so act on the collective pitch.
  • the lever 323 can pivot relative to the rotor shaft 23 during this axial movement of the plate 21.
  • the rotor head 400 carries two diametrically opposed mats 210, each capable of rotating about its longitudinal axis, substantially perpendicular to the axis of rotation of the rotor.
  • Each wing 10a, 10b can rotate with this mast 210 when the rotor is in the rotary airfoil configuration, during the rotation of the rotor, as a function of the inclination of the plate 21, due to the action of the connecting rods 24.
  • Each link 24 is connected on the one hand to the plate 21 at one end 24a and at the other end 24b to a first control arm 324 of the rotation of the mast 210, close to the head 400 of the rotor.
  • a second arm 206 extends opposite the first 324, the ends of the arms opposite the mast 210 being connected by a connecting rod 204 .
  • This wing 10a is equipped with a first actuator 201 allowing it to rotate relative to the mast 210 carried by the rotor, when changing the rotary wing / fixed wing configuration.
  • the actuator 201 makes it possible to generate a relative axial movement within the wing between an internal shaft 207 and an external sheath 203, rigidly fixed to the wing and in which the internal shaft 207 is engaged.
  • the internal shaft 207 is integral in rotation with the mast 210.
  • the sleeve 203 is provided with at least one helical slot 209 and the internal shaft 207 with at least one lug 208 engaged in this slot 209, so that the axial displacement of the internal shaft 203 relative to the sleeve 207 is accompanied by a rotation of the wing 10a relative to the internal shaft 207.
  • the latter can rotate within the actuator 201, without moving axially relative to the latter .
  • the actuator 201 When the actuator 201 is actuated, it moves axially with the mast 207 along guides 410 integral with the wing 10a.
  • the wing 10a is equipped with a locking system in the rotary wing configuration, which comprises a second actuator 202 allowing a lock 205 to be axially displaced between a first position, retracted, allowing the wing 10a to rotate under the action. of the first actuator 201 relative to the mat 210 of the rotor, and a second, extended position, in which it engages on a corresponding relief of the arm 206 to immobilize the wing 10a in rotation relative to the latter.
  • a locking system in the rotary wing configuration which comprises a second actuator 202 allowing a lock 205 to be axially displaced between a first position, retracted, allowing the wing 10a to rotate under the action. of the first actuator 201 relative to the mat 210 of the rotor, and a second, extended position, in which it engages on a corresponding relief of the arm 206 to immobilize the wing 10a in rotation relative to the latter.
  • the movable lock 205 In the unlocked position, the movable lock 205 is not engaged with the rigid arm 206.
  • the wing 10a can thus rotate freely around the mast 210 under the action of the first actuator 201.
  • the actuators 201, 202 can be supplied electrically from the rotor by rotary collectors. Their control can be carried out by carrier currents, for example.
  • the rotors are braked by any suitable braking device, in particular electromagnetic device integrated into the rotors and the immobilization is effected for example by hydraulic braking which also ensures the redundancy of the first braking.
  • An encoder for example optical, makes it possible to determine the position of the rotor during braking and its immobilization is carried out accordingly.
  • a gearbox and the controller for each motor allow, if necessary, to reposition the rotors after braking.
  • the rotor can be locked by a linear servomotor according to a mechanism similar to that described above.
  • An alternative embodiment of the invention, where the aircraft 1 is a drone, is shown in Figures 10 to 13.
  • the aircraft 1 is shown in the configuration of a rotary wing.
  • the aircraft is in a fixed wing flight configuration.
  • the leading edges 12 of the wings are on the same side, in the direction of travel.
  • Figures 11 and 12 illustrate the change of fixed wing / rotary wing configuration.
  • the rotor is arranged at the rear of the fuselage 2 and the axis of rotation of the rotor shaft 23 is substantially coaxial with the longitudinal axis of the fuselage 2.
  • a swashplate control device 20 is disposed at the rear of the fuselage 2.
  • the latter comprises a plate 21 mounted on a ball joint 29 allowing it to tilt relative to the axis of rotation of the rotor.
  • the platform 21 is connected to four links 24 arranged at 90 ° to each other, allowing it to be tilted to control the movement of the drone around the roll and pitch axes in a rotary airfoil configuration.
  • the entire axial displacement of the connecting rods 27 makes it possible to control the collective pitch.
  • At least one of the wings 10 is equipped with a mechanism for changing the orientation of its leading edge, for example similar to that described with reference to Figures 6 and 7.
  • the same motor can selectively rotate the rotor 400 or the propeller 13, thanks to a planetary gear 40 shown in Figure 13.
  • the epicyclic gear train 40 comprises for example an inner sun gear and a large ring gear forming an integral part of the rotor 400.
  • Planetaries 401 mesh with the inner sun gear and the large ring gear.
  • the rotor 400 is guided by 4L bearings
  • the aircraft can be in rotary wing configuration on takeoff, then switch to fixed wing configuration during flight and finally return to rotary wing configuration for landing.
  • the rotary wing configuration can be used only for landing the aircraft.
  • the invention is not limited to the embodiments which have just been described, and it is also possible to modify the way in which the swashplate control device is produced, or to make modifications to the mechanism making it possible to change the orientation of the leading edge of the wings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transmission Devices (AREA)
  • Toys (AREA)

Abstract

Aircraft comprising at least one wing system with two wings rigidly connected to a rotor provided with a swash plate control device, the wing system being able to change from a fixed wing configuration where the rotor is immobilised relative to the aircraft fuselage and the wings are oriented with their leading edge facing the direction of forward travel of the aircraft, to a rotating wing configuration where the rotor is rotated relative to the fuselage, and conversely, at least one of the wings is itself subjected, during the change-over from the fixed wing configuration to the rotating wing configuration, to a rotation on itself relative to the rotor in such a manner that the two wings of the wing system form blades having their leading edge oriented in the direction of rotation of the rotor.

