EP4133543A1 - Elément électrochimique pour batterie et batterie correspondante - Google Patents

Elément électrochimique pour batterie et batterie correspondante

Info

Publication number
EP4133543A1
EP4133543A1 EP21715931.8A EP21715931A EP4133543A1 EP 4133543 A1 EP4133543 A1 EP 4133543A1 EP 21715931 A EP21715931 A EP 21715931A EP 4133543 A1 EP4133543 A1 EP 4133543A1
Authority
EP
European Patent Office
Prior art keywords
terminal
electrochemical
casing
battery
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21715931.8A
Other languages
German (de)
English (en)
Inventor
Alexandre Beugnon
Alexandre Narbonne
Gérard Rigobert
Nicolas SCHIFFANO
Paulin TRUCHE
Christian Vezat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAFT Societe des Accumulateurs Fixes et de Traction SA
Original Assignee
SAFT Societe des Accumulateurs Fixes et de Traction SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAFT Societe des Accumulateurs Fixes et de Traction SA filed Critical SAFT Societe des Accumulateurs Fixes et de Traction SA
Publication of EP4133543A1 publication Critical patent/EP4133543A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/1243Primary casings; Jackets or wrappings characterised by the material having a layered structure characterised by the internal coating on the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/1245Primary casings; Jackets or wrappings characterised by the material having a layered structure characterised by the external coating on the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/545Terminals formed by the casing of the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • TITLE Electrochemical element for battery and corresponding battery
  • the present invention relates to an electrochemical cell for a battery, comprising
  • Batteries containing electrochemical cells are known. Such a battery is known from US6159253B1.
  • the battery in this document consists of a steel casing, an insulating coating and an electrochemical cell.
  • the electrochemical cell includes an anode assembly and a cathode assembly.
  • the anode and cathode assemblies are stacked and coiled.
  • EP1742279 which comprises an electrochemical cell having a coiled structure.
  • Document EP1453119 describes an electrochemical cell comprising an envelope having a support layer of aluminum secured to an outer protective layer of plastic material and to an inner layer of thermoplastic material. These materials which constitute the envelope are adapted to the flexibility required of the battery.
  • the invention aims to provide an electrochemical element and a corresponding battery which have high reliability and low volume for a given energy storage capacity.
  • the invention differs, among other things, from known multilayer pouch-type elements (also called “pouchs”) in that the envelope does not have a thermoplastic layer on the inner face at the locations of the weld, which allows laser welding. of the walls of the envelope.
  • the cell has suitable output elements.
  • the battery and the electrochemical cell according to the invention must be economical to manufacture, reliable and have a relatively low weight.
  • the invention relates to an electrochemical cell as indicated above, characterized in that the first wall and the second wall each comprise a base body and an electrically insulating layer, in that the bodies of base are made of metal, in that the electrically insulating layer comprises
  • each of the base bodies comprises an edge of the base body, in that the edges of the base bodies are connected by a weld bead in order to form the envelope , and in that at the location of the weld bead, the base bodies are free from the electrically insulating layer.
  • the latter may have one or more of the following characteristics:
  • the metal base bodies are made of Aluminum or an aluminum-based alloy, or steel, preferably stainless or nickel-plated steel,
  • the base bodies have a thickness between 80 pm and 500 pm, in particular between 120 pm and 460 pm, and particularly between 180 pm and 460 pm
  • the envelope comprises at least one passage opening of the first and / or the second terminal, the first and / or the second terminal extends through the passage opening, the electrochemical element comprises electrical insulation means of the first and / or of the second terminal with respect to the casing, the electrical insulation means comprise
  • the spacer elements comprise micro-balls made of a material having a melting point higher than the melting point of the plastic material and the micro-balls having a diameter between 50 ⁇ m and 500 ⁇ m, preferably between 100 ⁇ m and 200 ⁇ m pm,
  • the micro-balls are coated with the molten and solidified plastic material of the electrical insulating element, - the first and / or the second terminal is a tab and the passage opening of the envelope is formed
  • the second terminal is a button, in particular a washer, the button either passing through only one of the first and second walls of the envelope or passing through both of the first and second walls of the envelope,
  • the button comprises a circumferential groove, in which the casing extends into the circumferential groove, and in which the electrical insulation means comprise an insulation ring,
  • the second electrode comprises two electrode sheets and in which either the second terminal is fixed between the two electrode sheets or the second terminal is attached to one of the two electrode sheets and the other of the two electrode sheets The electrode is attached to one of the two electrode sheets.
  • the subject of the invention is also a battery, comprising a casing and at least two electrochemical elements, characterized in that the electrochemical elements are each an electrochemical element as defined above, and in that the electrochemical elements are arranged in the crankcase.
  • Figure 1 shows in perspective a battery according to a first embodiment of the invention comprising a multitude of electrochemical cells
  • Figure 2 shows in perspective on a larger scale and partially in section a part of the battery of Figure 1, comprising an electrochemical cell according to the invention
  • FIG 3 shows a view similar to that of Figure 2, a variant of the electrochemical cell of the battery of Figures 1 and 2;
  • FIG 4 shows in perspective a battery according to a second embodiment of the invention comprising a multitude of electrochemical cells
  • FIG 5 shows in perspective on a larger scale and partially in section a part of the battery of Figure 4, comprising an electrochemical cell according to the invention
  • Figure 6 shows a view similar to that of Figure 5, a variant of the electrochemical cell of the battery of Figures 4 and 5;
  • FIG 7 shows on a larger scale a detail of Figure 2.
  • insulation refers to electrical insulation.
  • Battery 2 is an electrochemical battery such as is usually used in electric vehicles. However, other fields of application of the battery 2 are possible, such as energy storage, electric mobility, aviation, rail.
  • Battery 2 comprises a casing 4 and at least two electrochemical cells 6, one of which is shown in solid lines and the other in broken lines in Figure 1. Battery 2 can of course include any number of electrochemical cells 6.
  • the electrochemical elements 6 are arranged in the housing 4 and are electrically connected to each other, either by an electrical connection in parallel or by an electrical connection in series.
  • the housing 4 is for example a rectangular parallelepipedal housing formed of metal or a thermoplastic material.
  • the casing has a cylindrical shape with a circular section.
  • the casing 4 has walls which are less deformable than the walls of the electrochemical elements (see below).
  • the electrochemical element 6 comprises a first electrode 8 of a first polarity, a second electrode 10 of a second polarity, each comprising a current collector in the form of a metal strip covered, on a portion, with an active material, the uncoated portion being connected to a first terminal 12 of the first polarity and a second terminal 14 of the second polarity.
  • the first electrode 8 comprises a current collector formed from a metal strip, in this case substantially rectangular, for example made of aluminum, coated on its two faces and on a portion with an active material.
  • the active material of the first electrode is a paste containing a metal oxide comprising lithium atoms, such as lithium cobalt dioxide (LiCo0, expediLCO“) , NMC (LiNi x Mn y Coi- xy 0 2 ), NCA (LiNi x CoyAli- xy 0 2 ), SLFP (LiFePC), LMO (LiMn 2 C> 4 ) or analogous layered compounds.
  • the first electrode 8 is for example the positive electrode.
  • the second electrode 10 comprises two current collectors 18 formed of metal strips, in this case substantially rectangular, for example of copper, coated with an active material on a portion.
  • the active material of the second electrode is a paste containing a carbonaceous material capable of inserting lithium atoms, such as graphite or amorphous nanocrystalline silicon, LTO (LUTisO ⁇ ) or TNO (TiNb 2 0).
  • the second electrode 10 is for example the negative electrode.
  • the two metal strips coated with an active material constituting the second electrode 10 are arranged on one side and the other of the first electrode 8.
  • the electrochemical element 6 comprises a separator 20, separating the first electrode 8 from the second electrode 10.
  • the separator 20 comprises two separation sheets 22 which are arranged on one side and the other of the first. electrode 8 between this first electrode 8 and the second electrode 10.
  • separator 20 is permeable to lithium ions, but electronic insulator.
  • the separator 20 is for example made of a polyolefin membrane.
  • the electrochemical element 6 also comprises an electrolyte 24, which can be liquid, such as an electrolyte based on lithium salts LiPF 6 , solid or gel, such as polymers of polyvinylidene fluoride (PVDF) or a polyfluoride copolymer. vinylidene and Flexafluoropropylene (PVDF-FIFP).
  • an electrolyte 24 can be liquid, such as an electrolyte based on lithium salts LiPF 6 , solid or gel, such as polymers of polyvinylidene fluoride (PVDF) or a polyfluoride copolymer. vinylidene and Flexafluoropropylene (PVDF-FIFP).
  • PVDF polyvinylidene fluoride
  • PVDF-FIFP vinylidene and Flexafluoropropylene
  • the second terminal 14 is a tab 26 fixed to the two electrode strips 18 in a portion not coated by the active material of the second electrode 10.
  • the electrode strips 18 of the second electrode 10 are arranged on one side and the other of the tab 26.
  • the second terminal 14 is therefore, in this mode embodiment, fixed between the two electrode strips 18, by laser or ultrasonic welding.
  • the second terminal 14 is for example made of copper or nickel.
  • the electrochemical element 6 comprises a casing 30 provided with a first wall 32 and a second wall 34.
