EP4127063A1 - Compositions a mouler renforcees avec des fibres de verre ayant des proprietes choc ameliorees - Google Patents

Compositions a mouler renforcees avec des fibres de verre ayant des proprietes choc ameliorees

Info

Publication number
EP4127063A1
EP4127063A1 EP21717147.9A EP21717147A EP4127063A1 EP 4127063 A1 EP4127063 A1 EP 4127063A1 EP 21717147 A EP21717147 A EP 21717147A EP 4127063 A1 EP4127063 A1 EP 4127063A1
Authority
EP
European Patent Office
Prior art keywords
weight
semi
cis
polyolefin
chosen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21717147.9A
Other languages
German (de)
English (en)
Inventor
Mathieu SABARD
Benoît BRULE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP4127063A1 publication Critical patent/EP4127063A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/10Polyamides derived from aromatically bound amino and carboxyl groups of amino-carboxylic acids or of polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0005Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2877/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as mould material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/48Wearing apparel
    • B29L2031/50Footwear, e.g. shoes or parts thereof
    • B29L2031/504Soles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/52Sports equipment ; Games; Articles for amusement; Toys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • TITLE MOLDING COMPOSITIONS REINFORCED WITH GLASS FIBERS HAVING IMPROVED IMPACT PROPERTIES
  • the present invention relates to polyamide compositions, in particular used for injection molding, for applications in the field of quick connectors such as for trucks, automobiles, etc., but also in the field of electrical and electrical engineering. electronics, sport and industry, its preparation process and articles obtained from this composition.
  • Tubes are needed to transport different types of fluids.
  • the tubes are used to supply fuel from the tank to the engine, for the cooling system, for the hydraulic system, for the air conditioning system, etc.
  • Polyamides are widely used for the production of these tubes. In view of all the technical requirements involved, it is often necessary to use multi-layered structures. For example, at least one outer layer based on a polyamide having a relatively high average number of carbon atoms per nitrogen atom (such as PA 11 or PA 12) is often used, providing flexibility, mechanical resistance. and chemical desired to the tubes; and at least one inner layer called a barrier layer, providing the necessary impermeability to the fluids transported.
  • Polyamides having a relatively low number of carbon atoms per nitrogen atom such as for example PA 6 or PA 6.6
  • non-polyamide materials such as an ethylene-vinyl alcohol copolymer
  • the above tubes are either linked to each other or linked to functional parts (such as filters), using fittings or connectors and in particular quick connectors.
  • Conventional connectors are usually manufactured by injection molding, using a polyamide material, such as PA6, PA 11, PA 12 or polyphthalamides (PPA), generally reinforced with glass fibers, in particular of type E.
  • a polyamide material such as PA6, PA 11, PA 12 or polyphthalamides (PPA)
  • PPA polyphthalamides
  • the quick connectors require a rigid material and therefore having a high tensile modulus as determined according to the ISO 527 standard, and which have good impact resistance, in particular high impact resistance properties at -40 ° C. as determined according to the ISO 179 / leA standard and in particular superior to those of products such as PAU with 30% of type E glass fibers, or PAU or PA12 with 50% of type E glass fibers.
  • International application WO 2019/095099 describes compositions comprising from 81 to 98% by weight of linear aliphatic polyamide having an average carbon atom in monomeric units of C 10 -C 14 , from 1 to 9% by weight of fiber of type S glass and from 1 to 10% by weight of impact modifier.
  • compositions obtained exhibit a much lower elongation at break according to ISO 527 for the comparative compositions comprising type E glass fibers compared to type S glass fibers. Nevertheless, whatever the fibers used, the tensile modulus is too low for quick connector applications. Furthermore, this document does not mention the impact resistance at low temperature (-40 ° C).
  • particulate fillers are used with glass fibers, whether for coloring molding compounds using inorganic pigments or for making other specific changes in characteristics but they have the disadvantage of. '' often considerably deteriorate the mechanical characteristics, in particular by reducing the tensile strength, the elongation at break and the impact resistance.
  • E-glass fibers with a circular section are used almost exclusively when reinforcing polyamide molding compounds with glass fibers.
  • E-glass fibers consist of 52-62% silicon dioxide, 12-16% aluminum oxide, 16-25% calcium oxide, 0-10% borax, 0-5% magnesium oxide, 0-2% alkali oxides, 0-1.5% titanium dioxide and 0-0.3% ferric oxide.
  • the mechanical properties and in particular the impact resistance of the compositions with type E glass fibers or type S glass fibers are substantially equivalent but nevertheless insufficient for an application of quick connectors.
  • the addition of particulate fillers and in particular of copper chromite in these compositions deteriorates the mechanical properties significantly but the degradation is less rapid with S fibers.
  • the present invention therefore relates to a composition, in particular useful for injection molding, comprising: (A) from 29 to 89%, in particular 29 to 74%, and more particularly 34 to 64%, in particular from 44 to 54% by weight of at least one semi-crystalline aliphatic polyamide, said semi-crystalline aliphatic polyamide being obtained from the polycondensation of: at least one amino acid C6-Cis, preferably C6-Cis, more preferably in Cio to Cis, more preferably still Cio to C 12, particularly Cn; or at least one lactam C6-Cis, preferably C6-Cis, more preferably in Cio to Cis, more preferably still Cio to C 12, especially C 12; or of at least one C 4 -C 36 diamine Ca, in particular C 6 -C 36 , preferably C 6 -C 18 , preferably C 6 -C 12 , more preferably C 10 -C 12 with at least one Cb diacid in C 4 -C 36 , in particular in C6-C
  • glass fibers consisting mainly of silica dioxide (SiO 2), of oxide of aluminum (AI203) and magnesium oxide (MgO);
  • (D) 0 to 2%, preferably 1 to 2% by weight of at least one additive, excluding copper chromite, zinc sulfide, titanium dioxide, calcium carbonate and a colored polyolefin-based masterbatch; the sum of the various constituents (A) to (D) representing 100% by weight.
  • at least one additive excluding copper chromite, zinc sulfide, titanium dioxide, calcium carbonate and a colored polyolefin-based masterbatch; the sum of the various constituents (A) to (D) representing 100% by weight.
  • an impact modifier in a composition comprising a polyamide and at least 10% of glass fibers consisting mainly of silica dioxide (SiO 2), of aluminum oxide (Al 2 O 3 ) and magnesium oxide (MgO) and devoid of particulate fillers made it possible to improve the mechanical properties, in particular impact resistance, and in particular when cold (-40 ° C), compared to those of the same composition with type E glass fibers or those of the same composition without impact modifier, whether it comprises type E glass fibers or glass fibers consisting mainly of silica dioxide (Si02), aluminum oxide (AI203 ) and magnesium oxide (MgO).
  • the present invention relates to one of the compositions defined above in which said compositions are excluding particulate fillers and a colored polyolefin-based masterbatch.
  • the present invention relates to a composition, in particular useful for injection molding, consisting of: (A) from 29 to 89%, in particular 29 to 74%, and more particularly 34 to 64%, in particular from 44 to 54% by weight of at least one semi-crystalline aliphatic polyamide, said semi-crystalline aliphatic polyamide being obtained from the polycondensation of: at least one amino acid C6-Cis, preferably C6-Cis, more preferably in Cio to Cis, more preferably still Cio to C 12, particularly Cn; or at least one lactam C6-Cis, preferably C6-Cis, more preferably in Cio to Cis, more preferably still Cio to C 12, especially C 12; or of at least one C 4 -C 36 diamine Ca, in particular C 6 -C 36 , preferably C 6 -C 18 , preferably C 6 -C 12 , more preferably C 10 -C 12 with at least one Cb diacid in C 4 -C 36 , in particular in C
  • glass fibers consisting mainly of silica dioxide (Si02), of aluminum oxide (AI203) and magnesium oxide (MgO);
  • (D) from 0 to 2%, preferably 1 to 2% by weight of at least one additive, the sum of the various constituents (A) to (D) representing 100% by weight.
  • composition can therefore no longer contain copper chromite, zinc sulphide, titanium dioxide, calcium carbonate, a colored masterbatch based on polyolefin or particulate fillers;
  • This latter composition therefore only consists of the four constituents A to D.
  • Particulate fillers are well known to those skilled in the art and are in particular as defined in US2014 / 0066561.
  • the particulate fillers excluded from the present invention are chosen from talc, mica, silicates, quartz, wollastonite, kaolin, silicic acids, magnesium carbonate, magnesium hydroxide, chalk, crushed or cut calcium carbonate, lime, feldspar, inorganic pigments, such as barium sulfate, zinc oxide, zinc sulfide, titanium dioxide, ferric oxide, ferric manganese, metal oxides, in particular spinels, such as, for example, ferric copper spinel, copper-chromium oxide, ferric-zinc oxide, cobalt-chromium oxide, cobalt-aluminum oxide , magnesium-aluminum oxide, copper-chromium-manganese oxide, copper-manganese-iron oxide, rutile pigments such as titanium-zinc-rutile, nickel-antimony-titanate, metals or permanent magnetic or magnetizable alloys, concave silicate filler, aluminum oxide nium, boron nitride
  • the colored polyolefin-based masterbatch is as defined in US2018237598.
  • the colored polyolefin-based masterbatch can comprise dyes, pigments or dyes as color to be dispersed in the desired support resin.
  • Suitable pigments include, for example, inorganic pigments such as metal oxides and mixed metal oxides such as zinc oxide, titanium dioxides, iron oxides or the like; sulfides such as zinc sulfides or the like; aluminates; sodium sulfosilicates; sulfates and chromates; zinc ferrites; ultramarine blue; pigment brown 24 (Pigment Brown 24); pigment red 101 (Pigment Red 101); pigment yellow 119 (Pigment Yellow 119); organic pigments such as azos, di-azos, quinacridones, perylenes, naphthalene tetracarboxylic acids, flavanthrones, isoindolinones, tetrachloroisoindolinones, anthraquinones, anthanthrones, dioxazines, phthalocyanines and azo lakes; pigment blue 60 (Pigment Blue 60), pigment red 122 (Pigment Red 122), pigment red 149
  • Suitable dyes include, for example, organic dyes such as coumarin 460 (blue), coumarin 6 (green), Nile red or the like; lanthanide complexes; hydrocarbon and substituted hydrocarbon dyes; polycyclic aromatic hydrocarbons; scintillation dyes (preferably oxazoles and oxadiazoles); aryl or heteroaryl substituted poly (2-8 olefins); carbocyanine dyes; dyes and pigments based on phthalocyanine; oxazine dyes; carbostyril dyes; porphyrin dyes; acridine dyes; anthraquinone dyes; arylmethane dyes; azo dyes; diazonium dyes; nitro dyes; quinone imine dyes; tetrazolium dyes; thiazole dyes; perylene dyes, perinone dyes; bis-benzoxazolylthiophene (BBOT); and xanthene dyes
  • Suitable dyes can include, for example, titanium dioxide, anthraquinones, perylenes, perinones, indanthrones, quinacridones, xanthenes, oxazines, oxazolines, thioxanthenes, indigoids, thioindigoid, naphthalimides, cyanines, xanthenes, methines, lactonesophylenes, coumarins (BBOT), naphthalenetetracarboxylic derivatives, monoazo and disazo pigments, triarylmethanes, aminoketones, bis (styryl) derivatives as well as biphenyls and the like, combinations comprising at least one of these.
  • the colored masterbatch comprises a polyolefin carrier resin.
  • the carrier resin can be chosen to provide good dispersion of the dye through the carrier resin.
  • the colored polyolefin-based masterbatch can comprise a polyethylene or a polypropylene carrier resin, although other polyolefin-based carrier resins can certainly be used.
  • the polyolefin-based masterbatch can be mixed with the polyamide-based resin and the fiberglass.
  • a semi-crystalline polyamide within the meaning of the invention, denotes a polyamide which has a glass transition temperature (Tg) and a melting point (Tm) determined respectively according to the ISO 11357-2 and 3: 2013 standard, and a enthalpy of crystallization during the cooling step at a speed of 20K / min in DSC measured according to standard ISO 11357-3 of 2013 greater than 30 J / g, preferably greater than 35 J / g.
  • the semi-crystalline polyamide can be substituted by at least one amorphous polyamide in a proportion of 0 to 30% by weight.
  • the composition is devoid of amorphous polyamide.
  • An amorphous polyamide within the meaning of the invention denotes a polyamide which exhibits only a glass transition temperature (Tg) (no melting point (Tm)), the Tg being determined according to the ISO 11357-2: 2013 standard, or a very poorly crystalline polyamide having a glass transition temperature and a melting point such that the enthalpy of crystallization during the cooling step at a speed of 20K / min measured according to standard ISO 11357-3: 2013 is lower at 30 J / g, in particular less than 20 J / g, preferably less than 15 J / g.
  • Tg glass transition temperature
  • Tm no melting point
  • Said at least one amorphous polyamide can be is a homopolyamide of formula XY or a copolyamide of formula A / XY, XY being a repeating unit obtained by polycondensation of at least one cycloaliphatic diamine (X) and of at least one aliphatic dicarboxylic acid (Y) at C4-C36, in particular C6-C36, preferably C6-C18, preferably C6-C12, more preferably C 10 -C 12 , as defined above, or at least one aromatic dicarboxylic acid (Y) and a is a repeating unit obtained by polycondensation of at least one amino acid C6-Cis, preferably in the Cio to Cis, more preferably in Cio to C 12, or at least one lactam C 6 Cis, preferably in Cio to Cis, more preferably from C10 to C12, or a repeating unit obtained by polycondensation of at least one aliphatic diamine (C
  • the cycloaliphatic diamine (X) can be chosen from bis (3,5-dialkyl-4-aminocyclohexyl) - methane, bis (3,5-dialkyl-4-aminocyclohexyl) ethane, bis (3,5-dialkyl- 4-aminocyclohexyl) - propane, bis (3,5-dialkyl-4-aminocyclo-hexyl) -butane, bis- (3-methyl-4-aminocyclohexyl) - methane or 3,3'-dimethyl-4,4 '-diamino-dicyclohexyl-methane commonly referred to as (BMACM) or (MACM) (and denoted B below), bis (p-aminocyclohexyl) -methane commonly referred to as (PACM) (and denoted P below), in particular Dicykan ® , isopropylidènedi (cyclohexyl
  • BMACM bis- (3-methyl-4-aminocyclohexyl) -methane or 3,3'-dimethyl-4,4'-diamino-dicyclohexyl-methane commonly called (BMACM) or (MACM) (and noted B below), bis (p-aminocyclohexyl) -methane commonly referred to as (PACM) (and noted P below) and bis (aminomethyl) cyclohexane (BAC), in particular 1,3-BAC or la, in particular 1,4-BAC.
  • BMACM bis- (3-methyl-4-aminocyclohexyl) -methane or 3,3'-dimethyl-4,4'-diamino-dicyclohexyl-methane
  • PAM bis (p-aminocyclohexyl) -methane
  • BAC bis (aminomethyl) cyclohexane
  • (Y) is at least one aromatic dicarboxylic acid (Y)
  • Y aromatic dicarboxylic acid
  • Y it is advantageously chosen from terephthalic acid (denoted T), isophthalic acid (denoted I) and 2,6 naphthalene dicarboxylic acid (denoted N) or their mixtures, in particular it is chosen from terephthalic acid (denoted T), isophthalic acid (denoted I) or their mixtures.
  • (Y) is at least one aliphatic dicarboxylic acid, it is as defined below for Cb.
  • said at least one lactam can be chosen from a C 6 to Cis lactam, preferably Cio to Cis, more preferably Cio to C12.
  • a C 6 to C12 lactam is in particular caprolactam, decanolactam, undecanolactam, and lauryllactam.
  • said at least one semi-crystalline aliphatic polyamide is obtained from the polycondensation of at least one lactam, it can therefore comprise a single lactam or several lactams.
  • said at least one semi-crystalline aliphatic polyamide is obtained from the polycondensation of a single lactam and said lactam is chosen from lauryllactam and undecanolactam, advantageously lauryllactam.
  • said at least one semi-crystalline aliphatic polyamide is obtained from the polycondensation of at least one amino acid
  • said at least one amino acid can be chosen from a C 6 to Cis amino acid, preferably Cio to Cis, more preferably Cio to C12.
  • a C 6 to C12 amino acid is in particular 6-aminohexanoic acid, 9-aminononanoic acid, 10-aminodecanoic acid, 10-aminoundecanoic acid, 12-aminododecanoic acid and 11-aminoundecanoic acid as well as its derivatives, in particular N-heptyl-11-aminoundecanoic acid.
  • said at least one semi-crystalline aliphatic polyamide is obtained from the polycondensation of at least one amino acid, it can therefore comprise a single amino acid or several amino acids.
  • said semi-crystalline aliphatic polyamide is obtained from the polycondensation of a single amino acid and said amino acid is chosen from 11-aminoundecanoic acid and 12-aminododecanoic acid, advantageously 11-aminoundecanoic acid.
  • said at least one semi-crystalline aliphatic polyamide is obtained from the polycondensation of at least one C4-C36 diamine Ca, in particular C6-C36, preferably C6-C18, preferably C6-C12, more preferably C10-C12 with at least one diacid Cb in C 4 - C36, in particular in C6-C36, preferentially C6-C18, preferentially Cio-Cis, more preferentially C10-C12, then said at least one diamine in Ca is an aliphatic diamine and said at least one diacid Cb is an aliphatic diacid.
  • the diamine can be linear or branched.
  • it is linear.
  • Said at least one C4-C36 diamine Ca can in particular be chosen from butanemethylenediamine, 1,5-pentamethylenediamine, 1,6-hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1,9 -nonamethylenediamine, 1,10- decamethylenediamine, 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine, 1,13-tridecamethylenediamine, 1,14-tetradecamethylenediamine, 1,16-hexadecamethylenediamine and 1,18ediamethylenediamine , octadecenediamine, eicosanediamine, docosanediamine and diamines obtained from fatty acids.
  • said at least one Ca diamine is C6-C36 and chosen from 1,6-hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine, 1,10-decamethylenediamine, 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine, 1,13-tridecamethylenediamine, 1,14-tetradecamethylenediamine, 1,16-hexadecamethylenediamine and 1,18-octadecamethylenediamine, octadecamethylenediamine, laecosanediamine, eicosanediamine docosanediamine and diamines obtained from fatty acids.
  • said at least one Ca diamine is C6-C18 and chosen from 1,6-hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine, 1,10-decamethylenediamine, 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine, 1,13-tridecamethylenediamine, 1,14-tetradecamethylenediamine, 1,16-hexadecamethylenediamine and 1,18-octadecamethylenediamine.
  • said at least one C 6 to C 12 diamine Ca is in particular chosen from 1,5-pentamethylenediamine, 1,6-hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1,9 -nonamethylenediamine, 1,10-decamethylenediamine, 1,11- undecamethylenediamine, 1,12-dodecamethylenediamine.
  • the Ca diamine used is C10 to C12, in particular chosen from 1,10-decamethylenediamine, 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine.
  • Said at least one Cb in C 4 to C36 dicarboxylic acid can be chosen from butanedioic acid, pentanedioic acid, adipic acid, suberic acid, azelaic acid, sebacic acid, l undecanedioic acid, dodecanedioic acid, brassylic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanedioic acid, octadecanedioic acid, and diacids obtained from fatty acids.
  • said at least one Cb dicarboxylic acid is C6 to C36 and chosen from adipic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, brassylic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanedioic acid, octadecanedioic acid, and diacids obtained from fatty acids.
  • the diacid can be linear or branched.
  • it is linear.
  • said at least one Cb dicarboxylic acid is C6 to Cis and is chosen from adipic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, brassylic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanedioic acid, octadecanedioic acid.
  • said at least one Cb dicarboxylic acid is C10 to Cis and is chosen from sebacic acid, undecanedioic acid, dodecanedioic acid, brassylic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanedioic acid, octadecanedioic acid.
  • said at least one dicarboxylic acid Cb is Cio to C 12 and is selected from sebacic acid, undecanedioic acid, dodecanedioic acid.
  • said aliphatic semi-crystalline polyamide is obtained from the polycondensation of at least one diamine Ca with at least one dicarboxylic acid Cb, it can therefore comprise a single diamine or several diamines and a single dicarboxylic acid or several dicarboxylic acids.
  • said semi-crystalline aliphatic polyamide is obtained from the polycondensation of a single diamine Ca with a single dicarboxylic acid Cb.
  • said semi-crystalline polyamide is obtained from the polycondensation of: at least one amino acid C6-Cis, preferably C6-Cis, more preferably in Cio to Cis, more preferably still Cio to C 12, in particular in Cn; or at least one lactam C6-Cis, preferably C6-Cis, more preferably in Cio to Cis, more preferably still Cio to C 12, especially C 12.
  • said semi-crystalline polyamide results from the polycondensation of at least one Cg to Cis amino acid, or of at least one Cg to Cis lactam.
  • said semi-crystalline polyamide results from the polycondensation of at least one Cio to Cis amino acid; or at least one Cio to Cis lactam.
  • said semi-crystalline polyamide results from the polycondensation of at least one C 10 to C 12 amino acid; or at least one Cio to C 12 lactam.
  • said semi-crystalline polyamide results from the polycondensation of a Cn amino acid; or a C 12 lactam.
  • said semi-crystalline polyamide results from polycondensation: of at least one C 4 -C 36 diamine Ca, in particular C 6 -C 36 , preferably C 6 -C 18 , preferably C 6 -C 12 , more preferably C 10 -C 12 with at least one Cb diacid in C 4 -C 36 , in particular C 6 -C 36 , preferably C 6 -C 18 , preferably Cio-Cis, more preferably C 10 -C 12 ;
  • said semi-crystalline polyamide results from the polycondensation of at least one C 4 -C 36 diamine Ca, with at least one C 4 -C36 diacid.
  • said semi-crystalline polyamide is obtained from the polycondensation of at least one C 4 -C 36 diamine Ca, with at least one Cb C6-C36 diacid.
  • said semi-crystalline polyamide results from the polycondensation of at least one C 4 -C 36 diamine Ca, with at least one Cb C6-C18 diacid.
  • said semi-crystalline polyamide results from the polycondensation of at least one C 4 -C 36 diamine Ca with at least one Cb Cio-Cis diacid.
  • said semi-crystalline polyamide results from the polycondensation of at least one C 4 -C 36 diamine Ca with at least one Cb C10-C12 diacid.
