EP4134485B1 - Procédé de stabilisation du lit de ballast d'une voie - Google Patents

Procédé de stabilisation du lit de ballast d'une voie Download PDF

Info

Publication number
EP4134485B1
EP4134485B1 EP22186276.6A EP22186276A EP4134485B1 EP 4134485 B1 EP4134485 B1 EP 4134485B1 EP 22186276 A EP22186276 A EP 22186276A EP 4134485 B1 EP4134485 B1 EP 4134485B1
Authority
EP
European Patent Office
Prior art keywords
track
dynamic
stabilizer
vertical
tamping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP22186276.6A
Other languages
German (de)
English (en)
Other versions
EP4134485C0 (fr
EP4134485A1 (fr
Inventor
Bernhard Lichtberger
Hansjörg HOFER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HP3 Real GmbH
Original Assignee
HP3 Real GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HP3 Real GmbH filed Critical HP3 Real GmbH
Publication of EP4134485A1 publication Critical patent/EP4134485A1/fr
Application granted granted Critical
Publication of EP4134485C0 publication Critical patent/EP4134485C0/fr
Publication of EP4134485B1 publication Critical patent/EP4134485B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B27/00Placing, renewing, working, cleaning, or taking-up the ballast, with or without concurrent work on the track; Devices therefor; Packing sleepers
    • E01B27/12Packing sleepers, with or without concurrent work on the track; Compacting track-carrying ballast
    • E01B27/13Packing sleepers, with or without concurrent work on the track
    • E01B27/16Sleeper-tamping machines
    • E01B27/17Sleeper-tamping machines combined with means for lifting, levelling or slewing the track
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B27/00Placing, renewing, working, cleaning, or taking-up the ballast, with or without concurrent work on the track; Devices therefor; Packing sleepers
    • E01B27/12Packing sleepers, with or without concurrent work on the track; Compacting track-carrying ballast
    • E01B27/20Compacting the material of the track-carrying ballastway, e.g. by vibrating the track, by surface vibrators
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes
    • E01B35/06Applications of measuring apparatus or devices for track-building purposes for measuring irregularities in longitudinal direction