  • the first wall 32 and the second wall 34 are connected around their periphery or are integral along an edge of the envelope 30 and connected on the other three sides of their periphery.
  • the first wall 32 and the second wall 34 are for example of substantially rectangular shape.
  • the shell 30 contains the first electrode 8, the second electrode 10, the separator 20 and, the electrolyte 23.
  • the first electrode 8 is electrically connected to the casing 30, so that the casing 30 forms the first terminal 12.
  • an uncoated portion of the first electrode 8 is welded to a part of the casing 30, on the wall 32 or on the wall 34 by a laser or ultrasonic type welding process.
  • the envelope 30 comprises or forms a passage opening 36 of the second terminal 14 and the second terminal 14 extends through this passage opening 36.
  • the electrochemical element 6 is provided with means 40 for electrically insulating the second terminal 14 with respect to the casing 30 as well as means ensuring sealing.
  • These electrically insulating means 40 comprise an electrically insulating element 42 of plastic material extending between the second terminal and the casing and electrically insulating spacer elements 44 adapted to separate the second terminal from the casing when the plastic material of the casing. electrical insulating element 42 is in the liquid state.
  • the electrical insulating element 42 made of plastic material comprises a part on the second terminal 14 and a part on the wall of the casing 30. During assembly, these two parts are heated to ensure the tightness of the. 'envelope. As a result, the sealing means are combined with the electrical insulating element.
  • the spacer elements 44 comprise or consist of microbeads of a material having a melting temperature higher than the melting temperature of the plastic material.
  • the microbeads have, for example, a diameter of between 50 ⁇ m and 500 ⁇ m, preferably between 100 ⁇ m and 200 ⁇ m.
  • the microbeads are advantageously coated with the molten and solidified plastic material of the electrical insulating element 42.
  • the microbeads are preferably made from a thermoplastic material, for example from PET or PPS.
  • the first wall 32 and the second wall 34 each include a base body 50 and an electrically insulating layer 52 on their inner face (see Figure 7).
  • the base bodies 50 are made of metal and can be formed each time by a metal sheet.
  • the base bodies 50 can have a thickness of between 80 ⁇ m and 500 ⁇ m. This thickness can in particular be between 120 ⁇ m and 460 ⁇ m, and particularly between 180 ⁇ m and 460 ⁇ m.
  • the base bodies 50 are for example made of aluminum, an aluminum-based alloy, steel, preferably stainless or nickel-plated steel.
  • the electrically insulating layer 52 may comprise or consist of either a plastic coating or a layer resulting from a surface treatment of the base body 50.
  • the electrically insulating layer 52 may be formed by anodizing the base body 50, and is in particular a layer of aluminum oxide formed by anodizing the base body 50.
  • the coating can be either a layer of a plastic material. polymer deposited in liquid form and then solidified, ie a layer of a polymer deposited in powder form by electrostatic deposition.
  • the electrically insulating layer 52 is a layer resulting from a surface treatment of the base body 50, it can be obtained by a ceramic-based surface treatment by plasma spraying.
  • the whole of the electrochemical cell composed of the first electrode 8, the second electrode 10, the separator sheets and the electrolyte are coated in an insulating matrix, for example formed of a thermoplastic envelope with a thickness of between 20 ⁇ m and 100 ⁇ m.
  • the base body 50 of the first wall 32 includes a base body edge 502 and the base body 50 of the second wall 34 includes a base body edge 504.
  • the edges 502, 504 of the base bodies 50 are welded together by laser welding in order to form the envelope 30.
  • the edges of the base bodies 50 are connected by a weld bead 56 in order to form the envelope 30.
  • the base bodies 50 are free of the electrically insulating layer.
  • the mechanical connection between the base bodies 50 is therefore produced by solidarity of the material of the walls, therefore by a metal-to-metal connection.
  • the passage opening 36 is in this case an opening formed in one of the first and second walls of the casing 30 and more precisely in the second wall 34.
  • the passage opening 36 is therefore formed entirely by the second. wall 34.
  • Figure 3 shows a variant of the electrochemical cell 6 of the battery 2 of Figures 1 and 2.
  • the view of Figure 3 is similar to that of Figure 2.
  • Similar elements bear the same references.
  • the passage opening 36 of the casing 30 is formed by two edges 60 and 62 of the first 32 and second 34 walls of the casing separating locally.
  • the first wall 32 and second wall 34 are symmetrical with respect to a plane of symmetry extending parallel to the general plane of the first electrode 8.
  • edges 60, 62 of the first 32 and second 34 walls are connected to each other adjacent to the passage opening 36 on both sides, but are locally spaced from each other to form the opening of the wall. passage 36.
  • the edges 60, 62 of the first 32 and second 34 walls are connected to each other over their entire length except at the level of the passage opening 36.
  • This variant is easy to manufacture since it does not require an opening in one of the walls.
  • Figure 4 shows in perspective a battery 2 according to a second embodiment of the invention, comprising a multitude of electrochemical cells 6.
  • Figure 5 shows in perspective on a larger scale and partially in section an electrochemical cell of the battery of the Figure 4.
  • the second terminal 14 is attached to one of the two electrode sheets 18 and the other of the two electrode sheets 18 is attached to one of the two electrode sheets.
  • the two electrode sheets 18 are attached to each other and the two electrode sheets 18 are on the same side of the second terminal 14.
  • the second terminal 14 is not a tab, but is a button 26, in this case a washer.
  • the passage opening 36 is formed in the first wall 32 of the casing 30.
  • the passage opening 36 is for example circular in shape.
  • the button 26 passes through only one of the first 32 and second 34 walls of the casing 30 and therefore through the passage opening 36. In this case the button extends through the first wall 32.
  • the passage opening 36 extends over a side face of the casing 30, which is a large side of the casing.
  • the button 26 After assembly, the button 26 comprises a circumferential groove 64, and the casing 30 extends into the circumferential groove 64. More precisely, the first wall 32 extends into the circumferential groove 64.
  • the button 26 is for example made of metal. and obtained by plastic deformation, for example by crimping or by assembling several parts of the laser or friction type.
  • the electrical insulation means 40 comprise one or more circular electrical insulation elements 66 provided with an electrical insulating element 42 of plastic material extending between the second terminal 14 and the casing 30 and spacer elements 44 electrically. insulators adapted to separate the second terminal from the casing when the plastic material of the electrical insulating element 42 is in the liquid state.
  • the electrical insulating element 42 may be of a material as previously described.
  • the spacer elements 44 can be micro-balls as previously described.
  • Figure 6 shows a variant of the electrochemical cell 6 of the battery 2 of Figures 4 and 5.
  • the view of Figure 6 is similar to that of Figure 5.
  • Similar elements bear the same references.
  • the second terminal 14, button-shaped 26, is attached to the two electrode sheets 18, which are also pressed against each other at the second terminal 14.
  • the passage opening 36 is formed in the first wall 32 of the casing 30 and in the second wall 34 of the casing 30.
  • the second terminal 14 therefore extends through both of the first 32 and second 34 walls of the casing. the envelope.
  • passage opening 36 in the first wall 32 of the casing 30 and in the second wall 34 of the casing each time extend over a side face of the casing 30.
  • the two passage openings 36 are aligned and face to face.
  • the electrochemical cells according to the invention are easy to manufacture and have high reliability thanks to the components described.
  • the electrical insulation means 44 make it possible to guarantee an electrical insulation distance between the two polarities.
  • the walls 32, 34 represent a good compromise between rigidity and expenditure of resources by being relatively stiff, but not very thick.
  • the terminals 14 lead to reliable electrical contact and easy assembly of the battery.
  • the location of the current output terminals in the footprint of the electrochemical cell optimizes the energy density of the cell.
  • connection between the walls 32 and 34 by laser welding in particular makes it possible to obtain an electrical connection with low electrical resistance, high sealing and stable over time as well as a good mechanical connection.
  • the metal casing according to the invention constitutes an advantageous alternative to the envelopes of the pouch type with a multilayer structure currently in use which can only be joined by heat-sealing.
  • the part not coated with active material of the first electrode 8 defines or is connected to the first terminal 12 of the first polarity.
  • the envelope 30, in particular the first 32 and second 34 walls, does not form the first terminal 12, but the first terminal is a separate element from the envelope 30.
  • the first terminal 12 may be a tab or a button or other element electrically connected to the first electrode 8, in a manner analogous to the second terminal 14 described above.
  • the envelope 30 comprises or forms an additional passage opening of the first terminal 12 and the first terminal 12 extends through this additional passage opening.
  • the further passage opening may be formed in an identical or analogous manner to the passage opening 36 above.
  • the interface between the casing 30, respectively the additional passage opening, and the first terminal 12 is designed in a manner analogous to the interface between the casing 30 and the second terminal 14 and may include means for electrical insulation identical to the electrical insulation means 40.
  • the second terminal 14 is attached to one of the two electrode sheets 18 and the other of the two electrode sheets 18 is attached to one of the two electrode sheets.
  • the two electrode sheets 18 are fixed to each other and the two electrode sheets 18 are on the same side of the second terminal 14. This characteristic is therefore not limited to the mode. embodiment of Figures 4 and 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