Description

Description Titre : AERONEF Description Title: AERONEF
Domaine technique Technical area
La présente invention concerne un aéronef ayant une voilure évolutive pouvant passer d’une configuration de voilure fixe à une configuration de voilure tournante et inversement. The present invention relates to an aircraft having an evolutionary wing able to go from a fixed wing configuration to a rotary wing configuration and vice versa.
Technique antérieure Prior art
Le brevet US 8 070090 décrit un aéronef adapté à passer d'un mode hélicoptère avec une voilure tournante à un mode avion avec une voilure fixe. La commande de l’orientation de l’aéronef durant le vol s’effectue grâce à des servo-moteurs disposés dans les ailes et adaptés à en modifier l'incidence. US Pat. No. 8,070,090 describes an aircraft suitable for switching from a helicopter mode with a rotary wing to an airplane mode with a fixed wing. The orientation of the aircraft during flight is controlled by servomotors placed in the wings and adapted to modify the angle of incidence.
La demande WO 2014/089604 divulgue un aéronef du même type. En configuration de vol à voilure tournante, l'aéronef peut être piloté au moyen d'un dispositif à plateau cyclique. La voilure présente des pales à profil symétrique, c’est-à-dire que le bord d’attaque à la même forme que le bord de fuite. La performance aérodynamique n’est pas entièrement satisfaisante en configuration de vol à voilure fixe. Application WO 2014/089604 discloses an aircraft of the same type. In rotary wing flight configuration, the aircraft can be piloted by means of a swashplate device. The airfoil has blades with a symmetrical profile, that is to say that the leading edge has the same shape as the trailing edge. Aerodynamic performance is not entirely satisfactory in a fixed wing flight configuration.
Il existe un besoin pour perfectionner encore les aéronefs pouvant évoluer entre des configurations à voilure fixe et tournante, afin notamment d’améliorer les performances aérodynamiques . There is a need to further improve aircraft capable of evolving between fixed and rotary wing configurations, in particular in order to improve aerodynamic performance.
Exposé de l’invention Disclosure of the invention
L’invention vise à y répondre. The invention aims to answer them.
Résumé de l’invention Summary of the invention
L’invention y parvient grâce à un aéronef comportant au moins une voilure à deux ailes solidaires d’un rotor équipé d’un dispositif de commande à plateau cyclique, la voilure pouvant passer d’une configuration de voilure fixe où le rotor est immobilisé par rapport au fuselage de l’aéronef et les ailes orientées avec leur bord d’attaque tourné dans la direction d’avancement de l’aéronef, à une configuration de voilure tournante où le rotor est entraîné en rotation par rapport au fuselage, voire inversement, au moins l’une des ailes subissant lors du passage de la configuration de voilure fixe à la configuration de voilure tournante une rotation sur elle-même relativement au rotor de manière à ce que les deux ailes de la voilure forment des pales ayant leur bord d’attaque orienté dans le sens de rotation du rotor. The invention achieves this thanks to an aircraft comprising at least one wing with two wings integral with a rotor equipped with a swashplate control device, the wing being able to pass from a fixed wing configuration where the rotor is immobilized by relative to the aircraft fuselage and the wings oriented with their leading edge turned in the direction of travel of the aircraft, to a rotary wing configuration where the rotor is rotated relative to the fuselage, or even vice versa, at least one of the wings undergoing, during the passage from the fixed wing configuration to the rotary wing configuration, a rotation on itself relative to the rotor so that the two wings of the airfoil form blades having their leading edge oriented in the direction of rotation of the rotor.
Grâce au changement d’orientation de l’une des ailes au moins, il est possible d’utiliser des ailes à profil non symétrique, conduisant à une performance aérodynamique supérieure en vol avec la configuration de voilure fixe. Ainsi, les ailes peuvent présenter un profil optimisé pour le vol dans cette configuration, réduisant la traînée et améliorant l’autonomie. La commande à plateau cyclique permet un pilotage précis en configuration de voilure tournante. By changing the orientation of at least one of the wings, it is possible to use non-symmetrical profile wings, leading to superior aerodynamic performance in flight with the fixed wing configuration. Thus, the wings can present an optimized profile for flight in this configuration, reducing drag and improving range. The swashplate control allows precise piloting in a rotary airfoil configuration.
Le passage de la voilure de la configuration de voilure fixe à la configuration de voilure tournante, et inversement, peut s’effectuer alors que l’aéronef est en vol. Ce passage peut s’effectuer de manière automatique, sans qu’un opérateur intervienne manuellement sur les ailes. The wing change from fixed wing configuration to rotary wing configuration, and vice versa, can be done while the aircraft is in flight. This passage can be done automatically, without an operator intervening manually on the wings.
La configuration de voilure tournante peut être utilisée lors du décollage et/ou de l'atterrissage de l'aéronef. The rotary wing configuration can be used during takeoff and / or landing of the aircraft.
L'aéronef peut permettre le transport de passagers ou en variante constituer un drone. The aircraft can allow the transport of passengers or as a variant constitute a drone.
L’une des deux ailes seulement peut comporter un mécanisme qui transforme le mouvement d’un actuateur intégré à l’aile en une rotation de l’aile sur elle-même de manière à modifier l’orientation de son bord d’attaque entre les configurations de voilure fixe et de voilure tournante. Only one of the two wings can include a mechanism which transforms the movement of an actuator integrated in the wing into a rotation of the wing on itself so as to modify the orientation of its leading edge between the wings. fixed wing and rotary wing configurations.
Grâce à ce mécanisme, les bords d'attaque des ailes sont du même côté en configuration voilure fixe, et sont tournés dans des directions opposées en configuration voilure tournante. Thanks to this mechanism, the leading edges of the wings are on the same side in the fixed wing configuration, and are turned in opposite directions in the rotary wing configuration.
De préférence, une seule aile est équipée du mécanisme de rotation. Ainsi, l'aéronef est plus économique à concevoir puisqu'il ne nécessite pas que toutes les ailes soient équipées d'un tel mécanisme. En variante, les deux ailes de la voilure tournante en sont équipées. Preferably, only one wing is equipped with the rotation mechanism. Thus, the aircraft is more economical to design since it does not require all the wings to be equipped with such a mechanism. As a variant, the two wings of the rotary airfoil are fitted with it.
L'angle de rotation de l'aile sur elle-même pour passer d'une configuration à l'autre est sensiblement égal à 180°. The angle of rotation of the wing on itself to switch from one configuration to another is substantially equal to 180 °.
Au moins l’une des ailes peut comporter un actuateur commandant la rotation de l'aile sur elle-même relativement à un mat la reliant au rotor lors du passage de la configuration de voilure fixe à la configuration de voilure tournante, et le dispositif de commande à plateau cyclique peut commander la rotation du mat sur lui-même au cours de la rotation du rotor en configuration de voilure tournante. At least one of the wings may include an actuator controlling the rotation of the wing on itself relative to a mast connecting it to the rotor during the passage from the fixed wing configuration to the rotary wing configuration, and the control device Swashplate control can control the rotation of the mast on itself during the rotation of the rotor in the rotary airfoil configuration.
La commande à plateau cyclique peut commander l'incidence de l'aile et modifier ainsi la poussée de sustentation afin de piloter l'aéronef. The swashplate control can control the angle of attack of the wing and thus modify the lift thrust in order to pilot the aircraft.
En outre, l’aile peut comporter un deuxième actuateur permettant de déplacer un verrou mobile relativement à l’aile entre une première position permettant à l’aile de tourner sous l’action du premier actuateur relativement au mat et une deuxième position de verrouillage de l’aile s’opposant à une rotation de l’aile relativement au mat. In addition, the wing may include a second actuator making it possible to move a movable lock relative to the wing between a first position allowing the wing to rotate under the action of the first actuator relative to the mast and a second locking position of the wing. the wing opposing a rotation of the wing relative to the mast.