  • said semi-crystalline polyamide results from the polycondensation of at least one C 6 -C 36 diamine Ca with at least one C 4 -C 36 diacid Cb.
  • said semi-crystalline polyamide results from the polycondensation of at least one C 6 -C 36 diamine Ca with at least one Cb C6-C36 diacid.
  • said semi-crystalline polyamide results from the polycondensation of at least one C 6 -C 36 Ca diamine with at least one C 6 -C 18 Cb diacid.
  • said semi-crystalline polyamide results from the polycondensation of at least one C 6 -C 36 diamine Ca with at least one Cb Cio-Cis diacid.
  • said semi-crystalline polyamide results from the polycondensation of at least one C 6 -C 36 diamine Ca with at least one Cb C 10 -C12 diacid.
  • said semi-crystalline polyamide results from the polycondensation of at least one C 6 -C 18 diamine Ca with at least one C 4 -C 36 diacid Cb.
  • said semi-crystalline polyamide results from the polycondensation of at least one C 6 -C 18 diamine Ca with at least one Cb C6-C36 diacid.
  • said semi-crystalline polyamide results from the polycondensation of at least one C 6 -C 18 diamine Ca with at least one Cb C6-C 18 diacid.
  • said semi-crystalline polyamide results from the polycondensation of at least one C 6 -C 18 diamine Ca with at least one Cb diacid in
  • said semi-crystalline polyamide results from the polycondensation of at least one C 6 -C 18 diamine Ca with at least one Cb C10-C12 diacid.
  • said semi-crystalline polyamide results from the polycondensation of at least one C 6 -C 12 diamine Ca with at least one Cb C 4 -C 36 diacid.
  • said semi-crystalline polyamide results from the polycondensation of at least one C 6 -C 12 diamine Ca with at least one Cb C6-C 36 diacid.
  • said semi-crystalline polyamide results from the polycondensation of at least one C 6 -C 12 diamine Ca with at least one Cb C6-C 18 diacid.
  • said semi-crystalline polyamide results from the polycondensation of at least one C 6 -C 12 diamine Ca with at least one C 10 -C 18 Cb diacid.
  • said semi-crystalline polyamide results from the polycondensation of at least one C 6 -C 12 diamine Ca with at least one Cb C10-C12 diacid.
  • said semi-crystalline polyamide results from the polycondensation of at least one C 10 -C 12 diamine Ca with at least one Cb C4-C36 diacid.
  • said semi-crystalline polyamide results from the polycondensation of at least one C 10 -C 12 Ca diamine with at least one C 6 -C 36 Cb diacid. In a twenty-third variant of this other embodiment, said semi-crystalline polyamide results from the polycondensation of at least one C 10 -C 12 Ca diamine with at least one C 6 -Ci 8 Cb diacid.
  • said semi-crystalline polyamide results from the polycondensation of at least one C 10 -C 12 Ca diamine with at least one C 10 -C 18 Cb diacid.
  • said semi-crystalline polyamide results from the polycondensation of at least one C 10 -C 12 Ca diamine with at least one C 10 -C 12 Cb diacid.
  • said semi-crystalline aliphatic polyamide is chosen from PAU, PA12 and a semi-crystalline polyamide resulting from the polycondensation of at least one C 4 -C 36 diamine Ca with at least one Cb C 6 -C 18 diacid .
  • said semi-crystalline aliphatic polyamide is chosen from PAU, PA12 and a semi-crystalline polyamide resulting from the polycondensation of at least one C 4 -C 36 diamine Ca with at least one Cb Cio-Cis diacid.
  • said semi-crystalline aliphatic polyamide is chosen from PAU, PA12 and a semi-crystalline polyamide resulting from the polycondensation of at least one C 4 -C 36 diamine Ca with at least one Cb C 10 -C 12 diacid .
  • said semi-crystalline aliphatic polyamide is chosen from PAU, PA12 and a semi-crystalline polyamide resulting from the polycondensation of at least one C 6 -C 36 diamine Ca with at least one C 6 -C 18 diacid. .
  • said semi-crystalline aliphatic polyamide is chosen from PAU, PA12 and a semi-crystalline polyamide resulting from the polycondensation of at least one C 6 -C 36 diamine Ca with at least one Cb Cio-Cis diacid.
  • said semi-crystalline aliphatic polyamide is chosen from PAU, PA12 and a semi-crystalline polyamide resulting from the polycondensation of at least one C 6 -C 36 diamine Ca with at least one Cb C 10 -C 12 diacid .
  • said semi-crystalline aliphatic polyamide is chosen from PAU, PA12 and a semi-crystalline polyamide resulting from the polycondensation of at least one C 6 -C 18 diamine Ca with at least one Cb C 6 -C 36 diacid. .
  • said semi-crystalline aliphatic polyamide is chosen from PAU, PA12 and a semi-crystalline polyamide resulting from the polycondensation of at least one C 6 -C 18 diamine Ca with at least one C 6 -C 18 diacid Cb .
  • said semi-crystalline aliphatic polyamide is chosen from PAU, PA12 and a semi-crystalline polyamide resulting from the polycondensation of at least one C6-C18 diamine with at least one Cb Cio-Cis diacid.
  • said semi-crystalline aliphatic polyamide is chosen from PAU, PA12 and a semi-crystalline polyamide resulting from the polycondensation of at least one C6-C18 diamine Ca with at least one Cb C10-C12 diacid.
  • said semi-crystalline aliphatic polyamide is chosen from PAU, PA12 and a semi-crystalline polyamide resulting from the polycondensation of at least one C6-C12 diamine Ca with at least one Cb C6-C36 diacid .
  • said semi-crystalline aliphatic polyamide is chosen from PAU, PA12 and a semi-crystalline polyamide resulting from the polycondensation of at least one C6-C12 diamine Ca with at least one Cb C6-C18 diacid .
  • said semi-crystalline aliphatic polyamide is chosen from PAU, PA12 and a semi-crystalline polyamide resulting from the polycondensation of at least one C6-C12 diamine Ca with at least one Cb Cio-Cis diacid.
  • said semi-crystalline aliphatic polyamide is chosen from PAU, PA12 and a semi-crystalline polyamide resulting from the polycondensation of at least one C6-C12 diamine Ca with at least one Cb C10-C12 diacid.
  • said semi-crystalline aliphatic polyamide is chosen from PAU, PA12 and a semi-crystalline polyamide resulting from the polycondensation of at least one C10-C12 diamine Ca with at least one Cb C 4 -C 36 diacid.
  • said semi-crystalline aliphatic polyamide is chosen from PAU, PA12 and a semi-crystalline polyamide resulting from the polycondensation of at least one C10-C12 diamine Ca with at least one Cb C6-C36 diacid .
  • said semi-crystalline aliphatic polyamide is chosen from PAU, PA12 and a semi-crystalline polyamide resulting from the polycondensation of at least one C10-C12 diamine Ca with at least one Cb C6-C18 diacid .
  • said semi-crystalline aliphatic polyamide is chosen from PAU, PA12 and a semi-crystalline polyamide resulting from the polycondensation of at least one C10-C12 diamine Ca with at least one Cb Cio-Cis diacid.
  • said semi-crystalline aliphatic polyamide is chosen from PAU, PA12 and a semi-crystalline polyamide resulting from the polycondensation of at least one C10-C12 diamine Ca with at least one Cb C10-C12 diacid.
  • said semi-crystalline aliphatic polyamide is chosen from PAU, PA12, PA1010, PA1012, PA1210 and PA1212, in particular PAU and PA12, in particular PAU.
  • Glass fibers (B) consist mainly of silica dioxide (Si02), aluminum oxide (Al203) and magnesium oxide (MgO);
  • said composition may comprise glass fibers other than glass fibers consisting mainly of silica dioxide (Si02), aluminum oxide (Al203) and magnesium oxide (MgO), said other glass fibers being in a proportion of 0 to 49.9% by weight relative to the total weight of the glass fibers.
  • said other glass fibers are in a proportion of 0 to 40% by weight relative to the total weight of the glass fibers, in particular from 0 to 30%, in particular from 0 to 20%, more particularly from 0 to 10%.
  • silica dioxide Si02
  • Al203 aluminum oxide
  • MgO magnesium oxide
  • E in particular composed of 52 to 62% silicon dioxide, 12 to 16% aluminum oxide, 16 to 25% calcium oxide, 0 to 10% borax, 0-5% magnesium oxide, 0-
  • Glass fibers are:
  • L and D can be measured by scanning electron microscopy (SEM).
  • the glass fibers have a circular section with a diameter of 4 ⁇ m and 25 ⁇ m, preferably 4 to 15 ⁇ m.
  • said composition comprises glass fibers consisting mainly of silica dioxide (Si02), aluminum oxide (Al203) and magnesium oxide (MgO) to the exclusion of other fibers. of glass.
  • the present invention relates to a composition as defined above in which the glass fibers (B) are high mechanical strength glass fibers based on silica dioxide (SiO 2), oxide d. 'aluminum (AI203) and magnesium oxide (MgO) or high modulus glass fibers based on silica dioxide (Si02), aluminum oxide (Al203), magnesium oxide (MgO) and calcium oxide (CaO).
  • the glass fibers (B) are high mechanical strength glass fibers based on silica dioxide (SiO 2), oxide d. 'aluminum (AI203) and magnesium oxide (MgO) or high modulus glass fibers based on silica dioxide (Si02), aluminum oxide (Al203), magnesium oxide (MgO) and calcium oxide (CaO).
  • the expression “based on” means that the proportion of silica dioxide (Si02), aluminum oxide (Al203) and magnesium oxide (MgO) is at least 78% by weight relative to the total weight of the constituents present in said fibers.
  • the fibers of high mechanical strength can in particular be type S fibers, in particular fibers having an elastic modulus> 75 GPa, preferably> 78 GPa, more preferably> 80 GPa, as measured according to ASTM C1557-03.
  • the high strength glass fibers based on silica dioxide (Si02), aluminum oxide (Al203) and magnesium oxide (MgO) or high modulus glass fibers at based on silica dioxide (Si02), aluminum oxide (AI203), magnesium oxide (MgO) and calcium oxide (CaO) have a constitution of 58-70% by weight of silicon dioxide (Si02), 15-30% by weight of aluminum oxide (Al203), 5-15% by weight of magnesium oxide (MgO), 0-10% by weight of calcium oxide (CaO) and 0-2% by weight of other oxides, such as zirconium dioxide (Zr02), boric oxide (B203), titanium dioxide (Ti02) or lithium oxide (Li20).
  • said constitution is 60 to 67% by weight of silicon dioxide (Si02), 20 to 28% by weight of aluminum oxide (Al203), 7 to 12% by weight of 'magnesium oxide (MgO), 0 to 9% by weight of calcium oxide (CaO) and 1.5% by weight of other oxides, such as zirconium dioxide (Zr02), boric oxide (B203 ), titanium dioxide (Ti02) or lithium oxide (Li20).
  • Si02 silicon dioxide
  • Al203 aluminum oxide
  • MgO 'magnesium oxide
  • CaO calcium oxide
  • other oxides such as zirconium dioxide (Zr02), boric oxide (B203 ), titanium dioxide (Ti02) or lithium oxide (Li20).
  • said constitution is: 62-66% by weight of silicon dioxide (Si02), 22-27% by weight of aluminum oxide (Al203), 8-12% by weight of magnesium oxide (MgO ), 0-9% by weight of calcium oxide (CaO) and 0-1% by weight of other oxides, such as zirconium dioxide (Zr02), boric oxide (B203), titanium dioxide (TiO2) or lithium oxide (Li20).
  • Si02 silicon dioxide
  • Al203 aluminum oxide
  • MgO magnesium oxide
  • CaO calcium oxide
  • other oxides such as zirconium dioxide (Zr02), boric oxide (B203), titanium dioxide (TiO2) or lithium oxide (Li20).
  • said high strength glass fibers preferably have a tensile strength greater than or equal to 3500 MPa, and / or an elongation at break of at least 5% as determined according to ASTM D2343.
  • the high mechanical strength glass fibers according to the invention can be:
  • L and D can be measured by scanning electron microscopy (SEM).
  • impact modifier By impact modifier, is meant a polyolefin-based polymer having a flexural modulus of less than 100 MPa measured according to standard ISO 178: 2010 (23 ° C RH50%) and of Tg less than 0 ° C (measured according to standard 11357 -2: 2013 at the inflection point of the DSC thermogram), in particular a polyolefin.
  • the impact modifier can also be a block polymer of PEBA (polyether-block-amide) type having a flexural modulus ⁇ 200 MPa.
  • PEBA polyether-block-amide
  • the composition can also comprise one or more impact modifiers as defined above.
  • the presence of an impact modifier makes it possible to confer greater ductility on the manufactured articles.
  • the impact modifier can be a functionalized or non-functionalized polyolefin or be a mixture of at least one functionalized polyolefin and / or at least one non-functionalized polyolefin.
  • the polyolefin is functionalized, part or all of the polyolefin carries a function chosen from carboxylic acid, carboxylic anhydride and epoxide functions.
  • a polyolefin is conventionally a homopolymer or copolymer of alpha olefins or diolefins, such as, for example, ethylene, propylene, butene-1, octene-1, butadiene.
  • alpha olefins or diolefins such as, for example, ethylene, propylene, butene-1, octene-1, butadiene.
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • LLDPE linear low density polyethylene, or linear low density polyethylene
  • VLDPE very low density polyethylene, or very low density polyethylene
  • metallocene polyethylene metallocene polyethylene
  • ethylene / alpha-olefin copolymers such as ethylene / propylene, ethylene / octene, EPRs (abbreviation of ethylene-propylene-rubber) and ethylene / propylene / diene
  • SEBS ethylene-butene / styrene
  • SBS styrene / butadiene / styrene
  • SIS styrene / isoprene / styrene
  • SEPS styrene / ethylene-propylene / styrene
  • Peba polyether block amides
  • Polyether block amides are copolymers comprising blocks with a polyamide pattern and blocks with a polyether pattern. They can also contain ester functions, in particular resulting from the condensation reaction of terminal carboxylic functions of the polyamide blocks with the hydroxyl functions of the polyether blocks.
  • Peba are commercially available, in particular under the brand Pebax ® by the company Arkema.
  • the impact modifier is selected from Fusabond ® F493, the Tafmer MFI5020 a Lotader ®, e.g., Lotader ® 4700, the Exxelor ® VA1803, VA1801 and VA 1840, the Orevac ® IM800 or a mixture thereof , in this case they are in a ratio ranging from 0.1 / 99.9 to 99.9 / 0.1, the kratons ® FG 1901, FG 1924, MD 1653, the Tuftec ® M1913, M1911 and M 1943, and a Pebax ® , in particular Pebax ® 40R53 SP01.
  • the impact modifier can also be a “core-shell” type modifier, also designated “core-shell copolymer”.
  • the “core-shell” type modifier is in the form of fine particles having an elastomeric core and at least one thermoplastic shell, the size of the particles is generally less than 1 ⁇ m and advantageously between 150 and 500 nm.
  • the “core-shell” type modifier has an acrylic or butadiene base.
  • the impact modifier of the “core-shell” type is excluding a core which comprises 60 to 100% by weight of butadiene units and 0 to 40% by weight of styrene units, and in which the core represents 60 to 95% by weight of the impact modifier of the “core-shell” type; and a shell which comprises 80 to 100% by weight of methyl methacrylate units and 0 to 20% by weight of monomeric modifying units, and in which the shell represents 5 to 40% by weight of the "impact modifier”.
  • core-shell ”.
  • the impact modifier of the composition is to the exclusion of an impact modifier of the “core-shell” type.
  • the content of impact modifier (C) relative to the total weight of the composition is from 1 to 20% by weight.
  • the content of impact modifier (C) relative to the total weight of the composition is from 1 to 15% by weight, in particular from 1 to 10% by weight.
  • the composition comprises from 1 to 8%, in particular from 2 to 6% and in particular from 3 to 6% by weight of impact modifier relative to the total weight of the composition.
  • the polyolefin is chosen from a functionalized polyolefin or a mixture of functionalized and non-functionalized polyolefin.
  • the functionalized polyolefin is a polyolefin carrying a function chosen from carboxylic acid, maleic anhydride and epoxy functions.
  • the additives are chosen from thinners, colorants, catalysts, stabilizers, in particular heat stabilizers, UV stabilizers, light stabilizers, surfactants, brighteners, organic pigments, antioxidants, color extenders. chain, lubricants, nucleating agents, with the exception of a particulate filler such as talc, waxes, carbon black as well as their mixtures. It is understood that particulate fillers and glass fibers are excluded from the additives.
  • the additives can be present up to 2% by weight relative to the total weight of the composition, in particular they are present from 1 to 2% by weight relative to the total weight of the composition.
  • fluidifying agent in particular prepolymers.
  • the prepolymer can be chosen from oligomers of aliphatic, linear or branched, cycloaliphatic, semi-aromatic or even aromatic polyamides.
  • the prepolymer can also be a copolyamide oligomer or a mixture of polyamide and copolyamide oligomers.
  • the prepolymer has a number-average molar mass Mn ranging from 1000 to 10000 g / mol, in particular from 1000 to 5000 g / mol. It can in particular be monofunctional NH 2 if the chain limiter used is a monoamine for example.
  • Mn 1000 / [NH 2 ], [NH2] being the concentration of amine functions in the copolyamide as determined for example by potentiometry .
  • catalyst denotes a polycondensation catalyst such as an inorganic or organic acid.
  • the proportion by weight of catalyst is from about 50 ppm to about 5000 ppm, in particular from about 100 to about 3000 ppm relative to the total weight of the composition.
  • the catalyst is chosen from phosphoric acid (H3PO4), phosphorous acid (H3PO3), hypophosphorous acid (H3PO2), or a mixture of these.
  • copper complex denotes in particular a complex between a monovalent or divalent copper salt with an organic or inorganic acid and an organic ligand.
  • the copper salt is chosen from cupric (Cu (II)) salts of hydrogen halide, cuprous (Cu (l)) salts of hydrogen halide and salts of aliphatic carboxylic acids.
  • the copper salts are chosen from CuCl, CuBr, Cul, CuCN, CuCl2, Cu (OAc) 2, cupric stearate.
  • Said copper-based complex may further comprise a ligand chosen from phosphines, in particular triphenylphosphines, mercaptobenzimidazole, EDTA, acetylacetonate, glycine, ethylene diamine, oxalate, diethylene diamine, triethylene tetraamine, pyridine, tetrabromobisphenyl-A, derivatives of tetrabisphenyl-A, such as epoxy derivatives, and chloro dimethanedibenzo (a, e) cyclooctene derivatives and mixtures thereof.
  • phosphines in particular triphenylphosphines, mercaptobenzimidazole, EDTA, acetylacetonate, glycine, ethylene diamine, oxalate, diethylene diamine, triethylene tetraamine, pyridine, tetrabromobisphenyl-A, derivatives of tetrabis
  • Phosphines denote alkylphosphines, such as tributylphosphine or arylphosphines such as triphenylphosphine (TPP).
  • said ligand is triphenylphosphine.
  • said copper-based complex further comprises a halogenated organic compound.
  • the halogenated organic compound can be any halogenated organic compound.
  • said halogenated organic compound is a bromine-based compound and / or an aromatic compound.
  • said aromatic compound is chosen in particular from decabromediphenyl, decabromodiphenyl ether, bromo or chloro styrene oligomers, polydibromostyrene,
  • said halogenated organic compound is a bromine-based compound.
  • Said halogenated organic compound is added to the composition in a proportion of 50 to 30,000 ppm by weight of halogen relative to the total weight of the composition, in particular from 100 to 10,000, in particular from 500 to 1,500 ppm.
  • the copper: halogen molar ratio is from 1: 1 to 1: 3000, in particular from 1: 2 to 1: 100.
  • said ratio is from 1: 1.5 to 1:15.
  • the antioxidant is based on a copper complex.
  • the heat stabilizer can be an organic stabilizer or more generally a combination of organic stabilizers, such as a primary antioxidant of phenol type (for example of the type of that of irganox 245 or 1098 or 1010 from the company Ciba), a secondary antioxidant of phosphite type.
  • a primary antioxidant of phenol type for example of the type of that of irganox 245 or 1098 or 1010 from the company Ciba
  • a secondary antioxidant of phosphite type such as a primary antioxidant of phenol type (for example of the type of that of irganox 245 or 1098 or 1010 from the company Ciba), a secondary antioxidant of phosphite type.
  • the UV stabilizer can be a HALS, which means Hindered Amine Light Stabilizer or an anti-UV (for example Tinuvin 312 from the company Ciba).
  • the light stabilizer may be of the hindered amine type (for example Tinuvin 770 from the company Ciba), a phenolic or phosphorus-based stabilizer.
  • the lubricant can be a fatty acid type lubricant such as stearic acid.
  • the nucleating agent is excluding talc and can be silica, alumina, clay
  • the present invention relates to a process for manufacturing the composition as defined above, in which the constituents of said composition are mixed by compounding, in particular in a twin-screw extruder, a co-mixer, or an internal mixer.
  • the present invention relates to a molded article obtainable from the composition as defined above, by injection molding.
  • said article is a quick connector for the field of transport, in particular the automobile and trucks.
  • said article is for the field of electricity and electronics, and in particular chosen from the group consisting of parts for portable devices, in particular mobile phones, connected watches, computers, or tablets.
  • said article is for the field of sports, in particular for sports shoe soles, for sports protections, and industrial applications.
  • the present invention relates to the use of a composition as defined above in injection molding for the preparation of a molded article as defined above.
  • compositions were prepared by melt blending the polymer granules with the staple fibers. This mixture was carried out by compounding on an MC26 type co-rotating twin-screw extruder with a temperature profile (T °) flat at 230 ° C. The screw speed is 300rpm and the flow rate is 25 kg / h.
  • the introduction of the glass fibers is carried out by lateral force-feeding.
  • Additives such as polyamide are added during the compounding process in the main hopper.
  • the PAU and PA1010 used were prepared according to methods well known to those skilled in the art and have a viscosity of 400 Pa.s and 100 Pa.s respectively as measured with a capillary rheometer of the Rheograph 25 type of the Goettfer brand. (die diameter 12mm) at 260 ° C, at a shear of 110 s-1, according to ISO11443: 2014.
  • the tensile modulus is measured according to ISO 527 at 23 ° C
  • the elongation at break and the tensile strength were measured at 23 ° C according to the ISO 527 standard.
  • the machine used is of the INSTRON 5966 type.
  • the speed of the cross member is 1 mm / min for the measurement of the modulus. and 5 mm / min for tensile strength and elongation at break.
  • the test conditions are 23 ° C, dry.
  • the ISO 527 IA geometry samples having previously been conditioned for 2 weeks at 23 ° C, 50% RH. The deformation is measured by a contact extensometer.
  • the impact resistance was determined according to ISO 179 / leA (Charpy) on test pieces of dimension 80mm x 10mm x 4mm, notched, at a temperature of 23 ° C +/- 2 ° C under a relative humidity of 50% + / - 10% or at -40 ° C +/- 2 ° C under a relative humidity of 50% +/- 10%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Quick-Acting Or Multi-Walled Pipe Joints (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

