EP4133012A1 - Composition de polymères pour films imper-respirants - Google Patents
Composition de polymères pour films imper-respirantsInfo
- Publication number
- EP4133012A1 EP4133012A1 EP21722966.5A EP21722966A EP4133012A1 EP 4133012 A1 EP4133012 A1 EP 4133012A1 EP 21722966 A EP21722966 A EP 21722966A EP 4133012 A1 EP4133012 A1 EP 4133012A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- blocks
- copolymer
- polyamide
- weight
- acrylate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/02—Polyamides derived from omega-amino carboxylic acids or from lactams thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/07—Flat, e.g. panels
- B29C48/08—Flat, e.g. panels flexible, e.g. films
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
- C08F290/067—Polyurethanes; Polyureas
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/40—Polyamides containing oxygen in the form of ether groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0846—Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
- C08L23/0869—Acids or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0846—Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
- C08L23/0869—Acids or derivatives thereof
- C08L23/0884—Epoxide containing esters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
- C09D175/14—Polyurethanes having carbon-to-carbon unsaturated bonds
- C09D175/16—Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
Definitions
- the present invention relates to a composition of polymers as well as a waterproof-breathable film obtained from said composition.
- Films impermeable to liquid water and permeable to water vapor are used in various fields such as textiles, construction, agriculture, packaging ... These films can for example be used as packaging to cover articles or as coatings adhered to the surface of articles.
- breathable films In general, breathable films must meet certain conditions such as a homogeneous appearance, wind resistance, high permeability to water vapor, a certain elasticity, as well as the ability to adhere to different substrates. In addition, these films must be easily transformable during their production, in particular by extrusion, without causing deformations on the film. Low processability results in imperfections on the films such as holes or jagged edges.
- compositions comprising polyamide block copolymers and polyether block copolymers so as to form this type of film.
- the films formed are not very stretchable, which causes problems during their manufacture by extrusion, in particular by extrusion coating.
- terpolymer compositions in particular terpolymers derived from ethylenic, acrylic and butylenic monomers, makes it possible to obtain films which can be easily transformed by extrusion.
- these films exhibit very low breathability.
- Document US 2004/0029467 relates to a breathable film which comprises at least one polymer (a) chosen from the group comprising an ethylene / (meth) acrylate copolymer (a1), an ethylene / acid copolymer (meth ) acrylic optionally neutralized (a2), a copolymer ethylene / vinyl monomer (a3), mixture (a1) / (a2), mixture (a1) / (a3), mixture (a2) / (a3) and mixture (a1) / (a2) / (a3), and / or which comprises at least one functionalized polyethylene (b); and at least one copolymer (c) having copolyamide blocks or polyester blocks and polyether blocks.
- a polymer (a) chosen from the group comprising an ethylene / (meth) acrylate copolymer (a1), an ethylene / acid copolymer (meth ) acrylic optionally neutralized (a2), a copolymer ethylene / vinyl monomer (a3)
- Document US 5614588 relates to a mixture of polymers comprising a polyether block amide consisting of 30 to 60% by weight of polyamide-12, polyamide-11 and / or polyamide-12,12 blocks and 70 to 40% by weight of polyethylene blocks glycol, a polyether block amide consisting of 65 to 85% by weight of polyamide-12, polyamide-11 and / or polyamide-12,12 blocks and 35 to 15% by weight of polyethylene glycol blocks, and a poly ( ethylene-co-vinylacetate-g-maleic anhydride) consisting of 75 to 95% by weight of ethylene, 5 to 25% by weight of vinyl acetate and 0.1 to 2% by weight of maleic anhydride.
- the composition of this document is used for the manufacture of films permeable to water vapor.
- Document US 5506024 relates to water vapor permeable films made from thermoplastic elastomers based on polyetheresteramide and preferably based on polyether block amide.
- Document US 5800928 relates to water vapor permeable films comprising at least one thermoplastic elastomer comprising polyether blocks and at least one copolymer comprising ethylene and at least one (meth) alkyl acrylate.
- the invention relates firstly to a composition consisting of:
- polyether blocks of copolymer A comprise blocks of polyethylene glycol.
- the polyamide blocks of copolymer A are blocks of polyamide 11, or of polyamide 12, or of polyamide 6, or of polyamide 10.10, or of polyamide 10.12, or of polyamide 6.10, as well as their combinations.
- the alkyl (meth) acrylate has an alkyl group comprising from 1 to 24 carbon atoms, and preferably from 1 to 5 carbon atoms.
- the alkyl (meth) acrylate is selected from methyl (meth) acrylate, ethyl (meth) acrylate and butyl (meth) acrylate as well as combinations thereof.
- the molar content of units derived from alkyl (meth) acrylate in copolymer B is 5 to 35%.
- the molar content of comonomer comprising at least one acid, anhydride or epoxide function in copolymer B is from 0.1 to 15%.
- the comonomer comprising at least one acid, anhydride or epoxide function is chosen from the anhydrides of unsaturated carboxylic acids, and preferably is maleic anhydride.
- the comonomer comprising at least one acid, anhydride or epoxide function has a function of unsaturated epoxide type, and preferably is glycidyl methacrylate.
- the copolymer B is devoid of units derived from vinyl acetate.
- the additive is chosen from inert dyes such as titanium dioxide, fillers, surfactants, crosslinking agents, nucleating agents, reactive compounds, inorganic or organic flame retardants, ultraviolet (UV) or infrared (IR) light absorbing agents, UV or IR fluorescent agents, as well as their combinations.
- the invention also relates to a process for manufacturing a film from the composition described above.
- the film according to the invention can be prepared by any method which makes it possible to obtain an intimate or homogeneous mixture containing said copolymer A and a copolymer B according to the invention, and optionally an additive (s), such as compounding in the molten state, extrusion, compaction, or even the roller mixer.
- an additive such as compounding in the molten state, extrusion, compaction, or even the roller mixer.
- dry-blend a step of dry mixing the copolymer A and the copolymer B in the form of granules is applied (“dry-blend”).
- thermoplastics industry such as extruders, twin-screw type extruders, in particular self-cleaning meshing co-rotating twin-screw extruders, and kneaders, for example.
- BUSS brand co-mixers or internal mixers for example.
- the process for manufacturing the film is an extrusion process.
- the extrusion is performed at a temperature of 100 to 300 ° C, preferably 150 to 250 ° C.
- the process generally includes a step of stretching the composition.
- the stretching step can be performed by extrusion blow molding.
- the stretching step is performed by coating extrusion.
- the stretching step is carried out by flat extrusion.
- the invention also relates to a film obtained by the methods described above.
- the present invention overcomes the drawbacks of the prior art. It more particularly provides a composition which allows the manufacture of films exhibiting both good permeability to water vapor and good processability during their manufacture.
- composition consisting of at least one polyamide block and polyether block copolymer A and at least one copolymer B comprising units derived from at least three comonomers: a first ethylene comonomer, a second comonomer (meth) alkyl acrylate and a third comonomer comprising at least one reactive function in the form of an acid, anhydride or epoxide group; and optionally one or more additives.
- this composition consisting of from 75 to 98% by weight of copolymer A, from 2 to 15% by weight of copolymer B and from 0 to 10% of at least one additive, makes it possible to obtain films having a good permeability to water vapor and very good processability, in particular by extrusion, and in particular by hot extrusion.
- composition according to the invention consists of:
- At least one copolymer B comprising units derived from at least three comonomers: a first ethylene comonomer, a second alkyl (meth) acrylate comonomer and a third comonomer comprising at least one reactive function in the form of an acid group, anhydride or epoxide; and
- copolymers A containing polyamide blocks and polyether blocks (abbreviated "PEBA"), these result from the polycondensation of blocks.
- polyamides with reactive ends with polyether blocks with reactive ends such as, inter alia:
- polyamide blocks containing dicarboxylic chain ends with polyoxyalkylene blocks containing diamine chain ends obtained for example by cyanoethylation and hydrogenation of aliphatic ⁇ , w-dihydroxylated polyoxyalkylene blocks called polyetherdiols;
- Polyamide blocks with dicarboxylic chain ends originate, for example, from the condensation of polyamide precursors in the presence of a dicarboxylic acid chain limiter.
- the polyamide blocks having diamine chain ends come, for example, from the condensation of polyamide precursors in the presence of a chain-limiting diamine.
- Polymers containing polyamide blocks and polyether blocks can also comprise units distributed randomly.
- Three types of polyamide blocks can advantageously be used.
- the polyamide blocks come from the condensation of a dicarboxylic acid, in particular those having 4 to 20 carbon atoms, preferably those having 6 to 18 carbon atoms and an aliphatic or aromatic diamine, in particular those having from 2 to 20 carbon atoms, preferably those having from 6 to 14 carbon atoms.
- dicarboxylic acids mention may be made of 1,4-cyclohexyldicarboxylic acid, butanedioic, adipic, azelaic, suberic, sebacic, dodecanedicarboxylic, octadecanedicarboxylic and terephthalic and isophthalic acids, but also dimerized fatty acids. .
- diamines examples include tetramethylene diamine, hexamethylenediamine, 1, 10-decamethylenediamine, dodecamethylenediamine, trimethylhexamethylene diamine, bis- (4-aminocyclohexyl) -methane (BACM), bis- (3-methyl-4-aminocyclohexyl) methane (BMACM), and 2-2-bis- (3-methyl- isomers 4- aminocyclohexyl) -propane (BMACP), and paraamino-di-cyclo-hexyl-methane (PACM), and isophoronediamine (IPDA), 2,6-bis- (aminomethyl) -norbornan (BAMN) and piperazine (Pip).
- BAMN paraamino-di-cyclo-hexyl-methane
- IPDA isophoronediamine
- BAMN 2,6-bis- (aminomethyl) -norbornan
- blocks PA 4.12, PA 4.14, PA 4.18, PA 6.10, PA 6.12, PA 6.14, PA 6.18, PA 9.12, PA 10.10, PA 10.12, PA 10.14 and PA 10.18 are used.
- PA notation X.Y X represents the number of carbon atoms resulting from the diamine residues, and Y represents the number of carbon atoms resulting from the diacid residues, in a conventional manner.
- the polyamide blocks result from the condensation of one or more ⁇ , w-aminocarboxylic acids and / or of one or more lactams having 6 to 12 carbon atoms in the presence of a dicarboxylic acid having 4 12 carbon atoms or a diamine.
- lactams include caprolactam, enantholactam and lauryllactam.
- ⁇ , w-amino carboxylic acid include aminocaproic, 7-amino-heptanoic, 11-amino-undecanoic and 12-amino-dodecanoic acids.
- the polyamide blocks of the second type are made of polyamide 11, polyamide 12 or polyamide 6.
- X represents the number of carbon atoms resulting from the amino acid residues.
- the polyamide blocks result from the condensation of at least one ⁇ , w-aminocarboxylic acid (or one lactam), at least one diamine and at least one dicarboxylic acid.
- polyamide PA blocks are prepared by polycondensation:
- said comonomer (s) ⁇ Z ⁇ being introduced in a proportion by weight of up to 50%, preferably up to 20%, even more advantageously up to 10% relative to all the precursor monomers of polyamide ;
- chain limiter chosen from dicarboxylic acids; advantageously, the dicarboxylic acid having Y carbon atoms, which is introduced in excess with respect to the stoichiometry of the diamine (s), is used as chain limiter.
- the polyamide blocks result from the condensation of at least two a, w-aminocarboxylic acids or of at least two lactams having from 6 to 12 carbon atoms or of a lactam and a aminocarboxylic acid not having the same number of carbon atoms in the possible presence of a chain limiter.
- aliphatic ⁇ , w-amino carboxylic acid mention may be made of aminocaproic, 7-amino-heptanoic, 11-amino-undecanoic and 12-aminododecanoic acids.
- lactam By way of example of a lactam, mention may be made of caprolactam, oenantholactam and lauryllactam.