Ce verrou permet de bloquer l'aile en configuration de voilure tournante après qu'elle ait effectuée une rotation sur elle-même pour passer de la configuration de voilure fixe à la configuration de voilure tournante. Un tel verrouillage aide à bloquer l'aile en rotation relativement au mat lorsqu'elle est en configuration de voilure tournante. This lock makes it possible to lock the wing in the rotary airfoil configuration after it has performed a rotation on itself to pass from the fixed airfoil configuration to the rotary airfoil configuration. Such locking helps to lock the wing in rotation relative to the mast when in the rotary airfoil configuration.
De préférence, une seule des deux ailes de la voilure est équipée d'un tel verrou. En variante, les deux ailes en sont équipées. Preferably, only one of the two wings of the airfoil is equipped with such a lock. As a variant, both wings are equipped with it.
De préférence, le verrou vient en prise, en position de verrouillage, sur un bras rigidement lié au mat et tournant avec celui-ci. Ce bras rigidement lié au mat est par exemple sensiblement parallèle à l'emplanture de l'aile. Preferably, the lock engages, in the locking position, on an arm rigidly linked to the mast and rotating with the latter. This arm rigidly linked to the mast is for example substantially parallel to the root of the wing.
Avantageusement, le verrou est mobile axialement, mais d’autres mouvements de verrouillage sont possibles. Advantageously, the lock is axially movable, but other locking movements are possible.
Le dispositif de commande à plateau cyclique peut comporter un bras de commande de l’incidence dont l’extrémité se situe sensiblement à la même distance de l’axe de rotation du mat sur lui-même que le verrou. The swashplate controller may include an incidence control arm whose end is substantially the same distance from the axis of rotation of the mast on itself as the latch.
La rotation d'au moins une aile sur elle-même peut être obtenue par un mécanisme qui transforme un mouvement d’un actuateur en un déplacement axial de deux pièces l’une relativement à l’autre, ces deux pièces étant munies de reliefs coopérants configurés pour transformer le déplacement axial de l’une relativement à l’autre en une rotation de l’une relativement à l’autre, l’une des pièces étant solidaire du rotor et l’autre de l’aile. The rotation of at least one wing on itself can be obtained by a mechanism which transforms a movement of an actuator into an axial displacement of two parts relative to each other, these two parts being provided with cooperating reliefs. configured to transform the axial displacement of one relative to the other into a rotation of one relative to the other, one of the parts being integral with the rotor and the other with the wing.
La rotation de l'aile sur elle-même peut ainsi être contrôlée de manière précise par l'actuateur. The rotation of the wing on itself can thus be precisely controlled by the actuator.
L’une des pièces peut comporter au moins une fente hélicoïdale et l’autre au moins un ergot se déplaçant dans cette fente, de telle sorte qu’un déplacement axial de l’une des pièces dans la fente s’accompagne d’une rotation de l’une des pièces relativement à l’autre. One of the parts may include at least one helical slot and the other at least one lug moving in this slot, such that an axial displacement of one parts in the slot is accompanied by a rotation of one of the parts relative to the other.
Le dispositif de commande à plateau cyclique peut comporter un plateau monté sur une rotule lui permettant de s’incliner relativement à l’axe de rotation du rotor, le plateau étant relié à des biellettes commandant l’incidence des ailes au cours de la rotation du rotor, le dispositif comportant deux biellettes de commande de l’inclinaison du plateau selon les axes de tangage et de roulis respectivement, disposées à sensiblement 90° l'une de l'autre autour de l'axe de rotation du rotor. Le dispositif de commande à plateau cyclique peut alors comporter un unique actuateur commandant le pas collectif. The swashplate control device may include a plate mounted on a ball joint allowing it to tilt relative to the axis of rotation of the rotor, the plate being connected to rods controlling the incidence of the wings during the rotation of the rotor. rotor, the device comprising two rods for controlling the inclination of the plate along the pitch and roll axes respectively, arranged at approximately 90 ° to each other around the axis of rotation of the rotor. The swashplate control device can then include a single actuator controlling the collective pitch.
En variante, le dispositif de commande à plateau cyclique comporte un plateau monté sur une rotule lui permettant de s’incliner relativement à l’axe de rotation du rotor, le plateau étant relié à des biellettes commandant l’incidence des ailes au cours de la rotation du rotor, le dispositif comportant au moins trois biellettes de commande de l’orientation du plateau. Dans ce cas, le dispositif de commande à plateau cyclique peut avantageusement comporter quatre biellettes de commande de l’orientation du plateau disposées à sensiblement 90° les unes des autres autour de l'axe de rotation du rotor. La présence de ces quatre biellettes permet une bonne tenue mécanique du dispositif de commande à plateau cyclique. As a variant, the swashplate control device comprises a plate mounted on a ball joint allowing it to tilt relative to the axis of rotation of the rotor, the plate being connected to rods controlling the incidence of the wings during the rotation of the rotor, the device comprising at least three rods for controlling the orientation of the plate. In this case, the swashplate control device may advantageously comprise four control rods for controlling the orientation of the plate arranged at substantially 90 ° to each other around the axis of rotation of the rotor. The presence of these four links allows good mechanical strength of the swashplate control device.
De préférence, l'aéronef comporte un propulseur à l’arrière, de préférence un propulseur à deux hélices contrarotatives, ce qui permet de gagner en efficacité. Preferably, the aircraft has a thruster at the rear, preferably a thruster with two contra-rotating propellers, which makes it possible to gain efficiency.
Le rotor peut être entraîné en rotation par un moteur en configuration de voilure tournante. The rotor can be rotated by a motor in the rotary airfoil configuration.
Dans une variante de réalisation, le rotor est disposé à l’arrière du fuselage en configuration de voilure fixe et l'axe de rotation du rotor est sensiblement coaxial à l'axe longitudinal du fuselage. L’aéronef peut comporter au moins une hélice de propulsion entraînée en rotation par le même moteur que le rotor en configuration de voilure fixe. L’aéronef peut également comporter une transmission à train épicycloïdal permettant au moteur d’entraîner sélectivement le rotor ou l’hélice de propulsion. In an alternative embodiment, the rotor is arranged at the rear of the fuselage in a fixed wing configuration and the axis of rotation of the rotor is substantially coaxial with the longitudinal axis of the fuselage. The aircraft may include at least one propeller driven in rotation by the same engine as the rotor in the fixed wing configuration. The aircraft may also include a planetary gear transmission allowing the engine to selectively drive the propellant rotor or propeller.
En variante, l’axe de rotation du rotor est sensiblement perpendiculaire à l’axe longitudinal du fuselage. Alternatively, the axis of rotation of the rotor is substantially perpendicular to the longitudinal axis of the fuselage.
Dans une variante de réalisation, l'aéronef comporte une deuxième voilure à deux ailes solidaires d'un deuxième rotor, cette deuxième voilure pouvant passer d’une configuration à voilure fixe où le deuxième rotor est immobilisé par rapport au fuselage de l’aéronef et les ailes orientées avec leur bord d’attaque tourné dans la direction d’avancement de l’aéronef, à une configuration à voilure tournante où le deuxième rotor est entraîné en rotation par rapport au fuselage, et inversement, au moins l’une des ailes subissant lors du passage de la configuration à voilure fixe à la configuration à voilure tournante une rotation sur elle-même relativement au deuxième rotor de manière à ce que les ailes forment des pales ayant chacune son bord d’attaque orienté dans le sens de rotation du deuxième rotor. Ce deuxième rotor permet notamment de stabiliser l'appareil en configuration de voilure tournante. Les deux rotors peuvent être entraînés par des transmissions distinctes. Ainsi, les deux rotors peuvent être désynchronisés, ce qui peut être utile notamment pour disposer d’une possibilité supplémentaire de contrôler les portances relatives de chaque rotor. In an alternative embodiment, the aircraft comprises a second wing with two wings integral with a second rotor, this second wing being able to pass from a fixed-wing configuration where the second rotor is immobilized relative to the aircraft fuselage and the wings oriented with their leading edge facing in the direction of travel of the aircraft, to a rotary-wing configuration where the second rotor is rotated relative to the fuselage, and conversely, at least one of the wings undergoing during the passage from the fixed-wing configuration to the rotary-wing configuration a rotation on itself relative to the second rotor so that the wings form blades each having its leading edge oriented in the direction of rotation of the second rotor. This second rotor makes it possible in particular to stabilize the aircraft in the rotary airfoil configuration. The two rotors can be driven by separate transmissions. Thus, the two rotors can be desynchronized, which can be useful in particular to have an additional possibility of controlling the relative lift of each rotor.