La présente invention concerne une composition, notamment utile pour le moulage par injection, comprenant : (A) de 29 à 74%, et plus particulièrement 34 à 64%, notamment de 44 à 54% en poids d'au moins un polyamide aliphatique semi-cristallin, ledit polyamide aliphatique semi-cristallin étant issu de la polycondensation : d'au moins un aminoacide en C 6 à C 18, préférentiellement en C 9 à C 18, plus préférentiellement en C 10 à C 18, encore plus préférentiellement en C 10 à C 12, notamment en C 11; ou d'au moins un lactame en C 6 à C 18 préférentiellement en C 9à C 18, plus préférentiellement en C 10à C 18, encore plus préférentiellement en C 10 à C 12, notamment, notamment en C 12; ou d'au moins une diamine Ca en C 4 -C 36, notamment en C 6 -C 36. préférentiellement C 6 - C 18 , préférentiellement C 6 à C 12, plus préférentiellement C 10 - C 12 avec au moins un diacide Cb en C 4 -C 36, notamment en C 6 -C 36, préférentiellement C 6 -C 18, préférentiellement C 10 -C 18 plus préférentiellement C 10 -C 12; (B) de 25 à 70%, et plus particulièrement 35 à 65%, notamment 45 à 55% en poids de fibres de verre constituées principalement de dioxyde de silice (Si02), d'oxyde d'aluminium (AI203) et d'oxyde de magnésium (MgO); lesdites fibres de verre (B) étant constituées de la composition suivante : de 62 à 66% en poids de Si02; (C) de 1 à 20% en poids d'au moins un modifiant choc; et (D) de 0 à 2%, de préférence 1 à 2% en poids d'au moins un additif, à l'exclusion de chromite de cuivre, de sulfure de zinc, de dioxyde de titane, de carbonate de calcium et d'un mélange maître coloré à base de polyoléfine; la somme des différents constituants (A) à (D) représentant 100% en poids.