- aliphatic diamines mention may be made of hexamethylenediamine, dodecamethylenediamine and trimethylhexamethylene diamine.
- cycloaliphatic diacids mention may be made of 1, 4-cyclohexyldicarboxylic acid.
- aliphatic diacids By way of example of aliphatic diacids, mention may be made of butane-dioic, adipic, azelaic, suberic, sebacic, dodecanedicarboxylic acids, dimerized fatty acids (these dimerized fatty acids preferably have a dimer content of at least 98% (preferably they are hydrogenated; they are marketed under the trademark "PRIPOL” by the company "UNICHEMA”, or under the trademark EMPOL by the company HENKEL) and polyoxyalkylenes a, w-diacids.
- aromatic diacids mention may be made of terephthalic (T) and isophthalic (I) acids.
- cycloaliphatic diamines By way of example of cycloaliphatic diamines, mention may be made of the isomers of bis- (4-aminocyclohexyl) -methane (BACM), bis- (3-methyl-4-aminocyclohexyl) methane (BMACM), and 2-2-bis - (3-methyl-4-aminocyclohexyl) -propane (BMACP), and para-amino-di-cyclo-hexyl-methane (PACM).
- BAMN 2,6-bis- (aminomethyl) -norbornane
- piperazine As examples of polyamide blocks of the third type, the following may be mentioned:
- 6.6 denotes hexamethylenediamine units condensed with adipic acid and 6 denotes units resulting from the condensation of caprolactam.
- - PA 6.6 / 6.10 / 11/12 in which 6.6 denotes hexamethylenediamine condensed with adipic acid; 6.10 denotes condensed hexamethylenediamine with sebacic acid; 11 denotes units resulting from the condensation of aminoundecanoic acid; and 12 denotes units resulting from the condensation of lauryllactam.
- PA X / Y, PA X / Y / Z, etc. relate to copolyamides in which X, Y, Z, etc. represent homopolyamide units as described above.
- said at least one polyamide block of the copolymer (s) used in the composition of the invention comprises at least one of the following polyamide monomers: 6, 11, 12, 5.4, 5.9, 5.10, 5.12 , 5.13, 5.14, 5.16, 5.18, 5.36, 6.4, 6.9, 6.10, 6.12, 6.13, 6.14, 6.16, 6.18, 6.36, 10.4, 10.9, 10.10, 10.12, 10.13, 10.14, 10.16, 10.18, 10.36, 10.T , 12.4, 12.9, 12.10, 12.12, 12.13, 12.14, 12.16, 12.18, 12.36, 12.T and their mixtures or copolymers; and preferably chosen from the following polyamide monomers: 6, 11, 12, 6.10, 10.10, 10.12, and their mixtures or copolymers.
- the polyamide blocks comprise at least 30%, preferably at least 50%, preferably at least 75%, preferably 100%, by weight of PA6, PA 11 or PA12 on the total weight of polyamide blocks.
- the polyether blocks can represent 50 to 80% by weight of the copolymer containing polyamide and polyether blocks.
- the polyether blocks can in particular be blocks resulting from PEG (polyethylene glycol), ie consisting of ethylene oxide units, and / or blocks resulting from PPG (propylene glycol), ie consisting of oxide units of propylene, and / or blocks derived from P03G (polytrimethylene glycol), ie consisting of polytrimethylene glycol ether units.
- the polyether blocks can also comprise blocks resulting from PTMG, that is to say made up of tetramethylene glycol units also called polytetrahydrofuran.
- the PEBA copolymers can comprise several types of polyethers in their chain, the copolyethers possibly being block or random.
- the PEBA copolymer comprises PEG blocks, optionally combined with PPG blocks, P03G blocks, and / or PTMG blocks.
- the PEBA copolymer comprises blocks of PEG. These blocks can be present in the PEBA copolymer at a content of 40 to 80%, preferably 40 to 75%, and more preferably 40 to 60% by weight relative to the weight of the copolymer.
- this content can be 40 to 45%; or from 45 to 50%; or from 50 to 55%; or from 55 to 60%; or from 60 to 65%; or from 65 to 70%; or from 70 to 75%; or from 75 to 80% by weight relative to the weight of the copolymer.
- the polyether blocks comprise at least 30%, preferably at least 50%, preferably at least 75%, preferably 100%, by weight of blocks of PEG on the total weight of polyether blocks.
- the PEBA copolymer of the composition can further comprise at least one polyether other than PEG, chosen from PTMG, PPG, P03G, and mixtures thereof.
- Polyether blocks can also consist of ethoxylated primary amines.
- ethoxylated primary amines mention may be made of the products of formula:
- the flexible polyether blocks can comprise polyoxyalkylene blocks having Nhte chain ends, such blocks being obtainable by cyanoacetylation of aliphatic ⁇ , w-dihydroxylated polyoxyalkylene blocks called polyetherdiols. More particularly, it is possible to use the Jeffamines (for example Jeffamine® D400, D2000, ED 2003, XTJ 542, commercial products from the company Huntsman, also described in patent documents JP2004346274, JP2004352794 and EP1482011).
- Jeffamines for example Jeffamine® D400, D2000, ED 2003, XTJ 542, commercial products from the company Huntsman, also described in patent documents JP2004346274, JP2004352794 and EP1482011.
- the polyetherdiol blocks are either used as they are and copolycondensed with polyamide blocks having carboxylic ends, or they are aminated in order to be transformed into polyether diamines and condensed with polyamide blocks having carboxylic ends.
- the general two-step preparation method of PEBA copolymers having ester bonds between the PA blocks and the PE blocks is known and is described, for example, in French patent FR2846332.
- the general method of preparing the PEBA copolymers of the invention having amide bonds between the PA blocks and the PE blocks is known and described, for example in European patent EP1482011.
- the polyether blocks can also be mixed with polyamide precursors and a diacid chain limiter to make polymers containing polyamide blocks and polyether blocks having units distributed in a statistical manner (one-step process).
- PEBA in the present description of the invention relates both to PEBAX® marketed by Arkema, to Vestamid® marketed by Evonik®, to Grilamid® marketed by EMS, and to Pelestat® type PEBA marketed by Sanyo or any other PEBA from other suppliers.
- the PEBA copolymers can have polyamide blocks made of PA 6, PA 11, PA 12, PA 6.10, PA 6.12, PA 6.6 / 6, PA 10.10 and / or PA 6.14, preferably PA 11 blocks. and / or PA 12; and polyether blocks made of PEG.
- Particularly preferred PEBA copolymers in the context of the invention are copolymers comprising blocks:
- block copolymers described above generally comprise at least one polyamide block and at least one polyether block
- the present invention also covers all the copolymers comprising two, three, four (or even more) different blocks chosen from those described in the present invention. description, provided that these blocks include at least polyamide and polyether blocks.
- the copolymer alloy according to the invention comprises a segmented block copolymer comprising three different types of blocks (called “triblock” in the present description of the invention), which result from the condensation of several of the blocks described above.
- Said triblock is preferably chosen from copolyetheresteramides, copolyetheramideurethanes, in which (s):
- the mass percentage of PEG blocks is greater than 50%; on the total mass of triblock.
- the number-average molar mass of the polyamide blocks in the PEBA copolymer is preferably from 400 to 20,000 g / mol, more preferably from 500 to 10,000 g / mol, even more preferably from 200 to 2,000 g / mol.
- the number-average molar mass of the polyamide blocks in the PEBA copolymer is from 400 to 1000 g / mol, or from 1000 to 1500 g / mol, or from 1500 to 2000 g / mol, or from 2000 to 2500 g / mol, or from 2500 to 3000 g / mol, or from 3000 to 3500 g / mol, or from 3500 to 4000 g / mol, or from 4000 to 5000 g / mol, or from 5000 to 6000 g / mol, or from 6000 to 7000 g / mol, or from 7000 to 8000 g / mol, or from 8000 to 9000 g / mol, or from 9000 to 10000 g / mol, or from 10000 to 11000 g / mol, or from 11000 to 12000 g / mol, or from 12000 to 13000 g / mol, or from 13000 to 14000 g / mol
- the number-average molar mass of the polyether blocks is preferably from 100 to 6000 g / mol, more preferably from 200 to 3000 g / mol. In embodiments, the number-average molar mass of the polyether blocks is from 100 to 200 g / mol, or from 200 to 500 g / mol, or from 500 to 800 g / mol, or from 800 to 1000 g / mol.
- the number-average molar mass is fixed by the chain limiter content. It can be calculated according to the relation:
- Mn nmonomer X MW repeat pattern / chain niimiter + MW chain limiter
- nmonomer represents the number of moles of monomer
- chain limiter represents the number of moles of excess limiter (e.g. diacid)
- MW repeat pattern represents the molar mass of the repeat unit
- MW chain limiter represents mass. molar of excess limiter (eg diacid).
- the number-average molar mass of the polyamide blocks and of the polyether blocks can be measured before the copolymerization of the blocks by gel permeable chromatography (GPC).
- the mass ratio of the polyamide blocks relative to the polyether blocks of the PEBA copolymer can in particular be from 0.1 to 20. This mass ratio can be calculated by dividing the number-average molar mass of the polyamide blocks by the number-average molar mass of the blocks. polyethers.
- the mass ratio of the polyamide blocks relative to the polyether blocks of the PEBA copolymer can be from 0.1 to 0.2; or from 0.2 to 0.3; or from 0.3 to 0.4; or from 0.4 to 0.5; or from 0.5 to 1; or from 1 to 2; or from 2 to 3; Where from 3 to 4; or from 4 to 5; or from 5 to 7; or from 7 to 10; or from 10 to 13; or from 13 to 16; or from 16 to 19; or from 19 to 20.
- the PEBA copolymer is present in the composition at a content of 75 to 98%, and preferably of 75 to 95% by weight relative to the weight of the composition.
- the PEBA copolymer can be present in the composition at a content of 75 to 78%; or from 78 to 80%; or from 80 to 82%; or from 82 to 84%; or from 84 to 86%; or from 86 to 88%; or from 88 to 90%; or from 90 to 92%; or from 92 to 94%; or from 94 to 96%; or from 96 to 98% by weight relative to the weight of the composition.
- the copolymer B comprising units derived from at least three comonomers, it is present in a content of 2 to 15%, and preferably 5 to 15% by weight relative to the weight of the composition.
- this copolymer B can be present in the composition at a content of 2 to 3%; or from 3 to 4%; or from 4 to 5%; or from 5 to 6%; or from 6 to 7%; or from 7 to 8%; or from 8 to 9%; or from 9 to 10%; or from 10 to 11%; or from 11 to 12%; or from 12 to 13%; or from 13 to 14%; or from 14 to 15% by weight relative to the weight of the composition.
- the first comonomer from which this copolymer B is made is ethylene.
- the units derived from ethylene may have a molar content in copolymer B of 50 to 94.9%, and preferably of 58 to 79%. This molar content can in particular be from 50 to 55%; or from 55 to 60%; or from 60 to 65%; or from 65 to 70%; or from 70 to 75%; or from 75 to 80%; or from 80 to 85%; or from 85 to 90%; or from 90 to 94.9%.
- alkyl (meth) acrylate is meant alkyl acrylates and alkyl methacrylates.
- the alkyl group of the alkyl (meth) acrylate comprises from 1 to 24 carbon atoms, and preferably from 1 to 5 carbon atoms. It can for example comprise from 1 to 2; or from 2 to 4; or from 4 to 6; or from 6 to 8; or from 8 to 10; or from 10 to 12; or from 12 to 14; or from 14 to 16; or from 16 to 18; or from 18 to 20; or from 20 to 22; or from 22 to 24 carbon atoms.
- the second comonomer is chosen from methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, (meth) acrylate, ) 2-ethymhexyl acrylate and combinations thereof.