Elément électrochimique pour batterie et batterie correspondante Cet élément électrochimique (6) pour batterie (2), comprenant une première électrode (8) d'une première polarité, un premier terminal (12) de la première polarité, une seconde électrode (10) d'une seconde polarité, un second terminal (14) de la seconde polarité, et une enveloppe (30) comprenant une première paroi (32) et une seconde paroi (34). La première paroi et la seconde paroi comprennent chacune un corps de base (50) en métal et une couche électriquement isolante (52). La couche électriquement isolante (52) comprend soit un revêtement en matière plastique, soit une couche issue d'un traitement de surface. Chacun des corps de base comprend un bord de corps de base (502, 504). Les bords des corps de base (50) sont reliés par un cordon de soudure (56) afin de former l'enveloppe (30). A l'emplacement du cordon de soudure (56), les corps de base sont exempts de la couche électriquement isolante.

Description

TITRE : Elément électrochimique pour batterie et batterie correspondante
La présente invention concerne un élément électrochimique pour batterie, comprenant
- une première électrode d’une première polarité,
- un premier terminal de la première polarité,
- une seconde électrode d’une seconde polarité,
- un second terminal de la seconde polarité,
- une enveloppe comprenant une première paroi et une seconde paroi.
On connaît des batteries contenant des cellules électrochimiques. Une telle batterie est connue de US6159253B1 .
La batterie de ce document comprend un boîtier en acier, un revêtement d’isolation et une cellule électrochimique. La cellule électrochimique comprend un ensemble d’anode et un ensemble de cathode. Les ensembles d’anode et de cathode sont superposés et enroulés.
Une autre batterie est connue de EP1742279 qui comprend une cellule électrochimique ayant une structure enroulée.
Le document EP1453119 décrit une cellule électrochimique comprenant une enveloppe ayant une couche de support en Aluminium solidarisée à une couche de protection externe en matière plastique et à une couche interne en matière thermoplastique. Ces matériaux qui constituent l’enveloppe sont adaptés à la souplesse demandée de la batterie.
L’invention a pour but de proposer un élément électrochimique et une batterie correspondante qui aient une fiabilité importante et un volume faible pour une capacité de stockage d’énergie donnée.
L’invention se démarque entre autres des éléments de type pochette (dénommés également « pouchs ») connus multicouches en ce que l’enveloppe ne comporte pas de couche thermoplastique sur la face intérieure aux emplacements de la soudure, ce qui permet une soudure par laser des parois de l’enveloppe. Ainsi, une bonne herméticité de la cellule électrochimique est assurée par une fiabilité importante de la liaison. De plus, pour assurer la continuité de cette herméticité et de l’isolation au niveau des sorties de courant (terminaux), la cellule comporte des éléments de sortie adaptés.
De plus, la batterie et la cellule électrochimique selon l’invention doivent être économiques à fabriquer, fiables et avoir un poids relativement faible. A cet effet, l’invention a pour objet une cellule électrochimique telle qu’indiquée ci- dessus, caractérisée en ce que la première paroi et la seconde paroi comprennent chacune un corps de base et une couche électriquement isolante, en ce que les corps de base sont en métal, en ce que la couche électriquement isolante comprend
- soit un revêtement en matière plastique,
- soit une couche issue d’un traitement de surface, en ce que chacun des corps de base comprend un bord de corps de base, en ce que les bords des corps de base sont reliés par un cordon de soudure afin de former l’enveloppe, et en ce que à l’emplacement du cordon de soudure, les corps de base sont exempts de la couche électriquement isolante.
Selon des modes de réalisation particuliers de la cellule électrochimique, celle-ci peut comporter l’une ou plusieurs des caractéristiques suivantes :
- les corps de base en métal sont en Aluminium ou en un alliage à base d’aluminium, ou en acier, de préférence en acier inoxydable ou nickelé,
- les corps de base ont une épaisseur comprise entre 80 pm et 500 pm, notamment entre 120 pm et 460 pm, et particulièrement entre 180 pm et 460 pm
-l’enveloppe comprend au moins une ouverture de passage du premier et/ou du second terminal, le premier et/ou le second terminal s’étend à travers l’ouverture de passage, l’élément électrochimique comprend des moyens d’isolation électrique du premier et/ou du second terminal par rapport à l’enveloppe, les moyens d’isolation électrique comprennent
- un élément isolateur électrique en matière plastique s’étendant entre le terminal et l’enveloppe, et
- des éléments entretoise électriquement isolants, adaptés pour séparer le terminal de l’enveloppe lorsque la matière plastique est à l’état liquide,
- les éléments entretoise comprennent des micro-billes en une matière ayant une température de fusion supérieure à la température de fusion de la matière plastique et les micro-billes ayant un diamètre compris entre 50 pm et 500 pm, de préférence entre 100 pm et 200 pm,
- les micro-billes sont enrobées par la matière plastique fondue et solidifiée de l’élément isolateur électrique, - le premier et/ou le second terminal est une languette et l’ouverture de passage de l’enveloppe est formée
- soit par deux bords des première et second parois de l’enveloppe s’écartant l’un de l’autre,
- soit par une ouverture ménagée dans l’une des première et seconde parois de l’enveloppe,
- le second terminal est un bouton, notamment une rondelle, le bouton soit passant à travers l’une seulement des première et seconde parois de l’enveloppe soit passant à travers les deux des première et seconde parois de l’enveloppe,
- le bouton comprend une gorge circonférentielle, dans lequel l’enveloppe s’étend dans la gorge circonférentielle, et dans lequel les moyens d’isolation électrique comprennent un anneau d’isolation,
- la seconde électrode comprend deux feuilles d’électrode et dans lequel soit le second terminal est fixé entre les deux feuilles d’électrode soit le second terminal est fixé à l’une des deux feuilles d’électrode et l’autre des deux feuilles d’électrode est fixée à l’une des deux feuilles d’électrode.