Description

DESCRIPTION
TITRE : COMPOSITIONS A MOULER RENFORCEES AVEC DES FIBRES DE VERRE AYANT DES PROPRIETES CHOC AMELIOREES
[Domaine technique]
La présente invention concerne des compositions de polyamide, notamment utilisées pour le moulage par injection, pour les applications dans le domaine du connecteur rapide telles que pour les camions, les automobiles,..., mais également dans le domaine de l'électrique et de l'électronique, du sport et de l'industrie, son procédé de préparation et les articles obtenus à partir de cette composition.
[Technique antérieure]
Les tubes sont nécessaires pour transporter différents types de fluides. Par exemple, dans les véhicules à moteur, les tubes sont utilisés pour alimenter du carburant du réservoir vers le moteur, pour le circuit de refroidissement, pour le système hydraulique, pour le système de conditionnement d’air, etc.
Les polyamides sont largement utilisés pour la production de ces tubes. Au vu de toutes les exigences techniques en jeu, il est souvent nécessaire d’avoir recours à des structures multicouches. Par exemple, on utilise souvent au moins une couche extérieure basée sur un polyamide présentant un nombre moyen d’atomes de carbone relativement élevé par atome d’azote (tel que le PA 11 ou le PA 12), fournissant la souplesse, la résistance mécanique et chimique souhaitées aux tubes ; et au moins une couche interne appelée couche-barrière, fournissant l’imperméabilité nécessaire aux fluides transportés. Des polyamides présentant un nombre d’atomes de carbone relativement bas par atome d’azote (tels que par exemple le PA 6 ou le PA 6.6), ainsi que les matériaux non polyamide, tels qu’un copolymère d'éthylène-alcool vinylique, peuvent être inclus dans la couche- barrière.
Les tubes ci-dessus sont, soit liés les uns aux autres, soit liés à des pièces fonctionnelles (telles que des filtres), en utilisant des raccords ou connecteurs et notamment des connecteurs rapides.
Les connecteurs classiques sont usuellement fabriqués par moulage par injection, en utilisant un matériau polyamide, tel que le PA6, PA 11, PA 12 ou polyphtalamides (PPA), généralement renforcé par des fibres de verre, notamment de type E.
Cependant, les connecteurs rapides nécessitent un matériau rigide et donc ayant un module de traction élevé tel que déterminé selon la norme ISO 527, et qui présentent une bonne tenue choc, en particulier des propriétés de résistance à l'impact à -40°C élevées telle que déterminée selon la norme ISO 179/leA et notamment supérieures à celles de produits tels que du PAU avec 30% de fibres de verre de type E, ou du PAU ou du PA12 avec 50% de fibres de verre de type E. La demande internationale WO 2019/095099 décrit des compositions comprenant de 81 à 98% en poids de polyamide aliphatique linéaire présentant une moyenne d'atome de carbone dans les unités monomériques de C10-C14, de 1 à 9% en poids de fibre de verre de type S et de 1 à 10% en poids de modifiant choc.
Les compositions obtenues présentent une élongation à la rupture selon ISO 527 beaucoup plus faible pour les compositions comparatives comprenant des fibres de verre de type E par rapport aux fibres de verre de type S. Néanmoins, quelles que soient les fibres utilisées, le module de traction est trop faible pour des applications de connecteur rapide. Par ailleurs, ce document ne mentionne pas la tenue au choc à basse température (-40°C).
La demande US2014/0066561 décrit des compositions à base de polyamide, de fibres de verre constituées principalement de dioxyde de silicium, d’oxyde d’aluminium et d’oxyde de magnésium et des charges particulaires. Selon cette demande, dans de nombreux cas, les charges particulaires sont utilisées avec les fibres de verre, que ce soit pour colorer les composés de moulage en utilisant des pigments inorganiques ou pour effectuer d’autres modifications spécifiques des caractéristiques mais elles présentent le désavantage d'altérer souvent considérablement les caractéristiques mécaniques, en particulier en réduisant la résistance à la traction, l’allongement à la rupture et la résistance aux chocs.
Par ailleurs, toujours selon cette demande, les fibres dites de verre E à section circulaire sont utilisées presque exclusivement lors du renforcement de composés de moulage en polyamide avec des fibres de verre.
Conformément à la norme ASTM D578-00, les fibres de verre E se composent de 52 à 62% de dioxyde de silicium, de 12 à 16% d’oxyde d’aluminium, de 16 à 25% d’oxyde de calcium, de 0 à 10% de borax, de 0 à 5% d’oxyde de magnésium, de 0 à 2% d’oxydes alcalins, 0-1,5% de dioxyde de titane et 0-0,3% d’oxyde ferrique.
Selon US2014/0066561, sans charges particulaires, les propriétés mécaniques et notamment la résistance au choc des compositions avec fibres de verre de type E ou fibres de verre de type S sont sensiblement équivalentes mais néanmoins insuffisantes pour une application de connecteurs rapides. L'ajout de charges particulaires et notamment de chromite de cuivre dans ces compositions détériore les propriétés mécaniques de manière importante mais la dégradation est moins rapide avec les fibres S.
La demande US 2019/0153221 décrit des compositions à mouler présentant des propriétés choc améliorées et comprenant un polyamide aliphatique semi-cristallin, un modifiant choc et des fibres de verre.
La présente invention concerne donc une composition, notamment utile pour le moulage par injection, comprenant : (A) de 29 à 89 %, en particulier 29 à 74%, et plus particulièrement 34 à 64%, notamment de 44 à 54% en poids d'au moins un polyamide aliphatique semi-cristallin, ledit polyamide aliphatique semi- cristallin étant issu de la polycondensation : d'au moins un aminoacide en C6 à Cis, préférentiellement en Cg à Cis, plus préférentiellement en Cio à Cis, encore plus préférentiellement en Cio à C12, notamment en Cn ; ou d'au moins un lactame en C6 à Cis, préférentiellement en Cg à Cis, plus préférentiellement en Cio à Cis, encore plus préférentiellement en Cio à C12, notamment en C12; ou d'au moins une diamine Ca en C4-C36, notamment en C6-C36, préférentiellement C6-C18, préférentiellement C6-C12, plus préférentiellement C10-C12 avec au moins un diacide Cb en C4-C36, notamment en C6-C36, préférentiellement C6-C18, préférentiellement Cio-Cis, plus préférentiellement C10-C12;
(B) de 10 à 70, en particulier 25 à 70%, et plus particulièrement 35 à 65%, notamment 45 à 55%, en poids de fibres de verre constituées principalement de dioxyde de silice (Si02), d'oxyde d'aluminium (AI203) et d'oxyde de magnésium (MgO);
(C) de 1 à 20% en poids d'au moins un modifiant choc; et
(D) de 0 à 2%, de préférence 1 à 2 % en poids d'au moins un additif, à l'exclusion de chromite de cuivre, de sulfure de zinc, de dioxyde de titane, de carbonate de calcium et d'un mélange maître coloré à base de polyoléfine; la somme des différents constituants (A) à (D) représentant 100% en poids.
Les inventeurs ont donc trouvé de manière inattendue que l'utilisation d'un modifiant choc dans une composition comprenant un polyamide et au moins 10% de fibres de verre constituées principalement de dioxyde de silice (Si02), d'oxyde d'aluminium (AI203) et d'oxyde de magnésium (MgO) et dépourvue de charges particulaires permettait d'améliorer les propriétés mécaniques, en particulier la résistance au choc, et notamment à froid (-40°C), comparées à celles de la même composition avec des fibres de verre de type E ou celles de la même composition sans modifiant choc, qu'elle comprenne des fibres de verre de type E ou des fibres de verre constituées principalement de dioxyde de silice (Si02), d'oxyde d'aluminium (AI203) et d'oxyde de magnésium (MgO).
Dans un mode de réalisation, la présente invention concerne l'une des compositions définies ci- dessus dans lesquelles lesdites compositions sont à l'exclusion de charges particulaires et d'un mélange maître coloré à base de polyoléfine.
Dans un autre mode de réalisation, la présente invention concerne une composition, notamment utile pour le moulage par injection, constituée de : (A) de 29 à 89 %, en particulier 29 à 74%, et plus particulièrement 34 à 64%, notamment de 44 à 54% en poids d'au moins un polyamide aliphatique semi-cristallin, ledit polyamide aliphatique semi- cristallin étant issu de la polycondensation : d'au moins un aminoacide en C6 à Cis, préférentiellement en Cg à Cis, plus préférentiellement en Cio à Cis, encore plus préférentiellement en Cio à C12, notamment en Cn ; ou d'au moins un lactame en C6 à Cis, préférentiellement en Cg à Cis, plus préférentiellement en Cio à Cis, encore plus préférentiellement en Cio à C12, notamment en C12; ou d'au moins une diamine Ca en C4-C36, notamment en C6-C36, préférentiellement C6-C18, préférentiellement C6-C12, plus préférentiellement C10-C12 avec au moins un diacide Cb en C4-C36, notamment en C6-C36, préférentiellement C6-C18, préférentiellement Cio-Cis, plus préférentiellement C10-C12;
(B) de 10 à 70, en particulier 25 à 70%, et plus particulièrement 35 à 65%, notamment 45 à 55% en poids de fibres de verre constituées principalement de dioxyde de silice (Si02), d'oxyde d'aluminium (AI203) et d'oxyde de magnésium (MgO);
(C) de 1 à 20% en poids d'au moins un modifiant choc; et
(D) de 0 à 2%, de préférence 1 à 2 % en poids d'au moins un additif, la somme des différents constituants (A) à (D) représentant 100% en poids.
Cette dernière composition ne peut donc plus contenir du chromite de cuivre, du sulfure de zinc, du dioxyde de titane, du carbonate de calcium, un mélange maître coloré à base de polyoléfine ou des charges particulaires;
Cette dernière composition n'est donc constituée que des quatre constituants A à D.
Les charges particulaires sont bien connues de l'homme du métier et sont notamment telles que définies dans US2014/0066561.
En particulier, les charges particulaires exclues de la présente invention sont choisies parmi le talc, le mica, les silicates, le quartz, la wollastonite, le kaolin, les acides siliciques, le carbonate de magnésium, l'hydroxyde de magnésium, la craie, le carbonate de calcium broyé ou coupé, la chaux, le feldspath, les pigments inorganiques, tels que le sulfate de baryum, l’oxyde de zinc, le sulfure de zinc, le dioxyde de titane, l’oxyde ferrique, l’oxyde de manganèse ferrique, les oxydes métalliques, en particulier les spinelles, comme par exemple le spinelle ferrique de cuivre, l’oxyde cuivre- chrome, l’oxyde ferrique-zinc, l’oxyde de cobalt-chrome, l'oxyde de cobalt-aluminium, l'oxyde de magnésium-aluminium, l'oxyde de cuivre-chrome-manganèse, l'oxyde de cuivre-manganèse-fer, les pigments rutiles tels que le titane-zinc-rutile, le nickel-antimoine-titanate, les métaux ou alliages magnétiques ou magnétisables permanents, le matériau de remplissage de silicate concave, l'oxyde d’aluminium, le nitrure de bore, le carbure de bore, le nitrure d’aluminium, le fluorure de calcium et leurs mélanges. Elles incluent donc le chromite de cuivre, le sulfure de zinc, le dioxyde de titane et le carbonate de calcium.
Le mélange maître coloré à base de polyoléfine est tel que défini dans US2018237598. Notamment, le mélange maître coloré à base de polyoléfine peut comprendre des colorants, des pigments ou des colorants (dye) comme couleur à disperser dans la résine support souhaitée.
Des pigments appropriés comprennent par exemple des pigments inorganiques tels que des oxydes métalliques et des oxydes métalliques mixtes tels que l'oxyde de zinc, les dioxydes de titane, les oxydes de fer ou similaires; les sulfures tels que les sulfures de zinc ou similaires; les aluminates; les sulfosilicates de sodium; les sulfates et chromâtes; les ferrites de zinc; le bleu outremer; le pigment marron 24 (Pigment Brown 24); le pigment rouge 101 (Pigment Red 101); le pigment jaune 119 (Pigment Yellow 119); des pigments organiques tels que les azos, les di-azos, les quinacridones, les pérylènes, les acides naphtalène tétracarboxyliques, les flavanthrones, les isoindolinones, les tétrachloroisoindolinones, les anthraquinones, les anthanthrones, les dioxazines, les phtalocyanines et les lacs azoïques; le pigment bleu 60 (Pigment Blue 60), le pigment rouge 122 (Pigment Red 122), le pigment rouge 149 (Pigment Red 149), le pigment rouge 177 (Pigment Red 177), le pigment rouge 179 (Pigment Red 179), le pigment rouge 202 (Pigment Red 202), le pigment violet 29 (Pigment Violet 29), le pigment bleu 15 (Pigment Blue 15), le pigment vert 7 (Pigment Green 7), le pigment jaune 147 (Pigment Yellow 147) et le pigment jaune 150 (Pigment Yellow 150), ou des combinaisons comprenant au moins un des pigments précédents.
Les colorants appropriés comprennent, par exemple, les colorants organiques tels que la coumarine 460 (bleue), la coumarine 6 (verte), le rouge du Nil ou similaires; les complexes de lanthanides; les colorants hydrocarbonés et hydrocarbonés substitués; les hydrocarbures aromatiques polycycliques; les colorants à scintillation (de préférence des oxazoles et des oxadiazoles); les poly (2-8 oléfines) à substitution aryle ou hétéroaryle; les colorants de carbocyanine; les colorants et pigments à base de phtalocyanine; les colorants oxazine; les colorants carbostyryles; les colorants porphyrine; les colorants à l'acridine; les colorants anthraquinoniques; les colorants arylméthane; les colorants azoïques; les colorants au diazonium; les colorants nitrés; les colorants quinone imine; les colorants tétrazolium; les colorants thiazole; les colorants pérylène, les colorants périnone; le bis-benzoxazolylthiophène (BBOT); et les colorants au xanthène; les fluorophores tels que les colorants à décalage anti-stokes qui absorbent dans la longueur d'onde proche infrarouge et émettent dans la longueur d'onde visible, ou similaire; les colorants luminescents tels que le perchlorate de 5-amino-9-diéthyliminobenzo (a) phénoxazonium; le 7-amino-4-méthylcarbostyryl; la 7-amino-4-méthylcoumarine; la 3-(2-benzimidazolyl)-7-N, N-diéthylaminocoumarine; la 3-(2- benzothiazolyl)-7-diéthylaminocoumarine; le 2-(4-biphénylyl)-5-(4-t-butylphényl)-l,3,4- oxadiazole; le 2-(4-biphényl)-6-phénylbenzoxazole-l,3; le 2,5-bis-(4-biphénylyl)-l,3,4-oxadiazole; le 2,5-bis- (4-biphénylyl)-oxazole; le 4,4-bis- (2-butyloctyloxy)-p-quaterphényle; le p-bis (o- méthylstyryl)-benzène; le perchlorate de 5,9-diaminobenzo (a) phénoxazonium; le 4- dicyanométhylène-2-méthyl-6-(p-diméthylaminostyryl)-4H-pyrane; l'iodure de l,l-diéthyl-2,2- carbocyanine; l'iodure de 3,3-diéthyl-4,4,5,5-dibenzothiatricarbocyanine; la 7-diéthylamino-4- méthylcoumarine; la 7-diéthylamino-4-trifluorométhylcoumarine; le 2,2-diméthyl-p- quaterphényle; 2,2-diméthyl-p-terphényle; la 7-éthylamino-6-méthyl-4-trifluorométhylcoumarine; le 7-éthylamino-4-trifluorométhylcoumarine; le rouge du Nil; rhodamine 700; l'oxazine 750; la rhodamine 800; l'IR 125; l'IR 144; l'IR 140; l'IR 132; l'IR 26; l'IR 5; le diphénylhexatriène; le diphénylbutadiène; le tétraphénylbutadiène; le naphtaline; le anthracène; le 9,10- diphénylanthracène; le pyrène; le chrysène; le rubrene; le coronène; le phénanthrène ou similaire, ou des combinaisons comprenant au moins l’un des colorants précédents.