- the second comonomer is chosen from methyl (meth) acrylate, ethyl (meth) acrylate and butyl (meth) acrylate.
- a single second alkyl (meth) acrylate-type comonomer is used for the manufacture of copolymer B.
- the copolymer B can be made from more than one second comonomer of alkyl (meth) acrylate type, for example two or three second comonomers.
- Copolymer B can be made from ethyl (meth) acrylate and / or methyl (meth) acrylate and / or butyl (meth) acrylate.
- the units resulting from the second comonomer can have a molar content in copolymer B of 5 to 35%, and preferably of 20 to 30%.
- This molar content can in particular be from 5 to 10%; or from 10 to 15%; or from 15 to 20%; or from 20 to 25%; or from 25 to 30%; or from 30 to 35%.
- the third comonomer comprises at least one reactive function in the form of an acid, anhydride or epoxide group.
- the third comonomer is chosen from carboxylic acids or their anhydride derivatives of unsaturated carboxylic acids, and preferably from dicarboxylic acids or their anhydride derivatives of unsaturated dicarboxylic acids.
- unsaturated dicarboxylic acid anhydrides are in particular maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride.
- maleic anhydride is used.
- Unsaturated mono or dicarboxylic acid monomers such as (meth) acrylic acid can also be used.
- the third comonomer can comprise a function of the unsaturated epoxide type.
- Examples include:
- glycidyl esters and ethers such as allylglycidylether, vinylglycidylether, glycidyl maleate and itaconate, glycidyl acrylate and methacrylate (GMA) and
- alicyclic glycidyl esters and ethers such as 2-cyclohexene-1-glycidylether, cyclohexene-4,5-diglycidylcarboxylate, cyclohexene-4-glycidyl carboxylate, 5-norbornene-2-methyl-2-glycidyl carboxylate and rendocis-bicyclo (2,2,1) -5-heptene-2,3-diglycidyl dicarboxylate.
- the units resulting from the third comonomer can be present in the copolymer B in a molar content of 0.1 to 15%, and preferably of 1 to 12%.
- This molar content can in particular be from 0.1 to 1%; or from 1 to 3%; or from 3 to 5%; or from 5 to 7%; or from 7 to 9%; or from 9 to 11%; or from 11 to 13%; or from 13 to 15%.
- a single third alkyl (meth) acrylate comonomer is used to make copolymer B.
- the copolymer B can comprise units derived from more than one third comonomer, for example two or three third comonomers.
- the composition according to the invention may comprise units derived from maleic anhydride and from glycidyl methacrylate.
- the copolymer B does not comprise units derived from comonomers other than the first, second and third comonomers described above.
- the copolymer B is a terpolymer, that is to say it comprises units derived from only three comonomers.
- preferred copolymer B are: terpolymers derived from ethylene, methyl acrylate and maleic anhydride; terpolymers derived from ethylene, ethyl acrylate and maleic anhydride; terpolymers derived from ethylene, butyl acrylate and maleic anhydride; terpolymers derived from ethylene, methyl acrylate and glycidyl methacrylate; terpolymers derived from ethylene, ethyl acrylate and glycidyl methacrylate; terpolymers derived from ethylene, butyl acrylate and glycidyl methacrylate.
- Copolymer B is preferably manufactured by copolymerization of the various comonomers, in particular of the high pressure radical type.
- the second and the third comonomer can be copolymerized directly with ethylene, in particular by high pressure radical polymerization.
- the composition according to the invention is devoid of units derived from vinyl acetate. Indeed, this monomer can have toxic properties. In addition, it is not suitable for hot extrusion, which makes the formation of the film from a composition comprising units derived from this monomer difficult or even impossible.
- additives these are optionally present in a weight content of 0 to 10% and preferably of 0 to 5%.
- one or more additives can be present in a weight content of 0 to 0.5%; or from 0.5 to 1%; or from 1 to 2%; or from 2 to 3%; or from 3 to 4%; or from 4 to 5%; or from 5 to 6%; or from 6 to 7%; or from 7 to 8%; or from 8 to 9%; or 9 to 10%.
- additives can include, for example, inert dyes such as titanium dioxide, fillers, surfactants, crosslinking agents, nucleating agents, reactive compounds, inorganic or organic flame retardants, light absorbing agents. ultraviolet (UV) or infrared (IR) and UV or IR fluorescent agents.
- Typical fillers include talc, calcium carbonate, clay, silica, mica, wollastonite, feldspar, aluminum silicate, alumina, hydrated alumina, glass microspheres, microspheres ceramic, thermoplastic microspheres, barite and wood flour. These additives make it possible to modify one or more physical properties of the composition.
- the invention also relates to a film obtained from the composition described above.
- This film can preferably be produced by extrusion.
- the extrusion is carried out hot at a temperature ranging from 100 to 300 ° C, preferably from 150 to 300 ° C, for example from 180 to 280 ° C.
- the film is made by extrusion coating the composition according to the invention on a substrate.
- the extrusion temperature can be for example 250 to 300 ° C.
- the substrate can be chosen from aluminum, paper or cardboard, cellophane, films based on polyethylene, polypropylene, polyamide, polyester, polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), polyacrylonitrile (PAN) , these films being oriented or not, metallized or not, treated or not by physical or chemical means, the films coated with a thin inorganic barrier layer such as polyester (PET SiOx or AlOx) and woven or nonwoven fabrics.
- a thin inorganic barrier layer such as polyester (PET SiOx or AlOx) and woven or nonwoven fabrics.
- the film can be manufactured by flat film extrusion ("cast extrusion") of the composition according to the invention.
- the extrusion temperature can be, for example, 180 to 230 ° C.
- the film according to the invention is a waterproof-breathable film.
- waterproof-breathable is meant permeable to water vapor and impermeable to liquid water.
- the film according to the invention may have a thickness of 2 to 100 ⁇ m and preferably 2 to 50 ⁇ m, or more preferably 10 to 50 ⁇ m.
- the breathable waterproof film has a thickness less than or equal to 50 mm, preferably less than or equal to 40 mm, to 30 mm, or to 25 mm, preferably between 5 to 25 mm.
- a thickness as described above makes it possible to obtain a good property in permeability to water vapor.
- the film according to the invention has a water vapor permeability (MVTR, for “Moisture Vapor Transmission Rate”) of at least 700 g / m 2 per 24 hours, at 23 ° C, at a rate relative humidity of 50%, for a film thickness of 30 ⁇ m. More preferably, the permeability to water vapor MVTR of the film is at least 800 g / m 2 / 24h at 23 ° C at a relative humidity of 50% for a film thickness of 30 pm.
- MVTR water vapor permeability
- the MVTR membrane permeability can range from 700 to 800 g / m 2/24 h or 800 to 900 g / m 2/24 hr, or from 900 to 1000 g / m 2/24 h or from 1000 to 1200 g / m 2/24 hours or 1200 to 1500 g / m 2/24 hr, or from 1500 to 2000 g / m 2/24 h, or 2000 to 2500 g / m 2/24 h, or 2500 to 3000 g / m 2/24 hr, or from 3000 to 3500 g / m 2/24 h, or 3500 to 4000 g / m 2/24 hr, or from 4000 to 4500 g / m 2/24 h, or from 4500 to 5000 g / m 2 / 24h at 23 ° C at a relative humidity of 50% for a 30 pm film thickness.
- the invention also relates to the use of a film as described in the present invention in the medical field, hygiene, luggage, clothing, clothing, household or household equipment, furniture. , carpets, automotive, industry, in particular industrial filtration, agriculture and / or construction.
- a subject of the invention is also a laminated product (hereinafter laminated) comprising at least one material and at least one breathable waterproof film according to the invention, the material possibly being chosen from among textiles, a construction material, packaging or coatings.
- the material is a textile material
- said film adheres to at least one surface of the textile material with a peel force in the range from 0.5 to 50 N, preferably from 0.5 to 10 N.
- the film according to the invention is in particular applied to a textile material by any known method, preferably without using an adhesive between the film and the textile.
- an adhesive joint preferably an aqueous adhesive joint, that is to say comprising less than 5% by weight of solvent on the adhesive joint composition.
- the film has a thickness between 5 and 50 mm, and preferably between approximately 5 and 10 mm.
- 10 to 50 g / m2 of thermoplastic film is deposited on the textile.
- any synthetic or natural material characterized by a length / diameter ratio of at least 300;
- Textiles include fiber mats (dressings, filters, felt), wicks (dressings) yarns (sewing, knitting, weaving), knits (straight, circular, fullyfashioned) fabrics (traditional, Jacquard, multiple, double-sided, multi axial, 2D and a half, 3D), and many others.
- said at least one textile material is in the form of a porous membrane, of a woven fabric or of a non-woven fabric.
- said at least one textile material comprises synthetic fibers, in particular synthetic fibers obtained from bio-resourced raw materials, natural fibers, artificial fibers manufactured from natural raw materials, mineral fibers, and / or metal fibers.
- said textile comprises synthetic fibers obtained from bioresourced raw materials, such as polyamide fibers, in particular polyamide 11.
- said textile further comprises natural fibers, such as cotton, wool and / or silk, artificial fibers made from natural raw materials, mineral fibers, such as carbon, glass, silica and / or magnesium fibers.
- the textile is in particular chosen from fabrics or textile surfaces, such as woven, knitted, non-woven or carpet surfaces.
- fabrics or textile surfaces such as woven, knitted, non-woven or carpet surfaces.
- These articles can be, for example, carpets, rugs, upholstery, surface coverings, sofas, curtains, bedding, mattresses and pillows, clothing and medical textile materials.
- the textile according to the invention advantageously constitutes a felt, a filter, a film, a gauze, a canvas, a dressing, a diaper, a fabric, a knitting, an article of clothing, a garment, an article of bedding, a furnishing article, a curtain, an interior covering, a functional technical textile, a geotextile and / or an agrotextile.
- Films were prepared from different compositions (A to G) in the following two ways in order to assess the water vapor permeability and the limit of stability (processability) of the films.
- the films were prepared from the different compositions (A to G) by a flat film extrusion process ("cast extrusion") using a extruder having the following parameters:
- Extrusion temperatures were between 180 ° C and 230 ° C and adapted according to the grade of the copolymer.
- MVTR water vapor permeability was measured at 23 ° C, at 50% relative humidity, according to ASTM E96B.
- the films obtained have a thickness of 50 ⁇ m.
- the films were prepared from the different compositions (A to G) by extrusion coating on an aluminum (37 pm) / polymer support using a COLLIN extrusion-coating line having the following parameters:
- the extrusion temperature was 280 ° C.
- the films have an initial thickness of 50 ⁇ m (which decreases with increasing line speed).
- the line speed was gradually increased from 5 m / min until instability was observed.
- This instability may be film breakage, one or more holes formed on the film, or film width instability.
- the stability limit of the film corresponds to the speed at which instabilities appear.
- the terpolymers (polymers comprising units derived from at least three comonomers) used are as follows: [Table 1]
- copolymers used for comparison are as follows: [Table 2]
- compositions A to C are according to the invention and compositions D to I correspond to comparative examples (composition D comprises a copolymer B according to the invention but with a higher content than that claimed and composition G comprises only PEBA copolymer ).
- the films according to the invention exhibit both high water vapor permeability and good processability (film stability limit).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Laminated Bodies (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
L'invention concerne une composition consistant en : de 75 à 98 % en poids d'au moins un copolymère A à blocs polyamide et à blocs polyéther par rapport au poids de la composition; de 2 à 15 % en poids d'au moins un copolymère B comprenant des motifs issus de l'éthylène, d'un (méth)acrylate d'alkyle et d'un comonomère comportant au moins une fonction acide, anhydride ou époxyde, par rapport au poids de la composition; et de 0 à 10 % en poids d'au moins un additif par rapport au poids de la composition. Les blocs polyéther du copolymère A comprennent des blocs de polyéthylène glycol. L'invention concerne également un procédé de fabrication d'un film ainsi que ledit film.