De préférence, l'aéronef comporte au moins deux ailes basses fixes. De telles ailes basses facilitent la transition entre les deux configurations de vol. De plus, elles permettent d'optimiser la portance de l'aéronef dès lors qu'il a atteint une vitesse suffisante de vol en configuration de voilure tournante ou fixe. Ces ailes fixes complémentaires permettent également de limiter le diamètre des disques des rotors. Preferably, the aircraft comprises at least two fixed low wings. Such low wings facilitate the transition between the two flight configurations. In addition, they make it possible to optimize the lift of the aircraft once it has reached a sufficient flight speed in the rotary or fixed wing configuration. These complementary fixed wings also make it possible to limit the diameter of the rotor discs.
Les deux ailes basses fixes peuvent être munies chacune d'un propulseur, le contrôle de l’aéronef autour de l’axe de lacet étant alors facilement obtenu en jouant sur une poussée différentielle exercée par les deux propulseurs. Ces propulseurs sont de préférence des propulseurs à hélices, lesquelles peuvent être de plus petite dimension que celles du propulseur arrière précité. The two fixed low wings can each be fitted with a thruster, control of the aircraft around the yaw axis then being easily obtained by varying the differential thrust exerted by the two thrusters. These thrusters are preferably propeller thrusters, which may be of smaller size than those of the aforementioned stern thruster.
Brève description des dessins Brief description of the drawings
L’invention pourra être mieux comprise à la lecture de la description détaillée qui va suivre, d’exemples de mise en œuvre non limitatifs de celle-ci, et à l’examen du dessin annexé, sur lequel : The invention may be better understood from reading the detailed description which follows, of non-limiting examples of implementation thereof, and by examining the appended drawing, in which:
[Fig 1] la figure 1 représente de manière schématique en perspective un exemple d'aéronef selon l'invention, en configuration de voilure fixe, [Fig 1] FIG. 1 schematically represents in perspective an example of an aircraft according to the invention, in a fixed wing configuration,
[Fig 2] la figure 2 est une vue de dessus de l'aéronef de la figure 1,[Fig 2] Figure 2 is a top view of the aircraft of Figure 1,
[Fig 3] la figure 3 représente l'aéronef de la figure 1 en configuration de voilure tournante, [Fig 4] la figure 4 est une vue de dessus de l'aéronef de la figure 3, [Fig 3] FIG. 3 represents the aircraft of FIG. 1 in the rotary wing configuration, [Fig 4] Figure 4 is a top view of the aircraft of Figure 3,
[Fig 5] la figure 5 est une vue en perspective, schématique et partielle, d'un exemple de dispositif de commande à plateau cyclique d'un aéronef selon l'invention, [Fig 5] FIG. 5 is a perspective view, schematic and partial, of an example of a swashplate control device of an aircraft according to the invention,
[Fig 6] la figure 6 représente le dispositif de la figure 5 sous un autre angle de vue, [Fig 6] Figure 6 shows the device of Figure 5 from another viewing angle,
[Fig 7] la figure 7 représente un exemple de mécanisme permettant de modifier l’orientation du bord d’attaque d’une aile relativement au rotor, [Fig 7] Figure 7 shows an example of a mechanism for changing the orientation of the leading edge of a wing relative to the rotor,
[Fig 8] la figure 8 représente en vue de dessus le mécanisme de la figure 7,[Fig 8] Figure 8 shows a top view of the mechanism of Figure 7,
[Fig 9] la figure 9 représente de manière partielle et schématique en vue de côté, une variante d’aéronef, en configuration de voilure tournante, [Fig 9] FIG. 9 partially and schematically shows in side view, an aircraft variant, in rotary wing configuration,
[Fig 10] la figure 10 est une vue analogue à la figure 9 lors du passage en configuration de voilure fixe, [Fig 10] Figure 10 is a view similar to Figure 9 when changing to the fixed wing configuration,
[Fig 11] la figure 11 est une vue analogue à la figure 9 avec les ailes en configuration de voilure fixe, , [Fig 11] FIG. 11 is a view similar to FIG. 9 with the wings in the fixed wing configuration,,
[Fig 12] la figure 12 représente de manière schématique l’aéronef de la figure 11 en vue de dessus, et [Fig 12] Figure 12 schematically shows the aircraft of Figure 11 in top view, and
[Fig 13] la figure 13 est une vue partielle et schématique du mécanisme d’entraînement du rotor. [Fig 13] Figure 13 is a partial and schematic view of the rotor drive mechanism.
Description détaillée detailed description
Les figures 1 à 4 représentent un aéronef 1 adapté au transport de passagers ou de marchandises. Figures 1 to 4 show an aircraft 1 suitable for transporting passengers or goods.
Il comporte deux ailes 10a et 10b adaptées à passer d'une configuration de voilure fixe, illustrée aux figures 1 et 2, à une configuration de voilure tournante, illustrée aux figures 3 et 4. Ces ailes 10a, 10b sont portées par un rotor. It comprises two wings 10a and 10b adapted to pass from a fixed wing configuration, illustrated in Figures 1 and 2, to a rotary wing configuration, illustrated in Figures 3 and 4. These wings 10a, 10b are carried by a rotor.
Dans l’exemple illustré, l’axe de rotation du rotor est sensiblement perpendiculaire à l’axe longitudinal du fuselage 2. In the example illustrated, the axis of rotation of the rotor is substantially perpendicular to the longitudinal axis of the fuselage 2.
L'aéronef 1 comporte une deuxième voilure similaire à la première, ayant deux ailes 10' portées par un deuxième rotor. Cette deuxième voilure peut également passer d'une configuration de voilure fixe à une configuration de voilure tournante. L'axe de rotation du deuxième rotor est sensiblement perpendiculaire à l'axe longitudinal du fuselage 2. Les deux rotors peuvent tourner dans des sens inverses. The aircraft 1 comprises a second wing similar to the first, having two wings 10 'carried by a second rotor. This second wing can also change from a fixed wing configuration to a rotary wing configuration. The axis of rotation of the second rotor is substantially perpendicular to the longitudinal axis of the fuselage 2. The two rotors can turn in opposite directions.
L'aéronef 1 comporte deux ailes basses 11 qui sont fixes. Ces dernières peuvent avoir une configuration en flèche inversée, comme illustré. The aircraft 1 has two low wings 11 which are fixed. These may have an inverted arrow configuration, as shown.
Les ailes 11 facilitent la transition d'une configuration de vol à l'autre. Elles assurent également une meilleur portance en configuration de vol en voilure fixe. The wings 11 facilitate the transition from one flight configuration to another. They also provide better lift in a fixed wing flight configuration.
Les ailes 11 peuvent chacune être équipée d’un propulseur, par exemple à hélice 7. Ces hélices 7 peuvent tourner à des vitesses différentes, et le différentiel de poussée qui en résulte permet de contrôler l'aéronef 1 autour de l'axe de lacet. The wings 11 can each be equipped with a thruster, for example with a propeller 7. These propellers 7 can rotate at different speeds, and the resulting thrust differential makes it possible to control the aircraft 1 around the yaw axis. .
L'aéronef 1 comporte un propulseur à l'arrière. Dans l'exemple représenté, ce propulseur comporte deux hélices 13 contrarotatives ayant chacune trois pales. The aircraft 1 has a thruster at the rear. In the example shown, this thruster comprises two contra-rotating propellers 13 each having three blades.
En configuration de voilure fixe, représentée aux figure 1 et 2, les ailes 10a, 10b sont fixes relativement au fuselage, ce qui permet à l'aéronef d’évoluer comme un avion, en vol rapide. Dans cette configuration, les bords d'attaque 12 des ailes 10a, 10b sont tournés dans la direction d'avancement de l'aéronef 1. In the fixed wing configuration, shown in Figures 1 and 2, the wings 10a, 10b are fixed relative to the fuselage, which allows the aircraft to evolve like an airplane, in rapid flight. In this configuration, the leading edges 12 of the wings 10a, 10b are turned in the direction of travel of the aircraft 1.