Les colorants (dye) appropriés peuvent comprendre, par exemple, le dioxyde de titane, les anthraquinones, les pérylènes, les périnones, les indanthrones, les quinacridones, les xanthènes, les oxazines, les oxazolines, les thioxanthènes, les indigoides, les thioindigoïdes, les naphtalimides, les cyanines, les xanthènes, les méthines, les lactonesophylènes, les coumarines (BBOT), les dérivés naphtalènetétracarboxyliques, les pigments monoazoïques et disazoïques, les triarylméthanes, les aminocétones, les dérivés bis (styryl) biphényles et similaires, ainsi que les combinaisons comprenant au moins l’un de ceux-ci.
Le mélange maître coloré comprend une résine de support de polyoléfine. Généralement, la résine support peut être choisie pour fournir une bonne dispersion du colorant à travers la résine support. Dans divers exemples, le mélange maître coloré à base de polyoléfine peut comprendre un polyéthylène ou une résine de support en polypropylène, bien que d’autres résines de support à base de polyoléfine puissent certainement être utilisées.
Le mélange maître à base de polyoléfine peut être mélangé avec la résine à base de polyamide et la fibre de verre.
S'agissant du polyamide (A)
La nomenclature utilisée pour définir les polyamides est décrite dans la norme ISO 1874-1:2011 "Plastiques - Matériaux polyamides (PA) pour moulage et extrusion - Partie 1 : Désignation", notamment en page 3 (tableaux 1 et 2) et est bien connue de l'homme du métier.
Un polyamide semi-cristallin, au sens de l'invention, désigne un polyamide qui présente une température de transition vitreuse (Tg) et une température de fusion (Tf) déterminées respectivement selon la norme ISO 11357-2 et 3 :2013, et une enthalpie de cristallisation lors de l'étape de refroidissement à une vitesse de 20K/min en DSC mesurée selon la norme ISO 11357-3 de 2013 supérieure à 30 J/g, de préférence supérieure à 35 J/g. Le polyamide semi-cristallin peut être substitué par au moins un polyamide amorphe dans une proportion de 0 à 30% en poids.
Avantageusement, la composition est dépourvue de polyamide amorphe.
Un polyamide amorphe au sens de l'invention désigne un polyamide qui ne présente qu'une température de transition vitreuse (Tg) (pas de température de fusion (Tf)), la Tg étant déterminée selon la norme ISO 11357-2:2013, ou un polyamide très peu cristallin ayant une température de transition vitreuse et un point de fusion tel que l'enthalpie de cristallisation lors de l'étape de refroidissement à une vitesse de 20K/min mesurée selon la norme ISO 11357-3 :2013 est inférieure à 30 J/g, notamment inférieure à 20 J/g, de préférence inférieure à 15 J/g.
Ledit au moins un polyamide amorphe peut être est un homopolyamide de formule XY ou un copolyamide de formule A/XY, XY étant un motif répétitif obtenu par polycondensation d'au moins une diamine cycloaliphatique (X) et d'au moins un acide dicarboxylique aliphatique (Y) en C4-C36, notamment C6-C36, préférentiellement C6-C18, préférentiellement C6-C12, plus préférentiellement C10-C12, tel que défini ci-dessus, ou d'au moins un acide dicarboxylique aromatique (Y) et A est un motif répétitif obtenu par polycondensation d'au moins un aminoacide en C6 à Cis, préférentiellement en Cio à Cis, plus préférentiellement en Cio à C12, ou d'au moins un lactame en C6 à Cis, préférentiellement en Cio à Cis, plus préférentiellement en Cio à C12, ou un motif répétitif obtenu par polycondensation d'au moins une diamine aliphatique (Ca) et d'au moins un acide dicarboxylique aliphatique (Cb) en C4-C36, notamment C6-C36, préférentiellement C6-C18, préférentiellement C6-C12, plus préférentiellement C10-C12, tel que défini ci-dessus.
La diamine cycloaliphatique (X) peut être choisie parmi le bis(3,5-dialkyl-4-aminocyclohexyl)- méthane, le bis(3,5-dialkyl-4-aminocyclohexyl)éthane, le bis(3,5-dialkyl-4-aminocyclohexyl)- propane, le bis(3,5-dialkyl-4-aminocyclo-hexyl)-butane, le bis-(3-méthyl-4-aminocyclohexyl)- méthane ou 3,3'-diméthyl-4,4'-diamino-dicyclohexyl-méthane couramment dénommé (BMACM) ou (MACM) (et noté B ci-après), le bis(p-aminocyclohexyl)-méthane couramment dénommé (PACM) (et noté P ci-après), en particulier la Dicykan®, l'isopropylidènedi(cyclohexylamine) couramment dénommé (PACP), l'isophorone-diamine (notée IPD ci-après) et le 2,6-bis(amino méthyl)norbornane couramment dénommé (BAMN) et la bis(aminométhyl)cyclohexane (BAC) , en particulier la 1,3-BAC ou la , en particulier la 1,4-BAC.
Avantageusement, elle est choisie parmi le bis-(3-méthyl-4-aminocyclohexyl)-méthane ou 3,3'- diméthyl-4,4'-diamino-dicyclohexyl-méthane couramment dénommé (BMACM) ou (MACM) (et noté B ci-après), le bis(p-aminocyclohexyl)-méthane couramment dénommé (PACM) (et noté P ci- après) et la bis(aminométhyl)cyclohexane (BAC) , en particulier la 1,3-BAC ou la , en particulier la 1,4-BAC. Lorsque (Y) est au moins un acide dicarboxylique aromatique (Y), il est avantageusement choisi parmi l'acide téréphtalique (noté T), l’acide isophtalique (noté I) et l'acide 2,6 naphtalène dicarboxylique (noté N) ou leurs mélanges, en particulier il est choisi parmi l'acide téréphtalique (noté T), l’acide isophtalique (noté I) ou leurs mélanges.
Lorsque (Y) est au moins un acide dicarboxylique aliphatique, il est tel que défini ci-dessous pour Cb.
Lorsque ledit au moins un polyamide semi-cristallin aliphatique est obtenu à partir de la polycondensation d'au moins un lactame, ledit au moins un lactame peut être choisi parmi un lactame en C6 à Cis, préférentiellement en Cio à Cis, plus préférentiellement en Cio à C12. Un lactame en C6 à C12 est notamment le caprolactame, le décanolactame, l'undécanolactame, et le lauryllactame.
Lorsque ledit au moins un polyamide semi-cristallin aliphatique est obtenu à partir de la polycondensation d'au moins un lactame, il peut donc comprendre un seul lactame ou plusieurs lactames.
Avantageusement, ledit au moins un polyamide semi-cristallin aliphatique est obtenu à partir de la polycondensation d'un seul lactame et ledit lactame est choisi parmi le lauryllactame et l'undécanolactame, avantageusement le lauryllactame.
Lorsque ledit au moins un polyamide semi-cristallin aliphatique est obtenu à partir de la polycondensation d'au moins un aminoacide, ledit au moins un aminoacide peut être choisi parmi un aminoacide en C6 à Cis, préférentiellement en Cio à Cis, plus préférentiellement en Cio à C12.
Un aminoacide C6 à C12 est notamment l’acide 6-aminohexanoïque, l’acide 9-aminononanoïque, l’acide 10-aminodécanoïque, l’acide 10-aminoundécanoïque, l’acide 12-aminododécanoïque et l’acide 11-aminoundécanoïque ainsi que ses dérivés, notamment l’acide N-heptyl-11- aminoundécanoïque.
Lorsque ledit au moins un polyamide semi-cristallin aliphatique est obtenu à partir de la polycondensation d'au moins un aminoacide il peut donc comprendre un seul aminoacide ou plusieurs aminoacides.
Avantageusement, ledit polyamide semi-cristallin aliphatique est obtenu à partir de la polycondensation d'un seul aminoacide et ledit aminoacide est choisi parmi l’acide 11- aminoundécanoïque et l’acide 12- aminododécanoïque, avantageusement l’acide 11- aminoundécanoïque.
Lorsque ledit au moins un polyamide semi-cristallin aliphatique est obtenu à partir de la polycondensation d'au moins une diamine Ca en C4-C36, notamment en C6-C36, préférentiellement C6-C18, préférentiellement C6-C12, plus préférentiellement C10-C12 avec au moins un diacide Cb en C4- C36, notamment en C6-C36, préférentiellement C6-C18, préférentiellement Cio-Cis, plus préférentiellement C10-C12, alors ladite au moins une diamine en Ca est une diamine aliphatique et ledit au moins un diacide Cb est un diacide aliphatique.
La diamine peut être linéaire ou ramifiée. Avantageusement, elle est linéaire.
Ladite au moins une diamine Ca en C4-C36 peut être en particulier choisi parmi la butaneméthylènediamine, la 1,5-pentaméthylènedimaine, la 1,6-hexaméthylènediamine la 1,7- heptaméthylènediamine, la 1,8-octaméthylènediamine, la 1,9-nonaméthylènediamine, la 1,10- décaméthylènediamine, 1,11-undécaméthylènediamine, la 1,12-dodécaméthylènediamine, la 1,13-tridécaméthylènediamine, la 1,14-tétradécaméthylènediamine, la 1,16- hexadécaméthylènediamine et la 1,18-octadécaméthylènediamine, l'octadécènediamine, l'eicosanediamine, la docosanediamine et les diamines obtenues à partir d'acides gras. Avantageusement, ladite au moins une diamine Ca est en C6-C36 et choisi parmi la 1,6- hexaméthylènediamine la 1,7-heptaméthylènediamine, la 1,8-octaméthylènediamine, la 1,9- nonaméthylènediamine, la 1,10-décaméthylènediamine, 1,11-undécaméthylènediamine, la 1,12- dodécaméthylènediamine, la 1,13-tridécaméthylènediamine, la 1,14-tétradécaméthylènediamine, la 1,16-hexadécaméthylènediamine et la 1,18-octadécaméthylènediamine, l'octadécènediamine, l'eicosanediamine, la docosanediamine et les diamines obtenues à partir d'acides gras. Avantageusement, ladite au moins une diamine Ca est en C6-C18 et choisi parmi la 1,6- hexaméthylènediamine la 1,7-heptaméthylènediamine, la 1,8-octaméthylènediamine, la 1,9- nonaméthylènediamine, la 1,10-décaméthylènediamine, 1,11-undécaméthylènediamine, la 1,12- dodécaméthylènediamine, la 1,13-tridécaméthylènediamine, la 1,14-tétradécaméthylènediamine, la 1,16-hexadécaméthylènediamine et la 1,18-octadécaméthylènediamine.
Avantageusement, ladite au moins une diamine Ca en C6 à C12, est en particulier choisi parmi la 1,5- pentaméthylènediamine, la 1,6-hexaméthylènediamine la 1,7-heptaméthylènediamine, la 1,8- octaméthylènediamine, la 1,9-nonaméthylènediamine, la 1,10-décaméthylènediamine, 1,11- undécaméthylènediamine, la 1,12-dodécaméthylènediamine.
Avantageusement, la diamine Ca utilisée est en Cio à C12, en particulier choisi parmi la 1,10- décaméthylènediamine, 1,11-undécaméthylènediamine, la 1,12-dodécaméthylènediamine.
Ledit au moins un acide dicarboxylique Cb en C4 à C36 peut être choisi parmi l'acide butanedioïque, l'acide pentanedioïque, l'acide l'acide adipique, l'acide subérique, l'acide azélaïque, l'acide sébacique, l'acide undécanedioïque, l'acide dodécanedioïque, l'acide brassylique, l'acide tétradécanedioïque, l'acide pentadécanedioïque, l'acide hexadécanedioïque, l'acide octadécanedioïque, et les diacides obtenus à partir d’acides gras. Avantageusement, ledit au moins un acide dicarboxylique Cb est en C6 à C36 et choisi parmi l'acide adipique, l'acide subérique, l'acide azélaïque, l'acide sébacique, l'acide undécanedioïque, l'acide dodécanedioïque, l'acide brassylique, l'acide tétradécanedioïque, l'acide pentadécanedioïque, l'acide hexadécanedioïque, l'acide octadécanedioïque, et les diacides obtenus à partir d’acides gras. Le diacide peut être linéaire ou ramifié. Avantageusement, il est linéaire.
Avantageusement, ledit au moins un acide dicarboxylique Cb est en C6 à Cis et est choisi parmi l'acide adipique, l'acide subérique, l'acide azélaïque, l'acide sébacique, l'acide undécanedioïque, l'acide dodécanedioïque, l'acide brassylique, l'acide tétradécanedioïque, l'acide pentadécanedioïque, l'acide hexadécanedioïque, l'acide octadécanedioïque.
Avantageusement, ledit au moins un acide dicarboxylique Cb est en Cio à Cis et est choisi parmi l'acide sébacique, l'acide undécanedioïque, l'acide dodécanedioïque, l'acide brassylique, l'acide tétradécanedioïque, l'acide pentadécanedioïque, l'acide hexadécanedioïque, l'acide octadécanedioïque.
Avantageusement, ledit au moins un acide dicarboxylique Cb est en Cio à C12 et est choisi parmi l'acide sébacique, l'acide undécanedioïque, l'acide dodécanedioïque.
Lorsque ledit polyamide semi-cristallin aliphatique est obtenu à partir de la polycondensation d'au moins une diamine Ca avec au moins un acide dicarboxylique Cb il peut donc comprendre une seule diamine ou plusieurs diamines et un seul acide dicarboxylique ou plusieurs acides dicarboxyliques. Avantageusement, ledit polyamide semi-cristallin aliphatique est obtenu à partir de la polycondensation d'une seule diamine Ca avec un seul acide dicarboxylique Cb.
Dans un mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation : d'au moins un aminoacide en C6 à Cis, préférentiellement en Cg à Cis, plus préférentiellement en Cio à Cis, encore plus préférentiellement en Cio à C12, notamment en Cn ; ou d'au moins un lactame en C6 à Cis, préférentiellement en Cg à Cis, plus préférentiellement en Cio à Cis, encore plus préférentiellement en Cio à C12, notamment en C12.
Dans une première variante de ce mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation d'au moins un aminoacide en Cg à Cis, ou d'au moins un lactame en Cg à Cis. Dans une seconde variante de ce mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation d'au moins un aminoacide en Cio à Cis ; ou d'au moins un lactame en Cio à Cis. Dans une troisième variante de ce mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation d'au moins un aminoacide en Cio à C12 ; ou d'au moins un lactame en Cio à C12. Dans une quatrième variante de ce mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation d'un aminoacide en Cn ; ou d'un lactame en C12.
Dans un autre mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation : d'au moins une diamine Ca en C4-C36, notamment en C6-C36, préférentiellement C6-C18, préférentiellement C6-C12, plus préférentiellement C10-C12 avec au moins un diacide Cb en C4-C36, notamment en C6-C36, préférentiellement C6-C18, préférentiellement Cio-Cis, plus préférentiellement C10-C12;
Dans une première variante de cet autre mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation d'au moins une diamine Ca en C4-C36, avec au moins un diacide Cb en C4-C36.