L’invention a également pour objet une batterie, comprenant un carter et au moins deux éléments électrochimiques, caractérisée en ce que les éléments électrochimiques sont chacun un élément électrochimique tel que défini ci-dessus, et en ce que les éléments électrochimiques sont disposés dans le carter.
L’invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d’exemple et faite en se référant aux dessins annexés, sur lesquels :
[Fig 1] La Figure 1 montre en perspective une batterie selon un premier mode de réalisation de l’invention comprenant une multitude de cellules électrochimiques ;
[Fig 2] La Figure 2 montre en perspective à plus grande échelle et partiellement en coupe une partie de la batterie de la Figure 1 , comprenant une cellule électrochimique selon l’invention ;
[Fig 3] La Figure 3 montre selon une vue analogue à celle de la Figure 2, une variante de la cellule électrochimique de la batterie des Figures 1 et 2 ;
[Fig 4] La Figure 4 montre en perspective une batterie selon un second mode de réalisation de l’invention comprenant une multitude de cellules électrochimiques ;
[Fig 5] La Figure 5 montre en perspective à plus grande échelle et partiellement en coupe une partie de la batterie de la Figure 4, comprenant une cellule électrochimique selon l’invention ; [Fig 6] La Figure 6 montre selon une vue analogue à celle de la Figure 5, une variante de la cellule électrochimique de la batterie des Figures 4 et 5 ; et
[Fig 7] La Figure 7 montre à plus grande échelle un détail de la Figure 2.
Dans ce qui suit, sauf indication contraire, les termes « isolant », « isolation » et ses dérivés se réfèrent à une isolation électrique.
Dans la description des différents modes de réalisation, les éléments analogues portent les mêmes références. Egalement, sauf indication contraire, chaque caractéristique décrite en référence à un mode de réalisation de l’invention ou à une variante d’un mode de réalisation est applicable d’une manière isolée ou en toute combinaison technique possible aux autres modes de réalisation ou variantes.
La description qui suit contient des caractéristiques techniques de l’invention. Ces caractéristiques techniques, bien que présentées dans un contexte technique et éventuellement en combinaison avec d’autres caractéristiques techniques, peuvent être utilisées à chaque fois individuellement, sans les autres caractéristiques techniques, pour autant que ceci soit techniquement possible.
Sur la Figure 1 est représentée une batterie selon l’invention, désignée par la référence générale 2. La batterie 2 est une batterie électrochimique telle qu’utilisée habituellement dans les véhicules électriques. Toutefois, d’autres domaines d’application de la batterie 2 sont envisageables, tels que le stockage d’énergie, la mobilité électrique, l’aviation, le ferroviaire.
La batterie 2 comprend un carter 4 et au moins deux éléments électrochimiques 6, dont un est représenté en traits pleins et l’autre en traits interrompus sur la Figure 1. La batterie 2 peut bien entendu comprendre un nombre quelconque d’éléments électrochimiques 6.
Les éléments électrochimiques 6 sont disposés dans le carter 4 et sont électriquement reliés l’un à l’autre, soit selon une connexion électrique en parallèle, soit selon une connexion électrique en série.
Le carter 4 est par exemple un carter parallélépipédique rectangulaire et formé de métal ou d’un matériau thermoplastique. En variante, le carter a une forme cylindrique à section circulaire. Le carter 4 a des parois qui sont moins déformables que les parois des éléments électrochimiques (voir ci-après).
Sur la Figure 2 est représenté, en perspective et à plus grande échelle, l’élément électrochimique 6, une partie de l’élément électrochimique étant omise.
L’élément électrochimique 6 comprend une première électrode 8 d’une première polarité, une seconde électrode 10 d’une seconde polarité, comportant chacune un collecteur de courant sous la forme d’un feuillard métallique recouvert, sur une portion, d’un matériau actif, la portion non revêtue étant reliée à un premier terminal 12 de la première polarité et un second terminal 14 de la seconde polarité.
La première électrode 8 comprend un collecteur de courant formé d’un feuillard métallique, en l’occurrence sensiblement rectangulaire, par exemple en aluminium, revêtu, sur ses deux faces et sur une portion, d’un matériau actif. Par exemple, dans le cas d’une batterie secondaire au lithium, le matériau actif de la première électrode est une pâte contenant un oxyde métallique comprenant des atomes de lithium, tel que le dioxyde de cobalt et de lithium (LiCo0 , „LCO“) , NMC (LiNixMny Coi-x-y 02), NCA (LiNixCoyAli-x.y02), SLFP (LiFePC ), LMO (LiMn2C>4) ou des composés stratifiés analogues. La première électrode 8 est par exemple l’électrode positive.
La seconde électrode 10 comprend deux collecteurs de courant 18 formés de feuillards métalliques, en l’occurrence sensiblement rectangulaires, par exemple en cuivre, revêtus d’un matériau actif sur une portion. Par exemple, dans le cas d’une batterie secondaire au lithium, le matériau actif de la seconde électrode est une pâte contenant un matériau carboné apte à insérer des atomes de lithium, tel que le graphite ou du silicium à nano-cristaux amorphe, LTO (LUTisO^) ou TNO (TiNb20 ). La seconde électrode 10 est par exemple l’électrode négative.
Les deux feuillards métalliques revêtus d’un matériau actif constituant la seconde électrode 10 sont disposés d’un côté et de l’autre de la première électrode 8.
L’élément électrochimique 6 comprend un séparateur 20, séparant la première électrode 8 de la seconde électrode 10. En l’occurrence, le séparateur 20 comprend deux feuilles de séparation 22 qui sont disposées d’un côté et de l’autre de la première électrode 8 entre cette première électrode 8 et la seconde électrode 10.
Dans le cas d’une cellule électrochimique Li-lon, le séparateur 20 est perméable aux ions de Lithium, mais isolant électronique.
Le séparateur 20 est par exemple en une membrane polyoléfine.
L’élément électrochimique 6 comprend également un électrolyte 24, qui peut être liquide, tel qu’un électrolyte à base de sels de lithium LiPF6, solide ou gel, tel que des polymères de Polyfluorure de vinylidène (PVDF) ou un copolymère de Polyfluorure de vinylidène et d’Flexafluoropropylène (PVDF-FIFP).
En l’occurrence, le second terminal 14 est une languette 26 fixée aux deux feuillards d’électrode 18 dans une portion non revêtue par le matériau actif de la seconde électrode 10. Par exemple, les feuillards d’électrode 18 de la seconde électrode 10 sont disposés d’un côté et de l’autre de la languette 26. Le second terminal 14 est donc, dans ce mode de réalisation, fixé entre les deux feuillards d’électrode 18, par soudure de type laser ou ultrasons.