Description
Description
Titre : Composition de polymères pour films imper-respirants DOMAINE DE L'INVENTION
La présente invention concerne une composition de polymères ainsi qu’un film imper-respirant obtenu à partir de ladite composition.
ARRIERE-PLAN TECHNIQUE
Des films imperméables à l’eau liquide et perméables à la vapeur d'eau sont utilisés dans différents domaines tels que le textile, la construction, l’agriculture, le packaging... Ces films peuvent par exemple être utilisés comme emballages pour couvrir des articles ou comme revêtements adhérés sur la surface d’articles.
De manière générale, les films respirants doivent remplir certaines conditions telles qu’un aspect homogène, une résistance au vent, une haute perméabilité à la vapeur d’eau, une certaine élasticité, ainsi qu’une capacité d’adhérer à des différents substrats. De plus, ces films doivent être facilement transformables lors de leur production, notamment par extrusion, sans provoquer des déformations sur le film. Une faible capacité à la transformation se traduit par des imperfections sur les films tels que des trous ou des bords irréguliers.
Il est connu d’utiliser des compositions comprenant des copolymères à blocs polyamide et à blocs polyéther de sorte à former ce type de films.
Cependant, malgré une haute perméabilité à la vapeur d’eau, les films formés sont peu étirables ce qui provoque des problèmes lors de leur fabrication par extrusion, notamment par extrusion couchage.
Par ailleurs, l’utilisation de compositions de terpolymères, notamment des terpolymères issues de monomères éthylénique, acrylique et butylénique, permet d’obtenir des films facilement transformables par extrusion. Toutefois, ces films présentent une respirabilité très faible.
Le document US 2004/0029467 concerne un film respirant qui comprend au moins un polymère (a) choisi parmi le groupe comprenant un copolymère d’éthylène/(méth)acrylate d’alkyle (a1), un copolymère d’éthylène/acide (méth)acrylique éventuellement neutralisé (a2), un copolymère
d'éthylène/monomère vinylique (a3), le mélange (a1)/(a2), le mélange (a1)/(a3), le mélange (a2)/(a3) et le mélange (a1)/(a2)/(a3), et/ou qui comprend au moins un polyéthylène fonctionnalisé (b); et au moins un copolymère (c) ayant des blocs copolyamide ou des blocs polyester et des blocs polyéther.
Le document US 5614588 concerne un mélange de polymères comprenant un polyéther bloc amide constitué de 30 à 60 % en poids de blocs polyamide-12, polyamide-11 et/ou polyamide-12,12 et 70 à 40 % en poids de blocs de polyéthylène glycol, un polyéther bloc amide constitué de 65 à 85 % en poids de blocs polyamide-12, polyamide-11 et/ou polyamide-12,12 et 35 à 15% en poids de blocs de polyéthylène glycol, et un polymère de poly (éthylène-co-vinylacétate-g-anhydride maléique) constitué de 75 à 95 % en poids d'éthylène, de 5 à 25 % en poids d'acétate de vinyle et de 0,1 à 2 % en poids d'anhydride maléique. La composition de ce document est utilisée pour la fabrication des films perméables à la vapeur d’eau.
Le document US 5506024 concerne des films perméables à la vapeur d’eau fabriqués à partir d’élastomères thermoplastiques à base de polyétheresteramide et de préférence à base de polyéther bloc amide.
Le document US 5800928 concerne des films perméables à la vapeur d’eau comprenant au moins un élastomère thermoplastique comprenant des blocs polyéther et au moins un copolymère comprenant de l’éthylène et au moins un (méth)acrylate d’alkyle.
Il existe un besoin de fournir une composition qui permet la fabrication des films présentant à la fois une bonne perméabilité à la vapeur d’eau et une bonne capacité à la transformation lors de leur fabrication.
RESUME DE L’INVENTION
L’invention concerne en premier lieu une composition consistant en :
- de 75 à 98 % en poids d’au moins un copolymère A à blocs polyamide et à blocs polyéther par rapport au poids de la composition ;
- de 2 à 15 % en poids d’au moins un copolymère B comprenant des motifs issus de l’éthylène, d’un (méth)acrylate d’alkyle et d’un comonomère comportant au moins une fonction acide, anhydride ou époxyde, par rapport
au poids de la composition ; et
- de 0 à 10 % en poids d’au moins un additif par rapport au poids de la composition, dans laquelle les blocs polyéthers du copolymère A comprennent des blocs de polyéthylène glycol.
Selon certains modes de réalisation, les blocs polyamides du copolymère A sont des blocs de polyamide 11 , ou de polyamide 12, ou de polyamide 6, ou de polyamide 10.10, ou de polyamide 10.12, ou de polyamide 6.10 ainsi que leurs combinaisons.
Selon certains modes de réalisation, le (méth)acrylate d’alkyle comporte un groupement alkyle comprenant de 1 à 24 atomes de carbone, et de préférence de 1 à 5 atomes de carbone.
Selon certains modes de réalisation, le (méth)acrylate d’alkyle est choisi parmi le (méth)acrylate de méthyle, le (méth)acrylate d’éthyle et le (méth)acrylate de butyle ainsi que leurs combinaisons.
Selon certains modes de réalisation, la teneur molaire en motifs issus de (méth)acrylate d’alkyle dans le copolymère B est de 5 à 35 %.
Selon certains modes de réalisation, la teneur molaire en comonomère comportant au moins une fonction acide, anhydride ou époxyde dans le copolymère B est de 0,1 à 15 %.
Selon certains modes de réalisation, le comonomère comportant au moins une fonction acide, anhydride ou époxyde est choisi parmi les anhydrides d'acides carboxyliques insaturés, et de préférence est l'anhydride maléique.
Selon certains modes de réalisation, le comonomère comportant au moins une fonction acide, anhydride ou époxyde a une fonction de type époxyde insaturé, et de préférence est le méthacrylate de glycidyle.
Selon certains modes de réalisation, le copolymère B est dépourvu de motifs issus de l’acétate de vinyle.
Selon certains modes de réalisation, l’additif est choisi parmi les colorants inertes tels que le dioxyde de titane, les charges, les tensioactifs, les agents de réticulation, les agents de nucléation, les composés réactifs, les agents minéraux ou organiques ignifuges, les agents absorbants de lumière ultraviolette (UV) ou infrarouge (IR), les agents fluorescents UV ou IR, ainsi que leurs combinaisons.
L’invention concerne également un procédé de fabrication d’un film à partir de la composition décrite ci-dessus.
Le film selon l’invention peut être préparé par toute méthode, qui rend possible l’obtention d’un mélange intime ou homogène contenant ledit copolymère A et un copolymère B selon l’invention, et éventuellement un(des) additif(s), telle que le compoundage à l’état fondu, l’extrusion, le compactage, ou encore le malaxeur à rouleau.
Selon un mode de réalisation, une étape de mélange à sec du copolymère A et le copolymère B sous forme des granulés est appliquée (« dry-blend »).
On utilise avantageusement les dispositifs habituels de mélange et de malaxage de l’industrie des thermoplastiques tels que les extrudeuses, les extrudeuses de type bi-vis, notamment les extrudeuses bi-vis co-rotatives engrenantes auto-nettoyantes, et les malaxeurs, par exemple les co malaxeurs de marque BUSS ou les mélangeurs internes.
Selon un mode de réalisation préférentiel, le procédé de fabrication du film est un procédé d’extrusion. Selon certains modes de réalisation, l’extrusion est effectuée à une température de 100 à 300°C, de préférence de 150 à 250°C.
Le procédé comprend généralement une étape de l’étirement de la composition. L’étape d’étirement peut être effectuée par extrusion soufflage. Selon un mode de réalisation, l’étape d’étirement est effectuée par extrusion couchage.
Selon un mode de réalisation, l’étape d’étirement est effectuée par extrusion à plat.
L’invention concerne également un film obtenu par les procédés décrits ci- dessus.
La présente invention permet de surmonter les inconvénients de l’état de la technique. Elle fournit plus particulièrement une composition qui permet la fabrication de films présentant à la fois une bonne perméabilité à la vapeur d’eau et une bonne aptitude à la transformation lors de leur fabrication.
Cela est accompli grâce à une composition consistant en au moins un copolymère A à blocs polyamide et à blocs polyéther et en au moins un copolymère B comprenant des motifs issus d’au moins trois comonomères : un premier comonomère éthylène, un deuxième comonomère (méth)acrylate d’alkyle et un troisième comonomère comportant au moins une fonction réactive sous forme d'un groupe acide, anhydride ou époxyde ; et optionnellement un ou plusieurs additifs. Plus particulièrement, cette composition consistant en de 75 à 98 % en poids de copolymère A, de 2 à 15 % en poids de copolymère B et de 0 à 10 % d’au moins un additif, permet d’obtenir des films ayant une bonne perméabilité à la vapeur d’eau et une très bonne aptitude à la transformation, notamment par extrusion, et en particulier par extrusion à chaud.
DESCRIPTION DE MODES DE REALISATION DE L’INVENTION
L’invention est maintenant décrite plus en détail et de façon non limitative dans la description qui suit.
Composition
La composition selon l’invention consiste en :
- au moins un copolymère A à blocs polyamide et à blocs polyéther ;
- au moins un copolymère B comprenant des motifs issus d’au moins trois comonomères : un premier comonomère éthylène, un deuxième comonomère (méth)acrylate d’alkyle et un troisième comonomère comprenant au moins une fonction réactive sous forme d'un groupe acide, anhydride ou époxyde ; et
- optionnellement au moins un additif.
Concernant les copolymères A à blocs polyamide et à blocs polyéther (en abrégé « PEBA ») ceux-ci résultent de la polycondensation de blocs
polyamides à extrémités réactives avec des blocs polyéthers à extrémités réactives, tels que, entre autres :
1) des blocs polyamides à bouts de chaîne diamines avec des blocs polyoxyalkylènes à bouts de chaînes dicarboxyliques ;
2) des blocs polyamides à bouts de chaînes dicarboxyliques avec des blocs polyoxyalkylènes à bouts de chaînes diamines, obtenus par exemple par cyanoéthylation et hydrogénation de blocs polyoxyalkylène a,w-dihydroxylées aliphatiques appelées polyétherdiols ;
3) des blocs polyamides à bouts de chaînes dicarboxyliques avec des polyétherdiols, les produits obtenus étant, dans ce cas particulier, des polyétheresteramides.
Les blocs polyamides à bouts de chaînes dicarboxyliques proviennent, par exemple, de la condensation de précurseurs de polyamides en présence d’un diacide carboxylique limiteurde chaîne. Les blocs polyamides à bouts de chaînes diamines proviennent par exemple de la condensation de précurseurs de polyamides en présence d’une diamine limiteur de chaîne.
Les polymères à blocs polyamides et blocs polyéthers peuvent aussi comprendre des motifs répartis de façon aléatoire.
On peut utiliser avantageusement trois types de blocs polyamides.
Selon un premier type, les blocs polyamides proviennent de la condensation d’un diacide carboxylique, en particulier ceux ayant de 4 à 20 atomes de carbone, de préférence ceux ayant de 6 à 18 atomes de carbone et d’une diamine aliphatique ou aromatique, en particulier celles ayant de 2 à 20 atomes de carbone, de préférence celles ayant de 6 à 14 atomes de carbone.
A titre d’exemples d’acides dicarboxyliques, on peut citer l’acide 1,4-cyclohexyldicarboxylique, les acides butanedioïque, adipique, azélaïque, subérique, sébacique, dodécanedicarboxylique, octadécanedicarboxylique et les acides téréphtalique et isophtalique, mais aussi les acides gras dimérisés.