Dans une seconde variante de cet autre mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation d'au moins une diamine Ca en C4-C36, avec au moins un diacide Cb en C6- C36·
Dans une troisième variante de cet autre mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation d'au moins une diamine Ca en C4-C36, avec au moins un diacide Cb en C6-C18.
Dans une quatrième variante de cet autre mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation d'au moins une diamine Ca en C4-C36 avec au moins un diacide Cb en Cio-Cis.
Dans une cinquième variante de cet autre mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation d'au moins une diamine Ca en C4-C36 avec au moins un diacide Cb en C10-C12.
Dans une sixième variante de cet autre mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation d'au moins une diamine Ca en C6-C36 avec au moins un diacide Cb en C4-C36. Dans une septième variante de cet autre mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation d'au moins une diamine Ca en C6-C36 avec au moins un diacide Cb en C6-C36.
Dans une huitième variante de cet autre mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation d'au moins une diamine Ca en C6-C36 avec au moins un diacide Cb en C6-C18. Dans une neuvième variante de cet autre mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation d'au moins une diamine Ca en C6-C36 avec au moins un diacide Cb en Cio-Cis.
Dans une dixième variante de cet autre mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation d'au moins une diamine Ca en C6-C36 avec au moins un diacide Cb en C10- C12.
Dans une onzième variante de cet autre mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation d'au moins une diamine Ca en C6-C18 avec au moins un diacide Cb en C4-C36. Dans une douzième variante de cet autre mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation d'au moins une diamine Ca en C6-C18 avec au moins un diacide Cb en C6-C36.
Dans une treizième variante de cet autre mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation d'au moins une diamine Ca en C6-C18 avec au moins un diacide Cb en C6-C18.
Dans une quatorzième variante de cet autre mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation d'au moins une diamine Ca en C6-C18 avec au moins un diacide Cb en
Dans une quinzième variante de cet autre mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation d'au moins une diamine Ca en C6-C18 avec au moins un diacide Cb en C10-C12.
Dans une seizième variante de cet autre mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation d'au moins une diamine Ca en C6-C12 avec au moins un diacide Cb en C4-C36. Dans une dix-septième variante de cet autre mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation d'au moins une diamine Ca en C6-C12 avec au moins un diacide Cb en C6-C36.
Dans une dix-huitième variante de cet autre mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation d'au moins une diamine Ca en C6-C12 avec au moins un diacide Cb en C6-C18.
Dans une dix-neuvième variante de cet autre mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation d'au moins une diamine Ca en C6-C12 avec au moins un diacide Cb en C10-C18.
Dans une vingtième variante de cet autre mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation d'au moins une diamine Ca en C6-C12 avec au moins un diacide Cb en C10-C12.
Dans une vingt et unième variante de cet autre mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation d'au moins une diamine Ca en C10-C12 avec au moins un diacide Cb en C4-C36.
Dans une vingt deuxième variante de cet autre mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation d'au moins une diamine Ca en C10-C12 avec au moins un diacide Cb en C6-C36. Dans une vingt troisième variante de cet autre mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation d'au moins une diamine Ca en C10-C12 avec au moins un diacide Cb en C6-Ci8.
Dans une vingt quatrième variante de cet autre mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation d'au moins une diamine Ca en C10-C12 avec au moins un diacide Cb en C10-C18.
Dans une vingt cinquième variante de cet autre mode de réalisation, ledit polyamide semi-cristallin est issu de la polycondensation d'au moins une diamine Ca en C10-C12 avec au moins un diacide Cb en C10-C12.
Avantageusement, ledit polyamide aliphatique semi-cristallin est choisi parmi le PAU, PA12 et un polyamide semi-cristallin issu de la polycondensation d'au moins une diamine Ca en C4-C36 avec au moins un diacide Cb en C6-C18.
Avantageusement, ledit polyamide aliphatique semi-cristallin est choisi parmi le PAU, PA12 et un polyamide semi-cristallin issu de la polycondensation d'au moins une diamine Ca en C4-C36 avec au moins un diacide Cb en Cio-Cis.
Avantageusement, ledit polyamide aliphatique semi-cristallin est choisi parmi le PAU, PA12 et un polyamide semi-cristallin issu de la polycondensation d'au moins une diamine Ca en C4-C36 avec au moins un diacide Cb en C10-C12.
Avantageusement, ledit polyamide aliphatique semi-cristallin est choisi parmi le PAU, PA12 et un polyamide semi-cristallin issu de la polycondensation d'au moins une diamine Ca en C6-C36 avec au moins un diacide Cb en C6-C18.
Avantageusement, ledit polyamide aliphatique semi-cristallin est choisi parmi le PAU, PA12 et un polyamide semi-cristallin issu de la polycondensation d'au moins une diamine Ca en C6-C36 avec au moins un diacide Cb en Cio-Cis.
Avantageusement, ledit polyamide aliphatique semi-cristallin est choisi parmi le PAU, PA12 et un polyamide semi-cristallin issu de la polycondensation d'au moins une diamine Ca en C6-C36 avec au moins un diacide Cb en C10-C12.
Avantageusement, ledit polyamide aliphatique semi-cristallin est choisi parmi le PAU, PA12 et un polyamide semi-cristallin issu de la polycondensation d'au moins une diamine Ca en C6-C18 avec au moins un diacide Cb en C6-C36.
Avantageusement, ledit polyamide aliphatique semi-cristallin est choisi parmi le PAU, PA12 et un polyamide semi-cristallin issu de la polycondensation d'au moins une diamine Ca en C6-C18 avec au moins un diacide Cb en C6-C18. Avantageusement, ledit polyamide aliphatique semi-cristallin est choisi parmi le PAU, PA12 et un polyamide semi-cristallin issu de la polycondensation d'au moins une diamine Ca en C6-C18 avec au moins un diacide Cb en Cio-Cis.
Avantageusement, ledit polyamide aliphatique semi-cristallin est choisi parmi le PAU, PA12 et un polyamide semi-cristallin issu de la polycondensation d'au moins une diamine Ca en C6-C18 avec au moins un diacide Cb en C10-C12.
Avantageusement, ledit polyamide aliphatique semi-cristallin est choisi parmi le PAU, PA12 et un polyamide semi-cristallin issu de la polycondensation d'au moins une diamine Ca en C6-C12 avec au moins un diacide Cb en C6-C36.
Avantageusement, ledit polyamide aliphatique semi-cristallin est choisi parmi le PAU, PA12 et un polyamide semi-cristallin issu de la polycondensation d'au moins une diamine Ca en C6-C12 avec au moins un diacide Cb en C6-C18.
Avantageusement, ledit polyamide aliphatique semi-cristallin est choisi parmi le PAU, PA12 et un polyamide semi-cristallin issu de la polycondensation d'au moins une diamine Ca en C6-C12 avec au moins un diacide Cb en Cio-Cis.
Avantageusement, ledit polyamide aliphatique semi-cristallin est choisi parmi le PAU, PA12 et un polyamide semi-cristallin issu de la polycondensation d'au moins une diamine Ca en C6-C12 avec au moins un diacide Cb en C10-C12.
Avantageusement, ledit polyamide aliphatique semi-cristallin est choisi parmi le PAU, PA12 et un polyamide semi-cristallin issu de la polycondensation d'au moins une diamine Ca en C10-C12 avec au moins un diacide Cb en C4-C36.
Avantageusement, ledit polyamide aliphatique semi-cristallin est choisi parmi le PAU, PA12 et un polyamide semi-cristallin issu de la polycondensation d'au moins une diamine Ca en C10-C12 avec au moins un diacide Cb en C6-C36.
Avantageusement, ledit polyamide aliphatique semi-cristallin est choisi parmi le PAU, PA12 et un polyamide semi-cristallin issu de la polycondensation d'au moins une diamine Ca en C10-C12 avec au moins un diacide Cb en C6-C18.
Avantageusement, ledit polyamide aliphatique semi-cristallin est choisi parmi le PAU, PA12 et un polyamide semi-cristallin issu de la polycondensation d'au moins une diamine Ca en C10-C12 avec au moins un diacide Cb en Cio-Cis.
Avantageusement, ledit polyamide aliphatique semi-cristallin est choisi parmi le PAU, PA12 et un polyamide semi-cristallin issu de la polycondensation d'au moins une diamine Ca en C10-C12 avec au moins un diacide Cb en C10-C12.
Avantageusement, ledit polyamide aliphatique semi-cristallin est choisi parmi le PAU, PA12, PA1010, PA1012, PA1210 et PA1212, en particulier PAU et PA12, notamment PAU. S’agissant des fibres de verre (B)
Les fibres de verre (B) sont constituées principalement de dioxyde de silice (Si02), d'oxyde d'aluminium (AI203) et d'oxyde de magnésium (MgO);
Dans un mode de réalisation, ladite composition peut comprendre d'autres fibres de verre que les fibres de verre constituées principalement de dioxyde de silice (Si02), d'oxyde d'aluminium (AI203) et d'oxyde de magnésium (MgO), lesdites autres fibres de verre étant en proportion de 0 à 49,9% en poids par rapport au poids total des fibres de verre.
Avantageusement, lesdites autres fibres de verre sont en proportion de 0 à 40% en poids par rapport au poids total des fibres de verre, notamment de 0 à 30%, en particulier de 0 à 20%, plus particulièrement de 0 à 10%.
Par autre type de fibres de verre au sens de l'invention, on entend toute fibre de verre, notamment telle que décrite par Frederick T. Wallenberger, James C. Watson and Hong Li, PPG industries Inc. (ASM Handbook, Vol 21 : composites (#06781G), 2001 ASM International) et différentes de celles constituées principalement de dioxyde de silice (Si02), d'oxyde d'aluminium (AI203) et d'oxyde de magnésium (MgO), notamment de type choisi parmi E, R, ECR, D ou T, en particulier E, notamment composées de 52 à 62% de dioxyde de silicium, de 12 à 16% d’oxyde d’aluminium, de 16 à 25% d’oxyde de calcium, de 0 à 10% de borax, de 0 à 5% d’oxyde de magnésium, de 0 à 2% d’oxydes alcalins, 0-1,5% de dioxyde de titane et 0-0,3% d’oxyde ferrique conformément à la norme ASTM D578-00.
Les fibres de verre sont :
- soit à section circulaire de diamètre compris de 4 pm et 25 pm, de préférence de 4 à 15 pm.
- soit à section non circulaire avec un ratio L/D (L représentant la plus grande dimension de la section transverse de la fibre et D la plus petite dimension de la section transverse de ladite fibre) compris de 2 à 8, en particulier de 2 à 4. L et D peuvent être mesurés par microscopie électronique à balayage (MEB).
Avantageusement, les fibres de verre sont à section circulaire de diamètre compris de 4 pm et 25 pm, de préférence de 4 à 15 pm.
Dans un autre mode de réalisation, ladite composition comprend des fibres de verre constituées principalement de dioxyde de silice (Si02), d'oxyde d'aluminium (AI203) et d'oxyde de magnésium (MgO) à l'exclusion d'autres fibres de verre.
Dans un mode de réalisation, la présente invention concerne une composition telle que définie ci- dessus dans laquelle les fibres de verre (B) sont des fibres de verre de haute résistance mécanique à base de dioxyde de silice (Si02), d'oxyde d'aluminium (AI203) et d'oxyde de magnésium (MgO) ou des fibres de verre de haut module à base de dioxyde de silice (Si02), d'oxyde d'aluminium (AI203), d'oxyde de magnésium (MgO) et d'oxyde de calcium (CaO).
L'expression « à base de » signifie que la proportion de dioxyde de silice (Si02), d'oxyde d'aluminium (AI203) et d'oxyde de magnésium (MgO) est d'au moins 78% en poids par rapport au poids total des constituants présents dans lesdites fibres.
Les fibres de haute résistance mécanique peuvent être en particulier des fibres de type S, notamment des fibres présentant un module élastique >75 GPa, préférentiellement > 78 GPa, plus préférentiellement > 80 GPa, tel que mesuré selon ASTM C1557-03.
Dans un mode de réalisation, les fibres de verre de haute résistance à base de dioxyde de silice (Si02), d'oxyde d'aluminium (AI203) et d'oxyde de magnésium (MgO) ou des fibres de verre de haut module à base de dioxyde de silice (Si02), d'oxyde d'aluminium (AI203), d'oxyde de magnésium (MgO) et d'oxyde de calcium (CaO) présentent une constitution de 58-70% en poids de dioxyde de silicium (Si02), 15-30% en poids d’oxyde d’aluminium (AI203), 5-15% en poids d’oxyde de magnésium (MgO), 0-10% en poids d’oxyde de calcium (CaO) et 0-2% en poids d’autres oxydes, tels que le dioxyde de zirconium (Zr02), l’oxyde borique (B203), le dioxyde de titane (Ti02) ou l’oxyde de lithium (Li20).
Dans un autre mode de réalisation, ladite constitution est de 60 à 67% en poids de dioxyde de silicium (Si02), de 20 à 28% en poids d’oxyde d’aluminium (AI203), de 7 à 12% en poids d’oxyde de magnésium (MgO), 0 à 9% en poids d’oxyde de calcium (CaO) et 1,5% en poids d’autres oxydes, tels que le dioxyde de zirconium (Zr02), l’oxyde borique (B203), le dioxyde de titane (Ti02) ou l’oxyde de lithium (Li20).
Avantageusement, ladite constitution est de: 62-66% en poids de dioxyde de silicium (Si02), 22- 27% en poids d’oxyde d’aluminium (AI203), 8-12% en poids d’oxyde de magnésium (MgO), 0-9% en poids d’oxyde de calcium (CaO) et 0-1% en poids d’autres oxydes, tels que le dioxyde de zirconium (Zr02), l’oxyde borique (B203), le dioxyde de titane (Ti02) ou l’oxyde de lithium (Li20).
En particulier, lesdites fibre de verre de haute résistance ont de préférence une résistance à la traction supérieure ou égale à 3500 MPa, et / ou un allongement à la rupture d’au moins 5% tels que déterminé selon ASTM D2343.
Les fibres de verre de haute résistance mécanique selon l'invention peuvent être :
- soit à section circulaire de diamètre compris de 4 pm et 25 pm, de préférence de 4 à 15 pm
- soit à section non circulaire avec un ratio L/D (L représentant la plus grande dimension de la section transverse de la fibre et D la plus petite dimension de la section transverse de ladite fibre) compris de 2 à 8, en particulier de 2 à 4. L et D peuvent être mesurés par microscopie électronique à balayage (MEB).
S’agissant du modifiant choc (C) Par modifiant choc, il faut entendre un polymère à base polyoléfine présentant un module de flexion inférieur à 100 MPa mesuré selon la norme ISO 178 :2010 (23°C RH50%) et de Tg inférieure à 0°C (mesurée selon la norme 11357-2 :2013 au niveau du point d'inflexion du thermogramme DSC), en particulier une polyoléfine.