Dans la configuration de voilure tournante, représentée aux figures 3 et 4, les ailes 10a, 10b forment des pales ayant chacune son bord d’attaque 12 orienté dans le sens de rotation R du rotor. Les bords d'attaque 12 des deux ailes sont tournés dans des directions opposées. In the rotary airfoil configuration, shown in Figures 3 and 4, the wings 10a, 10b form blades each having its leading edge 12 oriented in the direction of rotation R of the rotor. The leading edges 12 of the two wings are turned in opposite directions.
L'aéronef 1 comporte un dispositif de commande à plateau cyclique 20, permettant de contrôler son évolution en configuration de voilure tournante. Un exemple de ce dispositif est représenté aux figures 5 et 6, sachant que tout dispositif connu de commande à plateau cyclique peut être utilisé. The aircraft 1 comprises a swashplate control device 20, making it possible to control its evolution in the rotary wing configuration. An example of this device is shown in Figures 5 and 6, knowing that any known swashplate control device can be used.
Le dispositif 20 comporte dans l’exemple illustré aux figures 5 et 6 un plateau 21, monté par l’intermédiaire de roulements 28 sur une rotule 29, lui permettant de s’incliner relativement à l’axe de rotation de l’arbre 23 du rotor. Un levier 323 solidaire de l’arbre 23 du rotor entraîne en rotation le plateau 21 tout en lui permettant de pivoter autour d’un axe perpendiculaire à l’axe de rotation de l’arbre 23 du rotor. The device 20 comprises in the example illustrated in Figures 5 and 6 a plate 21, mounted by means of bearings 28 on a ball joint 29, allowing it to tilt relative to the axis of rotation of the shaft 23 of the rotor. A lever 323 integral with the rotor shaft 23 rotates the plate 21 while allowing it to pivot about an axis perpendicular to the axis of rotation of the rotor shaft 23.
Le plateau 21 est relié par des biellettes 24, visibles sur la figure 5, aux ailes 10a et 10b, de façon à pouvoir commander l’incidence de celles-ci au cours de la rotation du rotor en fonction de l’inclinaison donnée au plateau 21, de façon conventionnelle comme ce qui se fait pour les hélicoptères. En fonction de l’inclinaison du plateau 21, et de sa rotation autour de l’axe de pivotement défini par le levier 323, les biellettes 24 montent ou descendent le long de l’axe de rotation de l’arbre 23. The plate 21 is connected by rods 24, visible in FIG. 5, to the wings 10a and 10b, so as to be able to control the incidence of these during the rotation of the rotor as a function of the inclination given to the plate. 21, in a conventional manner as is done for helicopters. Depending on the inclination of the plate 21, and its rotation around the pivot axis defined by the lever 323, the rods 24 move up or down along the axis of rotation of the shaft 23.
Le dispositif 20 comporte également deux biellettes 25 de commande de l’inclinaison du plateau 21, selon les axes de tangage et de roulis respectivement. Ces deux biellettes 25 sont disposées à sensiblement 90° l'une de l'autre autour de l'axe de rotation 23 du rotor, et sont reliées à des actuateurs respectifs, non représentés. The device 20 also comprises two rods 25 for controlling the inclination of the plate 21, along the pitch and roll axes respectively. These two links 25 are arranged at substantially 90 ° to each other around the axis of rotation 23 of the rotor, and are connected to respective actuators, not shown.
Le dispositif 20 comporte également une biellette 27 permettant d’agir sur un levier 26 de commande du pas collectif. Ce levier 26 est porté par une pièce de support 30 fixée au fuselage 2 et traversée par l’arbre 23 du rotor. La rotation du levier 26 permet de faire monter ou descendre le plateau 21 sur l’arbre 23 du rotor, et ce faisant d’agir sur le pas collectif. Le levier 323 peut pivoter relativement à l’arbre 23 du rotor lors de ce mouvement axial du plateau 21. The device 20 also comprises a rod 27 allowing action on a lever 26 for controlling the collective pitch. This lever 26 is carried by a support part 30 fixed to the fuselage 2 and traversed by the shaft 23 of the rotor. The rotation of the lever 26 makes it possible to raise or lower the plate 21 on the shaft 23 of the rotor, and in doing so act on the collective pitch. The lever 323 can pivot relative to the rotor shaft 23 during this axial movement of the plate 21.
La tête 400 du rotor porte deux mats 210 diamétralement opposés, pouvant chacun tourner autour de son axe longitudinal, sensiblement perpendiculairement à l’axe de rotation du rotor. The rotor head 400 carries two diametrically opposed mats 210, each capable of rotating about its longitudinal axis, substantially perpendicular to the axis of rotation of the rotor.
Chaque aile 10a, 10b peut tourner avec ce mat 210 lorsque le rotor est en configuration de voilure tournante, au cours de la rotation du rotor, en fonction de l’inclinaison du plateau 21, du fait de l’action des biellettes 24. Each wing 10a, 10b can rotate with this mast 210 when the rotor is in the rotary airfoil configuration, during the rotation of the rotor, as a function of the inclination of the plate 21, due to the action of the connecting rods 24.
Chaque biellette 24 est reliée d’une part au plateau 21 à une extrémité 24a et à l’autre extrémité 24b à un premier bras de commande 324 de la rotation du mat 210, proche de la tête 400 du rotor. Each link 24 is connected on the one hand to the plate 21 at one end 24a and at the other end 24b to a first control arm 324 of the rotation of the mast 210, close to the head 400 of the rotor.
Pour l’une des ailes, à savoir l’aile 10a située à gauche sur la figure 7, un deuxième bras 206 s’étend en regard du premier 324, les extrémités des bras opposées au mat 210 étant reliées par une tringle de liaison 204. For one of the wings, namely the wing 10a located on the left in FIG. 7, a second arm 206 extends opposite the first 324, the ends of the arms opposite the mast 210 being connected by a connecting rod 204 .
Cette aile 10a est équipée d’un premier actuateur 201 lui permettant de tourner relativement au mat 210 porté par le rotor, lors du changement de configuration voilure tournante/ voilure fixe. This wing 10a is equipped with a first actuator 201 allowing it to rotate relative to the mast 210 carried by the rotor, when changing the rotary wing / fixed wing configuration.
L’ actuateur 201 permet de générer un mouvement axial relatif au sein de l’aile entre un arbre interne 207 et un fourreau externe 203, rigidement fixé à l’aile et dans lequel l’arbre interne 207 est engagé. L’arbre interne 207 est solidaire en rotation du mat 210. Le fourreau 203 est pourvu d’au moins une fente hélicoïdale 209 et l’arbre interne 207 d’au moins un ergot 208 engagé dans cette fente 209, de telle sorte que le déplacement axial de l’arbre interne 203 relativement au fourreau 207 s’accompagne d’une rotation de l’aile 10a relativement à l’arbre interne 207. Ce dernier peut tourner au sein de l’actuateur 201, sans se déplacer axialement relativement à celui-ci. Lorsque l’actionneur 201 est actionné, il se déplace axialement avec le mat 207 le long de guides 410 solidaires de l’aile 10a. The actuator 201 makes it possible to generate a relative axial movement within the wing between an internal shaft 207 and an external sheath 203, rigidly fixed to the wing and in which the internal shaft 207 is engaged. The internal shaft 207 is integral in rotation with the mast 210. The sleeve 203 is provided with at least one helical slot 209 and the internal shaft 207 with at least one lug 208 engaged in this slot 209, so that the axial displacement of the internal shaft 203 relative to the sleeve 207 is accompanied by a rotation of the wing 10a relative to the internal shaft 207. The latter can rotate within the actuator 201, without moving axially relative to the latter . When the actuator 201 is actuated, it moves axially with the mast 207 along guides 410 integral with the wing 10a.
L'aile 10a est équipée d'un système de verrouillage en configuration de voilure tournante, qui comprend un deuxième actuateur 202 permettant de déplacer axialement un verrou 205 entre une première position, rétractée, permettant à l’aile 10a de tourner sous l’action du premier actuateur 201 relativement au mat 210 du rotor, et une deuxième position, sortie, dans laquelle il s’engage sur un relief correspondant du bras 206 pour immobiliser l’aile 10a en rotation relativement à celui-ci. The wing 10a is equipped with a locking system in the rotary wing configuration, which comprises a second actuator 202 allowing a lock 205 to be axially displaced between a first position, retracted, allowing the wing 10a to rotate under the action. of the first actuator 201 relative to the mat 210 of the rotor, and a second, extended position, in which it engages on a corresponding relief of the arm 206 to immobilize the wing 10a in rotation relative to the latter.