Le second terminal 14 est par exemple en cuivre ou en nickel.
L’élément électrochimique 6 comprend une enveloppe 30 munie d’une première paroi 32 et d’une seconde paroi 34. La première paroi 32 et la seconde paroi 34 sont reliées sur leur pourtour ou sont venues de matière le long d’un bord de l’enveloppe 30 et reliées sur les trois autres côtés de leur pourtour. La première paroi 32 et la seconde paroi 34 sont par exemple de forme sensiblement rectangulaires.
L’enveloppe 30 contient la première électrode 8, la seconde électrode 10, le séparateur 20 et, l’électrolyte 23.
Dans le présent mode de réalisation, la première électrode 8 est reliée électriquement à l’enveloppe 30, afin que l’enveloppe 30 forme le premier terminal 12. Pour réaliser cette liaison, une portion non revêtue de la première électrode 8 est soudée sur une partie de l’enveloppe 30, sur la paroi 32 ou sur la paroi 34 par un procédé de soudure de type laser ou ultrasons.
L’enveloppe 30 comprend ou forme une ouverture de passage 36 du second terminal 14 et le second terminal 14 s’étend à travers cette ouverture de passage 36.
L’élément électrochimique 6 est muni de moyens d’isolation électrique 40 du second terminal 14 par rapport à l’enveloppe 30 ainsi que de moyens assurant l’étanchéité. Ces moyens d’isolation électrique 40 comprennent un élément isolateur électrique 42 en matière plastique s’étendant entre le second terminal et l’enveloppe et des éléments entretoise 44 électriquement isolants adaptés pour séparer le second terminal de l’enveloppe lorsque la matière plastique de l’élément isolateur électrique 42 est à l’état liquide. De préférence, l’élément isolateur électrique 42 en matière plastique comprend une partie sur le second terminal 14 et une partie sur la paroi de l’enveloppe 30. Lors de l’assemblage, ces deux parties sont chauffées pour assurer l’étanchéité de l’enveloppe. De ce fait les moyens d’étanchéité sont confondus avec l’élément isolateur électrique.
En se référant à la Figure 7, les éléments entretoise 44 comprennent ou sont constitués de micro-billes en une matière ayant une température de fusion supérieure à la température de fusion de la matière plastique. Les micro-billes ont par exemple un diamètre compris entre 50 pm et 500 pm, de préférence entre 100 pm et 200 pm. Les micro-billes sont avantageusement enrobées par la matière plastique fondue et solidifiée de l’élément isolateur électrique 42.
Les micro-billes sont de préférence en matière thermoplastique, par exemple en PET ou PPS. La première paroi 32 et la seconde paroi 34 comprennent chacune un corps de base 50 et une couche électriquement isolante 52 sur leur face interne (voir Figure 7).
Les corps de base 50 sont en métal et peuvent être formés à chaque fois par une feuille en métal. Les corps de base 50 peuvent avoir une épaisseur comprise entre 80 pm et 500 pm. Cette épaisseur peut notamment être comprise entre 120 pm et 460 pm, et particulièrement entre 180 pm et 460 pm. Les corps de base 50 sont par exemple en Aluminium, en un alliage à base d’aluminium, en acier, de préférence de l’acier inoxydable ou nickelé.
La couche électriquement isolante 52 peut comprendre ou être constituée de soit un revêtement en matière plastique, soit une couche issue d’un traitement de surface du corps de base 50. La couche électriquement isolante 52 peut être formée par anodisation du corps de base 50, et est notamment une couche d’oxyde d’aluminium formée par anodisation du corps de base 50. Dans le cas où la couche électriquement isolante comprend ou est constituée d’un revêtement en matière plastique, le revêtement peut être soit une couche d’un polymère déposé sous forme liquide et ensuite solidifié, soit une couche d’un polymère déposé sous forme poudreuse par dépôt électrostatique.
Dans le cas où la couche électriquement isolante 52 est une couche issue d’un traitement de surface du corps de base 50, elle peut être obtenue par un traitement de surface à base de céramique par projection plasma.
Alternativement, ou en plus de la couche électriquement isolante 52, l’ensemble de la cellule électrochimique composé de la première électrode 8, de la seconde électrode 10, des feuilles de séparateur et de l’électrolyte sont enrobées dans une matrice isolante, par exemple formée d’une enveloppe thermoplastique d’épaisseur comprise entre 20 pm et 100pm.
Le corps de base 50 de la première paroi 32 comprend un bord de corps de base 502 et le corps de base 50 de la seconde paroi 34 comprend un bord de corps de base 504.
Avantageusement, les bords 502, 504 des corps de base 50 sont soudés ensemble par soudure laser afin de former l’enveloppe 30. Ainsi, les bords des corps de base 50 sont reliés par un cordon de soudure 56 afin de former l’enveloppe 30. A l’emplacement du cordon de soudure 56, les corps de base 50 sont exempts de la couche électriquement isolante. La liaison mécanique entre les corps de base 50 est donc réalisée par solidarité de la matière des parois, donc par une liaison de métal à métal. L’ouverture de passage 36 est en l’occurrence une ouverture ménagée dans l’une des première et seconde parois de l’enveloppe 30 et plus précisément dans la seconde paroi 34. L’ouverture de passage 36 est donc formée entièrement par la seconde paroi 34.
La Figure 3 montre une variante de la cellule électrochimique 6 de la batterie 2 des Figures 1 et 2. La vue de la Figure 3 est analogue à celle de la Figure 2. Dans ce qui suit uniquement les différences par rapport au mode de réalisation précédent seront décrites. Les éléments analogues portent les mêmes références.
L’ouverture de passage 36 de l’enveloppe 30 est formée par deux bords 60 et 62 des première 32 et seconde 34 parois de l’enveloppe s’écartant localement.
Les première paroi 32 et seconde paroi 34 sont symétriques par rapport à un plan de symétrie s’étendant parallèlement au plan général de la première électrode 8.
Les bords 60, 62 des première 32 et seconde 34 parois sont reliés l’un à l’autre adjacent à l’ouverture de passage 36 des deux côtés, mais sont écartés localement l’un de l’autre pour former l’ouverture de passage 36. D’une manière générale, les bords 60, 62 des première 32 et seconde 34 parois sont reliés l’un à l’autre sur la totalité de leur longueur excepté au niveau de l’ouverture de passage 36.