Le modifiant choc peut aussi être un polymère bloc de type PEBA (polyéther-bloc-amide) ayant un module de flexion < 200 MPa.
La composition peut en outre comporter un ou plusieurs modifiants chocs tels que définis ci-dessus. La présence d'un modifiant choc permet de conférer une plus grande ductilité aux articles fabriqués.
Le modifiant choc peut être une polyoléfine fonctionnalisée ou non fonctionnalisée ou être un mélange d’au moins une polyoléfine fonctionnalisée et/ou d’au moins une polyoléfine non fonctionnalisée. Lorsque la polyoléfine est fonctionnalisée, une partie ou la totalité de la polyoléfine porte une fonction choisie parmi les fonctions acides carboxylique, anhydride carboxylique et époxide.
Une polyoléfine est classiquement un homo polymère ou copolymère d’alpha oléfines ou de dioléfines, telles que par exemple, éthylène, propylène, butène-1, octène-1, butadiène. A titre d’exemple, on peut citer :
- les homo polymères et copolymères du polyéthylène, en particulier LDPE, HDPE, LLDPE (linear low density polyéthylène, ou polyéthylène basse densité linéaire), VLDPE (very low density polyéthylène, ou polyéthylène très basse densité) et le polyéthylène métallocène .
-les homopolymères ou copolymères du propylène.
- les copolymères éthylène/alpha-oléfine tels qu’éthylène/propylène, éthylène/octène, les EPR (abréviation d’éthylène-propylene-rubber) et éthylène/propylène/diène
(EPDM).
- les copolymères blocs styrène/éthylène-butène/styrène (SEBS), styrène/butadiène/styrène (SBS), styrène/isoprène/ styrène (SIS), styrène/éthylène-propylène/styrène (SEPS).
- les copolymères de l’éthylène avec au moins un produit choisi parmi les sels ou les esters d’acides carboxyliques insaturés tel que le (méth)acrylate d’alkyle (par exemple acrylate de méthyle), ou les esters vinyliques d’acides carboxyliques saturés tel que l’acétate de vinyle (EVA), la proportion de comonomère pouvant atteindre 40% en poids.
Les Peba (polyéther block amides) sont des copolymères comportant des blocs à motif polyamide et des blocs à motif polyéther. Ils peuvent également comporter des fonctions ester, notamment issu de la réaction de condensation de fonctions carboxyliques terminales des blocs polyamide avec les fonctions hydroxyle des blocs polyéther. Les Peba sont disponibles dans le commerce, notamment sous la marque Pebax® par la société Arkema. Avantageusement, le modifiant choc est choisi parmi le Fusabond® F493, le Tafmer MFI5020, un Lotader®, par exemple le Lotader® 4700, les Exxelor® VA1803, VA1801 et VA 1840, l'Orevac® IM800 ou un mélange de ceux-ci, dans ce cas ils sont dans un rapport allant de 0,1/99,9 à 99,9/0,1, les kratons® FG 1901, FG 1924, MD 1653, les Tuftec® M1913, M1911 et M 1943, et un Pebax®, en particulier le Pebax® 40R53 SP01.
Le modifiant choc peut également être un modifiant de type « core-shell », également désigné « copolymère de type cœur-écorce ». Le modifiant de type « core-shell » se présente sous la forme de fines particules ayant un cœur en élastomère et au moins une écorce thermoplastique, la taille des particules est en général inférieure au pm et avantageusement comprise de 150 à 500 nm. Le modifiant de type cœur écorce « core-shell » possède une base acrylique ou butadiène.
Dans un mode de réalisation, le modifiant choc de type « core-shell » est à l'exclusion d'un cœur qui comprend 60 à 100% en poids d’unités butadiène et 0 à 40% en poids d’unités styrène, et dans lequel le noyau représente 60 à 95% en poids du modifiant choc de type « core-shell »; et une écorce qui comprend 80 à 100% en poids d’unités méthacrylate de méthyle et 0 à 20% en poids d’unités monomères de modification, et dans laquelle l’écorce représente 5 à 40% en poids du modifiant choc de type « core-shell ».
Dans un autre mode de réalisation, le modifiant choc de la composition est à l'exclusion de modifiant choc de type « core-shell ».
Plusieurs modifiants chocs différents peuvent être présents dans la composition.
La teneur en modifiant choc (C) par rapport au poids total de la composition est de 1 à 20% en poids.
Selon certains modes de réalisation, la teneur en modifiant choc (C) par rapport au poids total de la composition est de 1 à 15% en poids, en particulier de 1 à 10% en poids.
Selon un autre mode de réalisation, la composition comprend de 1 à 8%, notamment de 2 à 6% et en particulier de 3 à 6 % en poids de modifiant choc par rapport au poids total de la composition. Dans un mode de réalisation, la polyoléfine est choisie parmi une polyoléfine fonctionnalisée ou un mélange de polyoléfine fonctionnalisée et non fonctionnalisée.
Avantageusement, la polyoléfine fonctionnalisée est une polyoléfine portant une fonction choisie parmi les fonctions acide carboxylique, anhydride maléique et époxy.
S’agissant des additifs (D)
Les additifs sont choisis parmi les agents fluidifiants, les colorants, les catalyseurs, les stabilisants, notamment les stabilisants thermiques, les stabilisants UV, les stabilisants à la lumière, les agents tensioactifs, les azurants, les pigments organiques, les antioxydants, les allongeurs de chaîne, les lubrifiants, les agents nucléants, à l'exception d'une charge particulaire telles que le talc, les cires, le noir de carbone ainsi que leurs mélanges. Il est bien entendu que les charges particulaires et fibres de verre sont exclus des additifs.
Les additifs peuvent être présents jusqu'à 2% en poids par rapport au poids total de la composition, en particulier ils sont présents de 1 à 2% en poids par rapport au poids total de la composition.
Par l'expression « agent fluidifiants », il faut entendre notamment des prépolymères.
Le prépolymère peut être choisi parmi les oligomères de polyamides aliphatiques, linéaires ou ramifiés, cycloaliphatiques, semi-aromatiques ou encore aromatiques. Le prépolymère peut également être un oligomère de copolyamide ou un mélange d'oligomères de polyamide et de copolyamide. De préférence, le prépolymère présente une masse molaire moyenne en nombre Mn allant de 1000 à 10000 g/mole, en particulier de 1000 à 5000 g/mol. Il peut être en particulier monofonctionnel NH2 si le limiteur de chaînes utilisé est une monoamine par exemple. La masse molaire en nombre (Mn) ou l'indice d'amine est calculé selon la formule suivante : Mn = 1000/[NH2], [NH2] étant la concentration de fonctions amine dans le copolyamide telle que déterminée par exemple par potentiométrie.
Le terme « catalyseur » désigne un catalyseur de polycondensation tel qu'un acide minéral ou organique.
Avantageusement, la proportion en poids de catalyseur est comprise d'environ 50 ppm à environ 5000 ppm, en particulier d'environ 100 à environ 3000 ppm par rapport au poids total de la composition.
Avantageusement, le catalyseur est choisi parmi l'acide phosphorique (H3P04), l'acide phosphoreux (H3P03), l'acide hypophosphoreux (H3P02), ou un mélange de ceux-ci.
L'expression complexe de cuivre désigne notamment un complexe entre un sel monovalent ou divalent de cuivre avec un acide organique ou inorganique et un ligand organique. Avantageusement, le sel de cuivre est choisi parmi les sels cuivriques (Cu(ll)) d'halogénure d'hydrogène, les sels cuivreux (Cu(l)) d'halogénure d'hydrogène et les sels d'acides carboxyliques aliphatiques.
En particulier, les sels de cuivre sont choisis parmi CuCI, CuBr, Cul, CuCN, CuCI2, Cu(OAc)2, le stéarate cuivrique.
Des complexes de cuivre sont notamment décrits dans US3505285.
Ledit complexe à base de cuivre peut de plus comprendre un ligand choisi parmi les phosphines, en particulier les triphenylphosphines, le mercaptobenzimidazole, l'EDTA, l'acétylacétonate, la glycine, l'éthylène diamine, l'oxalate, la diéthylène diamine, la triéthylène tetraamine, la pyridine, la tetrabromobisphenyl-A, les dérivés de tetrabisphenyl-A, tels que les dérivés epoxy, et les dérivés de chloro dimethanedibenzo(a,e)cyclooctène et leurs mélanges. diphosphone et le dipyridyl ou leurs mélanges, en particulier la triphénylphosphine et/ou le mercaptobenzimidazole. Les phosphines désignent les alkylphosphines, telle que la tributylphosphine ou les arylphosphines telle que la triphénylphosphine (TPP).
Avantageusement, ledit ligand est la triphénylphosphine.
Des exemples de complexes ainsi que leur préparation sont décrits dans le brevet CA 02347258. Avantageusement, ledit complexe à base de cuivre comprend de plus un composé organique halogéné.
Le composé organique halogéné peut être tout composé organique halogéné.
Avantageusement, ledit composé organique halogéné est un composé à base de brome et/ou un composé aromatique.
Avantageusement, ledit composé aromatique est notamment choisi parmi le decabromediphenyl, decabromodiphenyl ether, les oligomères de bromo ou chloro styrène, le polydibromostyrene, le Avantageusement, ledit composé organique halogéné est un composé à base de brome.
Ledit composé organique halogéné est ajouté à la composition en une proportion de 50 à 30000 ppm en poids d'halogène par rapport au poids total de la composition, notamment de 100 à 10000 en particulier de 500 à 1500 ppm.
Avantageusement, le ratio molaire cuivre:halogène est compris de 1 :1 à 1 :3000, notamment de 1 :2 à 1 :100.
En particulier, ledit ratio est compris de 1 :1,5 à 1:15.
Avantageusement, l'antioxydant est à base de complexe de cuivre.
Le stabilisant thermique peut être un stabilisant organique ou plus généralement une combinaison de stabilisants organiques, tel un antioxydant primaire de type phénol (par exemple du type de celle de l’irganox 245 ou 1098 ou 1010 de la société Ciba), un antioxydant secondaire de type phosphite.
Le stabilisant UV peut être un HALS, ce qui signifie Hindered Amine Light Stabiliser ou un anti-UV (par exemple le Tinuvin 312 de la société Ciba).
Le stabilisant à la lumière peut être de type amine encombrée (par exemple le Tinuvin 770 de la société Ciba), un stabilisant phénolique ou à base de phosphore.
Le lubrifiant peut être un lubrifiant de type acide gras tel que l'acide stéarique.
L'agent nucléant est à l'exclusion de talc et peut être de la silice, de l’alumine, de l’argile Selon un autre aspect, la présente invention concerne un procédé de fabrication de la composition telle que définie ci-dessus, dans lequel l'on mélange les constituants de ladite composition par compoundage, notamment dans une extrudeuse bi-vis, un comalaxeur, ou un mélangeur interne. Selon encore un autre aspect, la présente invention concerne un article moulé susceptible d'être obtenu à partir de la composition telle que définie ci-dessus, par moulage par injection.
Dans un mode de réalisation, ledit article est un connecteur rapide pour le domaine du transport, notamment de l'automobile et des camions.
Dans un autre mode de réalisation, ledit article est pour le domaine de l'électrique et l'électronique, et en particulier choisi dans le groupe consistant en les pièces pour dispositifs portables, notamment des téléphones portables, montres connectées, ordinateurs, ou tablettes.
Dans encore un autre mode de réalisation, ledit article est pour le domaine du sport, en particulier pour les semelles de chaussure de sport, pour les protections sportives, et les applications industrielles.
Selon encore un autre aspect, la présente invention concerne l'utilisation d'une composition telle que définie ci-dessus en moulage par injection pour la préparation d'un article moulé telle que défini ci-dessus.
EXEMPLES
Compoundage
Les compositions ont été préparées par mélange à l'état fondu des granulés de polymères avec les fibres courtes. Ce mélange a été effectué par compoundage sur extrudeuse bi-vis co-rotative type MC26 avec un profil de température (T°) plat à 230°C. La vitesse de vis est de 300rpm et le débit de 25 kg/h.
L'introduction des fibres de verre est effectuée en gavage latéral.
Les additifs comme le polyamide sont additionnés lors du procédé compoundage en trémie principale.
Les compositions suivantes ont été préparées (E = Exemple de l'invention C = exemple comparatif): [Tableaux 1]
Les propriétés mécaniques des compositions de l'invention et comparatives ont été testées :
Le PAU et le PA1010 utilisés ont été préparés selon les méthodes bien connues de l'homme du métier et présentent une viscosité de 400 Pa.s et de 100 Pa.s respectivement telle que mesurée avec un rhéomètre capillaire de type Rheograph 25 de marque Goettfer (diamètre de la filière 12mm) à 260°C, à un cisaillement de 110 s-1, selon la norme ISO11443:2014.
[Tableaux 2]
Le module de traction est mesuré selon ISO 527 à 23°C
L'allongement à la rupture et la résistance à la rupture ont été mesurés à 23°C selon la norme ISO 527. La machine utilisée est de type INSTRON 5966. La vitesse de la traverse est de 1 mm/min pour la mesure du module et de 5 mm/min pour la contrainte à la rupture et l'élongation à la rupture. Les conditions de test sont 23°C, à l'état sec. Les échantillons de géométrie ISO 527 IA ayant été au préalable conditionnés 2 semaines à 23°C, 50% HR. La déformation est mesurée par un extensomètre à contact.
La résistance au choc a été déterminée selon ISO 179 / leA (Charpy) sur des éprouvettes de dimension 80mm x 10mm x 4mm, entaillées, à une température de 23°C +/- 2°C sous une humidité relative de 50% +/- 10 % ou à -40°C +/-2°C sous une humidité relative de 50% +/- 10 %.
Ces résultats montrent que l'association de modifiant choc avec une quantité d'au moins 10% de fibre de verre constituées principalement de dioxyde de silice (Si02), d'oxyde d'aluminium (AI203) et d'oxyde de magnésium (MgO) avec un polyamide semi-cristallin est essentielle pour obtenir des articles issus de compositions de l'invention présentant un module de traction et une résilience à froid (choc charpy) élevés en comparaison avec des articles obtenus à partir de compositions comparatives comprenant une association de modifiant choc avec une quantité d'au moins 10% de fibre de verre de type E avec un polyamide semi-cristallin, ou avec des articles obtenus à partir de compositions comparatives comprenant une association de modifiant choc avec une quantité inférieure à 10% de fibre de verre de type E ou S2 avec un polyamide semi-cristallin, ou encore à partir de compositions comparatives comprenant une association d' une quantité d'au moins 10% de fibre de verre de type E ou S2 avec un polyamide semi-cristallin.