Dans la position déverrouillée, le verrou mobile 205 n'est pas en prise avec le bras rigide 206. L'aile 10a peut ainsi tourner librement autour du mat 210 sous l’action du premier actuateur 201. In the unlocked position, the movable lock 205 is not engaged with the rigid arm 206. The wing 10a can thus rotate freely around the mast 210 under the action of the first actuator 201.
Les actuateurs 201, 202 peuvent être alimentés électriquement depuis le rotor par des collecteurs tournants. Leur contrôle peut s’effectuer par courants porteurs, par exemple. The actuators 201, 202 can be supplied electrically from the rotor by rotary collectors. Their control can be carried out by carrier currents, for example.
Dans le cas des vols habités, il est souhaitable de ne pas brutalement stopper les rotors et leur désengagement s'effectue alors avec un système d'embrayage. Ainsi, une fois les bords d'attaque 12 engagés selon la configuration de vol désirée, les rotors tournent librement sur eux-mêmes sous l'effet du vent relatif, induit par la poussée du moteur principal, à la manière d'un autogire. Ce mode transitoire permet d'accélérer ou de ralentir les rotors, lors du passage d'une configuration à l'autre. Lors du freinage, les propulseurs à hélices 7 situés en bout d'aile basse 11 sont sollicités pour stabiliser l'aéronef qui accélère jusqu'à ce que l'aile basse, génère suffisamment de potence. Dès lors, les rotors sont freinés par tout dispositif de freinage adapté, notamment électromagnétique intégré aux rotors et l'immobilisation est faite par exemple par un freinage hydraulique qui assure également la redondance du premier freinage. Un codeur, par exemple optique, permet de déterminer la position du rotor durant le freinage et son immobilisation est réalisée en conséquence. Une boîte de vitesses et le contrôleur de chaque moteur permettent si nécessaire, de repositionner les rotors après le freinage. Le verrouillage du rotor peut être est réalisé par un servo- moteur linéaire selon un mécanisme analogue à celui décrit plus haut. Une variante de mise en œuvre de l'invention, où l’aéronef 1 est un drone, est représentée aux figures 10 à 13. In the case of manned flights, it is desirable not to suddenly stop the rotors and their disengagement is then carried out with a clutch system. Thus, once the leading edges 12 engaged according to the desired flight configuration, the rotors rotate freely on themselves under the effect of the relative wind, induced by the thrust of the main engine, in the manner of an autogyro. This transient mode makes it possible to speed up or slow down the rotors when switching from one configuration to another. During braking, the propeller thrusters 7 located at the end of the low wing 11 are requested to stabilize the aircraft which accelerates until the low wing generates sufficient gallows. Consequently, the rotors are braked by any suitable braking device, in particular electromagnetic device integrated into the rotors and the immobilization is effected for example by hydraulic braking which also ensures the redundancy of the first braking. An encoder, for example optical, makes it possible to determine the position of the rotor during braking and its immobilization is carried out accordingly. A gearbox and the controller for each motor allow, if necessary, to reposition the rotors after braking. The rotor can be locked by a linear servomotor according to a mechanism similar to that described above. An alternative embodiment of the invention, where the aircraft 1 is a drone, is shown in Figures 10 to 13.
Sur la figure 10, l'aéronef 1 est représenté en configuration de voilure tournante. Sur la figure 13, l’aéronef est en configuration de vol à voilure fixe. Les bords d'attaque 12 des ailes sont du même côté, dans la direction d'avancement. In FIG. 10, the aircraft 1 is shown in the configuration of a rotary wing. In Figure 13, the aircraft is in a fixed wing flight configuration. The leading edges 12 of the wings are on the same side, in the direction of travel.
Les figures 11 et 12 illustrent le changement de configuration voilure fixe/ voilure tournante. Le rotor est disposé à l’arrière du fuselage 2 et l'axe de rotation de l’arbre 23 du rotor est sensiblement coaxial à l'axe longitudinal du fuselage 2. Figures 11 and 12 illustrate the change of fixed wing / rotary wing configuration. The rotor is arranged at the rear of the fuselage 2 and the axis of rotation of the rotor shaft 23 is substantially coaxial with the longitudinal axis of the fuselage 2.
Dans ce mode de réalisation, un dispositif de commande à plateau cyclique 20 est disposé à l'arrière du fuselage 2. Ce dernier comporte un plateau 21 monté sur une rotule 29 lui permettant de s’incliner relativement à l’axe de rotation du rotor. Le plateau 21 est relié à quatre biellettes 24 disposées à 90° les unes des autres, permettant de l’incliner pour commander l’évolution du drone autour des axes de roulis et de tangage en configuration de voilure tournante. Le déplacement axial d’ensemble des biellettes 27 permet de commander le pas collectif. In this embodiment, a swashplate control device 20 is disposed at the rear of the fuselage 2. The latter comprises a plate 21 mounted on a ball joint 29 allowing it to tilt relative to the axis of rotation of the rotor. . The platform 21 is connected to four links 24 arranged at 90 ° to each other, allowing it to be tilted to control the movement of the drone around the roll and pitch axes in a rotary airfoil configuration. The entire axial displacement of the connecting rods 27 makes it possible to control the collective pitch.
Dans ce mode de réalisation, au moins l’une des ailes 10 est équipée d'un mécanisme permettant de changer l’orientation de son bord attaque, par exemple similaire à celui décrit en référence aux figures 6 et 7. In this embodiment, at least one of the wings 10 is equipped with a mechanism for changing the orientation of its leading edge, for example similar to that described with reference to Figures 6 and 7.
Le même moteur peut entraîner sélectivement en rotation le rotor 400 ou l’hélice de propulsion 13, grâce à un engrenage à train épicycloïdal 40 représenté figure 13. The same motor can selectively rotate the rotor 400 or the propeller 13, thanks to a planetary gear 40 shown in Figure 13.
L'engrenage à train épicycloïdal 40 comporte par exemple un planétaire intérieur et une grande couronne faisant partie intégrante du rotor 400. Des satellites 401 engrènent avec le planétaire intérieur et la grande couronne. The epicyclic gear train 40 comprises for example an inner sun gear and a large ring gear forming an integral part of the rotor 400. Planetaries 401 mesh with the inner sun gear and the large ring gear.
Le rotor 400 est guidé par des roulements 4L The rotor 400 is guided by 4L bearings
Quand la grande couronne est libre, la rotation de l’arbre du moteur entraîne celle du rotor 400, avec un facteur de réduction lié au train épicycloïdal. When the large ring gear is free, the rotation of the motor shaft drives that of the rotor 400, with a reduction factor linked to the epicyclic train.
Lorsque la grande couronne est bloquée, seule l’hélice de propulsion 13 est entraînée en rotation par le moteur. When the large ring gear is locked, only the propulsion propeller 13 is rotated by the motor.
Dans l'exemple de réalisation des figures 1 à 8, l'aéronef peut être en configuration de voilure tournante au décollage, puis passer en configuration de voilure fixe pendant le vol et enfin repasser en configuration de voilure tournante pour l'atterrissage. En variante, notamment pour le mode de réalisation des figures 9 à 12, il est possible de lancer l'aéronef différemment, par exemple à l'aide d'un propulseur à poudre, avec les ailes en configuration de voilure fixe ou bien repliées le long du fuselage. Dans ce cas-là, la configuration de voilure tournante peut être utilisée uniquement pour réaliser l'atterrissage de l'aéronef. In the embodiment of FIGS. 1 to 8, the aircraft can be in rotary wing configuration on takeoff, then switch to fixed wing configuration during flight and finally return to rotary wing configuration for landing. As a variant, in particular for the embodiment of FIGS. 9 to 12, it is possible to launch the aircraft differently, for example using a powder propellant, with the wings in the fixed wing configuration or else folded up. along the fuselage. In this case, the rotary wing configuration can be used only for landing the aircraft.
Bien entendu, l’invention n’est pas limitée aux exemples de réalisation qui viennent d’être décrits, et l’on peut encore modifier la manière dont le dispositif de commande à plateau cyclique est réalisé, ou apporter des modifications au mécanisme permettant de changer l’orientation du bord d’attaque des ailes. Of course, the invention is not limited to the embodiments which have just been described, and it is also possible to modify the way in which the swashplate control device is produced, or to make modifications to the mechanism making it possible to change the orientation of the leading edge of the wings.