A titre d’exemples de diamines, on peut citer la tétraméthylène diamine, l’hexaméthylènediamine, la 1 ,10-décaméthylènediamine, la
dodécaméthylènediamine, la triméthylhexaméthylène diamine, les isomères des bis-(4-aminocyclohexyl)-méthane (BACM), bis-(3-méthyl-4- aminocyclohexyl)méthane (BMACM), et 2-2-bis-(3-méthyl-4- aminocyclohexyl)-propane (BMACP), et paraamino-di-cyclo-hexyl-méthane (PACM), et l’isophoronediamine (IPDA), la 2,6-bis-(aminométhyl)-norbornane (BAMN) et la pipérazine (Pip).
Avantageusement, des blocs PA 4.12, PA 4.14, PA 4.18, PA 6.10, PA 6.12, PA 6.14, PA 6.18, PA 9.12, PA 10.10, PA 10.12, PA 10.14 et PA 10.18 sont utilisés. Dans la notation PA X.Y, X représente le nombre d’atomes de carbone issu des résidus de diamine, et Y représente le nombre d’atomes de carbone issu des résidus de diacide, de façon conventionnelle.
Selon un deuxième type, les blocs polyamides résultent de la condensation d’un ou plusieurs acides a,w-aminocarboxyliques et/ou d’un ou plusieurs lactames ayant de 6 à 12 atomes de carbone en présence d’un diacide carboxylique ayant de 4 à 12 atomes de carbone ou d’une diamine. A titre d’exemples de lactames, on peut citer le caprolactame, l’oenantholactame et le lauryllactame. A titre d’exemples d’acide a,w-amino carboxylique, on peut citer les acides aminocaproïque, amino-7-heptanoïque, amino-11- undécanoïque et amino-12-dodécanoïque.
Avantageusement les blocs polyamides du deuxième type sont en polyamide 11 , en polyamide 12 ou en polyamide 6. Dans la notation PA X, X représente le nombre d’atomes de carbone issus des résidus d’aminoacide.
Selon un troisième type, les blocs polyamides résultent de la condensation d’au moins un acide a,w-aminocarboxylique (ou un lactame), au moins une diamine et au moins un diacide carboxylique.
Dans ce cas, on prépare les blocs polyamide PA par polycondensation :
- de la ou des diamines aliphatiques linéaires ou aromatiques ayant X atomes de carbone ;
- du ou des diacides carboxyliques ayant Y atomes de carbone ; et
- du ou des co-monomères {Z}, choisis parmi les lactames et les acides a,w- aminocarboxyliques ayant Z atomes de carbone et les mélanges équimolaires d’au moins une diamine ayant X1 atomes de carbone et d’au moins un diacide carboxylique ayant Y1 atomes de carbones, (X1 , Y1 ) étant
différent de (X, Y),
- ledit ou lesdits co-monomères {Z} étant introduits dans une proportion pondérale allant jusqu’à 50 %, de préférence jusqu’à 20 %, encore plus avantageusement jusqu’à 10 % par rapport à l’ensemble des monomères précurseurs de polyamide ;
- en présence d’un limiteur de chaîne choisi parmi les diacides carboxyliques; avantageusement, on utilise comme limiteur de chaîne le diacide carboxylique ayant Y atomes de carbone, que l’on introduit en excès par rapport à la stœchiométrie de la ou des diamines.
Selon une variante de ce troisième type, les blocs polyamides résultent de la condensation d’au moins deux acides a,w-aminocarboxyliques ou d’au moins deux lactames ayant de 6 à 12 atomes de carbone ou d’un lactame et d’un acide aminocarboxylique n’ayant pas le même nombre d’atomes de carbone en présence éventuelle d’un limiteur de chaîne. A titre d’exemple d’acide a,w-amino carboxylique aliphatique, on peut citer les acides aminocaproïques, amino-7-heptanoïque, amino-11-undécanoïque et amino- 12-dodécanoïque. A titre d’exemple de lactame, on peut citer le caprolactame, l’oenantholactame et le lauryllactame. A titre d’exemple de diamines aliphatiques, on peut citer l’hexaméthylènediamine, la dodécaméthylènediamine et la triméthylhexaméthylène diamine. A titre d’exemple de diacides cycloaliphatiques, on peut citer l’acide 1 ,4- cyclohexyldicarboxylique. A titre d’exemple de diacides aliphatiques, on peut citer les acides butane-dioïque, adipique, azélaïque, subérique, sébacique, dodécanedicarboxylique, les acides gras dimérisés (ces acides gras dimérisés ont de préférence une teneur en dimère d’au moins 98 % ; de préférence ils sont hydrogénés ; ils sont commercialisés sous la marque "PRIPOL" par la société "UNICHEMA", ou sous la marque EMPOL par la société HENKEL) et les polyoxyalkylènes a,w-diacides. A titre d’exemple de diacides aromatiques, on peut citer les acides téréphtalique (T) et isophtalique (I). A titre d’exemple de diamines cycloaliphatiques, on peut citer les isomères des bis-(4-aminocyclohexyl)-méthane (BACM), bis-(3-méthyl-4- aminocyclohexyl)méthane (BMACM), et 2-2-bis-(3-méthyl-4- aminocyclohexyl)-propane(BMACP), et para-amino-di-cyclo-hexyl-méthane (PACM). Les autres diamines couramment utilisées peuvent être l’isophoronediamine (IPDA), la 2,6-bis-(aminométhyl)-norbornane (BAMN) et la pipérazine.
A titre d’exemples de blocs polyamides du troisième type, on peut citer les suivants :
- le PA 6.6/6 dans laquelle 6.6 désigne des motifs hexaméthylènediamine condensée avec l’acide adipique et 6 désigne des motifs résultant de la condensation du caprolactame.
- le PA 6.6/6.10/11/12 dans laquelle 6.6 désigne l’hexaméthylènediamine condensée avec l’acide adipique ; 6.10 désigne l’hexaméthylènediamine condensée avec l’acide sébacique ; 11 désigne des motifs résultant de la condensation de l’acide aminoundécanoïque ; et 12 désigne des motifs résultant de la condensation du lauryllactame.
Les notations PA X/Y, PA X/Y/Z, etc. se rapportent à des copolyamides dans lesquels X, Y, Z, etc. représentent des unités homopolyamides telles que décrites ci-dessus.
Avantageusement, ledit au moins un bloc polyamide du(des) copolymère(s) utilisé(s) dans la composition de l’invention comprend au moins un des monomères de polyamide suivants: 6, 11, 12, 5.4, 5.9, 5.10, 5.12, 5.13, 5.14, 5.16, 5.18, 5.36, 6.4, 6.9, 6.10, 6.12, 6.13, 6.14, 6.16, 6.18, 6.36, 10.4, 10.9, 10.10, 10.12, 10.13, 10.14, 10.16, 10.18, 10.36, 10.T, 12.4, 12.9, 12.10, 12.12, 12.13, 12.14, 12.16, 12.18, 12.36, 12.T et leurs mélanges ou copolymères ; et de préférence choisi parmi les monomères de polyamide suivants: 6, 11, 12, 6.10, 10.10, 10.12, et leurs mélanges ou copolymères.
De préférence, les blocs polyamide comprennent au moins 30 %, de préférence au moins 50%, de préférence au moins 75 %, de préférence 100 %, en poids de PA6, PA 11 ou PA12 sur le poids total de blocs polyamide.
Les blocs polyéthers peuvent représenter 50 à 80 % en poids du copolymère à blocs polyamides et polyéthers.
Les blocs polyéthers peuvent notamment être des blocs issus de PEG (polyéthylène glycol) c'est à dire constitués de motifs oxyde d'éthylène, et/ou des blocs issus de PPG (propylène glycol) c'est à dire constitués de motifs oxyde de propylène, et/ou des blocs issus de P03G (polytriméthylène glycol) c’est-à-dire constitués de motifs polytriméthylène éther de glycol. Les blocs polyéthers peuvent comprendre en outre des blocs issus de PTMG c'est à dire constitués de motifs tétraméthylène de glycol appelés aussi
polytétrahydrofurane. Les copolymères PEBA peuvent comprendre dans leur chaîne plusieurs types de polyéthers, les copolyéthers pouvant être à blocs ou statistiques.
Dans le cadre de la présente invention, le copolymère PEBA comprenne des blocs PEG, éventuellement combinés à des blocs PPG, des blocs P03G, et/ou des blocs PTMG.
Ainsi, selon certains modes de réalisation, le copolymère PEBA comprend des blocs de PEG. Ces blocs peuvent être présents dans le copolymère PEBA à une teneur de 40 à 80 %, de préférence de 40 à 75 %, et encore de préférence de 40 à 60 % en poids par rapport au poids du copolymère. Par exemple, cette teneur peut être de 40 à 45 % ; ou de 45 à 50 % ; ou de 50 à 55 % ; ou de 55 à 60 % ; ou de 60 à 65 % ; ou de 65 à 70 % ; ou de 70 à 75 % ; ou de 75 à 80 % en poids par rapport au poids du copolymère.
De préférence, les blocs polyéthers comprennent au moins 30 %, de préférence au moins 50%, de préférence au moins 75 %, de préférence 100 %, en poids de blocs de PEG sur le poids total de blocs polyéthers.
Selon un mode de réalisation, le copolymère PEBA de la composition peut comprendre en outre au moins un polyéther autre que le PEG, choisi parmi le PTMG, le PPG, le P03G, et leurs mélanges.
On peut également utiliser des blocs obtenus par oxyéthylation de bisphénols, tels que par exemple le bisphénol A. Ces derniers produits sont décrits dans le brevet EP613919.
Les blocs polyéthers peuvent aussi être constitués d’amines primaires éthoxylées. A titre d’exemple d’amines primaires éthoxylées on peut citer les produits de formule :
[Chem 1]
H - (OCH2CH2)m— N - (CH2CH20)n — H
(C¾)x
CH3
dans laquelle m et n sont compris entre 1 et 20 et x entre 8 et 18. Ces produits sont disponibles dans le commerce sous la marque NORAMOX® de la société ARKEMA et sous la marque GENAMIN® de la société CLARIANT.
Les blocs souples polyéthers peuvent comprendre des blocs polyoxyalkylène à bouts de chaînes Nhte, de tels blocs pouvant être obtenus par cyanoacétylation de blocs polyoxyalkylène a,w-dihydroxylés aliphatiques appelées polyétherdiols. Plus particulièrement, on pourra utiliser les Jeffamines (par exemple Jeffamine® D400, D2000, ED 2003, XTJ 542, produits commerciaux de la société Huntsman, également décrites dans les documents de brevets JP2004346274, JP2004352794 et EP1482011).
Les blocs polyétherdiols sont soit utilisés tels quels et copolycondensés avec des blocs polyamides à extrémités carboxyliques, soit ils sont aminés pour être transformés en polyéther diamines et condensés avec des blocs polyamides à extrémités carboxyliques. La méthode générale de préparation en deux étapes des copolymères PEBA ayant des liaisons ester entre les blocs PA et les blocs PE est connue et est décrite, par exemple, dans le brevet français FR2846332. La méthode générale de préparation des copolymères PEBA de l’invention ayant des liaisons amide entre les blocs PA et les blocs PE est connue et décrite, par exemple dans le brevet européen EP1482011. Les blocs polyéther peuvent être aussi mélangés avec des précurseurs de polyamide et un limiteur de chaîne diacide pour faire les polymères à blocs polyamides et blocs polyéthers ayant des motifs répartis de façon statistique (procédé en une étape).
Bien entendu, la désignation PEBA dans la présente description de l’invention se rapporte aussi bien aux PEBAX® commercialisés par Arkema, aux Vestamid® commercialisés par Evonik®, aux Grilamid® commercialisés par EMS, qu’aux Pelestat® type PEBA commercialisés par Sanyo ou à tout autre PEBA d’autres fournisseurs.