Cette variante est facile à fabriquer étant donné qu’elle ne nécessite pas de ménager une ouverture dans l’une des parois.
La Figure 4 montre en perspective une batterie 2 selon un second mode de réalisation de l’invention, comprenant une multitude de cellules électrochimiques 6. La Figure 5 montre en perspective à plus grande échelle et partiellement en coupe une cellule électrochimique de la batterie de la Figure 4.
La vue de la Figure 4 est analogue à celle de la Figure 1 et la vue de la Figure 5 est analogue à celle de la Figure 2. Dans ce qui suit, uniquement les différences par rapport au mode de réalisation précédent seront décrites. Les éléments analogues portent les mêmes références.
Le second terminal 14 est fixé à l’une des deux feuilles d’électrode 18 et l’autre des deux feuilles d’électrode 18 est fixée à l’une des deux feuilles d’électrode. En d’autres termes, les deux feuilles d’électrode 18 sont fixées l’une à l’autre et les deux feuilles d’électrode 18 se trouvent du même côté du second terminal 14.
Egalement, le second terminal 14 n’est pas une languette, mais est un bouton 26, en l’occurrence une rondelle.
L’ouverture de passage 36 est ménagée dans la première paroi 32 de l’enveloppe 30. L’ouverture de passage 36 est par exemple de forme circulaire. Le bouton 26 passe à travers l’une seulement des première 32 et seconde 34 parois de l’enveloppe 30 et donc à travers l’ouverture de passage 36. En l’occurrence le bouton s’étend à travers la première paroi 32.
De plus, l’ouverture de passage 36 s’étend sur une face latérale de l’enveloppe 30, qui est une grande face de l’enveloppe.
Après assemblage, le bouton 26 comprend une gorge circonférentielle 64, et l’enveloppe 30 s’étend dans la gorge circonférentielle 64. Plus précisément, la première paroi 32 s’étend dans la gorge circonférentielle 64. Le bouton 26 est par exemple en métal et obtenu par déformation plastique, par exemple par sertissage ou par un assemblage de plusieurs pièces de type laser ou friction.
Les moyens d’isolation électrique 40 comprennent un ou plusieurs éléments d’isolation électrique de forme circulaire 66 muni d’un élément isolateur électrique 42 en matière plastique s’étendant entre le second terminal 14 et l’enveloppe 30 et des éléments entretoise 44 électriquement isolants adaptés pour séparer le second terminal de l’enveloppe lorsque la matière plastique de l’élément isolateur électrique 42 est à l’état liquide. L’élément isolateur électrique 42 peut être d’une matière comme précédemment décrite. Les éléments entretoise 44 peuvent être des micro-billes comme précédemment décrit.
La Figure 6 montre une variante de la cellule électrochimique 6 de la batterie 2 des Figures 4 et 5. La vue de la Figure 6 est analogue à celle de la Figure 5. Dans ce qui suit, uniquement les différences par rapport au mode de réalisation précédent seront décrites. Les éléments analogues portent les mêmes références.
Le second terminal 14, en forme de bouton 26, est fixé aux deux feuilles d’électrode 18, qui sont également appliquées l’une contre l’autre au niveau du second terminal 14.
L’ouverture de passage 36 est ménagée dans la première paroi 32 de l’enveloppe 30 et dans la seconde paroi 34 de l’enveloppe 30. Le second terminal 14 s’étend donc à travers les deux des première 32 et seconde 34 parois de l’enveloppe.
De plus, l’ouverture de passage 36 dans la première paroi 32 de l’enveloppe 30 et dans la seconde paroi 34 de l’enveloppe s’étendent à chaque fois sur une face latérale de l’enveloppe 30. Les deux ouvertures de passage 36 sont alignées et sont en face-à-face.
Les cellules électrochimiques selon l’invention sont faciles à fabriquer et ont une fiabilité importante grâce aux composants décrits.
En particulier les moyens d’isolation électrique 44 permettent de garantir une distance d’isolation électrique entre les deux polarités. En outre, les parois 32, 34 représentent un bon compromis entre rigidité et dépense en ressources en étant relativement rigides, mais non pas très épaisses. Les terminaux 14 conduisent à un contact électrique fiable et un assemblage facile de la batterie.
Par ailleurs, la localisation des terminaux de sortie de courant dans l’empreinte de la cellule électrochimique permet d’optimiser la densité énergétique de la cellule.
Le mode de liaison entre les parois 32 et 34 par soudure laser notamment permet d’obtenir une connexion électrique avec une faible résistance électrique, une étanchéité élevée et stable dans le temps ainsi qu’une bonne liaison mécanique. En cela, l’enveloppe métallique selon l’invention constitue une alternative avantageuse aux enveloppes de type pochette (« pouch ») à structure multicouches actuellement utilisées qui ne peuvent être jointes que par thermosoudure.
Selon une variante non représentée, la partie non revêtue de matériau actif de la première électrode 8 définit ou est connectée au premier terminal 12 de la première polarité. Dans ce cas, l’enveloppe 30, en particulier les première 32 et seconde 34 parois, ne forme(nt) pas le premier terminal 12, mais le premier terminal est un élément distinct de l’enveloppe 30. Dans ce cas, le premier terminal 12 peut être une languette ou un bouton ou un autre élément relié électriquement à la première électrode 8, d’une manière analogue au second terminal 14 décrit ci-dessus.
Dans ce cas, l’enveloppe 30 comprend ou forme une ouverture de passage supplémentaire du premier terminal 12 et le premier terminal 12 s’étend à travers cette ouverture de passage supplémentaire. L’ouverture de passage supplémentaire peut être formée d’une manière identique ou analogue à l’ouverture de passage 36 ci-dessus.
L’interface entre l’enveloppe 30, respectivement l’ouverture de passage supplémentaire, et le premier terminal 12 est conçue d’une manière analogue à l’interface entre l’enveloppe 30 et le second terminal 14 et peut comporter des moyens d’isolation électrique identiques aux moyens d’isolation électrique 40.
D’une manière générale, le second terminal 14 est fixé à l’une des deux feuilles d’électrode 18 et l’autre des deux feuilles d’électrode 18 est fixée à l’une des deux feuilles d’électrode. En d’autres termes, les deux feuilles d’électrode 18 sont fixées l’une à l’autre et les deux feuilles d’électrode 18 se trouvent du même côté du second terminal 14. Cette caractéristique n’est donc pas limitée au mode de réalisation des Figures 4 et 5.