Claims

Revendications Claims
1. Aéronef (1) comportant au moins une voilure à deux ailes (10a, 10b) solidaires d’un rotor équipé d’un dispositif de commande à plateau cyclique (20), la voilure pouvant passer d’une configuration de voilure fixe où le rotor est immobilisé par rapport au fuselage (2) de l’aéronef (1) et les ailes (10a, 10b) orientées avec leur bord d’attaque (12) tourné dans la direction d’avancement (A) de l’aéronef, à une configuration de voilure tournante où le rotor est entraîné en rotation par rapport au fuselage (2), voire inversement, au moins l’une (10a) des ailes subissant lors du passage de la configuration de voilure fixe à la configuration de voilure tournante une rotation sur elle-même relativement au rotor de manière à ce que les deux ailes (10a, 10b) de la voilure forment des pales ayant leur bord d’attaque (12) orienté dans le sens de rotation (R) du rotor. 1. Aircraft (1) comprising at least one wing with two wings (10a, 10b) integral with a rotor equipped with a swashplate control device (20), the wing being able to change from a fixed wing configuration where the rotor is immobilized with respect to the fuselage (2) of the aircraft (1) and the wings (10a, 10b) oriented with their leading edge (12) turned in the direction of travel (A) of the aircraft , to a rotary wing configuration where the rotor is driven in rotation relative to the fuselage (2), or even vice versa, at least one (10a) of the wings undergoing during the passage from the fixed wing configuration to the wing configuration rotating a rotation on itself relative to the rotor so that the two wings (10a, 10b) of the airfoil form blades having their leading edge (12) oriented in the direction of rotation (R) of the rotor.
2. Aéronef selon la revendication précédente, l’une (10a) des deux ailes seulement comportant un mécanisme qui transforme le mouvement d’un actuateur (201) intégré à l’aile (10a) en une rotation de l’aile sur elle-même de manière à modifier l’orientation de son bord d’attaque (12) entre les configurations de voilure fixe et de voilure tournante. 2. Aircraft according to the preceding claim, one (10a) of the two wings only comprising a mechanism which transforms the movement of an actuator (201) integrated in the wing (10a) into a rotation of the wing on it- even so as to modify the orientation of its leading edge (12) between the fixed wing and rotary wing configurations.
3. Aéronef selon l’une des revendications 1 et 2, au moins l’une (10a) des ailes comportant un actuateur (201) commandant la rotation de l'aile sur elle-même relativement à un mat (210) la reliant au rotor, lors du passage de la configuration de voilure fixe à la configuration de voilure tournante, et le dispositif de commande à plateau cyclique (20) commandant la rotation du mat (210) sur lui-même au cours de la rotation du rotor en configuration de voilure tournante. 3. Aircraft according to one of claims 1 and 2, at least one (10a) of the wings comprising an actuator (201) controlling the rotation of the wing on itself relative to a mast (210) connecting it to the wing. rotor, when changing from the fixed wing configuration to the rotary wing configuration, and the swashplate controller (20) controlling the rotation of the mast (210) on itself during the rotation of the rotor in the configuration rotary airfoil.
4. Aéronef selon la revendication 3, l’aile (10a) comportant un deuxième actuateur (202) permettant de déplacer un verrou (205) mobile relativement à l’aile entre une première position permettant à l’aile de tourner sous l’action du premier actuateur (201) relativement au mat (210) et une deuxième position de verrouillage de l’aile s’opposant à une rotation de l’aile relativement au mat (210). 4. Aircraft according to claim 3, the wing (10a) comprising a second actuator (202) for moving a lock (205) movable relative to the wing between a first position allowing the wing to rotate under the action. of the first actuator (201) relative to the mast (210) and a second locking position of the wing opposing a rotation of the wing relative to the mast (210).
5. Aéronef selon la revendication 4, le verrou (205) venant en prise, en position de verrouillage, sur un bras (206) rigidement lié au mat (210) et tournant avec celui-ci. 5. Aircraft according to claim 4, the latch (205) engaging, in the locking position, on an arm (206) rigidly linked to the mast (210) and rotating with the latter.
6. Aéronef selon l’une des revendications 4 et 5, le verrou (205) étant mobile axialement. 6. Aircraft according to one of claims 4 and 5, the lock (205) being axially movable.
7. Aéronef selon l’une quelconque des revendications 4 à 6, le dispositif de commande à plateau cyclique (20) comportant un bras (324) de commande de l’incidence dont l’extrémité se situe sensiblement à la même distance de l’axe de rotation du mat (210) sur lui-même que le verrou (205). 7. Aircraft according to any one of claims 4 to 6, the swashplate control device (20) comprising an arm (324) for controlling the incidence, the end of which is located substantially at the same distance from the. axis of rotation of the mast (210) on itself as the lock (205).
8. Aéronef selon l’une quelconque des revendication précédentes, la rotation d'au moins une aile (10a) sur elle-même étant obtenue par un mécanisme qui transforme un mouvement d’un actuateur (201) en un déplacement axial de deux pièces (203, 207) l’une relativement à l’autre, ces deux pièces étant munies de reliefs coopérants (208, 209) configurés pour transformer le déplacement axial de l’une relativement à l’autre en une rotation de l’une relativement à l’autre, l’une des pièces étant solidaire du rotor (400) et l’autre de l’aile (10a). 8. Aircraft according to any one of the preceding claims, the rotation of at least one wing (10a) on itself being obtained by a mechanism which transforms a movement of an actuator (201) into an axial movement of two parts. (203, 207) relative to each other, these two parts being provided with cooperating reliefs (208, 209) configured to transform the axial displacement of one relative to the other into a rotation of one relatively to the other, one of the parts being integral with the rotor (400) and the other with the wing (10a).
9. Aéronef selon la revendication 8, l’une des pièces comportant au moins une fente hélicoïdale (209) et l’autre au moins un ergot (208) se déplaçant dans cette fente, de telle sorte qu’un déplacement axial de l’une des pièces dans la fente s’accompagne d’une rotation de l’une des pièces relativement à l’autre. 9. Aircraft according to claim 8, one of the parts comprising at least one helical slot (209) and the other at least one lug (208) moving in this slot, such that an axial displacement of the one of the parts in the slot is accompanied by a rotation of one of the parts relative to the other.
10. Aéronef selon l'une quelconque des revendications précédentes, le dispositif de commande à plateau cyclique (20) comportant un plateau (21) monté sur une rotule (29) lui permettant de s’incliner relativement à l’axe de rotation (23) du rotor, le plateau étant relié à des biellettes (24) commandant l’incidence des ailes (10a, 10b) au cours de la rotation du rotor, le dispositif comportant deux biellettes (25) de commande de l’inclinaison du plateau (21) selon les axes de tangage et de roulis respectivement, disposées à sensiblement 90° l'une de l'autre autour de l'axe de rotation du rotor. 10. Aircraft according to any one of the preceding claims, the swashplate control device (20) comprising a plate (21) mounted on a ball joint (29) allowing it to tilt relative to the axis of rotation (23). ) of the rotor, the plate being connected to rods (24) controlling the incidence of the wings (10a, 10b) during the rotation of the rotor, the device comprising two rods (25) for controlling the inclination of the plate ( 21) along the pitch and roll axes respectively, arranged at substantially 90 ° to each other around the axis of rotation of the rotor.
11. Aéronef selon la revendication précédente, comportant un unique actuateur (27) commandant le pas collectif (26). 11. Aircraft according to the preceding claim, comprising a single actuator (27) controlling the collective pitch (26).
12. Aéronef selon l'une quelconque des revendications précédentes, le dispositif de commande à plateau cyclique (20) comportant un plateau (21) monté sur une rotule (29) lui permettant de s’incliner relativement à l’axe de rotation (23) du rotor, le plateau (21) étant relié à des biellettes (24) commandant l’incidence des ailes (10a, 10b) au cours de la rotation du rotor, le dispositif comportant au moins trois biellettes (27) de commande de l’orientation du plateau. 12. Aircraft according to any one of the preceding claims, the swashplate control device (20) comprising a plate (21) mounted on a ball joint (29) allowing it to tilt relative to the axis of rotation (23). ) of the rotor, the plate (21) being connected to rods (24) controlling the incidence of the wings (10a, 10b) during the rotation of the rotor, the device comprising at least three rods (27) for controlling the orientation of the plate.
13. Aéronef selon la revendication précédente, le dispositif comportant quatre biellettes (27) de commande de l’orientation du plateau disposées à sensiblement 90° les unes des autres autour de l'axe de rotation du rotor 13. Aircraft according to the preceding claim, the device comprising four rods (27) for controlling the orientation of the plate arranged at substantially 90 ° to each other around the axis of rotation of the rotor
14. Aéronef selon l'une quelconque des revendications précédentes, comportant un propulseur à l’arrière, de préférence un propulseur à deux hélices (13) contrarotatives. 14. Aircraft according to any one of the preceding claims, comprising a thruster at the rear, preferably a thruster with two contra-rotating propellers (13).
15. Aéronef selon l’une des revendications 1 à 13, le rotor étant entraîné en rotation par un moteur en configuration de voilure tournante, l’aéronef comportant au moins une hélice de propulsion (13) entraînée en rotation par le même moteur en configuration de voilure fixe, l’aéronef comportant une transmission à train épicycloïdal permettant au moteur d’entraîner sélectivement le rotor ou l’hélice de propulsion. 15. Aircraft according to one of claims 1 to 13, the rotor being driven in rotation by a motor in the rotary wing configuration, the aircraft comprising at least one propeller (13) driven in rotation by the same engine in the configuration. fixed wing, the aircraft comprising a planetary gear transmission allowing the engine to selectively drive the rotor or propeller.
16. Aéronef selon la revendication précédente, le rotor étant disposé à l’arrière du fuselage (2) en configuration de voilure fixe et l'axe de rotation du rotor étant sensiblement coaxial à l'axe longitudinal du fuselage. 16. Aircraft according to the preceding claim, the rotor being arranged at the rear of the fuselage (2) in a fixed wing configuration and the axis of rotation of the rotor being substantially coaxial with the longitudinal axis of the fuselage.
17. Aéronef selon l'une quelconque des revendications 1 à 14, l’axe de rotation du rotor étant sensiblement perpendiculaire à l’axe longitudinal du fuselage (2). 17. Aircraft according to any one of claims 1 to 14, the axis of rotation of the rotor being substantially perpendicular to the longitudinal axis of the fuselage (2).
18. Aéronef selon la revendication 17, comportant une deuxième voilure à deux ailes (10’) solidaire d'un deuxième rotor, cette deuxième voilure pouvant passer d’une configuration à voilure fixe où le deuxième rotor est immobilisé par rapport au fuselage (2) de l’aéronef et les ailes orientés avec leur bord d’attaque tourné dans la direction d’avancement de l’aéronef, à une configuration à voilure tournante où le deuxième rotor est entraîné en rotation par rapport au fuselage (2), et inversement, au moins l’une des ailes subissant lors du passage de configuration à voilure fixe à la configuration à voilure tournante une rotation sur elle-même relativement au deuxième rotor de manière à ce que les ailes forment des pales ayant chacune son bord d’attaque orienté dans le sens de rotation du deuxième rotor. 18. Aircraft according to claim 17, comprising a second wing with two wings (10 ') integral with a second rotor, this second wing being able to pass from a fixed wing configuration where the second rotor is immobilized relative to the fuselage (2 ) of the aircraft and the wings oriented with their leading edge turned in the direction of travel of the aircraft, to a rotary wing configuration where the second rotor is rotated relative to the fuselage (2), and conversely, at least one of the wings undergoing, during the change from fixed-wing configuration to the rotary-wing configuration, a rotation on itself relative to the second rotor so that the wings form blades each having its edge of attack oriented in the direction of rotation of the second rotor.
19. Aéronef selon la revendication 18, les deux rotors étant entraînés par des transmissions distinctes. 19. Aircraft according to claim 18, the two rotors being driven by separate transmissions.
20. Aéronef selon l'une des revendications 18 ou 19, comportant au moins deux ailes basses (11) fixes. 20. Aircraft according to one of claims 18 or 19, comprising at least two low wings (11) fixed.
21. Aéronef selon la revendication 20, les deux ailes basses fixes étant munies chacune d'un propulseur (7), le contrôle de l’aéronef autour de l’axe de lacet étant obtenu en jouant sur une poussée différentielle exercée par les deux propulseurs. 21. Aircraft according to claim 20, the two fixed lower wings each being provided with a thruster (7), the control of the aircraft around the yaw axis being obtained by playing on a differential thrust exerted by the two thrusters. .
EP21722198.5A 2020-04-29 2021-04-28 Aircraft Pending EP4143083A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2004272A FR3109766B1 (en) 2020-04-29 2020-04-29 Aircraft
PCT/EP2021/061127 WO2021219711A1 (en) 2020-04-29 2021-04-28 Aircraft