Avantageusement, les copolymères PEBA peuvent avoir des blocs polyamide en PA 6, en PA 11 , en PA 12, PA 6.10, PA 6.12, en PA 6.6/6, en PA 10.10 et/ou en PA 6.14, de préférence des blocs PA 11 et/ou PA 12 ; et des blocs polyéther en PEG.
Des copolymères PEBA particulièrement préférés dans le cadre de l’invention sont les copolymères comportant des blocs :
- PA 11 et issus de PEG ;
- PA 12 et issus de PEG ;
- PA 6.10 et issus de PEG ;
- PA 10.10 et issus de PEG ;
- PA 10.12 et issus de PEG ;
- PA 6.12 et issus de PEG ;
- PA 6 et issus de PEG.
Si les copolymères à blocs décrits ci-dessus comprennent généralement au moins un bloc polyamide et au moins un bloc polyéther, la présente invention couvre également tous les copolymères comprenant deux, trois, quatre (voire plus) blocs différents choisis parmi ceux décrits dans la présente description, dès lors que ces blocs comportent au moins des blocs polyamides et polyéthers.
Avantageusement, l’alliage de copolymère selon l’invention comprend un copolymère segmenté à blocs comprenant trois types de blocs différents (nommé « tribloc » dans la présente description de l’invention), qui résultent de la condensation de plusieurs des blocs décrits ci-dessus. Ledit tribloc est de préférence choisi parmi les copolyétheresteramides, les copolyétheramideuréthanes, dans le(s)quel(s) :
- le pourcentage massique en blocs polyamide est supérieure à 10% ;
- le pourcentage massique en blocs PEG est supérieur à 50% ; sur la masse totale de tribloc.
La masse molaire moyenne en nombre des blocs polyamides dans le copolymère PEBA vaut de préférence de 400 à 20000 g/mol, plus préférentiellement de 500 à 10000 g/mol, encore plus préférentiellement de 200 à 2000 g/mol. Dans des modes de réalisations, la masse molaire moyenne en nombre des blocs polyamides dans le copolymère PEBA vaut de 400 à 1000 g/mol, ou de 1000 à 1500 g/mol, ou de 1500 à 2000 g/mol, ou de 2000 à 2500 g/mol, ou de 2500 à 3000 g/mol, ou de 3000 à 3500 g/mol, ou de 3500 à 4000 g/mol, ou de 4000 à 5000 g/mol, ou de 5000 à 6000 g/mol, ou de 6000 à 7000 g/mol, ou de 7000 à 8000 g/mol, ou de 8000 à 9000 g/mol, ou de 9000 à 10000 g/mol, ou de 10000 à 11000 g/mol, ou de 11000 à 12000 g/mol, ou de 12000 à 13000 g/mol, ou de 13000 à 14000
g/mol, ou de 14000 à 15000 g/mol, ou de 15000 à 16000 g/mol, ou de 16000 à 17000 g/mol, ou de 17000 à 18000 g/mol, ou de 18000 à 19000 g/mol, ou de 19000 à 20000 g/mol.
La masse molaire moyenne en nombre des blocs polyéthers vaut de préférence de 100 à 6000 g/mol, plus préférentiellement de 200 à 3000 g/mol. Dans des modes de réalisations, la masse molaire moyenne en nombre des blocs polyéthers vaut de 100 à 200 g/mol, ou de 200 à 500 g/mol, ou de 500 à 800 g/mol, ou de 800 à 1000 g/mol, ou de 1000 à 1500 g/mol, ou de 1500 à 2000 g/mol, ou de 2000 à 2500 g/mol, ou de 2500 à 3000 g/mol, ou de 3000 à 3500 g/mol, ou de 3500 à 4000 g/mol, ou de 4000 à 4500 g/mol, ou de 4500 à 5000 g/mol, ou de 5000 à 5500 g/mol, ou de 5500 à 6000 g/mol.
La masse molaire moyenne en nombre est fixée par la teneur en limiteur de chaîne. Elle peut être calculée selon la relation :
Mn = nmonomère X MWmotif de répétition / niimiteur de chaîne + MWlimiteur de chaîne
Dans cette formule, nmonomère représente le nombre de moles de monomère, niimiteur de chaîne représente le nombre de moles de limiteur (par exemple diacide) en excès, MWmotif de répétition représente la masse molaire du motif de répétition, et MWlimiteur de chaîne représente la masse molaire du limiteur (par exemple diacide) en excès.
La masse molaire moyenne en nombre des blocs polyamides et des blocs polyéthers peut être mesurée avant la copolymérisation des blocs par chromatographie sur gel perméable (GPC).
Le rapport massique des blocs polyamides par rapport aux blocs polyéthers du copolymère PEBA peut notamment valoir de 0,1 à 20. Ce rapport massique peut être calculé en divisant la masse molaire moyenne en nombre des blocs polyamides par la masse molaire moyenne en nombre des blocs polyéthers.
Ainsi, le rapport massique des blocs polyamides par rapport aux blocs polyéthers du copolymère PEBA peut être de 0,1 à 0,2 ; ou de 0,2 à 0,3 ; ou de 0,3 à 0,4 ; ou de 0,4 à 0,5 ; ou de 0,5 à 1 ; ou de 1 à 2 ; ou de 2 à 3 ; ou
de 3 à 4 ; ou de 4 à 5 ; ou de 5 à 7 ; ou de 7 à 10 ; ou de 10 à 13 ; ou de 13 à 16 ; ou de 16 à 19 ; ou de 19 à 20.
Des gammes de 2 à 19, et plus spécifiquement de 4 à 10, sont particulièrement préférées.
Le copolymère PEBA est présent dans la composition à une teneur de 75 à 98 %, et de préférence de 75 à 95 % en poids par rapport au poids de la composition. Par exemple, le copolymère PEBA peut être présent dans la composition à une teneur de 75 à 78 % ; ou de 78 à 80 % ; ou de 80 à 82 % ; ou de 82 à 84 % ; ou de 84 à 86 % ; ou de 86 à 88 % ; ou de 88 à 90 % ; ou de 90 à 92 % ; ou de 92 à 94 % ; ou de 94 à 96 % ; ou de 96 à 98 % en poids par rapport au poids de la composition.
Concernant le copolymère B comprenant des motifs issus d’au moins trois comonomères, il est présent à une teneur de 2 à 15 %, et de préférence de 5 à 15 % en poids par rapport au poids de la composition. Par exemple, ce copolymère B peut être présent dans la composition à une teneur de 2 à 3 % ; ou de 3 à 4 % ; ou de 4 à 5 % ; ou de 5 à 6 % ; ou de 6 à 7 % ; ou de 7 à 8 % ; ou de 8 à 9 % ; ou de 9 à 10 % ; ou de 10 à 11 % ; ou de 11 à 12 % ; ou de 12 à 13 % ; ou de 13 à 14 % ; ou de 14 à 15 % en poids par rapport au poids de la composition.
Le premier comonomère à partir duquel ce copolymère B est fabriqué est l’éthylène. Les motifs issus de l’éthylène peuvent avoir une teneur molaire dans le copolymère B de 50 à 94,9 %, et de préférence de 58 à 79 %. Cette teneur molaire peut notamment être de 50 à 55 % ; ou de 55 à 60 % ; ou de 60 à 65 % ; ou de 65 à 70 % ; ou de 70 à 75 % ; ou de 75 à 80 % ; ou de 80 à 85 % ; ou de 85 à 90 % ; ou de 90 à 94,9 %.
Le deuxième comonomère à partir duquel ce copolymère B est fabriqué est un (méth)acrylate d’alkyle. Par « (méth)acrylate d’alkyle » on entend les acrylates d’alkyles et les méthacrylates d’alkyles. De préférence, le groupement alkyle du (méth)acrylate d’alkyle comprend de 1 à 24 atomes de carbone, et de préférence de 1 à 5 atomes de carbone. Il peut par exemple comprendre de 1 à 2 ; ou de 2 à 4 ; ou de 4 à 6 ; ou de 6 à 8 ; ou de 8 à 10 ; ou de 10 à 12 ; ou de 12 à 14 ; ou de 14 à 16 ; ou de 16 à 18 ; ou de 18 à 20 ; ou de 20 à 22 ; ou de 22 à 24 atomes de carbones.
Selon certains modes de réalisation préférés, le deuxième comonomère est choisi parmi le (méth)acrylate de méthyle, le (méth)acrylate d’éthyle, le (méth)acrylate de butyle, le (méth)acrylate d’isobutyle, le (méth)acrylate de 2-éthymhéxyl ainsi que leurs combinaisons. De préférence, le deuxième comonomère est choisi parmi le (méth)acrylate de méthyle, le (méth)acrylate d’éthyle et le (méth)acrylate de butyle.
Selon certains modes de réalisation, un seul deuxième comonomère de type (méth)acrylate d’alkyle est utilisé pour la fabrication du copolymère B.
Selon d’autres modes de réalisation, le copolymère B peut être fabriqué à partir de plus d’un deuxième comonomère de type (méth)acrylate d’alkyle par exemple deux ou trois deuxièmes comonomères. Par exemple, le copolymère B peut être fabriqué à partir de (méth)acrylate d’éthyle et/ou de (méth)acrylate de méthyle et/ou de (méth)acrylate de butyle.
Les motifs issus du deuxième comonomère (ou des deuxièmes comonomères) peuvent avoir une teneur molaire dans le copolymère B de 5 à 35 %, et de préférence de 20 à 30 %. Cette teneur molaire peut notamment être de 5 à 10 % ; ou de 10 à 15 % ; ou de 15 à 20 % ; ou de 20 à 25 % ; ou de 25 à 30 % ; ou de 30 à 35 %.
Le troisième comonomère comporte au moins une fonction réactive sous forme d'un groupe acide, anhydride ou époxyde.
Selon certains modes de réalisation, le troisième comonomère est choisi parmi les acides carboxyliques ou leurs dérivés anhydrides d'acides carboxyliques insaturés, et de préférence parmi les acides dicarboxyliques ou leurs dérivés anhydrides d'acides dicarboxyliques insaturés.
Des exemples d'anhydrides d'acides dicarboxyliques insaturés sont notamment l'anhydride maléique, l'anhydride itaconique, l'anhydride citraconique, l'anhydride tétrahydrophtalique. De préférence, l'anhydride maléique est utilisé.
Des monomères acides mono ou dicarboxyliques insaturés tels que l'acide (méth)acrylique peuvent aussi être utilisés.
Alternativement, le troisième comonomère peut comprendre une fonction du type époxyde insaturé.
Des exemples sont notamment :
- les esters et éthers de glycidyle aliphatiques tels que l'allylglycidyléther, le vinylglycidyléther, le maléate et l'itaconate de glycidyle, l'acrylate et le méthacrylate de glycidyle (GMA) et
- les esters et éthers de glycidyle alicycliques tels que le 2-cyclohexène-1- glycidylethér, le cyclohexène-4,5-diglycidylcarboxylate, le cyclohexène-4- glycidyl carboxylate, le 5-norbornène-2-méthyl-2-glycidyl carboxylate et rendocis-bicyclo(2,2,1 )-5-heptène-2,3-diglycidyl dicarboxylate.
Les motifs issus du troisième comonomère peuvent être présents dans le copolymère B dans une teneur molaire de 0,1 à 15 %, et de préférence de 1 à 12 %. Cette teneur molaire peut notamment être de 0,1 à 1 % ; ou de 1 à 3 % ; ou de 3 à 5 % ; ou de 5 à 7 % ; ou de 7 à 9 % ; ou de 9 à 11 % ; ou de 11 à 13 % ; ou de 13 à 15 %.
Selon certains modes de réalisation, un seul troisième comonomère de type (méth)acrylate d’alkyle est utilisé pour fabriquer le copolymère B.
Selon d’autres modes de réalisation, le copolymère B peut comprendre des motifs issus de plus d’un troisième comonomère par exemple deux ou trois troisièmes comonomères. Par exemple, la composition selon l’invention peut comprendre des motifs issus de l'anhydride maléique et du méthacrylate de glycidyle.