Claims

REVENDICATIONS
1. Elément électrochimique (6) pour batterie (2), comprenant
- une première électrode (8) d’une première polarité,
- un premier terminal (12) de la première polarité,
- une seconde électrode (10) d’une seconde polarité,
- un second terminal (14) de la seconde polarité,
- une enveloppe (30) comprenant une première paroi (32) et une seconde paroi (34), caractérisé en ce que
- la première paroi et la seconde paroi comprennent chacune un corps de base (50) et une couche électriquement isolante (52), en ce que les corps de base (50) sont en métal, en ce que la couche électriquement isolante (52) comprend
- soit un revêtement en matière plastique,
- soit une couche issue d’un traitement de surface, en ce que chacun des corps de base comprend un bord de corps de base (502,
504), en ce que les bords des corps de base (50) sont reliés par un cordon de soudure (56) afin de former l’enveloppe (30), et en ce que à l’emplacement du cordon de soudure (56), les corps de base sont exempts de la couche électriquement isolante.
2. Elément électrochimique pour batterie, selon la revendication 1 , dans lequel les corps de base (50) en métal sont en Aluminium ou en un alliage à base d’aluminium, ou en acier, de préférence en acier inoxydable ou nickelé,
3. Elément électrochimique pour batterie, selon la revendication 1 ou 2, dans lequel les corps de base (50) ont une épaisseur comprise entre 80 pm et 500 pm, notamment entre 120 pm et 460 pm, et particulièrement entre 180 pm et 460 pm.
4. Elément électrochimique pour batterie, selon l’une quelconque des revendications 1 à 3, dans lequel
- l’enveloppe comprend au moins une ouverture de passage (36) du premier et/ou du second terminal, le premier et/ou le second terminal s’étend à travers l’ouverture de passage, l’élément électrochimique comprend des moyens d’isolation électrique (40) du premier et/ou du second terminal par rapport à l’enveloppe, les moyens d’isolation électrique comprennent
- un élément isolateur électrique (42) en matière plastique s’étendant entre le terminal et l’enveloppe, et
- des éléments entretoise (44) électriquement isolants, adaptés pour séparer le terminal de l’enveloppe lorsque la matière plastique est à l’état liquide.
5. Elément électrochimique pour batterie, selon la revendication 4, dans lequel les éléments entretoise comprennent des micro-billes en une matière ayant une température de fusion supérieure à la température de fusion de la matière plastique et les micro-billes ayant un diamètre compris entre 50 pm et 500 pm, de préférence entre 100 pm et 200 pm.
6. Elément électrochimique pour batterie, selon la revendication 4 ou 5, dans lequel les micro-billes sont enrobées par la matière plastique fondue et solidifiée de l’élément isolateur électrique (42).
7. Elément électrochimique pour batterie, selon l’une quelconque des revendications 4 à 6, dans lequel le premier et/ou le second terminal est une languette (26) et l’ouverture de passage (36) de l’enveloppe est formée
- soit par deux bords des première et second parois (32, 34) de l’enveloppe s’écartant l’un de l’autre,
- soit par une ouverture ménagée dans l’une des première (32) et seconde (34) parois de l’enveloppe (30).
8. Elément électrochimique pour batterie, selon l’une quelconque des revendications précédentes, dans lequel le second terminal (14) est un bouton (26), notamment une rondelle, le bouton soit passant à travers l’une seulement des première et seconde parois (32, 34) de l’enveloppe soit passant à travers les deux des première et seconde parois (32, 34) de l’enveloppe.
9. Elément électrochimique pour batterie, selon la revendication 8, dans lequel le bouton comprend une gorge circonférentielle (64), dans lequel l’enveloppe (30) s’étend dans la gorge circonférentielle, et dans lequel les moyens d’isolation électrique comprennent un anneau d’isolation (66).
10. Elément électrochimique pour batterie, selon l’une quelconque des revendications précédentes, dans lequel la seconde électrode comprend deux feuilles d’électrode (18) et dans lequel soit le second terminal (14) est fixé entre les deux feuilles d’électrode soit le second terminal (14) est fixé à l’une des deux feuilles d’électrode et l’autre des deux feuilles d’électrode est fixée à l’une des deux feuilles d’électrode.
11. Batterie (2) comprenant un carter (4) et au moins deux éléments électrochimiques, caractérisée en ce que les éléments électrochimiques (6) sont chacun un élément électrochimique selon l’une des revendications précédentes et en ce que les éléments électrochimiques sont disposés dans le carter.
EP21715931.8A 2020-04-07 2021-04-07 Elément électrochimique pour batterie et batterie correspondante Pending EP4133543A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2003461A FR3109026B1 (fr) 2020-04-07 2020-04-07 Elément électrochimique pour batterie et batterie correspondante
PCT/EP2021/059006 WO2021204842A1 (fr) 2020-04-07 2021-04-07 Elément électrochimique pour batterie et batterie correspondante

Publications (1)

Publication Number Publication Date
EP4133543A1 true EP4133543A1 (fr) 2023-02-15

Family

ID=71994584

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21715931.8A Pending EP4133543A1 (fr) 2020-04-07 2021-04-07 Elément électrochimique pour batterie et batterie correspondante

Country Status (4)

Country Link
US (1) US20230155187A1 (fr)
EP (1) EP4133543A1 (fr)
FR (1) FR3109026B1 (fr)
WO (1) WO2021204842A1 (fr)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3885327B2 (ja) * 1997-12-19 2007-02-21 ソニー株式会社 偏平角型非水電解液二次電池
US6159253A (en) 1998-01-07 2000-12-12 Medtronic, Inc. Thermally formed tab slots in a separator for a spirally-wound electrochemical cell
JP4341098B2 (ja) * 1999-02-02 2009-10-07 パナソニック株式会社 電池
JP2004095217A (ja) * 2002-08-29 2004-03-25 Nissan Motor Co Ltd 電池外装用ラミネート材、電池およびその製造方法、ならびに組電池、組電池モジュール
FR2847720B1 (fr) 2002-11-21 2005-05-20 Cit Alcatel Generateur electrochimique a connecteur monobloc
KR100601517B1 (ko) * 2004-09-24 2006-07-19 삼성에스디아이 주식회사 이차 전지
US7875379B2 (en) 2005-07-08 2011-01-25 Greatbatch Ltd. Electrochemical cell having a pocket separator design
US20090081552A1 (en) * 2007-09-24 2009-03-26 Greatbatch Ltd. Electrochemical cell with tightly held electrode assembly
WO2013132673A1 (fr) * 2012-03-05 2013-09-12 新日鉄住金マテリアルズ株式会社 Contenant a joint composite de résine-métal et son procédé de production
WO2017079025A1 (fr) * 2015-11-02 2017-05-11 Rutgers, The State University Of New Jersey Pile électrochimique à boîtier en feuille métallique mince et son procédé de fabrication

Also Published As

Publication number Publication date
WO2021204842A1 (fr) 2021-10-14
FR3109026A1 (fr) 2021-10-08
FR3109026B1 (fr) 2024-04-26
US20230155187A1 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
EP2583332B1 (fr) Collecteur de courant avec moyens d'etancheite integres, batterie bipolaire comprenant un tel collecteur
EP2870655B1 (fr) Collecteur de courant avec moyens d'étanchéité intégrés, batterie bipolaire comprenant un tel collecteur
EP1936722A2 (fr) Accumulateur au lithium comprenant un ensemble collecteur de courant-électrode avec des cavités d'expansion et procédé de fabrication
EP3130020B1 (fr) Accumulateur electrochimique au lithium avec borne en liaison directe avec le faisceau electrochimique et procedes de realisation associes
EP3000141B1 (fr) Batterie li-ion bipolaire à étanchéite améliorée et procédé de réalisation associé
EP2093820B1 (fr) Connection électrique pour accumulateur de courant
EP3076453B1 (fr) Dispositif électrochimique, tel qu'une microbatterie ou un système électrochrome, recouvert par une couche d'encapsulation comprenant un film barrière et un film adhésif, et procédé de réalisation d'un tel dispositif
US10886537B2 (en) Electrochemical devices and methods for making same
EP2875538B1 (fr) Batterie li-ion bipolaire a étanchéité améliorée et procédé de réalisation associé
EP3410514B1 (fr) Traversee formant borne pour accumulateur electrochimique metal-ion, integrant une soupape de liberation des gaz, accumulateur associe
EP3523837B1 (fr) Accumulateur
EP4133543A1 (fr) Elément électrochimique pour batterie et batterie correspondante
EP3095147A1 (fr) Accumulateur electrochimique avec boitier et borne de sortie en alliage d'aluminium
FR3037725A1 (fr) Procede de realisation d'un faisceau electrochimique d'accumulateur au lithium avec mousse metallique aux extremites de feuillards
CH716260A2 (fr) Batterie cellulaire.
WO2019092375A2 (fr) Accumulateur electrochimique a architecture bipolaire specifique
EP3510652A1 (fr) Traversée formant borne pour accumulateur électrochimique métal-ion et accumulateur associé
WO2022243243A1 (fr) Elément électrochimique pour batterie, et batterie correspondante
CA2249473A1 (fr) Electrode bipolaire pour accumulateur a electrolyte alcalin
FR3105599A1 (fr) Accumulateur bobine de type m-ion
WO2021233898A1 (fr) Elément électrochimique et batterie correspondante
FR3129528A1 (fr) Procédé de réalisation d’une batterie tout-solide à partir d’un accumulateur électrochimique métal-ion à électrolyte liquide, à des fins d’essais abusifs thermiques.
FR3131101A1 (fr) Faisceau électrochimique, élément de batterie et procédés de fabrication associés
WO1998021768A1 (fr) Collecteur de courant pour electrode positive et eventuellement electrode negative pour un ensemble electrochimique multicouche et pour bobinage ainsi obtenu

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221005

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)