Publications (1)

Publication Number Publication Date
EP4143083A1 true EP4143083A1 (en) 2023-03-08

Family

ID=71094615

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21722198.5A Pending EP4143083A1 (en) 2020-04-29 2021-04-28 Aircraft

Country Status (4)

Country Link
US (1) US20230174224A1 (en)
EP (1) EP4143083A1 (en)
FR (1) FR3109766B1 (en)
WO (1) WO2021219711A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD978719S1 (en) * 2020-10-20 2023-02-21 Guangdong Syma Model Aircraft Industrial Co., Ltd. Aircraft toy
US12025031B2 (en) 2022-05-06 2024-07-02 General Electric Company Polska Sp. Z O.O. Actuation assembly for a fan of a gas turbine engine
US11970956B2 (en) 2022-08-26 2024-04-30 General Electric Company Pitch change mechanism for a fan of a gas turbine engine
FR3141446A1 (en) * 2022-10-28 2024-05-03 Airbus Helicopters Hybrid helicopter equipped with a system for stopping and positioning the lift rotor in cruising flight and stopping method
FR3142748A1 (en) * 2022-12-05 2024-06-07 Safran Helicopter Engines TURBOMACHINE COMPRISING A MAGNETIC IMMOBILIZATION COUPLING DEVICE
WO2024175881A1 (en) * 2023-02-24 2024-08-29 Bae Systems Plc A hybrid air vehicle
EP4420978A1 (en) * 2023-02-24 2024-08-28 BAE SYSTEMS plc A hybrid air vehicle
EP4420979A1 (en) * 2023-02-24 2024-08-28 BAE SYSTEMS plc A swash plate
WO2024175898A1 (en) * 2023-02-24 2024-08-29 Bae Systems Plc A swash plate
CN116215852B (en) * 2023-05-08 2023-07-18 成都沃飞天驭科技有限公司 Vertical take-off and landing aircraft and control method thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3105659A (en) * 1962-03-30 1963-10-01 United Aircraft Corp Compound helicopter
FR1373658A (en) * 1962-04-04 1964-10-02 Hiller Aircraft Corp Long-range transformable helicopter
US4421342A (en) * 1979-02-15 1983-12-20 Brown Jr Milton F Rotary actuation device
US5628620A (en) * 1991-09-30 1997-05-13 Arlton; Paul E. Main rotor system for helicopters
US5454530A (en) * 1993-05-28 1995-10-03 Mcdonnell Douglas Helicopter Company Canard rotor/wing
CN100486867C (en) * 2004-02-02 2009-05-13 章洪 Helirota plane
US7334755B2 (en) * 2005-05-25 2008-02-26 The Boeing Company Tandem rotor wing and tandem fixed wing aircraft
US7665688B2 (en) * 2006-03-27 2010-02-23 The United States Of America As Represented By The Secretary Of The Navy Convertible aerial vehicle with contra-rotating wing/rotors and twin tilting wing and propeller units
US8070090B2 (en) * 2008-09-05 2011-12-06 The United States Of America As Represented By The Secretary Of The Navy Stop-rotor rotary wing aircraft
WO2013012456A2 (en) * 2011-03-24 2013-01-24 Page Mark Allan Long endurance vertical takeoff and landing aircraft
US9616995B2 (en) 2012-12-13 2017-04-11 Stoprotor Technology Pty Ltd Aircraft and methods for operating an aircraft
US20140312177A1 (en) * 2013-04-18 2014-10-23 Rajesh Gaonjur Coaxial rotor/wing aircraft
WO2016109408A1 (en) * 2015-01-03 2016-07-07 Seale Joseph B Rotary wing vtol with fixed wing forward flight mode
US10414492B2 (en) * 2016-08-30 2019-09-17 Bell Textron Inc. Aircraft having rotor-to-wing conversion capabilities
US10464667B2 (en) * 2016-09-29 2019-11-05 Ampaire, Inc. Oblique rotor-wing aircraft
US11242142B1 (en) * 2018-03-12 2022-02-08 II Stanley Gordon Sanders Vertical takeoff and landing aircraft
US11174016B2 (en) * 2018-05-03 2021-11-16 Jaunt Air Mobility, Llc Compound rotorcraft with propeller
US11325719B2 (en) * 2020-02-18 2022-05-10 Textron Innovations Inc. Lift engine auxiliary thrust system for stop fold aircraft

Also Published As

Publication number Publication date
FR3109766A1 (en) 2021-11-05
FR3109766B1 (en) 2024-04-26
US20230174224A1 (en) 2023-06-08
WO2021219711A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
EP4143083A1 (en) Aircraft
EP3239049B1 (en) A drone having at least three lift and propulsion rotors
EP2691299B1 (en) Remotely piloted micro/nano aicraft provided with a system for gound taxiing and vertical take off and landing
CA2872810C (en) Rotorcraft equipped with an anti-torque rear rotor, selectively participating in lift and propulsion in translation of the rotorcraft
EP2468627B1 (en) Aircraft provided with a tilting rear rotor and associated method
EP3118112B1 (en) A compound aircraft having an additional anti-torque device
FR2798359A1 (en) IMPROVEMENTS ON CONVERTIBLE AIRCRAFT WITH TILTING ROTORS
FR2980771A1 (en) HYBRID AIRCRAFT WITH ROTATING WING
FR2804082A1 (en) Rotary wing aircraft or gyrocopter has contra-rotating rotors with variable-pitch blades controlled by rocking rings and concentric crowns
EP3212498B1 (en) Improvements to rotating machines with fluid rotor having adjustable blades
FR2765550A1 (en) Device for locking pitch of rotary aircraft main rotor blades
EP0706937B1 (en) Device to control the pitch of the blades of an helicopter rotor
FR2754779A1 (en) Folding of helicopter rotor blades
CA2988687C (en) Control element, rotary-wing aircraft and process
EP0889825B1 (en) Aircraft landing gear element with mechanically slewable undercarriage and axles
FR2750948A1 (en) Helicopter rotor position stop
FR2523546A1 (en) EQUIPMENT FOR VEHICLES HAVING AT LEAST ONE ROTATING SPEED DEVICE AND A HELICOPTER AND AIRCRAFT BODY
EP4061710A1 (en) Drone
EP0318477B1 (en) Improvements to vertical take-off aircraft
WO2022130151A1 (en) Vertical take-off and landing aerodyne optimised for horizontal flight
WO2019155171A1 (en) Multi-rotor aerial vehicle
CA2359374C (en) Vertical take-off and landing heavier-than-air aircraft
FR3123320A1 (en) Aircraft having at least one propeller and a rotary wing equipped with two rotors carried by two half-wings
FR2758525A1 (en) Helicopter foldable rotor blades
FR2830237A1 (en) Heavier than air aircraft comprises pivoting screw nacelles at ends of arms projecting from fuselage sides

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221129

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)