Dans un tel cas, les teneurs en motifs issus du troisième comonomère sont données par rapport au total des différents troisièmes comonomères.
De préférence, le copolymère B ne comprend pas de motifs issus d’autres comonomères que le premier, deuxième et troisième comonomères décrits ci-dessus.
De préférence, le copolymère B est un terpolymère, c’est-à-dire qu’il comporte des motifs issus de trois comonomères seulement.
Des exemples de copolymère B préféré sont : les terpolymères issus d’éthylène, d’acrylate de méthyle et d’anhydride maléique ; les terpolymères issus d’éthylène, d’acrylate d’éthyle et d’anhydride maléique ; les terpolymères issus d’éthylène, d’acrylate de butyle et d’anhydride maléique ; les terpolymères issus d’éthylène, d’acrylate de méthyle et de méthacrylate de glycidyle ; les terpolymères issus d’éthylène, d’acrylate d’éthyle et de méthacrylate de glycidyle ; les terpolymères issus d’éthylène, d’acrylate de butyle et de méthacrylate de glycidyle.
Le copolymère B est de préférence fabriqué par copolymérisation des différents comonomères, notamment de type radicalaire haute pression. Par exemple, le deuxième et le troisième comonomère peuvent être copolymérisés directement avec l'éthylène, notamment par polymérisation radicalaire haute pression.
Selon certains modes de réalisation préférés, la composition selon l’invention, et plus particulièrement le copolymère B est dépourvu de motifs issus de l’acétate de vinyle. En effet, ce monomère peut avoir des propriétés toxiques. De plus, il n’est pas adapté à une extrusion à chaud, ce qui rend la formation du film à partir d’une composition comprenant des motifs issus de ce monomère difficile voire impossible.
Concernant les additifs, ceux-ci sont optionnellement présents à une teneur pondérale de 0 à 10 % et de préférence de 0 à 5 %. Par exemple, un ou plusieurs additifs peuvent être présents à une teneur pondérale de 0 à 0,5 % ; ou de 0,5 à 1 % ; ou de 1 à 2 % ; ou de 2 à 3 % ; ou de 3 à 4 % ; ou de 4 à 5 % ; ou de 5 à 6 % ; ou de 6 à 7 % ; ou de 7 à 8 % ; ou de 8 à 9 % ; ou de 9 à 10 %.
Ces additifs peuvent comprendre, par exemple, des colorants inertes tels que le dioxyde de titane, des charges, des tensioactifs, des agents de réticulation, des agents de nucléation, des composés réactifs, des agents minéraux ou organiques ignifuges, des agents absorbants de lumière ultraviolette (UV) ou infrarouge (IR) et des agents fluorescents UV ou IR. Les charges typiques comprennent le talc, le carbonate de calcium, l'argile, la silice, le mica, la wollastonite, le feldspath, le silicate d'aluminium, l'alumine, l'alumine hydratée, les microsphères de verre, les microsphères de céramique, les microsphères thermoplastiques, la baryte et la farine de bois.
Ces additifs permettent de modifier une ou plusieurs propriétés physiques de la composition.
Film
L’invention concerne également un film obtenu à partir de la composition décrite ci-dessus.
Ce film peut être de préférence fabriqué par extrusion. De préférence l’extrusion est effectuée à chaud à une température allant de 100 à 300°C, de préférence de 150 à 300°C, par exemple de 180 à 280°C.
Selon certains modes de réalisation, le film est fabriqué par extrusion couchage de la composition selon l’invention sur un substrat. Dans ce cas, la température d’extrusion peut être par exemple de 250 à 300°C. Le substrat peut être choisi parmi l’aluminium, le papier ou carton, la cellophane, les films à base de résines polyéthylène, polypropylène, polyamide, polyester, chlorure de polyvinyle (PVC), chlorure de polyvinylidène (PVDC), polyacrylonitryle (PAN), ces films étant orientés ou non, métallisées ou non, traités ou non par voie physique ou chimique, les films revêtus d’une fine couche barrière inorganique tels que le polyester (PET SiOx ou AIOx) et les tissus tissés ou non-tissés. Lorsque le film n’est pas un tissu tissé ou un non- tissé, il est de préférence perforé, notamment micro-perforé.
Selon d’autres modes de réalisation, le film peut être fabriqué par extrusion de film à plat (« extrusion cast ») de la composition selon l’invention. Dans ce cas, la température d’extrusion peut être par exemple de 180 à 230°C.
Le film selon l’invention est un film imper-respirant. Par « imper-respirant », on entend perméable à la vapeur d’eau et imperméable à l’eau liquide.
Le film selon l’invention peut avoir une épaisseur de 2 à 100 pm et de préférence de 2 à 50 pm, ou plus préférentiellement de 10 à 50 pm.
Selon un mode de réalisation, le film imper respirant a une épaisseur inférieure ou égale à 50 mm, de préférence inférieure ou égale à 40 mm, à 30 mm, ou à 25 mm, de préférence compris entre 5 à 25 mm.
Une épaisseur telle que décrite ci-dessus permet de procurer une bonne propriété en perméabilité à la vapeur d’eau.
De préférence, le film selon l’invention présente une perméabilité à la vapeur d’eau (MVTR, pour « Moisture Vapour Transmission Rate ») d’au moins 700 g/m2 par 24 heures, à 23°C, à un taux d’humidité relative de 50 %, pour une épaisseur de film de 30 pm. De manière plus préférée, la perméabilité à la vapeur d’eau MVTR du film vaut au moins 800 g/m2/24 h, à 23°C, à un taux d’humidité relative de 50 %, pour une épaisseur de film de 30 pm. En particulier, la perméabilité MVTR de la membrane peut valoir de 700 à 800 g/m2/24 h, ou de 800 à 900 g/m2/24 h, ou de 900 à 1000 g/m2/24 h, ou de 1000 à 1200 g/m2/24 h, ou 1200 à 1500 g/m2/24 h, ou de 1500 à 2000 g/m2/24 h, ou de 2000 à 2500 g/m2/24 h, ou de 2500 à 3000 g/m2/24 h, ou de 3000 à 3500 g/m2/24 h, ou de 3500 à 4000 g/m2/24 h, ou de 4000 à 4500 g/m2/24 h, ou de 4500 à 5000 g/m2/24 h, à 23°C, à un taux d’humidité relative de 50 %, pour une épaisseur de film de 30 pm. La perméabilité à la vapeur d’eau (MVTR) du film, à 23°C, pour un taux d’humidité relative de 50 %, pour une épaisseur de film de 30 pm, peut être mesurée selon la norme ASTM E96 B.
L’invention concerne également l’utilisation d’un film tel que décrit dans la présente invention dans le domaine médical, l’hygiène, la bagagerie, la confection, l’habillement, l’équipement ménager ou de la maison, l’ameublement, les moquettes, l’automobile, l’industrie, notamment la filtration industrielle, l’agriculture et/ou le bâtiment.
L’invention a également pour objet un produit stratifié (ci-après stratifié) comprenant au moins un matériau et au moins un film imper respirant selon l’invention, le matériau pouvant par exemple être choisi parmi le textile, un matériau de construction, les emballages ou les revêtements.
Selon un mode de réalisation particulier, le matériau est un matériau textile, et ledit film adhérent sur au moins une surface du matériau textile avec une force de pelage comprise dans la gamme de 0,5 à 50 N, de préférence de 0,5 à 10 N.
Avantageusement, le film selon l’invention est notamment appliqué sur un matériau textile par tout procédé connu, de préférence sans utiliser de colle entre le film et le textile.
On peut citer à titre d’exemple l’extrusion couchage d’un film de la composition sur le textile, ou le pressage à chaud (thermo-lamination ou lamination avec une colle) du film sur un textile ou entre deux textiles, à une température suffisante pour que le film s’imprégne et emprisonne les fibres du textile.
Selon un mode de réalisation alternatif ou combiné au(x) précédent(s), on peut également citer le collage à l’aide d’un joint de colle, de préférence un joint de colle aqueux, c’est-à-dire comprenant moins de 5% en poids de solvant sur la composition de joint de colle.
De préférence, le film présente une épaisseur comprise entre 5 et 50 mm, et de préférence entre environ 5 et 10 mm. Avantageusement, dans le cadre d’une application par extrusion-couchage, on dépose de 10 à 50 g/m2 de film thermoplastique sur le textile.
Dans la présente description de l’invention, on entend :
- Par « matériau textile » ou « textile », tout matériau réalisé à partir de fibres ou de filaments ainsi que tout matériau, y-compris le papier et le carton, formant une membrane poreuse caractérisée par un rapport longueur/épaisseur d’au moins 300,
- Par « fibre », toute matière synthétique ou naturelle, caractérisée par un rapport longueur/diamètre d’au moins 300 ;
- Par « filament », toute fibre de longueur infinie.
Parmi les textiles, on trouve notamment des mats de fibres (les pansements, les filtres, le feutre), des mèches (pansements) des fils (à coudre, à tricoter, à tisser), des tricots (rectiligne, circulaire, fullyfashioned) des tissus (traditionnel, Jacquard, multiple, double face, multi axial, 2D et demi, 3D), et bien d’autres.
Selon un mode de réalisation préféré de l’invention, ledit au moins un matériau textile se présente sous la forme d’une membrane poreuse, d’un textile tissé ou d’un textile non tissé.
Avantageusement, ledit au moins un matériau textile comprend des fibres synthétiques, notamment des fibres synthétiques obtenues à partir de matières premières bio-ressourcées, des fibres naturelles, des fibres artificielles fabriquées à partir de matières premières naturelles, des fibres minérales, et/ou des fibres métalliques.
Avantageusement, ledit textile comprend des fibres synthétiques obtenues à partir de matières premières bioressourcées, telles que des fibres de polyamide, notamment de polyamide 11. Avantageusement, ledit textile comprend en outre des fibres naturelles, telles que du coton, de la laine et/ou de la soie, des fibres artificielles fabriquées à partir de matières premières naturelles, des fibres minérales, telles que des fibres de carbone, de verre, de silice et/ou de magnésium.
Le textile est notamment choisi parmi des étoffes ou des surfaces textiles, telles que des surfaces tissées, tricotées, non-tissées ou tapis. Ces articles peuvent être par exemple des moquettes, des tapis, des revêtements d’ameublement, des revêtements de surface, les canapés, des rideaux, de la literie, des matelas et oreillers, des vêtements et des matériaux textiles médicaux.
Le textile selon l’invention constitue avantageusement un feutre, un filtre, un film, une gaze, une toile, un pansement, une couche, un tissu, un tricot, un article d’habillement, un vêtement, un article de literie, un article d’ameublement, un rideau, un revêtement d’habitacle, un textile technique fonctionnel, un géotextile et/ou un agrotextile.
EXEMPLE
L’exemple suivant illustre l'invention sans la limiter.
Des films ont été préparés à partir de différentes compositions (A à G) selon les deux manières suivantes afin d’évaluer la perméabilité à la vapeur d’eau et la limite de la stabilité (aptitude à la transformation) des films.
Pour l’évaluation de la perméabilité à la vapeur d’eau :
Les films ont été préparés à partir des différentes compositions (A à G) par un procédé d’extrusion de film à plat (« extrusion cast ») à l’aide d’une
extrudeuse ayant les paramètres suivants :
- diamètre de vis : 30 mm ;
- rapport L/D : 25
- profil : vis-barrière ;
- filière : en T, de laize 250 pm et d’entrefer 300 pm.
Les températures d’extrusion étaient comprises entre 180°C et 230°C et adaptées selon le grade du copolymère.
La perméabilité à la vapeur d’eau MVTR a été mesurée à 23°C, à un taux d’humidité relative de 50 %, selon la norme ASTM E96B.
Les films obtenus ont une épaisseur de 50 pm.