Claims

REVENDICATIONS
1. Composition, notamment utile pour le moulage par injection, comprenant :
(A) de 29 à 74%, et plus particulièrement 34 à 64%, notamment de 44 à 54% en poids d'au moins un polyamide aliphatique semi-cristallin, ledit polyamide aliphatique semi-cristallin étant issu de la polycondensation : d'au moins un aminoacide en C6 à Cis, préférentiellement en Cg à Cis, plus préférentiellement en Cio à Cis, encore plus préférentiellement en Cio à C12, notamment en Cu ; ou d'au moins un lactame en C6 à Cis, préférentiellement en Cg à Cis, plus préférentiellement en Cio à Cis, encore plus préférentiellement en Cio à C12, notamment en C12; ou d'au moins une diamine Ca en C4-C36, notamment en C6-C36, préférentiellement C6-C18, préférentiellement C6-C12, plus préférentiellement C10-C12 avec au moins un diacide Cb en C4-C36, notamment en C6-C36, préférentiellement C6-C18, préférentiellement Cio-Cis, plus préférentiellement C10-C12;
(B) de 25 à 70%, et plus particulièrement 35 à 65%, notamment 45 à 55% en poids de fibres de verre constituées principalement de dioxyde de silice (Si02), d'oxyde d'aluminium (AI203) et d'oxyde de magnésium (MgO); lesdites fibres de verre (B) étant constituées de la composition suivante : de 62 à 66% en poids de Si02 ; de 22 à 27% en poids d'AI203; de 8 à 12% en poids de MgO ; de 0 à 9% en poids d'oxyde de calcium (CaO) ; et de 0 à 1% en poids d'autres oxydes, le total étant égal à 100% en poids ;
(C) de 1 à 20% en poids d'au moins un modifiant choc; et
(D) de 0 à 2%, de préférence 1 à 2 % en poids d'au moins un additif, à l'exclusion de chromite de cuivre, de sulfure de zinc, de dioxyde de titane, de carbonate de calcium et d'un mélange maître coloré à base de polyoléfine; la somme des différents constituants (A) à (D) représentant 100% en poids.
2. Composition selon la revendication 1, dans laquelle le polyamide est choisi parmi le PAU, PA12, PA1010, PA1012, PA1210 et PA1212, en particulier PAU et PA12, notamment PAU.
3. Composition selon l'une des revendications 1 ou 2, dans laquelle le modifiant choc est choisi parmi un polymère à base de polyoléfine présentant un module de flexion inférieur à 100 MPa mesuré selon la norme ISO 178 :2010 (23°C RH50) et de Tg inférieure à 0°C (mesurée selon la norme 11357-2 :2013 au niveau du point d'inflexion du thermogramme DSC).
4. Composition selon la revendication 3, dans laquelle le modifiant choc est une polyoléfine, ladite polyoléfine étant fonctionnalisée ou non fonctionnalisée ou un mélange des deux.
5. Composition selon la revendication 4, dans laquelle la polyoléfine est choisie parmi une polyoléfine fonctionnalisée ou un mélange de polyoléfine fonctionnalisée et non fonctionnalisée.
6. Composition selon la revendication 4 ou 5, dans laquelle la polyoléfine fonctionnalisée est une polyoléfine portant une fonction choisie parmi les fonctions acide carboxylique, anhydride maléique et époxy.
7. Composition selon l'une des revendications 1 à 6, dans laquelle les additifs sont choisis parmi les agents fluidifiants, les colorants, les catalyseurs, les stabilisants, notamment les stabilisants thermiques, les stabilisants UV, les stabilisants à la lumière, les agents tensioactifs, les azurants, les antioxydants, les allongeurs de chaîne, les lubrifiants, les agents nucléants, les cires ainsi que leurs mélanges.
8. Composition selon l'une des revendications 1 à 7, dans laquelle le modifiant choc (C) est présent de 1 à 15% en poids, en particulier de 1 à 10% en poids.
9. Procédé de fabrication de la composition telle que définie aux revendications 1 à 8, dans lequel l'on mélange les constituants de ladite composition par compoundage, notamment dans une extrudeuse bi-vis, un comalaxeur, ou un mélangeur interne.
10. Article moulé susceptible d'être obtenu à partir de la composition selon l'une des revendications 1 à 8, par moulage par injection.
11. Article moulé selon la revendication 10, ledit article étant un connecteur rapide pour le domaine du transport, notamment de l'automobile et des camions.
12. Article moulé selon la revendication 10, pour le domaine de l'électrique et l'électronique, et en particulier choisi dans le groupe consistant en les pièces pour dispositifs portables, notamment des téléphones portables, montres connectées, ordinateurs, ou tablettes.
13. Article moulé selon la revendication 10, pour le domaine du sport, en particulier pour les semelles de chaussure de sport et pour les protections sportives.
EP21717147.9A 2020-03-24 2021-03-23 Compositions a mouler renforcees avec des fibres de verre ayant des proprietes choc ameliorees Pending EP4127063A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2002859A FR3108615B1 (fr) 2020-03-24 2020-03-24 Compositions a mouler renforcees avec des fibres de verre ayant des proprietes choc ameliorees
PCT/FR2021/050483 WO2021191547A1 (fr) 2020-03-24 2021-03-23 Compositions a mouler renforcees avec des fibres de verre ayant des proprietes choc ameliorees

Publications (1)

Publication Number Publication Date
EP4127063A1 true EP4127063A1 (fr) 2023-02-08

Family

ID=70295550

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21717147.9A Pending EP4127063A1 (fr) 2020-03-24 2021-03-23 Compositions a mouler renforcees avec des fibres de verre ayant des proprietes choc ameliorees

Country Status (7)

Country Link
US (1) US20230127646A1 (fr)
EP (1) EP4127063A1 (fr)
JP (1) JP2023518492A (fr)
KR (1) KR20220158258A (fr)
CN (1) CN115335457A (fr)
FR (1) FR3108615B1 (fr)
WO (1) WO2021191547A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020227847A1 (fr) 2019-05-10 2020-11-19 Evonik Operations Gmbh Composition de polyamide
CN118357633A (zh) * 2024-06-18 2024-07-19 天津市金桥焊材集团股份有限公司 一种用于高氮药芯焊丝堆焊的焊剂及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1237309B (de) 1965-09-11 1967-03-23 Bayer Ag Verfahren zur Herstellung waermestabilisierter Polyamide
CH663793A5 (de) * 1985-02-22 1988-01-15 Inventa Ag Thermoplastische glasfaserverstaerkte polyamidformmassen.
DE19847627A1 (de) 1998-10-15 2000-04-20 Brueggemann L Kg Mit Kupferkomplexen und organischen Halogenverbindungen stabilisierte Polyamidzusammensetzung
US8853324B2 (en) * 2006-11-22 2014-10-07 E I Du Pont De Nemours And Company Mobile telephone housing comprising polyamide resin composition
ES2621053T3 (es) 2012-08-28 2017-06-30 Ems-Patent Ag Masa de moldeo de poliamida y su uso
EP2719729A1 (fr) * 2012-10-10 2014-04-16 LANXESS Deutschland GmbH Masses de formage
WO2017029578A1 (fr) 2015-08-14 2017-02-23 Sabic Global Technologies B.V. Composites de nylon chargé de verre mélange maître de couleurs
WO2018011131A1 (fr) * 2016-07-13 2018-01-18 Ems-Patent Ag Matière à mouler polyamide thermoplastique conductible
US10941293B2 (en) 2017-11-14 2021-03-09 Evonik Operations Gmbh Polymer composition based on linear aliphatic polyamide
WO2019100198A1 (fr) * 2017-11-21 2019-05-31 Evonik Degussa Gmbh Composite polymère semi-transparent comprenant un polyamide aliphatique linéaire

Also Published As

Publication number Publication date
FR3108615A1 (fr) 2021-10-01
CN115335457A (zh) 2022-11-11
JP2023518492A (ja) 2023-05-01
US20230127646A1 (en) 2023-04-27
WO2021191547A1 (fr) 2021-09-30
KR20220158258A (ko) 2022-11-30
FR3108615B1 (fr) 2022-12-02

Similar Documents

Publication Publication Date Title
EP3006506B9 (fr) Polyamide pouvant s&#39;écouler
EP1227131B1 (fr) Composition transparente à base de polyamide
EP1651714B1 (fr) Composition electrostatique a base de matrice polyamide
EP4127063A1 (fr) Compositions a mouler renforcees avec des fibres de verre ayant des proprietes choc ameliorees
EP2001935B1 (fr) Polyamide de haute fluidité
EP4263669A1 (fr) Compositions de moulage a base de polyamide, de fibres de verre et de renfort de verre creux et leur utilisation
EP3481890A1 (fr) STRUCTURE BARRIERE A BASE DE COPOLYAMIDE BACT/XT DE HAUTE Tg
WO2020249899A1 (fr) Compositions de polyamide presentant un module eleve et une faible constante dielectrique et leur utilisation
EP3066156A1 (fr) Composition thermoplastique résistante aux chocs
FR2899232A1 (fr) Polyamide de haute fluidite
CA2196446C (fr) Films a base de polyamides et de polyolefines
BE1008064A3 (fr) Composition de resines thermoplastiques.
FR2909384A1 (fr) Polyamide de haute fluidite
WO2021255372A1 (fr) Compositions de moulage a base de polyamide, de fibres de carbone et de billes de verre creuses et leur utilisation
EP4165126A1 (fr) Compositions de polyamide presentant un module eleve et une faible constante dielectrique et leur utilisation
EP4416232A1 (fr) Composition adhésive thermofusible
FR3094011A1 (fr) Compositions de copolyamides comprenant des fibres de renforts presentant une stabilite de module elevee et leurs utilisations
FR3094010A1 (fr) Compositions de copolyamides comprenant des fibres de renforts et presentant une stabilité de module élevée et leurs utilisations
FR3101081A1 (fr) Compositions de polyamides comprenant des fibres de renfort et présentant une stabilité de module élevée et leurs utilisations
KR20200073335A (ko) 유리섬유 보강 폴리아미드 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
FR2719849A1 (fr) Composition de résines thermoplastiques.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221006

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)