Definitions

  • the invention relates to a method for stabilizing the ballast bed of a track, with a track-mobile tamping machine, which directs the track into a desired position with a lifting and straightening device, which fixes the track in the straightened position with a fully hydraulic tamping drive, which in the
  • the track is fixed in the directional position and is stabilized by settlement with a dynamic track stabilizer and is equipped with sensors for determining the ballast bed properties and with a track measuring device.
  • Track maintenance work such as tamping or cleaning the track reduces the lateral displacement resistance by up to 60%.
  • At temperatures above the bracing temperature there is a compressive stress in the rails of the endlessly welded track. The rails tend to buckle. Trains moving across the tracks bring in executives. With reduced lateral displacement resistance, there is a risk of warping under the train. The result would be a derailment. Therefore, without using a dynamic track stabilizer, a slow driving point is set up after maintenance work such as tamping at high rail temperatures.
  • the slow-moving trains have fewer managers, which eliminates the risk of disruption. However, slow speed zones are undesirable, costly disruptions to operations.
  • Stone piles such as railway ballast in particular, can be compacted efficiently by the action of horizontal vibrations, especially if the frequency is chosen such that the ballast assumes an elasto-liquid behavior, which is the case at frequencies greater than or equal to 25 Hertz.
  • Dynamic track stabilization units are used to to compensate for irregular initial settlement of the track on the ballast bed through targeted, controlled anticipation.
  • Well-known dynamic track stabilizers are equipped with a mechanical or hydraulic vibration drive (EP2902546A1 ) fitted.
  • the mechanical vibration drives have two eccentric masses rotating in opposite directions.
  • the two rotating eccentric masses are coupled via gears in such a way that counter-uniform rotation of the masses about assigned axes is ensured.
  • the vibration force components cancel each other out in the vertical direction and the vibration force components intensify in the horizontal direction, i.e. in a plane parallel to the track transverse to the longitudinal direction of the track.
  • eccentric drives in which the distance between the masses and the axis of rotation can be varied in order to be able to adjust the dynamic impact force ( WO2008009314A1 , EP3752675A1 ).
  • the oscillating drive comprises at least one cylinder vibrator, which is controlled via a proportional valve or a servo valve and is formed by at least one hydraulic cylinder.
  • the particular disadvantage of using the dynamic track stabilizer is that the settlements achieved are uneven.
  • the use of the dynamic track stabilizer reduces the height of the track. This means a reduction in the durability of the track layer and, as a result, a shortening of the maintenance cycle time.
  • a continuous dynamic transverse displacement resistance measuring device which is based on the principle of measuring the hydraulic drive power of the mechanical oscillating unit and equating it with the friction power of the track on the ballast.
  • the friction power can be calculated by measuring the load as a normal force and the coefficient of friction of the sleeper on the ballast, which is also referred to as the lateral displacement resistance.
  • the displacement resistance is not measured directly, but indirectly.
  • the lateral displacement resistance is the determining, safety-critical variable for the warping resistance of a continuously welded track.
  • the transverse displacement resistance is usually determined at a displacement distance of 2 mm for a loosened, unloaded threshold.
  • the typical vibration amplitudes of the track with dynamic sliding stabilizers are around 2 to 3 mm.
  • the lateral displacement resistance is one of the important safety-critical variables in track construction and is usually determined through complex individual sleeper measurements, usually under an undesirable track barrier.
  • the stabilization frequency can be adjusted from 20Hz to 40Hz.
  • the invention is based on the object of specifying a method which takes into account the influence of the ballast bed properties and the lifting values in dynamic stabilization.
  • the invention is intended to take into account the remaining track defects after tamping and the track defects that arise after stabilization and thereby minimize the overall track defects after stabilization.
  • the advantage is the resulting greater wear and tear, the extension of the processing cycles, the corresponding cost savings and the reduction in operational difficulties and the associated costs.
  • the invention solves the problem in that a first inertial navigation system is arranged between the tamping drive and the dynamic track stabilizer, which measures the residual track geometry error after the tamping machine and that a second inertial navigation system is arranged behind the dynamic track stabilizer in the working direction, which detects the residual track geometry error behind the Track stabilizer measures that a control variable is derived via a similarity transformation of the residual track geometry errors to one another, which is linked to a setting specification and is guided via a controller, the output signal of which is linked to predeterminable pilot control variables and that at least one control parameter of the dynamic track stabilizer is thereby regulated in such a way that the residual track geometry error behind the track stabilizer becomes minimal.
  • the residual track geometry errors can be determined after tamping and before track stabilization on the one hand and after track stabilization on the other hand, using the measurement data from the two inertial navigation systems.
  • the residual track geometry errors are calculated from the distance between the currently measured track position and the specified target position.
  • a control variable for the dynamic track stabilizer is derived from the residual track geometry errors in order to minimize the residual track geometry errors after the dynamic track stabilizer.
  • the simplest similarity transformation for deriving a controlled variable from the track geometry residual errors would be to minimize the ratio of the root mean square values of the two track geometry residual errors, i.e. to use the least squares method, which is a standard mathematical method of compensation calculation.
  • the measures according to the invention result in a method which takes both lifting values and the ballast properties into account and by comparing residual track geometry errors after tamping with residual track geometry errors after stabilization and corresponding control of the track stabilizer parameters, such as frequency, eccentricity and / or vertical load, the Remaining track defects are minimized with a controller, which may include a controller with a computer with machine learning capability.
  • This computer can use statistical methods to exclude improbable parameter ranges and prioritize highly probable parameter ranges based on empirical values such as the condition of the ballast, the track kilometer and empirical values from previous work processes.
  • the wheels of the DGS are hydraulically pressed onto the rail on both sides via telescopic axles. With the help of the side rollers, the rails are clamped by the DGS so that the impact force can be transmitted well. If the pressure in the telescopic cylinders of the telescopic axes is measured using pressure sensors, then the dynamic impact force can be measured directly. This means that the dynamic impact force can be easily recorded as a manipulated variable.
  • An acceleration sensor installed on the DGS housing measures the accelerations. From this, the oscillation frequency can be recorded and used as the actual value for regulation.
  • the influence of the vertical track stiffness on the settlement can be recorded using the computer with machine learning capabilities and used for control.
  • the influence of the vertical track stiffness is taken into account as a input control variable for the control loop.
  • a device according to the invention which influences the settlement via the oscillation frequency allows particularly high control speeds of the system.
  • traditional eccentric systems with hydraulic eccentric adjustment have a considerable adjustment time due to high time constants.
  • a vertical vibration of the load cylinders not only leads to improved controllability of the settlement differences between the left and right side of the track, but also to a higher compaction effect and better settlement, which also increases the durability of the geometric track position.
  • the previous lifting values and the associated loosening of the track and the ballast bed properties can be taken into account.
  • Large uplifts undoubtedly lead to a greater disturbance of the grain interlocking under the sleepers and thus to higher and irregular settlements and the resulting track defects.
  • the invention makes it possible to automatically adapt the track stabilizer parameters to a wide variety of ballast conditions or previous lifting. Either the vertical load and/or the dynamic impact force is regulated.
  • the track defects resulting from stabilization or the residual defects remaining after the track has been plugged are taken into account.
  • a device for tamping and stabilizing the ballast bed of a track 2 includes a tamping machine 1 and a trailer 4 with dynamic track stabilization units 9, DGS units for short, which work in working direction A.
  • the DGS units 9 are supported on the frame of the trailer 4 via vertical load cylinders 10 and connected to the Load cylinders 10 pressed against the rail 2.
  • the tamping machine 1 and the trailer 4 rest on track-mounted drives 3.
  • the tamping machine 1 has a track measuring device consisting of three measuring cars 7a-c with a measuring chord 8 stretched between them, a tamping unit 5 and a lifting and straightening device 6.
  • the measuring chord 8 of the Track measuring device with length I has a pitch a, b.
  • the rear measuring carriage of the tamping machine forms, on the one hand, the rear end of the measuring chord 8 and, on the other hand, carries a first inertial navigation system 7c with the help of which the position of the track after tamping is measured and recorded and a residual track geometry error is evaluated in relation to a target position.
  • Another measuring car with an inertial navigation system 7d is provided for measuring the residual track geometry error after track stabilization in the rear area of the trailer 4, i.e. behind the track stabilizer 9 in the working direction A.
  • Fig. 2 schematically represents a DGS unit 9.
  • Two unbalanced masses 19 are operated in opposite directions in such a way that the vertical components cancel each other out and the forces in the horizontal direction 20 are added in the effective plane E, which results in an oscillation parallel to the track.
  • This causes track 2 to vibrate primarily in the horizontal-transverse direction.
  • the wheels 13 are pressed onto the rails 2 via telescopic cylinders 22.
  • the rail 2 is clamped using external roller tongs 18.
  • the accelerations and the oscillation frequency f are measured via an acceleration sensor 23 on the DGS unit 9.
  • the dynamic impact force is measured via pressure sensors 28.
  • the rollers 18 are pressed against the rail 2 via a lever 14 and a drive.
  • Vertical load cylinders 10 are supported on the frame 17 of the trailer and press the DGS unit 9 vertically against the rails 2.
  • the load cylinders 10 are equipped with an integrated position measuring system 15 and pressure sensor 16.
  • the force with which the stabilization unit 9 is pressed against the track 2 while being supported on the machine frame 17 can thus be adjusted via the adjusting cylinders.
  • the adjusting cylinders 10 form a cylinder vibrator regulated or controlled by a proportional or servo valve 21.
  • the position of the adjusting cylinder piston is measured with a sensor 15 and the adjusting cylinders are assigned a pressure sensor 16 that measures the hydraulic pressure to determine the static and dynamic vertical rigidity of the track.
  • Fig. 3 shows schematically a control circuit according to the invention.
  • the residual track geometry error RF1 is measured after the tamping machine and with the second inertial navigation system 7d arranged behind the dynamic track stabilizer 9 in the working direction A, the residual track geometry error RF2 is measured behind the track stabilizer 9.
  • a control variable is derived from the residual track geometry errors RF1, RF2 via a similarity transformation of the residual track geometry errors RF1, RF2 to one another, which is linked to a setting specification WS and is guided via a controller K, the output signal of which is linked to predeterminable pilot control variables.
  • This means that at least one control parameter OUT of the dynamic track stabilizer 9 is regulated in such a way that the residual track geometry error RF2 behind the track stabilizer 9 becomes minimal.
  • the fully hydraulic tamping unit 5 uses its sensors to record the ballast bed properties such as ballast bed hardness and compaction force, in particular by measuring the power introduced into the ballast bed or its derivatives therefrom.
  • the pilot control variable F(BS) (a function dependent on the ballast bed hardness BS) is derived from this and fed to the control loop.
  • the pilot control variable F(C) is specified via the dynamic vertical stiffness C dynvert of the track. The harder the vertical stiffness, the lower the settlement.
  • the precontrol variable F(H) is calculated by the track control computer 6 depending on the lifting values H and fed to the control loop. The greater the uplift H, the greater the settlement.
  • the Residual errors RF1 measured with the navigation system 7c and the residual errors measured with the navigation system 7d are fed to the computer 11. This carries out a similarity transformation between the residual errors with the aim of minimizing the ripple (amplitudes) of the settlements according to the DGS.
  • the simplest similarity transformation would be to minimize the ratio of the root mean squares of RF2 to RF1. The smaller this value, the more the goal of minimizing the residual error is achieved.
  • the absolute settlement of the track is irrelevant - it does not influence the wheel-rail interaction of the trains passing over it.
  • the control deviation is fed to the control loop controller K and this generates the manipulated variable OUT for the DGS 9.
  • OUT can be the controlled frequency f, the vertical dynamic (or static) load F dynvert or the eccentricity m exz / e or a combination of these.
  • a target setting is specified via WS.
  • the control loop regulates the system in such a way that this settlement is achieved as consistently as possible over the entire processed distance.
  • Fig. 4 shows schematically the control arrangement when using one of the controllers K, which includes a computer with machine learning capability KI/11.
  • the bed hardness BS, the lifting values of the tamping machine H, the vertical dynamic stiffness C dynvert and the residual errors RF1 and RF2 are read into the machine learning network KI/ 11. From this, the system learns to control the DGS parameters in such a way that the settlement errors after the DGS are minimized.
  • OUT can be the controlled frequency f, vertical dynamic (or static) load F dynvert or eccentricity m exz / e or a combination of these.
  • ballast bed hardness BS The influence of the parameters ballast bed hardness BS, lifting values H and dynamic track stiffness C dynvert or the relationship between these variables and the settlement is evaluated by the machine learning system itself.
  • the algorithm works with the aim of minimizing the residual errors RF1 and RF2.
  • Fig. 5 shows the interaction of the components.
  • the track position computer 12 supplies the lifting values based on location to the control computer 11/KI.
  • the values are location-related, the distance traveled on the track is measured using an odometer 24 measured.
  • the sensors 27, 26 of the tamping units read the compression path and compression force into the machine's own controller K.
  • the ballast bed properties are calculated from this.
  • the controller K controls the parameters of the DGS 9.
  • the residual error signals from the inertial navigation system units 7c and 7d are read into the control computer 11/KI. This communicates bidirectionally with the controller K and provides it with the specifications for controlling the DGS 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Machines For Laying And Maintaining Railways (AREA)

Claims (7)

  1. Procédé pour stabiliser le lit de ballast d'une voie ferrée (2), comprenant une machine de bourrage ferroviaire (1) mobile sur voie (3), qui aligne la voie ferrée (2) dans une position souhaitée à l'aide d'un dispositif de levage et d'alignement (6), qui fixe la voie ferrée dans la position alignée à l'aide d'un dispositif d'entraînement de bourrage entièrement hydraulique (5), qui stabilise par tassement la voie fixée dans la position alignée à l'aide d'un stabilisateur de voie dynamique (9) et qui est équipé de capteurs (26, 27) pour déterminer les propriétés du lit de ballast ainsi que d'un dispositif de mesure de voie, caractérisé en ce qu'un premier système de navigation inertiel (7c) est agencé entre le dispositif d'entraînement de bourrage (5) et le stabilisateur de voie dynamique (9) afin de mesurer l'erreur de géométrie résiduelle de la voie (RF1) derrière la machine de bourrage, et en ce qu'un second système de navigation inertiel (7d) est agencé dans la direction de travail (A) derrière le stabilisateur de voie dynamique (9) afin de mesurer l'erreur de géométrie résiduelle de la voie (RF2) derrière le stabilisateur de voie (9), en ce qu'une grandeur de régulation est déterminée par l'intermédiaire d'une transformation de similarité des erreurs de géométrie résiduelles de la voie (RF1, RF2) l'une par rapport à l'autre, est combinée à une consigne de tassement (WS) et passe par un régulateur (K) dont le signal de sortie est combiné à des grandeurs de commande pouvant être préalablement définies, et en ce qu'au moins un paramètre de commande (OUT) du stabilisateur de voie dynamique (9) est ainsi réglé de telle sorte que l'erreur de géométrie de voie (RF2) derrière le stabilisateur de voie (9) devienne minimale.
  2. Procédé selon la revendication 1, caractérisé en ce que le régulateur (K) comprend un ordinateur à capacité d'apprentissage automatique (Kl/11).
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le stabilisateur de voie (9) est appliqué contre la voie ferrée (2) par l'intermédiaire de vérins de charge verticaux (10) avec une force statique verticale, dans lequel ladite force statique verticale se superpose à une force dynamique par l'intermédiaire de valves proportionnelles ou de servovalves (21), et en ce qu'une rigidité verticale dynamique (Cdynvert) est calculée à partir de signaux de capteurs déterminés par un capteur de pression (16, Fdynvert) associé au vérin de charge (10) et par un capteur de déplacement (15, Sdyn) associé au vérin de charge (10), à partir de laquelle une grandeur pilote F(Cdynvert) est calculée et ajoutée au signal de sortie du régulateur (K).
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le paramètre de commande (OUT) pour le stabilisateur de voie (9) est la fréquence (f) à laquelle le stabilisateur de voie (9) est excité en vibration ou oscille.
  5. Procédé selon la revendication 3, caractérisé en ce que le paramètre de commande (OUT) pour le stabilisateur de voie (9) est la charge verticale avec la composante dynamique (Fdynvert).
  6. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le paramètre de commande (OUT) pour le stabilisateur de voie (9) est l'excentricité (e) et/ou la masse excentrique (mexz) des ensembles oscillants excentrés du stabilisateur de voie (9).
  7. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le paramètre de commande (OUT) pour le stabilisateur de voie (9) est une combinaison de la fréquence (f), de la charge statique verticale avec la composante dynamique (Fdynvert), de l'excentricité (e) et/ou de la masse excentrique (meXZ).
EP22186276.6A 2021-08-12 2022-07-21 Procédé de stabilisation du lit de ballast d'une voie Active EP4134485B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA50654/2021A AT525090B1 (de) 2021-08-12 2021-08-12 Verfahren zum Stabilisieren der Schotterbettung eines Gleises

Publications (3)

Publication Number Publication Date
EP4134485A1 EP4134485A1 (fr) 2023-02-15
EP4134485C0 EP4134485C0 (fr) 2024-02-14
EP4134485B1 true EP4134485B1 (fr) 2024-02-14

Family

ID=82656762

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22186276.6A Active EP4134485B1 (fr) 2021-08-12 2022-07-21 Procédé de stabilisation du lit de ballast d'une voie

Country Status (2)

Country Link
EP (1) EP4134485B1 (fr)
AT (1) AT525090B1 (fr)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008009314A1 (fr) 2006-07-20 2008-01-24 Franz Plasser Bahnbaumaschinen-Industriegesellschaft Mbh Procédé et machine de stabilisation d'une voie
EP2902546B2 (fr) 2014-01-30 2020-09-02 HP3 Real GmbH Dispositif de compression du lit de ballast d'une voie ferrée
AT516278B1 (de) 2014-10-22 2016-04-15 System 7 Railsupport Gmbh Verfahren zur Messung und Darstellung der Gleisgeometrie einer Gleisanlage
AT519317B1 (de) * 2016-11-04 2018-12-15 Plasser & Theurer Exp Von Bahnbaumaschinen G M B H Verfahren und Gleisbaumaschine zur Korrektur von Gleislagefehlern
AT520894B1 (de) * 2018-01-22 2021-01-15 Hp3 Real Gmbh Verfahren zur Gleislageverbesserung durch eine gleisfahrbare Gleisstopfmaschine
AT16604U1 (de) 2018-02-13 2020-02-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Maschine zum Stabilisieren eines Gleises
AT522652A1 (de) * 2019-05-23 2020-12-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Verfahren und Vorrichtung zum Steuern/Regeln eines rotatorischen Antriebs eines Arbeitsaggregates einer Gleisbaumaschine

Also Published As

Publication number Publication date
AT525090A4 (de) 2022-12-15
EP4134485C0 (fr) 2024-02-14
AT525090B1 (de) 2022-12-15
EP4134485A1 (fr) 2023-02-15

Similar Documents

Publication Publication Date Title
EP2957674B1 (fr) Procédé de réglage de voie ferrée destiné au fonctionnement d'une machine de voie pouvant se déplacer sur une installation de voie ferrée
AT402519B (de) Kontinuierlich verfahrbare gleisbaumaschine zum verdichten der schotterbettung eines gleises
EP2902546B2 (fr) Dispositif de compression du lit de ballast d'une voie ferrée
EP1472413B1 (fr) Machine de construction fonctionnant de manière optimale
EP0688902B1 (fr) Méthode de mesure de la résistance aux déplacements latéraux des rails d'une voie ferrée
EP3870760B1 (fr) Procédé et machine pour stabiliser une voie ferrée
DE4102872C2 (de) Kontinuierlich verfahrbare Gleisbaumaschine zum Verdichten der Schotterbettung und Verfahren zur kontinuierlichen Absenkung des Gleises
AT520056A1 (de) Verfahren und Vorrichtung zum Verdichten eines Gleisschotterbetts
EP3239398A1 (fr) Unité de bourrage pour une bourreuse
AT521798B1 (de) Verfahren und Vorrichtung zum Verdichten eines Schotterbettes
DE3132708C2 (de) Gleisstopf-Nivellier-und Richtmaschine mit Stabilisationsaggregat und Verfahren zum Verdichten der Schotterbettung eines zu korrigierenden Gleises
EP0652325A2 (fr) Machine de construction pour voies ferrées corrigant la position de la voie
AT521263A4 (de) Verfahren zur Einzelfehlerbehebung
EP4134485B1 (fr) Procédé de stabilisation du lit de ballast d'une voie
EP1708058B1 (fr) Procédé pour compenser les suroscillations d'un axe principal
DE102006016375B4 (de) Verfahren und Einrichtung zum Bestimmen der Kernerstarrung und/oder der Sumpfspitze beim Stranggießen von Metallen, insbesondere von Stahlwerkstoffen
EP4073318B1 (fr) Machine et procédé de stabilisation d'une voie ferrée à ballast
DE102017106559B4 (de) Auslegung oder Durchführung einer Bewegungsaufgabe einer bewegten Masse in einer mechanischen Anlage entlang zumindest einer Bewegungsachse
AT523949B1 (de) Maschine und Verfahren zum Verdichten eines Schotterbettes eines Gleises
AT525289B1 (de) Verfahren und Vorrichtung zum Bestimmen der Längskräfte in Gleisschienen
AT524861B1 (de) Verfahren und Maschine zum Stopfen eines Gleises
DE102019130324A1 (de) Verfahren zum Betrieb eines Arbeitsprozesses
EP2052112A1 (fr) Procédé pour bourrer et stabiliser une voie
WO2009092607A1 (fr) Dispositif et procédé pour réguler des oscillations d'une lingotière

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230513

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230725

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: E01B 35/06 20060101ALI20230809BHEP

Ipc: E01B 27/20 20060101ALI20230809BHEP

Ipc: E01B 27/17 20060101AFI20230809BHEP

INTG Intention to grant announced

Effective date: 20230905

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502022000499

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240312

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240319

P04 Withdrawal of opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240412