Pour l’évaluation de l’aptitude à la transformation :
Les films ont été préparés à partir des différentes compositions (A à G) par extrusion couchage sur un support aluminium (37pm) / polymère à l’aide d’une ligne d’extrusion-couchage COLLIN ayant les paramètres suivants :
- airgap : 70 mm ;
- vitesse de vis :80 tr/min
- entrefer de filière : 300 pm.
La température d’extrusion était de 280°C.
Les films ont une épaisseur initiale de 50 pm (qui diminue lorsqu’on augmente la vitesse de ligne).
Ainsi, pour évaluer la limite de la stabilité du film, la vitesse de ligne a été augmentée progressivement à partir de 5 m/min jusqu’à l’observation d’une instabilité. Cette instabilité peut être la rupture du film, un ou plusieurs trous formés sur le film ou une instabilité de la largeur du film. Ces observations ont été réalisées trois fois, afin de confirmer les résultats et une valeur moyenne a été retenue.
La limite de stabilité du film correspond à la vitesse à partir de laquelle les instabilités apparaissent.
Dans les deux cas :
Les terpolymères (polymères comprenant des motifs issus d’au moins trois comonomères) utilisés sont les suivants :
[Tableau 1]
Les copolymères utilisés à titre comparatif sont les suivants : [Tableau 2]
Les caractéristiques des compositions A à G sont données dans le tableau suivant :
[Tableau 3]
[Tableau 4]
Les compositions A à C sont selon l’invention et les compositions D à I correspondent à des exemples comparatifs (la composition D comprend un copolymère B selon l’invention mais avec une teneur supérieure à celle revendiquée et la composition G comprend uniquement du copolymère PEBA).
Les résultats de perméabilité à la vapeur d’eau ainsi que de limite de la stabilité des films (A à I) obtenus par les compositions (A à I) sont présentés ci-dessous :
[Tableau 5]
On constate que les films selon l’invention (A à C) présentent à la fois une perméabilité élevée à la vapeur d’eau et une bonne aptitude à la transformation (limite de stabilité du film).
Claims
1. Composition consistant en :
- de 75 à 98 % en poids d’au moins un copolymère A à blocs polyamide et à blocs polyéther par rapport au poids de la composition ;
- de 2 à 15 % en poids d’au moins un copolymère B comprenant des motifs issus de l’éthylène, d’un (méth)acrylate d’alkyle et d’un comonomère comportant au moins une fonction acide, anhydride ou époxyde, par rapport au poids de la composition ; et
- de 0 à 10 % en poids d’au moins un additif par rapport au poids de la composition, dans laquelle les blocs polyéthers du copolymère A comprennent des blocs de polyéthylène glycol.
2. Composition selon la revendication 1, dans laquelle les blocs polyamides du copolymère A sont des blocs de polyamide 11 , ou de polyamide 12, ou de polyamide 6, ou de polyamide 10.10, ou de polyamide 10.12, ou de polyamide 6.10 ainsi que leurs combinaisons..
3. Composition selon l’une des revendications 1 ou 2, dans laquelle le (méth)acrylate d’alkyle comporte un groupement alkyle comprenant de 1 à 24 atomes de carbone, et de préférence de 1 à 5 atomes de carbone.
4. Composition selon l’une des revendications 1 à 3, dans laquelle le (méth)acrylate d’alkyle est choisi parmi le (méth)acrylate de méthyle, le (méth)acrylate d’éthyle et le (méth)acrylate de butyle ainsi que leurs combinaisons.
5. Composition selon l’une des revendication 1 à 4, dans laquelle la teneur molaire en motifs issus de (méth)acrylate d’alkyle dans le copolymère B est de 5 à 35 %.
6. Composition selon l’une des revendications 1 à 5, dans laquelle la teneur molaire en comonomère comportant au moins une fonction acide, anhydride ou époxyde dans le copolymère B est de 0,1 à 15 %.
7. Composition selon l’une des revendications 1 à 6, dans laquelle le comonomère comportant au moins une fonction acide, anhydride ou époxyde est choisi parmi les anhydrides d'acides
carboxyliques insaturés, et de préférence est l'anhydride maléique.
8. Composition selon l’une des revendications 1 à 6, dans laquelle le comonomère comportant au moins une fonction acide, anhydride ou époxyde a une fonction de type époxyde insaturé, et de préférence est le méthacrylate de glycidyle.
9. Composition selon l’une des revendications 1 à 8, dans laquelle le copolymère B est dépourvu de motifs issus de l’acétate de vinyle.
10. Composition selon l’une des revendications 1 à 9, dans laquelle l’additif est choisi parmi les colorants inertes tels que le dioxyde de titane, les charges, les tensioactifs, les agents de réticulation, les agents de nucléation, les composés réactifs, les agents minéraux ou organiques ignifuges, les agents absorbants de lumière ultraviolette (UV) ou infrarouge (IR), les agents fluorescents UV ou IR, ainsi que leurs combinaisons.
11. Procédé de fabrication d’un film, comprenant l’extrusion de la composition selon l’une des revendications 1 à 10.
12. Procédé selon la revendication 11 , dans lequel l’extrusion est effectuée à une température de 100 à 300°C.
13. Procédé selon l’une des revendications 11 ou 12, dans lequel l’extrusion est une extrusion couchage ou une extrusion à plat.
14. Film obtenu par le procédé selon l’une des revendications 11 à 13.
15. Utilisation d’un film selon la revendication 14 dans le domaine médical, l’hygiène, la bagagerie, la confection, l’habillement, l’équipement ménager ou de la maison, l’ameublement, les moquettes, l’automobile, l’industrie, notamment la filtration industrielle, l’agriculture et/ou le bâtiment.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2003471A FR3108912B1 (fr) | 2020-04-07 | 2020-04-07 | Composition de polymères pour films imper-respirants |
PCT/FR2021/050606 WO2021205117A1 (fr) | 2020-04-07 | 2021-04-07 | Composition de polymères pour films imper-respirants |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4133012A1 true EP4133012A1 (fr) | 2023-02-15 |
Family
ID=71094539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21722966.5A Pending EP4133012A1 (fr) | 2020-04-07 | 2021-04-07 | Composition de polymères pour films imper-respirants |
Country Status (7)
Country | Link |
---|---|
US (1) | US20230159751A1 (fr) |
EP (1) | EP4133012A1 (fr) |
JP (1) | JP2023521336A (fr) |
KR (1) | KR20220164730A (fr) |
CN (1) | CN115397918A (fr) |
FR (1) | FR3108912B1 (fr) |
WO (1) | WO2021205117A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4357133A1 (fr) * | 2022-10-18 | 2024-04-24 | Arkema France | Composition à base de polyamide et de polymère comprenant des blocs polyamides et des blocs poly(tetramethylene ether) glycol |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2639644A1 (fr) | 1988-11-25 | 1990-06-01 | Atochem | Film elastomere thermoplastique permeable a la vapeur d'eau a base de polyetheresteramide, son procede de fabrication et articles comprenant un tel film |
US5652326A (en) | 1993-03-03 | 1997-07-29 | Sanyo Chemical Industries, Ltd. | Polyetheresteramide and antistatic resin composition |
ATE226233T1 (de) * | 1993-04-21 | 2002-11-15 | Atofina | Thermoplastische elastomere mit polyethersegmenten |
DE4410921C2 (de) | 1994-03-29 | 1996-12-19 | Atochem Elf Deutschland | Polymermischung und deren Verwendung |
FR2721320B1 (fr) | 1994-06-20 | 1996-08-14 | Atochem Elf Sa | Film imper-respirant. |
ES2216042T3 (es) * | 1995-04-11 | 2004-10-16 | Atofina | Embalaje de polimero en bloque poliamida y bloque polieter p. |
JPH09227696A (ja) * | 1996-02-20 | 1997-09-02 | Elf Atochem Japan Kk | プラスチックフイルム |
FR2812647B1 (fr) | 2000-08-04 | 2003-02-21 | Atofina | Film imper-respirant |
FR2846332B1 (fr) | 2002-10-23 | 2004-12-03 | Atofina | Copolymeres transparents a blocs polyamides et blocs polyethers |
JP4193588B2 (ja) | 2003-05-26 | 2008-12-10 | 宇部興産株式会社 | ポリアミド系エラストマー |
JP4161802B2 (ja) | 2003-05-27 | 2008-10-08 | 宇部興産株式会社 | ポリアミド組成物 |
US7056975B2 (en) | 2003-05-27 | 2006-06-06 | Ube Industries, Ltd. | Thermoplastic resin composition having improved resistance to hydrolysis |
DE10333005A1 (de) * | 2003-07-18 | 2005-02-03 | Degussa Ag | Formmasse auf Basis von Polyetheramiden |
WO2012141735A1 (fr) * | 2011-04-12 | 2012-10-18 | Arkema Inc. | Films multicouches respirants |
FR3073851B1 (fr) * | 2017-11-17 | 2019-11-08 | Arkema France | Film imper-respirant souple et etirable a base de copolymere a blocs |
-
2020
- 2020-04-07 FR FR2003471A patent/FR3108912B1/fr active Active
-
2021
- 2021-04-07 WO PCT/FR2021/050606 patent/WO2021205117A1/fr unknown
- 2021-04-07 US US17/995,622 patent/US20230159751A1/en active Pending
- 2021-04-07 JP JP2022561043A patent/JP2023521336A/ja active Pending
- 2021-04-07 EP EP21722966.5A patent/EP4133012A1/fr active Pending
- 2021-04-07 KR KR1020227035723A patent/KR20220164730A/ko active Search and Examination
- 2021-04-07 CN CN202180026522.7A patent/CN115397918A/zh active Pending
Also Published As
Publication number | Publication date |
---|---|
FR3108912A1 (fr) | 2021-10-08 |
FR3108912B1 (fr) | 2023-06-30 |
WO2021205117A1 (fr) | 2021-10-14 |
CN115397918A (zh) | 2022-11-25 |
KR20220164730A (ko) | 2022-12-13 |
US20230159751A1 (en) | 2023-05-25 |
JP2023521336A (ja) | 2023-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2873383C (fr) | Utilisation d'un alliage d'amidon thermoplastique et de tpe pour la fabrication d'un film ultra-fin imper-respirant adhesif | |
EP3710518B1 (fr) | Film imper-respirant souple et étirable a base de copolymère a blocs | |
CA2417835C (fr) | Film imper-respirant | |
CA2641435C (fr) | Structure obtenue a partir d'une composition thermoplastique a base de polyolefine fonctionnalisee greffee par des motifs polyethers et utilisation d'une telle composition | |
CA2762992C (fr) | Compositions a base de copolyether bloc amides, de copolyether bloc esters, de polyolefines fonctionnalisees et d'amidon pour des applications de film imper respirants | |
EP0842969A1 (fr) | Matériau comprenant un polyamide, un polymère bloc polyamide-polyéther et une polyoléfine fonctionnalisée, films et objets obtenus à partir de celui-ci | |
EP4133012A1 (fr) | Composition de polymères pour films imper-respirants | |
WO2022090665A1 (fr) | Structure multicouche imper-respirante | |
CA2188058A1 (fr) | Stratifie comprenant un non-tisse en association avec un film thermoplastique et son procede de preparation | |
EP2867280B1 (fr) | Utilisation d'un alliage d'amidon thermoplastique et de pof pour la fabrication d'un film ultra-fin imper-respirant adhesif | |
FR3073867B1 (fr) | Materiau textile souple etirable et anti-bouloches a base de copolymere a blocs | |
EP3164445A1 (fr) | Polyamides a base d'aminoalkyl- ou aminoaryl- piperazine pour adhesifs thermofusibles | |
EP4133011A1 (fr) | Composition de polymères pour films imper-respirants | |
FR3018521A1 (fr) | Composition de copolyamide a main souple |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20221004 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |