EP4127026A1 - Copolymère linéaire pour la transfection de gènes - Google Patents

Copolymère linéaire pour la transfection de gènes

Info

Publication number
EP4127026A1
EP4127026A1 EP21714144.9A EP21714144A EP4127026A1 EP 4127026 A1 EP4127026 A1 EP 4127026A1 EP 21714144 A EP21714144 A EP 21714144A EP 4127026 A1 EP4127026 A1 EP 4127026A1
Authority
EP
European Patent Office
Prior art keywords
copolymer
rna
cells
active substance
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21714144.9A
Other languages
German (de)
English (en)
Inventor
Julia BENSEMHOUN
Hervé Cheradame
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polytheragene
Original Assignee
Polytheragene
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polytheragene filed Critical Polytheragene
Publication of EP4127026A1 publication Critical patent/EP4127026A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0233Polyamines derived from (poly)oxazolines, (poly)oxazines or having pendant acyl groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/146Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/88Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0206Polyalkylene(poly)amines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16041Use of virus, viral particle or viral elements as a vector
    • C12N2740/16043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16051Methods of production or purification of viral material
    • C12N2740/16052Methods of production or purification of viral material relating to complementing cells and packaging systems for producing virus or viral particles

Definitions

  • the present invention relates to polyethylenimine-based polymers and their use in gene transfer for therapeutic application.
  • Transfection uses complexes comprising two parts: an active element which is generally a nucleic acid, a plasmid, a DNA fragment, an RNA fragment and a gene transfer vector which may also include functions to help in the transformation. localization of the complex on the target cell or tissue.
  • the gene transfer vectors are typically viral vectors or synthetic vectors. Among the synthetic vectors, mention may be made of cationic lipids or polymeric vectors. Positive polyelectrolytes constitute a set of polymer vectors particularly suitable for gene transfer, insofar as their positive charge gives them properties of complexing DNA and plasmids, and of interaction with the target cell surfaces.
  • an objective of the present invention is to provide a copolymer useful for transfection and allowing improved transfection compared to existing vectors.
  • Another objective of the present invention is to provide such a copolymer which exhibits reduced toxicity.
  • the present invention relates to a linear polyethyleneimine copolymer (IPEI) comprising monomeric units of formula (I) and monomeric units of formula (II) wherein :
  • R 1 and R 2 identical or different, represent a hydrogen atom, an alkyl group, linear or branched, comprising from 1 to 10 carbon atoms, preferably from 1 to 2 carbon atoms, at least one of R 1 or R 2 represents H;
  • R is chosen from H or an amine protecting group, for example Boc (tert-butoxycarbonyl) or Fmoc (fluorenylemethoxycarbonyl); n is a number between 1 and 99% of the total monomers; and m is a number between 1 and 99% of the total monomers.
  • Boc tert-butoxycarbonyl
  • Fmoc fluorenylemethoxycarbonyl
  • the copolymer of the invention is a linear copolymer.
  • R 1 and R 2 represent H.
  • R represents H
  • R 1 , R 2 and R represent H.
  • R represents an amine protecting group, for example Boc (tert-butoxycarbonyl) or Fmoc (fluorenyl methoxycarbonyl).
  • R 1 , R 2 represent Fl and R represents an amine protecting group, for example Boc (tert-butoxycarbonyl (CFl 3 ) 3 -O-C0-).
  • R identical or different, represents Fl or an amine protecting group, for example Boc (tert-butoxycarbonyl) or Fmoc (fluorenyl methoxycarbonyl), at least one of R is an amine protecting group , for example Boc (tert-butoxycarbonyl) or Fmoc (fluorenylemethoxycarbonyl).
  • the copolymer of the invention is a random copolymer.
  • the copolymer of the invention can correspond to one of the following formulas: in which R, R 1 , R 2 , m and n are as defined above.
  • m is less than or equal to 70% of the total monomers, preferably m is between 1 and 70%, more preferably between 2 and 50%, preferably between 4 and 40%, for example between 5 and 35%, in particular between 10 and 30%, for example between 1 and 14%, of the total monomers.
  • n is greater than or equal to 30%, preferably n is between 30 and 99%, more preferably between 50 and 98%, preferably between 60 and 96%, for example between 65 and 95%, in particular between 80 and 90%, preferably between 70 and 90%, for example between 86 and 99%, of the total monomers.
  • copolymer of the invention can also comprise an additional monomer unit of the following formula III: in which
  • R 3 represents a C1-C6 alkyl group, preferably a methyl or ethyl group; r is a number between 0 and 95% of the total monomers, advantageously between 0 and 10% of the total monomers.
  • This monomer unit is also distributed randomly in the copolymer according to the invention.
  • the random copolymer according to the invention can have the following formula IX:
  • copolymer of the invention can also comprise monomer units comprising saccharide residues or poly (ethylene oxide) residues or peptide units, advantageously polylysine.
  • saccharide residues are advantageously chosen from residues of lactose, tetraglucose and mannose.
  • the saccharide residues and / or the poly (ethylene oxide) residues are grafted onto the nitrogen atom of the PEI unit of formula (I) advantageously via a CO group.
  • the proportion of these residues is such that the polyethylenimine is always generally linear in structure.
  • each of these residues is present in the copolymer in a proportion of less than 70% of the total monomers, advantageously in a proportion of less than 50% of the total monomers and even more advantageously in a proportion of less than 30% of the monomers. total, even more advantageously in a proportion of less than 10% of the total monomers.
  • each of these units is arranged randomly in the copolymer.
  • the copolymer has a molar mass of between 1000 and 200000 Da, preferably between 3000 and 50,000 Da.
  • the copolymer according to the invention has the capacity to be positively charged by the amine function.
  • the present invention also relates to a process for preparing the copolymers of the invention comprising the reaction between a polyethylene imine compound of formula (I) and a compound of formula (IV) and the deprotection of the amine functions.
  • R1 is as defined above and R 'represents a protective group for an amine function, for example Boc (COOtBu) or Fmoc, p being greater than n and m + n, or where appropriate m + n + r, is equal to p.
  • the compound of formula (IV) is the following compound:
  • the process of the invention may preferably correspond to grafting of a compound of formula (IV) onto a compound of formula (I), preferably the activated ester function (succidinimyl function).
  • the process of the invention can be implemented in a solvent, the solvent must allow the solubilization of the PEI, in particular methanol, water, preferably with a control of the pH at neutral pH (approximately 7), DMSO or chloroform, from preferably DMSO.
  • the solvent must allow the solubilization of the PEI, in particular methanol, water, preferably with a control of the pH at neutral pH (approximately 7), DMSO or chloroform, from preferably DMSO.
  • the deprotection step is optional, it can be total or partial, and is carried out in any manner known to those skilled in the art, in particular by the action of trifluoroacetic acid (TFA).
  • TFA trifluoroacetic acid
  • at least one of the Rs is different from Fl.
  • the process of the present invention is carried out at a temperature between 25 and 100 ° C, preferably between 50 and 80 ° C.
  • the product obtained can be purified by any technique known to those skilled in the art, in particular by extraction, for example with dichloromethane and then dialysis of the aqueous phases recovered.
  • the process of the invention therefore consists of a random reaction of a histidine derivative with polyethylenimine.
  • the degree of modification of the polyethylenimine and therefore the value of m in the copolymer according to the invention depends on the duration of the step of bringing the compound of formula (IV) into contact with the IPEI.
  • the duration of this step is at most 5 days, advantageously at most 4 days, more advantageously at most 3 days, more advantageously between 12 hours and 2 days, preferably between 24 h and 2 days .
  • the starting polyethylenimine has a molar mass of between 500 and 200,000 Da, preferably between 1,000 and 100,000 Da.
  • the copolymer of the invention can be used as a pharmaceutically acceptable carrier, in particular as a carrier for an active substance.
  • active substance any active substance that can be used:
  • pharmacies Mention may in particular be made of analgesics, antipyretics, aspirin and derivatives, antibiotics, anti-inflammatory drugs, antiulcer drugs, antihypertensives, neuroleptics, antidepressants, oligonucleotides, peptides, proteins;
  • the active substance is charged or capable of being negatively charged.
  • the copolymer according to the invention as mentioned above, is cationic or potentially cationic, thus an electrostatic type bond is created between the copolymer of the invention (i) and the active substance (ii).
  • the copolymer according to the invention can be used as a vector in transfection.
  • the present invention also relates to the copolymer according to the invention as an active substance carrier.
  • the present invention relates to the copolymer according to the invention for its use for the transfection of genes.
  • the present invention relates to the use of the copolymer according to the invention as a pharmaceutically acceptable carrier of an active substance in a pharmaceutical composition.
  • the present invention also relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a copolymer according to the invention, an active substance and optionally a pharmaceutically acceptable excipient.
  • the present invention also relates to the pharmaceutical composition according to the invention for its use for the transfection of genes.
  • the dosage may vary within wide limits depending on the therapeutic indication and the route of administration, as well as the age and weight of the subject.
  • patient in need is defined by the person skilled in the art.
  • patient is meant a human being or an animal.
  • a physician or veterinarian can identify, through clinical tests, physical examination, laboratory tests or diagnoses, and family and / or medical history, those individuals who need such treatment.
  • sufficient amount means an amount of compound according to the present invention effective for preventing or treating pathological conditions.
  • the sufficient amount can be determined by one skilled in the art, by means of conventional technique and by observation of the results obtained under like circumstances. To determine the sufficient quantity, various factors must be taken into account by a person skilled in the art, in particular and without being limited thereto: the subject, his size, his age, his general state of health, the disease involved and his degree of severity; subject response, type of compound, mode of administration, bioavailability of the composition administered, dosage, concomitant use of other drugs, etc.
  • compositions of the invention are intended for administration by the oral, sublingual, subcutaneous, intramuscular, intravenous, transdermal, local or rectal route. Mention may in particular be made of tablets, capsules, powders, granules, oral solutions or suspensions, forms of sublingual and buccal administration, forms of subcutaneous, intramuscular, intravenous, intranasal or intraocular administration and the forms rectal administration.
  • the pharmaceutically acceptable excipients mention may be made of gelatin, starch, lactose, magnesium stearate, talc, gum arabic or the like, a sweetener, an antiseptic, a flavoring agent, a coloring agent, dispersion, wetting agent, suspending agent or diluent.
  • the tablets can in particular be coated with sucrose or any other suitable material or else can be treated so as to have a prolonged or delayed activity and continuously release a predetermined amount of the active substance and of the copolymer according to the invention.
  • the composition may be in the form of suppositories prepared with binders melting at rectal temperature, for example cocoa butter or polyethylene glycols.
  • compositions for parenteral, intranasal or intraocular administration aqueous suspensions, isotonic saline solutions or sterile and injectable solutions are used which contain pharmacologically compatible dispersing agents and / or wetting agents.
  • the present invention also relates to a complex comprising: i) a copolymer according to the invention; ii) at least one anionic or potentially anionic active substance.
  • copolymer according to the invention is cationic or potentially cationic, thus an electrostatic type bond is created between the copolymer of the invention (i) and the active substance (ii).
  • the term “potentially cationic” means a substance which, after reaction with a bronsted acid or a halide, produces a cationic compound.
  • the term “potentially anionic” is understood to mean a substance which, after reaction with a base, produces an anionic compound.
  • the active substance is a nucleic acid.
  • the nucleic acid can be deoxyribonucleic acid (DNA), ribonucleic acid (RNA) or hybrid sequences (DNA / RNA). They may be sequences of natural or artificial origin, and in particular genomic DNA, complementary DNA (cDNA), messenger RNA (mRNA), transfer RNA (tRNA), ribosomal RNA. (RRNA), or synthetic or semi-synthetic sequences.
  • the nucleic acid can vary in size from oligonucleotide to chromosome. These nucleic acids can be of human, animal, plant, bacterial, viral, etc. origin.
  • nucleobases it is possible to use modified bases, such as in particular 5-bromouridine, 5-iodouridine, N 3 -methyl-uridine, 2,6-diaminopurine (DAP), 5-methyl-2'-deoxyCytidine, 5- (1-propynyl) -2'-deoxy-Uridine (pdU), 5- (1-propynyl) -2'- deoxyCytidine (pdC), or bases conjugated with cholesterol.
  • modified bases such as in particular 5-bromouridine, 5-iodouridine, N 3 -methyl-uridine, 2,6-diaminopurine (DAP), 5-methyl-2'-deoxyCytidine, 5- (1-propynyl) -2'-deoxy-Uridine (pdU), 5- (1-propynyl) -2'- deoxyCytidine (pdC), or bases conjugated with cholesterol.
  • advantageous modifications of the internucleotide backbone include the replacement of phosphodiester groups of this backbone by phosphorothioate, methylphosphonate, phosphorodiamidate groups, or the use of a backbone composed of N- (2-aminoethyl) -glycine units linked by peptide bonds (PNA, Peptide Nucleic Acid).
  • PNA Peptide Nucleic Acid
  • base, sugar, backbone can of course be combined to give modified nucleic acids of morpholino type (bases fixed on a morpholine ring and linked by phosphorodiamidate groups) or PNA (bases fixed on units of N- (2-aminoethyl ) -glycine linked by peptide bonds). They can moreover be incorporated into vectors, such as plasmid vectors.
  • the nucleic acid is selected from the group consisting of RNA, complementary DNA (cDNA), genomic DNA, plasmid DNA, antisense DNA, messenger RNA. , antisense RNA, interfering RNA, ribozymes, transfer RNA, ribosomal RNA, or DNA encoding these types of RNA.
  • deoxyribonucleic acids they can be single or double stranded. These nucleic acids can comprise a sequence of genes chosen from a) marker genes, b) genes for therapeutic purposes and c) genes for vaccination, and the elements allowing its expression.
  • the term "gene for therapeutic purposes” is understood to mean, in particular, any gene encoding a protein product having a therapeutic effect.
  • the protein product thus encoded can be a protein, a peptide, etc.
  • This protein product can be homologous to the target cell (that is to say a product which is normally expressed in the target cell when the latter shows no pathology).
  • the expression of a protein makes it possible, for example, to overcome insufficient expression in the cell or the expression of an inactive or weakly active protein due to a modification, or even to overexpress said protein.
  • the therapeutic gene can also encode a mutant of a cellular protein, having increased stability, altered activity, etc.
  • the protein product can also be heterologous with respect to the target cell.
  • an expressed protein can for example complete or provide a deficient activity in the cell, allowing it to fight against a pathology, or stimulate an immune response.
  • the therapeutic gene can also code for a protein secreted in the body.
  • the therapeutic gene can also be an antisense gene or sequence, the expression of which in the target cell makes it possible to control the expression of genes or the transcription of cellular RNAs.
  • Such sequences can, for example, be transcribed in the target cell into RNA complementary to cellular mRNAs and thus block their translation into protein. It can also be synthetic oligonucleotides, optionally modified.
  • Antisenses also include sequences encoding ribozymes, which are capable of selectively destroying target RNAs.
  • the therapeutic gene can also be a gene encoding an siRNA or a shRNA.
  • the genes for therapeutic purposes are chosen from the genes encoding:
  • cystic fibrosis transmembrane conductance regulator associated with cystic fibrosis the protein CFTR cystic fibrosis transmembrane conductance regulator associated with cystic fibrosis
  • EPO Erythropoietin
  • cytokines such as interleukins and TNF tumor necrosis factor
  • TGFbeta and PDGF growth factors
  • ADA - adenosinedesaminase
  • HLA-B7 proteins of the major histocompatibility complex, preferably HLA-B7;
  • the nucleic acid may also contain one or more genes for vaccine purposes capable of generating an immune response in humans or animals.
  • the invention therefore allows the production either of vaccines or of immunotherapeutic treatments applied to humans or animals, in particular against microorganisms, parasites, bacteria, viruses or cancers. . They may in particular be antigenic peptides specific for the Epstein Barr virus, the HIV virus, the hepatitis B virus, the pseudorabies virus, or else specific for tumors.
  • the genes for vaccine purposes are advantageously chosen from the genes coding for:
  • - Viral antigens advantageously the nucleoprotein of the influenza virus or the NEF or GAG protein of the HIV virus;
  • the MARTI antigen for melanoma cancers advantageously the MARTI antigen for melanoma cancers, mucins or the PSA antigen for prostate cancer;
  • the marker gene is chosen from the genes of:
  • the respective proportions of the copolymer according to the invention and of the nucleic acid are preferably determined so that the mass ratio (pg / pg) between the copolymer and the nucleic acid or between 1 and 10, preferably between 3 and 6.
  • This ratio can of course be adapted by a person skilled in the art depending on the copolymer used, the possible presence of an adjuvant, the nucleic acid, the target cell and the mode of administration used.
  • the complexes according to the invention can be prepared by mixing a solution of the nucleic acid concerned and a solution of the copolymer according to the invention.
  • these solutions are prepared from physiological serum or from a buffer, such as hepes buffer, or from a cytocompatible medium.
  • the present invention further relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a complex according to the invention and optionally a pharmaceutically acceptable excipient.
  • the pharmaceutical composition according to the invention can be used as it is or in combination with other compounds.
  • the composition according to the present invention additionally comprises an adjuvant capable of combining with the copolymer / nucleic acid complex according to the invention and of improving the transfecting power.
  • the transfecting power of the compositions of the invention can be further improved in the presence of certain adjuvants (lipids, proteins, lipopolyamines, synthetic polymers for example), capable of combining with the copolymer / nucleic acid complex according to the invention.
  • the adjuvants used in the compositions according to the invention are cationic lipids (comprising one or more cationic charges in their polar part) or neutral lipids.
  • cationic lipids it may more particularly be lipopolyamine.
  • Other adjuvants which are particularly advantageous for the preparation of the compositions of the invention are represented by neutral lipids.
  • neutral lipids are particularly advantageous when the charge ratio R (amines / phosphates) is low.
  • R amines / phosphates
  • These various lipids can be obtained either by synthesis or by extraction from organs (for example: the brain) or from eggs, by standard techniques well known to those skilled in the art.
  • compositions of the present invention comprise a targeting element making it possible to direct the transfer of the nucleic acid.
  • This targeting element can be an extracellular targeting element, making it possible to direct the transfer of the nucleic acid to certain cell types or certain desired tissues (tumor cells, hepatic cells, hematopoietic cells, etc.). It can also be an intracellular targeting element, making it possible to direct the transfer of the nucleic acid to certain privileged cellular compartments (mitochondria, nucleus, etc.).
  • the targeting elements which can be used in the context of the invention, mention may be made of sugars, peptides, oligonucleotides, lipids or proteins.
  • sugars, peptides or proteins such as antibodies or fragments of antibodies, ligands of cellular receptors or fragments thereof, receptors or fragments of receptors, etc.
  • they may be ligands of growth factor receptors, cytokine receptors, cellular lectin receptors or adhesion protein receptors.
  • the targeting element can also be a sugar making it possible to target the asialoglycoprotein receptors, or else an antibody Fab fragment making it possible to target the receptor for the Fc fragment of immunoglobulins.
  • compositions according to the invention can be formulated with a view to topical, cutaneous, oral, rectal, vaginal, parenteral, intranasal, intravenous, intramuscular, subcutaneous, intraocular, transdermal, etc. administration.
  • the pharmaceutical compositions of the invention contain a pharmaceutically acceptable vehicle for an injectable formulation, in particular for direct injection into the desired organ, or for topical administration (on the skin and / or mucosa). They may in particular be sterile, isotonic solutions or dry decompositions, in particular lyophilized ones, which, by adding sterilized water or physiological serum as the case may be, allow the constitution of injectable solutions.
  • the doses of nucleic acid used for the injection as well as the number of administrations can be adapted according to various parameters, and in particular according to the mode of administration used, the pathology concerned, the gene to be expressed, or else. the duration of the treatment sought.
  • the complexes and compositions according to the invention can be used for the transfer of nucleic acids into cells in vivo, in vitro or ex vivo.
  • the copolymers according to the invention can be used for very efficiently transferring nucleic acids into numerous cell types, and in particular in certain cell types which are usually difficult to transfect.
  • the present invention therefore also relates to a method for transfecting in vitro or ex vivo a nucleic acid in cells, said method comprising bringing said cells into contact with at least one complex according to the present invention or a pharmaceutical composition according to the invention.
  • the cells can be of prokaryotic or eukaryotic origin, in particular animal, plant or human.
  • the cells are mammalian cells, advantageously chosen from:
  • hematopoietic stem cells - cells of the immune system, such as dendritic cells, macrophages and lymphocytes;
  • - skin cells such as fibroblasts, keratinocytes, dendritic cells and melanocytes
  • - cells of blood vessels and microvessels such as endothelial cells and smooth muscle cells
  • - connective tissue cells such as tenocytes.
  • the in vitro or ex vivo transfection method is characterized in that a complex or a pharmaceutical composition according to the invention is brought together in a medium containing cells to be transfected. , under conditions such that there are:
  • the present invention further relates to the use of a copolymer according to the invention for the preparation of a pharmaceutical composition intended for the intracellular delivery of anionic molecules, advantageously of nucleic acid in particular as defined above.
  • a complex according to the invention for its use as a medicament intended for the intracellular delivery of nucleic acid, advantageously intended for the treatment of tumors, more advantageously of leiomyomeuterin or of a malignant tumor such as carcinoma of the ovaries, of the breast or endometrium, for the preparation of a vaccine or for the treatment or prevention of congenital or acquired metabolic deficiency or diseases associated with deficient gene expression, more preferably for the treatment of diseases related to disorders of a gene unique such as severe combined immune deficiency syndromes, cystic fibrosis, hemophilia, sickle cell anemia, beta thalassemia and muscular dystrophy.
  • the examples of the present application implement a cell viability assay.
  • This MTT assay evaluates cell viability in a 3- (4,5) -dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT) bromide assay.
  • the cells are seeded at a rate of 2.5 ⁇ 10 4 cells per well in a culture medium (100 ⁇ L) in a 96-well plate.
  • the culture medium is MEM (minimum essential medium) supplemented with 10% decomplemented fetal calf serum (FBS) containing 100 U / ml of penicillin, 100 mg / ml of streptomycin, 1% of non-essential amino acid and 1 % of GlutaMAX.
  • the cells are seeded at a rate of 2 ⁇ 10 4 cells per ml and are maintained at 37 ° C. in a humid oven in an atmosphere at 5% CO 2.
  • the culture medium is removed and the polymers whose cytotoxicity is to be evaluated are added (100 ⁇ L of solution) to each well, and the cells are incubated at 37 ° C. After 4 hours, the medium is removed and the cells are cultured for 48 hours at 37 ° C. in MEM culture medium. 48 hours later, MTT is added (5 mg / mL in PBS) at the rate of 10 ⁇ L in each well and the whole is incubated for 4 hours at 37 ° C. MTT is converted into an insoluble dye by living cells and it is solubilized using acidified isopropanol. Absorbance is measured at 570 nm. The percentage of cytotoxicity is (A 0 - A) / A 0 x100 where A is the absorbance of the treated cells and A 0 that of the control cells cultured under the same conditions
  • Example 1 Preparation of a copolymer according to the invention
  • the product thus obtained is the copolymer of the invention, called protected copolymer. It is, firstly, purified by carrying out two liquid-liquid extractions (H 2 0 / DCM) and then secondly, by dialysis for at least 48 hours using 100OMWCo strands. After lyophilization, the product is recovered in the form of a white powder.
  • Example 2 Toxicity of the copolymer of the invention compared to that of the linear polyethylenimine polymer
  • the deprotected polymer according to the invention or the IPEI was placed in incubation at different concentrations with HeLa cells (2.5 ⁇ 10 4 cells / ml) for 24 hours at 37 ° C. Cellular viability then was measured using the MTT test described above. The results are reported in the table below.
  • the cytotoxicity of the IPEI turns out to be always greater than that of the polymer according to the invention, the cell viability resulting from the incubation of the IPEI being lower. .
  • the cytotoxicity of the deprotected copolymer according to the invention and of the IPEI was evaluated in HeLa cells by incubating increasing levels of the copolymers. The tests were carried out according to the MTT protocol described above. The IC50 results are given in Table II below, at a concentration of 27 pg / mL.
  • Example 3 Preparation of the copolymer complex of Example 1 (protected or unprotected) with pCMV-EGFP
  • MEM Minimum Essential Medium
  • FBS fetal calf serum
  • the cells are seeded at a rate of 2 ⁇ 10 4 cells per ml and are maintained at 37 ° C. in a humid oven in an atmosphere at 5% CO 2.
  • Tri-transfection (pTRIP-GFP, 8.81 and VSV-G) was performed with amounts of plasmid in the mass ratio 2-2-1 pg / well respectively (5 pg / well).
  • the cell medium is removed and replaced with the transfection solution.
  • the incubation lasts 16 hours, the medium is then changed and the cells are allowed to incubate in OptiMEM without transfection agent.
  • the supernatant is collected after 20, 24, 40, 44 and 48 hours (after the start of the experiment, ie 4 hours, 8 hours, 24 hours, 28 hours and 32 hours after removing the transfection agent) and the viral titer is measured.
  • the results for the deprotected polymer according to the invention are given in Table 3 below.
  • the viral titer is assayed by a qPCR method well known to those skilled in the art.
  • the viral titer can also be measured by a protein assay to have the quantity of viral particles present, which are assemblages of 3 proteins (VP1, VP2, VP3) (MTT assay).
  • MTT assay assemblages of 3 proteins
  • the transfection efficiency tests were also carried out with the protected copolymers of the invention, with a DNA / copolymer mass ratio of 1/6 and with different proportion of histidine.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

La présente invention concerne un copolymère de polyéthylèneimine linéaire comprenant des unités monomériques de formule (I) et des unités monomériques de formule (II) et son utilisation pour la transfection de gènes.

Description

COPOLYMERE LINEAIRE POUR LA TRANSFECTION DE GENES
La présente invention concerne des polymères à base de polyéthylènimine et leur utilisation dans le transfert de gènes en vue d’application thérapeutique.
Dans certaines thérapies il est souhaitable de corriger les défauts génétiques dans des cellules cibles. Pour ce faire, il convient de transférer des gènes dans les cellules cibles. Le problème principal auquel se heurte le transfert de gènes in-vivo est de garantir l’efficacité du transfert dans les tissus ou cellules visés accompagnés d’un haut niveau d’expression du gène. La transfection utilise des complexes comprenant deux parties : un élément actif qui est généralement un acide nucléique, un plasmide, un fragment d’ADN, un fragment d’ARN et vecteur de transfert de gènes pouvant également comprendre des fonctions permettant d’aider à la localisation du complexe sur la cellule ou tissu cible. Les vecteurs de transfert de gènes sont typiquement des vecteurs viraux ou des vecteurs synthétiques. Parmi les vecteurs synthétiques on peut citer les lipides cationiques ou les vecteurs polymériques. Les polyélectrolytes positifs constituent un ensemble de vecteurs polymères particulièrement adapté au transfert de gènes, dans la mesure ou leur charge positive leur confère des propriétés de complexation de l’ADN et des plasmides, et d’interaction avec les surfaces cellulaires visées.
Des polymères cationiques ont déjà été décrits dans W02009/112402. Il existe cependant toujours un intérêt à proposer de nouveaux copolymères permettant notamment une transfection améliorée notamment des gènes.
Ainsi, un objectif de la présente invention est de fournir un copolymère utile pour la transfection et permettant une transfection améliorée par rapport aux vecteurs existants.
Un autre objectif de la présente invention est de fournir un tel copolymère qui présente une toxicité réduite.
D’autres objectifs encore apparaîtront à la lumière de la description de l’invention qui suit. La présente invention concerne un copolymère de polyéthylèneimine linéaire (IPEI) comprenant des unités monomériques de formule (I) et des unités monomériques de formule (II) dans lesquels :
R1 et R2, identiques ou différents, représentent un atome d’hydrogène, un groupe alkyle, linéaire ou ramifié, comprenant de 1 à 10 atomes de carbone, de préférence de 1 à 2 atomes de carbone, l’un au moins de R1 ou R2 représente H ;
R, identique ou différent, est choisi parmi H ou un groupe protecteur d’amine, par exemple Boc (tert-butoxycarbonyle) ou Fmoc (fluorenylemethoxycarbonyle) ; n est un nombre compris entre 1 et 99% des monomères totaux ; et m est un nombre compris entre 1 et 99% des monomères totaux.
Avantageusement, le copolymère de l’invention est un copolymère linéaire.
De préférence, R1 et R2 représentent H.
Dans un premier mode de réalisation, R représente H.
De préférence R1, R2 et R représentent H.
Dans un second mode de réalisation R représente un groupe protecteur d’amine, par exemple Boc (tert-butoxycarbonyle) ou Fmoc (fluorenyle methoxycarbonyle).
De préférence, R1, R2 représentent Fl et R représente un groupe protecteur d’amine, par exemple Boc (tert-butoxycarbonyle (CFl3)3-0-C0-).
Dans un troisième mode de réalisation, R, identique ou différent, représente Fl ou un groupe protecteur d’amine, par exemple Boc (tert-butoxycarbonyle) ou Fmoc (fluorenyle methoxycarbonyle), au moins un des R est un groupe protecteur d’amine, par exemple Boc (tert-butoxycarbonyle) ou Fmoc (fluorenylemethoxycarbonyle). De préférence, le copolymère de l’invention est un copolymère statistique. Le copolymère de l’invention peut répondre à l’une des formules suivantes : dans lesquels R, R1, R2, m et n sont tels que définis ci-dessus.
De préférence, dans le copolymère de l’invention, m est inférieur ou égal à 70% des monomères totaux, de préférence m est compris entre 1 et 70%, plus préférentiellement entre 2 et 50%, de préférence entre 4 et 40%, par exemple entre 5 et 35%, notamment entre 10 et 30%, par exemple entre 1 et 14%, des monomères totaux.
De préférence, dans le copolymère de l’invention, n est supérieur ou égal à 30%, de préférence n est compris entre 30 et 99%, plus préférentiellement entre 50 et 98%, de préférence entre 60 et 96%, par exemple entre 65 et 95%, notamment entre 80 et 90%, de préférence entre 70 et 90%, par exemple entre 86 et 99%, des monomères totaux.
Le copolymère de l’invention peut en outre comprendre une unité monomère supplémentaire de formule III suivante : dans laquelle
R3 représente un groupe alkyle en C1-C6, de préférence un groupe méthyle ou éthyle ; r est un nombre compris entre 0 et 95% des monomères totaux, avantageusement entre 0 et 10% des monomères totaux.
Cette unité monomère est également répartie de façon aléatoire dans le copolymère selon l’invention.
Avantageusement m+n+r = 100%.
Le copolymère statistique selon l’invention peut avoir la formule IX suivante :
Dans laquelle m, n, r, R1, R2 et R3 sont tels que définis précédemment, ou la formule X suivante :
Ou la formule XI suivante :
Le copolymère de l’invention peut également comprendre des unités monomères comportant des résidus saccharidiques ou des résidus poly(oxyde d’éthylène) ou des unités peptidiques, avantageusement polylysine.
Les résidus saccharidiques sont avantageusement choisis parmi les résidus de lactose, de tétraglucose et de mannose.
Les résidus saccharidiques et/ou les résidus poly(oxyde d’éthylène) sont greffés sur l’atome d’azote du motif PEI de formue (I) avantageusement par l’intermédiaire d’un groupe CO.
De façon avantageuse, la proportion de ces résidus est telle que le polyéthylènimine est toujours globalement de structure linéaire. Avantageusement, chacun de ces résidus est présent dans le copolymère en une proportion inférieure à 70% des monomères totaux, de façon avantageuse en une proportion inférieure à 50% des monomères totaux et de façon encore plus avantageuse en une proportion inférieure à 30% des monomères totaux, encore plus avantageusement en une proportion inférieure à 10% des monomères totaux. De façon avantageuse, chacune de ces unités est disposée aléatoirement dans le copolymère.
De préférence, le copolymère présente une masse molaire comprise entre 1000 et 200000 Da, de préférence entre 3000 et 50000 Da.
De façon avantageuse, le copolymère selon l’invention a la capacité d’être chargé positivement de par la fonction amine. La présente invention concerne également un procédé de préparation des copolymères de l’invention comprenant la réaction entre un composé polyéthylène imine de formule (I) et un composé de formule (IV) et la déprotection des fonctions amines dans lesquelles R1 est tel que défini ci-dessus et R’ représente un groupement protecteur d’une fonction amine, par exemple Boc (COOtBu) ou Fmoc, p étant supérieur à n et m+n, ou le cas échéant m+n+r, est égal à p.
De préférence, le composé de formule (IV) est le composé suivant :
(|V) Boc-his(1-boc)-OSu
Le procédé de l’invention peut de préférence correspondre à un greffage d’un composé de formule (IV) sur un composé de formule (I), de préférence la fonction ester activé (fonction succidinimyle).
Le procédé de l’invention peut être mis en œuvre dans un solvant, le solvant doit permettre la solubilisation de la PEI, notamment méthanol, eau, de préférence avec un contrôle du pH à pH neutre (environ 7), DMSO ou chloroforme, de préférence le DMSO.
L’étape de déprotection, est optionnelle, elle peut être totale ou partielle, se fait de toute manière connue de l’homme du métier, notamment par l’action de l’acide trifluoroacétique (TFA). Dans le cadre d’une déprotection partielle, au moins un des R est différent de Fl.
De préférence, le procédé de la présente invention est mis en œuvre à une température comprise entre 25 et 100°C, de préférence entre 50 et 80°C.
Le produit obtenu peut être purifié par toute technique connue de l’homme du métier, notamment par extraction, par exemple au dichlorométhane puis dialyse des phases aqueuses récupérées. Le procédé de l’invention consiste donc en une réaction aléatoire d’un dérivé de l’histidine sur le polyéthylénimine.
Le taux de modification de la polyéthylénimine et donc la valeur de m dans le copolymère selon l’invention dépend de la durée de l’étape de mise en contact du composé de formule (IV) avec la IPEI.
Avantageusement, la durée de cette étape est d’au maximum 5 jours, de façon avantageuse au maximum de 4 jours, de façon plus avantageuse au maximum de 3 jours, plus avantageusement entre 12 heures et 2 jours de préférence entre 24 h et 2 jours.
De préférence, la polyéthylénimine de départ présente une masse molaire comprise entre 500 et 200000 Da, de préférence entre 1000 et 100000 Da.
De façon particulièrement avantageuse, le copolymère de l’invention peut être utilisé en tant que vecteur pharmaceutiquement acceptable notamment en tant que vecteur d’une substance active.
Dans le cadre de la présente invention, on entend par substance active toute substance active pouvant être utilisée :
- en pharmacie. On peut notamment citer les antalgiques, antipyrétiques, aspirine et dérivés, antibiotiques, anti-inflammatoires, antiulcéreux, antihypertenseurs, neuroleptiques, antidépresseurs, oligonucléotides, peptides, protéines ;
- en cosmétique. On peut notamment citer les composés anti-UV, autobronzant ;
- en nitraceptique. On peut par exemple citer les protéines ;
- en alimentaire ;
- en agrochimie ; en vétérinaire.
De façon avantageuse, la substance active est chargée ou susceptible d’être chargée négativement. Le copolymère selon l’invention, comme mentionné ci-dessus, est cationique ou potentiellement cationique, ainsi, une liaison de type électrostatique se crée entre le copolymère de l’invention (i) et la substance active (ii).
De préférence, le copolymère selon l’invention peut être utilisé en tant que vecteur dans la transfection. Ainsi, la présente invention concerne également le copolymère selon l’invention en tant que vecteur de substance active. De préférence, la présente invention concerne le copolymère selon l’invention pour son utilisation pour la transfection de gènes.
La présente invention concerne l’utilisation du copolymère selon l’invention en tant que vecteur pharmaceutiquement acceptable d’une substance active dans une composition pharmaceutique.
La présente invention concerne également une composition pharmaceutique comprenant un copolymère selon l’invention, une substance active et éventuellement un excipient pharmaceutiquement acceptable.
Ainsi, la présente invention concerne également la composition pharmaceutique selon l’invention pour son utilisation pour la transfection de gènes.
La posologie peut varier dans des limites importantes en fonction de l’indication thérapeutique, et de la voie d’administration, ainsi que de l’âge et du poids du sujet.
L’identification du patient qui a besoin est définie par l’homme du métier. On entend par patient un être humain ou un animal. Un médecin ou un vétérinaire peut identifier, par l’intermédiaire de tests cliniques, d’examen physique, de tests ou diagnostics biologiques et par l’historique familial et/ou médical, les sujets qui ont besoin d’un tel traitement.
On entend par quantité suffisante, une quantité de composé selon la présente invention efficace pour prévenir ou traiter des conditions pathologiques. La quantité suffisante peut être déterminée par l’homme du métier, par l’intermédiaire de technique conventionnelle et par l’observation des résultats obtenus dans des circonstances analogues. Pour déterminer la quantité suffisante différents facteurs doivent être pris en compte par l’homme du métier, notamment et sans y être limité : le sujet, sa taille, son âge, son état de santé général, la maladie impliquée et son degré de sévérité ; la réponse du sujet, le type de composé, le mode d’administration, la biodisponibilité de la composition administrée, le dosage, l’utilisation concomitante d’autres médicaments, etc.
Les compositions de l’invention sont destinées à une administrations par la voie orale, sublinguale, sous-cutanée, intramusculaire, intraveineuse, transdermique, locale ou rectale. On peut citer notamment les comprimés, les gélules, les poudres, les granules, les solutions ou suspensions orales, les formes d’administrations sublinguale et buccale, les formes d’administration sous-cutanée, intramusculaire, intraveineuse, intranasale ou intraoculaire et les formes d’administration rectale.
Parmi les excipients pharmaceutiquement acceptables on peut citer la gélatine, l’amidon, le lactose, le stéarate de magnésium, le talc, la gomme arabique ou analogues, un édulcorant, un antiseptique, un agent donnant du goût, un colorant, des agents de dispersion, un agent mouillant, un agent de mise en suspension ou un diluant. Les comprimés peuvent notamment être enrobés avec du saccharose ou toutes autres matières appropriées ou encore peuvent être traités de sorte à avoir une activité prolongée ou retardée et libérer de façon continue une quantité prédéterminée de la substance active et du copolymère selon l’invention. Pour une administration rectale, la composition peut être sous la forme de suppositoires préparés avec des liants fondant à la température rectale, par exemple beurre de cacao ou polyéthylèneglycols. Pour une composition pour administration parentérale, intranasale ou intraoculaire, on utilise des suspensions aqueuses, des solutions salines isotoniques ou des solutions stériles et injectables qui contiennent des agents de dispersion et/ou des agents mouillants pharmacologiquement compatibles.
La présente invention concerne également un complexe comprenant : i) un copolymère selon l’invention ; ii) au moins une substance active anionique ou potentiellement anionique.
Le copolymère selon l’invention, comme mentionné ci-dessus, est cationique ou potentiellement cationique, ainsi, une liaison de type électrostatique se crée entre le copolymère de l’invention (i) et la substance active (ii). Dans le cadre de la présente invention, on entend par potentiellement cationique, une substance qui, après réaction avec un acide de bronsted ou un halogénure, produit un composé cationique.
Dans le cadre de la présente invention, on entend par potentiellement anionique, une substance qui après réaction avec une base produit un composé anionique.
De préférence, dans le cadre de l’invention, la substance active est un acide nucléique. L’acide nucléique peut être un acide désoxyribonucléique (ADN), un acide ribonucléique (ARN) ou des séquences hybrides (ADN/ARN). Il peut s’agir de séquences d’origine naturelle ou artificielle, et notamment d’ADN génomique, d’ADN complémentaire (ADNc), d’ARN messager (ARNm), d’ARN de transfert (ARNt), d’ARN ribosomique (ARNr), ou de séquences synthétiques ou semi-synthétiques. L’acide nucléique peut avoir une taille variable allant de l’oligonucléotide au chromosome. Ces acides nucléiques peuvent être d’origine humaine, animale, végétale, bactérienne, virale, etc. Ils peuvent être obtenus par toute technique connue de l’homme du métier, et notamment par criblage de banques, par synthèse chimique, ou encore par des méthodes mixtes incluant la modification chimique ou enzymatique de séquences obtenues par criblage de banques. Ils peuvent notamment être obtenus par une modification chimique au niveau de la partie sucre de la partie nucléobase ou du squelette internucléotidique. Parmi les modifications avantageuses dans les parties sucres, on peut notamment citer les modifications intervenant en position 2’ du ribose, telles que les modifications 2’-deoxy, 2’-fiuoro, 2’-amino, 2’-thio, ou 2’-0-alkyl,en particulier 2’-0-methyle, au lieu du groupement 2’- OH normal sur les ribonucléotides, ou encore la présence d’un pont méthylène entre les positions 2’ et 4’ du ribose (LNA). Concernant les nucléobases, il est possible d’utiliser des bases modifiées, telles que notamment la 5-bromo-uridine, la 5-iodo- uridine, la N3-méthyl-uridine, une 2,6-diaminopurine (DAP), la 5-méthyl-2'- deoxyCytidine, la 5-(1-propynyl)-2'-deoxy-Uridine (pdU), la 5-(1-propynyl)-2'- deoxyCytidine (pdC), ou des bases conjuguées avec du cholestérol. Enfin, des modifications avantageuses du squelette internucléotidique comprennent le remplacement de groupements phosphodiesters de ce squelette par des groupements phosphorothioate, methylphosphonate, phosphorodiamidate, ou l’utilisation d’un squelette composé d’unités de N-(2-aminoéthyl)-glycine liées par des liaisons peptidiques (PNA, Peptide Nucleic Acid). Les différentes modifications (base, sucre, squelette) peuvent bien entendu être combinées pour donner des acides nucléiques modifiés de type morpholino (bases fixées sur un cycle morpholine et liées par des groupes phosphorodiamidate) ou PNA (bases fixées sur des unités de N-(2-aminoéthyl)-glycine liées par des liaisons peptidiques). Ils peuvent par ailleurs être incorporés dans des vecteurs, tels que des vecteurs plasmidiques.
De préférence, l’acide nucléique est choisi dans le groupe constitué de l’ARN, de l’ADN complémentaire (ADNc), de l’ADN génomique, de l’ADN plasmidique, de l’ADN antisens, de l’ARN messager, de l’ARN antisens, de l’ARN interférant, des ribozymes, de l’ARN de transfert, de l’ARN ribosomique, ou de l’ADN codant ces types d’ARN.
Concernant les acides désoxyribonucléiques, ils peuvent être simple ou double brin. Ces acides nucléiques peuvent comprendre une séquence de gènes choisis parmi a) des gènes marqueurs, b) des gènes à visée thérapeutique et c) des gènes à visée vaccinale, et les éléments permettant son expression.
Au sens de l’invention, on entend par « gène à visée thérapeutique » notamment tout gène codant pour un produit protéique ayant un effet thérapeutique. Le produit protéique ainsi codé peut être une protéine, un peptide, etc. Ce produit protéique peut être homologue vis-à-vis de la cellule cible (c’est-à-dire un produit qui est normalement exprimé dans la cellule cible lorsque celle-ci ne présente aucune pathologie). Dans ce cas, l’expression d’une protéine permet par exemple de pallier à une expression insuffisante dans la cellule ou à l’expression d’une protéine inactive ou faiblement active en raison d’une modification, ou encore de surexprimer ladite protéine. Le gène thérapeutique peut aussi coder pour un mutant d’une protéine cellulaire, ayant une stabilité accrue, une activité modifiée, etc. Le produit protéique peut également être hétérologue vis-à-vis de la cellule cible. Dans ce cas, une protéine exprimée peut par exemple compléter ou apporter une activité déficiente dans la cellule, lui permettant de lutter contre une pathologie, ou stimuler une réponse immunitaire. Le gène thérapeutique peut également coder pour une protéine sécrétée dans l’organisme.
Le gène thérapeutique peut également être un gène ou une séquence antisens, dont l'expression dans la cellule cible permet de contrôler l'expression de gènes ou la transcription d’ARN cellulaires. De telles séquences peuvent par exemple, être transcrites dans la cellule cible en ARN complémentaire d’ARNm cellulaires et bloquer ainsi leur traduction en protéine. Il peut s’agir aussi d’oligonucléotides synthétiques, éventuellement modifiés. Les antisens comprennent également les séquences codant pour des ribozymes, qui sont capables de détruire sélectivement des ARN cibles. Le gène thérapeutique peut également être un gène codant pour un siRNA ou un shRNA. Avantageusement, les gènes à visée thérapeutique sont choisis parmi les gènes codant :
- la dystrophine et minidystrophine (myopathies) ;
- la protéine CFTR cystic fibrosis transmembrane conductance regulator Associée à la mucoviscidose ;
- l’alphal -antitrypsine ;
- l’Erythropoïétine (EPO);
- les cytokines telles que les interleukines et le TNF facteur de nécrose des tumeurs ;
- les facteurs de croissance tels que le TGFbéta et le PDGF ;
- les enzymes lysosomiques telles que la béta-glucosidase ;
- l’adénosinedésaminase (ADA) ;
- des ARN sens et antisens ;
- des ARN interférant ;
- des ribozymes ;
- les récepteurs des lipoprotéines de faible densité, déficient dans le cas d’hypercholestérolemie ;
- les facteurs de coagulation tels que les facteurs Vil, VIII et IX ;
- la phénylalanine-hydroxylase ;
- la tyrosine hydroxylase ;
- la thymidine kinase du Virus Herpes simplex ;
- les protéines du complexe majeur d’histocompatibilité, avantageusement les HLA-B7 ;
- la cytosine désaminase ;
Comme indiqué plus haut, l'acide nucléique peut également comporter un ou plusieurs gènes à visée vaccinale capable de générer chez l'homme ou l'animal une réponse immunitaire. Dans ce mode particulier de mise en œuvre, l’invention permet donc la réalisation soit de vaccins soit de traitements immunothérapeutiques appliqués à l'homme ou à l'animal, notamment contre des microorganismes, des parasites, des bactéries, des virus ou des cancers. Il peut s'agir notamment de peptides antigéniques spécifiques du Virus d’Epstein Barr, du Virus HIV, du Virus de l'hépatite B, du Virus de la pseudo-rage, ou encore spécifiques de tumeurs. Ainsi, avantageusement les gènes à visée vaccinale sont choisis parmi les gènes codants pour:
- des antigènes Viraux, avantageusement la nucléoprotéine du Virus de la grippe ou la protéine NEF ou GAG du Virus VIH ;
- des antigènes associés aux tumeurs, avantageusement l’antigène MARTI des cancers à mélanome, les mucines ou l’antigène PSA des cancers de la prostate;
- des antigènes bactériens ;
- des antigènes parasitaires.
Dans un autre mode de réalisation avantageux, le gène marqueur est choisi parmi les gènes de :
- la luciférase de la luciole ;
- la protéine verte de méduse Aequora Victoria ;
- la beta-galactosidase d’E. Coli ;
- la chloramphénicol acétyle transférase ;
- résistance à un antibiotique, avantageusement de résistance à la néomycine ou à l’hygromycine.
Pour obtenir un effet optimum des complexes de l'invention, les proportions respectives du copolymère selon l’invention et de l'acide nucléique sont de préférence déterminées de sorte que le rapport massique (pg/pg) entre le copolymère et l'acide nucléique soit compris entre 1 et 10, de préférence entre 3 et 6.
Ce rapport peut bien entendu être adapté par l'homme du métier en fonction du copolymère utilisé, de la présence éventuelle d'un adjuvant, de l'acide nucléique, de la cellule cible et du mode d'administration utilisé.
Les complexes selon l’invention peuvent être préparés en mélangeant une solution de l’acide nucléique concerné et une solution du copolymère selon l’invention.
Avantageusement ces solutions sont préparées à partir de sérum physiologique ou d’un tampon, tel que le tampon hepes, ou d’un milieu cytocompatible.
La présente invention concerne en outre une composition pharmaceutique comprenant un complexe selon l’invention et éventuellement un excipient pharmaceutiquement acceptable. La composition pharmaceutique selon l'invention peut être utilisée telle quelle ou en association avec d'autres composés. Ainsi, dans un mode particulier de mise en œuvre, la composition selon la présente invention comprend en plus un adjuvant capable de s'associer au complexe copolymère/acide nucléique selon l’invention et d'améliorer le pouvoir transfectant. En effet, le pouvoir transfectant des compositions de l'invention peut être encore amélioré en présence de certains adjuvants (lipides, protéines, lipopolyamines, polymères synthétiques par exemple), capables de s'associer au complexe copolymère/acide nucléique selon l’invention.
Avantageusement, les adjuvants utilisés dans les compositions selon l'invention sont des lipides cationiques (comportant une ou plusieurs charges cationiques dans leur partie polaire) ou des lipides neutres.
Concernant les lipides cationiques, il peut s'agir plus particulièrement de lipopolyamine. D'autres adjuvants particulièrement avantageux pour la réalisation des compositions de l'invention sont représentés par les lipides neutres.
L'utilisation de lipides neutres est particulièrement avantageuse lorsque le rapport de charges R (amines/phosphates) est faible. De manière particulièrement avantageuse, on utilise des lipides naturels ou synthétiques, zwitterioniques ou dépourvus de charge ionique dans les conditions physiologiques. Ces différents lipides peuvent être obtenus soit par synthèse, soit par extraction à partir d'organes (par exemple : le cerveau) ou d'œufs, par des techniques classiques bien connues de l'homme du métier.
Dans un mode de réalisation particulièrement avantageux, les compositions de la présente invention comprennent un élément de ciblage permettant d'orienter le transfert de l'acide nucléique. Cet élément de ciblage peut être un élément de ciblage extracellulaire, permettant d'orienter le transfert de l'acide nucléique vers certains types cellulaires ou certains tissus souhaites (cellules tumorales, cellules hépatiques, cellules hématopoïétiques, etc). Il peut également s'agir d'un élément de ciblage intracellulaire, permettant d'orienter le transfert de l'acide nucléique vers certains compartiments cellulaires privilégiés (mitochondries, noyau, etc). Parmi les éléments de ciblage utilisables dans le cadre de l'invention, on peut citer les sucres, les peptides, les oligonucléotides, les lipides ou les protéines. Avantageusement, il s'agit de sucres, de peptides ou de protéines tels que des anticorps ou fragments d'anticorps, des ligands de récepteurs cellulaires ou des fragments de ceux-ci, des récepteurs ou fragments de récepteurs, etc. En particulier, il peut s'agir de ligands de récepteurs de facteurs de croissance, de récepteurs de cytokines, de récepteurs de lectines cellulaires ou de récepteurs de protéines d'adhésion. On peut également citer le récepteur de la transferrine, des HDL et des LDL. L'élément de ciblage peut également être un sucre permettant de cibler les récepteurs asialoglycoprotéiques, ou encore un fragment Fab d'anticorps permettant de cibler le récepteur du fragment Fc des immunoglobulines.
Les compositions selon l'invention peuvent être formulées en vue d'administrations par voie topique, cutanée, orale, rectale, vaginale, parentérale, intranasale, intraveineuse, intramusculaire, sous-cutanée, intraoculaire, transdermique, etc. De préférence, les compositions pharmaceutiques de l'invention contiennent un véhicule pharmaceutiquement acceptable pour une formulation injectable, notamment pour une injection directe au niveau de l'organe désiré, ou pour une administration par voie topique (sur peau et/ou muqueuse). Il peut s'agir en particulier de solutions stériles, isotoniques, ou décompositions sèches, notamment lyophilisées, qui, par addition selon le cas d'eau stérilisée ou de sérum physiologique, permettent la constitution de solutés injectables. Les doses d'acide nucléique utilisées pour l'injection ainsi que le nombre d'administrations peuvent être adaptées en fonction de différents paramètres, et notamment en fonction du mode d'administration utilise, de la pathologie concernée, du gène à exprimer, ou encore de la durée du traitement recherchée.
Les complexes et compositions selon l'invention peuvent être utilisées pour le transfert d'acides nucléiques dans les cellules in vivo, in vitro ou ex vivo. En particulier les copolymères selon l'invention peuvent être utilisés pour transférer de manière très efficace des acides nucléiques dans de nombreux types cellulaires, et en particulier dans certains types cellulaires habituellement difficiles à transfecter.
La présente invention concerne donc également un procédé pour transfecter in vitro ou ex vivo un acide nucléique dans des cellules, ledit procédé comprenant la mise en contact desdites cellules avec au moins un complexe selon la présente invention ou une composition pharmaceutique selon l’invention.
Les cellules peuvent être d’origine procaryote ou eucaryote, en particulier animale, végétale ou humaine.
Avantageusement, les cellules sont des cellules de mammifères, de façon avantageuse choisies parmi :
- des cellules souches hématopoïétiques ; - des cellules du système immunitaire, telles que des cellules dendritiques, des macrophages et des lymphocytes ;
- des cellules du foie ;
- des cellules des muscles squelettiques ;
- des cellules de la peau, telles que des fibroblastes, des kératinocytes, des cellules dendritiques et des mélanocytes ;
- des cellules des vaisseaux et microvaisseaux sanguins, telles que des cellules endothéliales et des cellules musculaires lisses ;
- des cellules épithéliales des voies aériennes ;
- des cellules du système nerveux central ;
- des cellules cancéreuses ;
- des cellules du tissu conjonctif, telles que des ténocytes.
Selon un mode de réalisation avantageux de l'invention, la méthode de transfection in vitro ou ex vivo, se caractérise en ce que l'on met en présence un complexe ou une composition pharmaceutique selon l’invention dans un milieu contenant des cellules à transfecter, dans des conditions telles qu'il y a:
- passage du complexe à partir du milieu dans le cytoplasme des cellules,
- relargage de l'acide nucléique implique dans le susdit complexe dans le cytosol et/ou le noyau des cellules,
- transcription et expression de l'acide nucléique dans les cellules transfectées,
- expression de la protéine correspondant au gène transfecté.
La présente invention concerne de plus l’utilisation d’un copolymère selon l’invention pour la préparation d’une composition pharmaceutique destinée à la délivrance intracellulaire de molécules anioniques, avantageusement d’acide nucléique notamment tel que défini plus haut.
Elle concerne en outre un complexe selon l’invention pour son utilisation en tant que médicament destiné à la délivrance intracellulaire d’acide nucléique, avantageusement destiné au traitement de tumeurs, plus avantageusement de léiomyomeutérin ou de tumeur maligne telle que le carcinome des ovaires, du sein ou de l’endomètre, pour la préparation d’un vaccin ou au traitement ou à la prévention de déficience métabolique congénitale ou acquise ou de maladies associées avec une expression génétique déficiente, plus avantageusement au traitement de maladies liées aux troubles d’un gène unique telles que les syndromes de déficit immunitaire combiné sévère, la mucoviscidose, l’hémophilie, la drépanocytose, la béta-thalassémie et la dystrophie musculaire.
L’invention sera mieux comprise à la lecture des exemples de la présente invention qui suivent.
Les exemples de la présente demande mettent en œuvre un dosage de viabilité cellulaire. Ce dosage MTT évalue la viabilité cellulaire dans un essai au bromure de 3-(4,5)-diméthylthiazol-2-yl-2,5-diphenyltetrazolium (MTT). Les cellules sont ensemencées à raison de 2,5x104 cellules par puits dans un milieu de culture(100 pL) dans une plaque à 96 puits. Le milieu de culture est le MEM (milieu essentiel minimum) supplémenté avec 10% de sérum de veau fœtal décomplémenté (FBS) contenant 100 U/ml de pénicilline, 100 mg/ml de streptomycine, 1% d'acide aminé non essentiel et 1 % de GlutaMAX. Les cellules sont ensemencées à raison de 2 x 104 cellules par mL et sont maintenues à 37 °C dans une étuve humide dans une atmosphère à 5% de C02.
Deux jours plus tard, le milieu de culture est enlevé et les polymères dont on veut évaluer la cytotoxicité sont ajoutés (100 pL de solution) dans chaque puits, et les cellules sont mises à incuber à 37°C. Après 4 heures, le milieu est enlevé et les cellules sont mises en culture 48 heures à 37°C dans le milieu de culture MEM. 48 heures plus tard, le MTT est ajouté (5 mg/mL dans du PBS) à raison de 10 pL dans chaque puits et le tout est mis à incuber pour 4 heures à 37°C. Le MTT est converti en colorant insoluble par les cellules vivantes et il est solubilisé à l'aide d'isopropanol acidifié. L'absorbance est mesurée à 570 nm. Le pourcentage de cytotoxicité est (A0 - A)/A0x100 où A est l'absorbance des cellules traitées et A0 celle des cellules témoin cultivées dans les mêmes conditions
Exemple 1 : Préparation d’un copolymère selon l’invention
1ère étape : synthèse de la IPEI
Dans un tricol de 500 mL équipé d’un réfrigérant, 10g de poly(2-éthyle-2- oxazoline) de masse molaire de 25000 g. mol 1 (0,2 mmol) sont dissous dans 115 mL d’eau distillée. A ce mélange, est additionné l’acide chlorhydrique 12N (75 ml ; 2,44 mol), et l’hydrolyse est menée durant 48 heures, à reflux sous azote.
Des pastilles d’hydroxyde de sodium (NaOH) sont alors introduites dans le milieu réactionnel pour augmenter le pH de la solution jusqu’à pH=12 (contrôle au papier pH) permettant la précipitation totale du polymère souhaité. Le milieu réactionnel est filtré sur un verre fritté de porosité 4, puis lavé avec de l’eau distillée jusqu’à ce que l’eau de lavage atteigne un pH=7. Le précipité blanc est récupéré et séché au lyophilisateur. Le polymère est ainsi obtenu sous la forme d’une poudre blanche. Sa structure est déterminée par RMN (1H, 13C), en solution dans D20 contenant 5 pL de TFA, et par chromatographie d’exclusion stérique (SEC).
Rendement : 4,232 g (96,3%), RMN 1H (300 MHz, à raison de 10 mg dans 0,7 ml D20 + 5mPTA) : 5(ppm) = 3,50 (s, 4H, NHCFbCFb). 13C NMR (75 MHz, D20 + 5plTAF): d (ppm) = 48,97 (s, 2C, NHÇHsÇHs); 0 (s,)
2ème étape : synthèse du copolymère de la formule II.
50mg de IPEI 11kDa et 85mg de boc-his(1-boc)-OSu (composé de formule IV) ont été solubilisés dans 2mL de DMSO. 150pL de diisopropylamine ont ensuite été additionnés. La réaction est chauffée 48h à 65°C, puis la réaction est laissée sous agitation 24h à température ambiante. Le procédé est ensuite distingué selon que l’on souhaite obtenir le produit déprotégé (R=H) ou le produit protégé (R=Boc).
Pour obtenir le produit déprotégé (R=H), après 48h, 9mL TFA 50% ont été ajoutés goutte à goutte à 0°C et la réaction est laissée agiter 24h à température ambiante. Après évaporation, le produit est, dans un premier temps, purifié en réalisant deux extractions liquide-liquide (H20/DCM) puis dans un second temps, par dialyse durant au moins 48h en utilisant des boudins de lOOOMWCo. Après lyophilisation, le produit est récupéré sous la forme d’une poudre blanche.
Pour obtenir le produit protégé (R=Boc), après évaporation, le produit ainsi obtenu est le copolymère de l’invention, appelé copolymère protégé. Il est, dans un premier temps, purifié en réalisant deux extractions liquide-liquide (H20/DCM) puis dans un second temps, par dialyse durant au moins 48h en utilisant des boudins de lOOOMWCo. Après lyophilisation, le produit est récupéré sous la forme d’une poudre blanche.
Exemple 2 : Toxicité du copolymère de l’invention comparée à celle du polymère de polvéthylènimine linéaire
Le polymère selon l’invention déprotégé ou la IPEI a été placé en incubation à différentes concentrations avec des celules HeLa (2,5.104cellules/mL) pendant 24 heures à 37°C. La viabilité cellulaire a ensuite été mesurée à l’aide du test MTT décrit ci-dessus. Les résultats sont reportés dans le tableau Ici-dessous.
[Table 1] selon l’invention déprotégé
Quelle que soit la concentration du polymère (selon l’invention ou la IPEI), la cytotoxicité de la IPEI se révèle être toujours supérieure à celle du polymère selon l’invention, la viabilité cellulaire résultant de l’incubation de la IPEI étant plus faible.
La cytotoxicité du copolymère déprotégé selon l’invention et de la IPEI a été évaluée dans les cellules HeLa en incubant des teneurs croissantes des copolymères. Les essais ont été faits selon le protocole MTT décrit ci-dessus Les résultats d’IC50 sont donnés dans le tableau II ci-dessous, à la concentration de 27 pg/mL.
[Table2]
Il est à remarquer que la toxicité pour tuer la moitié des cellules (IC50%) du polymère IPEI est importante. Avec la IPEI on a moins de virus complets qu’avec les copolymères de l’invention ce qui entraîne une efficacité moindre pour la thérapie génique.
Exemple 3 : Préparation du complexe copolymère de l’exemple 1 (protégé ou non-protégé) avec pCMV-EGFP
112,5 pi du copolymère de l’exemple 1 (protégé ou non protégé) ont été mélangés à 112,5 mI de tampon Hepes (10 mM) pH 7,4. Le mélange obtenu a été ajouté à 75pg de pCMV-EGPF dans 975 mI de tampon Hepes (10 mM) pH 7,4. La solution obtenue est agitée fortement pendant 4 secondes puis laissée 30 min à température ambiante. La solution a été complétée à 4 ml avec le milieu de culturesuivant (OptiMEM) : Les cellules de carcinome épithélioïde du col de l'utérus humain (cellules HeLa; CRL1772, C2C12, Rockville, MD, États-Unis) sont cultivées dans du milieu MEM (Milieu Essentiel Minimum) supplémenté avec 10% de sérum de veau fœtal décomplémenté (FBS) contenant 100 U / ml de pénicilline, 100 mg / ml de streptomycine, 1% d'acide aminé non essentiel et 1 % de GlutaMAX. Les cellules sont ensemencées à raison de 2 x 104 cellules par mL et sont maintenues à 37 °C dans une étuve humide dans une atmosphère à 5% de C02.
Exemple 4 : Production de lentivirus
60 mI du copolymère de l’exemple 1 (protégé ou non protégé) sont ajoutés dans 10 mI d’un tampon Flepes 10 mMphFI 7,4 comprenant 5 pg de plasmide ADN. La solution est agitée vigoureusement pendant 5 secondes puis conservées 30 min à température ambiante (environ 20°C). La solution est ensuite complétée à 1 ,5 ml avec OptiMEM pour obtenir la solution de transfection. Le milieu GibcoOpti-MEM I réduit en sérum est une modification du milieu essentiel minimum d’Eagle, tamponné avec de l’FIEPES et du bicarbonate de sodium, et compété par de l’hypoxanthine, de la thymidine, du pyruvate de sodium, de la L-glutamine, des oilgo-éléments et des facteurs de croissance.
La Tri-transfection (pTRIP-GFP, 8.81 et VSV-G) a été effectuée avec des quantités de plasmide dans le rapport massique 2-2-1 pg/puits respectivement (5pg/puits).
Le milieu cellulaire est retiré et remplacé par la solution de transfection. L’incubation dure 16h, le milieu est ensuite changé and les cellules sont laissées à incuber dans l’OptiMEM sans agent de transfection. Le surnageant est collecté après 20, 24, 40, 44 et 48h (après le début de l’expérience soit 4h, 8h, 24h, 28h et 32 h après le retrait de l’agent de transfection) et le titre viral est mesuré. Les résultats pour le polymère déprotégé selon l’invention sont mentionnés dans le tableau 3 ci-dessous.
Le titre viral est dosé par une méthode qPCR bien connue de l’homme du métier. Le titre viral peut également être mesuré par un dosage protéique pour avoir la quantité de particules virales présentes, qui sont des assemblages de 3 protéines (VP1 , VP2, VP3) (dosage MTT). [Table 3]
Exemple 5 : Transfection de cellules HeLa
Etude de la transfection de cellules HeLa du plasmide pCMV-EGFP à l’aide du copolymère de l’invention (protégé ou non protégé) à la concentration relative massique 1/3 ADN/polymère. La procédure utilisée est celle du dosage MTT décrite ci-dessus .
[Table 4]
Les essais d’efficacité de transfection ont également été réalisés avec les copolymères protégés de l’invention, avec un rapport massique ADN/coplymère de 1/6 et avec différente proportion en histidine.
Les résultats sont montrés dans le tableau 6. [Table 6]
Ces résultats montrent que les polymères de l’invention ont une excellente efficacité de transfection. Plus particulièrement, ces résultats montrent que les copolymères protégés, malgré un encombrement stérique de la fonction amine libre sur les fonctions histidine du copolymère, présente, de façon inattendue, une très bonne efficacité de transfection.
L’utilisation de produit protégé permet de façon avantageuse de faciliter le procédé de synthèse en évitant une étape de déprotection.

Claims

REVENDICATIONS
1. Copolymère de polyéthylèneimine linéaire comprenant des unités monomériques de formule (I) et des unités monomériques de formule (II) dans lesquels :
R1 et R2, identiques ou différents, représentent un atome d’hydrogène, un groupe alkyle, linéaire ou ramifié, comprenant de 1 à 3 atomes de carbone, de préférence de 1 à 2 atomes de carbone, au moins l’un de R1 ou R2 est H ;
R, identique ou différent, est choisi parmi H ou un groupe protecteur d’amine, par exemple Boc, Fmoc ; n est un nombre compris entre 1 et 99% des monomères totaux ; et m est un nombre compris entre 1 et 99% des monomères totaux.
2. Copolymère selon la revendication 1 , dans lequel R est un groupe protecteur d’amine, par exemple Boc, Fmoc.
3. Copolymère selon la revendication 1 , dans lequel au moins un des R est un groupe protecteur d’amine, par exemple Boc, Fmoc.
4. Copolymère selon l’une quelconque des revendications 1 à 3, dans lequel R1 et R2 représentent Fl.
5. Procédé de préparation des copolymères selon l’une quelconque des revendications 1 à 4, comprenant la réaction entre un composé polyéthylène imine de formule (I) et un composé de formule (IV) et optionnellement la déprotection partielle ou totale des fonctions amines (I dans laquelle R1 est tel que défini à la revendication 1 et R’ est un groupe protecteur d’amine, par exemple Boc ou Fmoc.
6. Copolymère selon l’une quelconque des revendications 1 à 4, en tant que vecteur de substance active.
7. Composition pharmaceutique comprenant un copolymère selon l’une quelconque des revendications 1 à 4, une substance active et éventuellement un excipient pharmaceutiquement acceptable.
8. Complexe comprenant :
- un copolymère selon l’une des revendications 1 à 4 ;
- au moins une substance active anionique ou potentiellement anionique.
9. Complexe selon la revendication 8, dans lequel la substance active est un acide nucléique.
10. Complexe selon la revendication 9, dans lequel l’acide nucléique est choisi dans le groupe constitué par de l’ARN, de l’ADNc, de l’ADN génomique, de l’ADN plasmidique, de l’ADN antisens, de l’ARN messager, de l’ARN antisens, de l’ARN interférant, des ribozymes, de l’ARN de transfert, de l’ARN ribosomique ou de l’ADN codant pour ces types d’ARN.
11. Composition pharmaceutique comprenant au moins un complexe selon l’une des revendications 8 à 10.
12. Complexe selon l’une des revendications 8 à 10 pour son utilisation pour la délivrance intracellulaire de substance active anionique ou potentiellement anionique.
EP21714144.9A 2020-03-23 2021-03-23 Copolymère linéaire pour la transfection de gènes Pending EP4127026A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2002793A FR3108330B1 (fr) 2020-03-23 2020-03-23 Copolymere lineaire pour la transfection de genes
PCT/EP2021/057435 WO2021191208A1 (fr) 2020-03-23 2021-03-23 Copolymère linéaire pour la transfection de gènes

Publications (1)

Publication Number Publication Date
EP4127026A1 true EP4127026A1 (fr) 2023-02-08

Family

ID=70738728

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21714144.9A Pending EP4127026A1 (fr) 2020-03-23 2021-03-23 Copolymère linéaire pour la transfection de gènes

Country Status (3)

Country Link
EP (1) EP4127026A1 (fr)
FR (1) FR3108330B1 (fr)
WO (1) WO2021191208A1 (fr)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2928373B1 (fr) 2008-03-05 2010-12-31 Centre Nat Rech Scient Polymere derive de la polyethylenimine lineaire pour le transfert de gene.

Also Published As

Publication number Publication date
FR3108330A1 (fr) 2021-09-24
WO2021191208A1 (fr) 2021-09-30
FR3108330B1 (fr) 2023-11-17

Similar Documents

Publication Publication Date Title
EP2257587B1 (fr) Polymere derive de la polyethylenimine lineaire pour le transfert de gene
JP5061349B2 (ja) ポリカチオン荷電性ポリマー及び核酸のキャリヤーとしての使用
CA2235721C (fr) Lipopolymamines comme agents de transfection et leurs applications pharmaceutiques
TW201004648A (en) Polymeric systems containing intracellular releasable disulfide linker for the delivery of oligonucleotides
KR101590652B1 (ko) 합성 중합체를 사용하여 유전자 사일런싱에 활성이 있는 핵산을 전달하기 위한 수단
EP0753070A1 (fr) Nouveaux complexes d'acide nucleique et de polymere, leur procede de preparation et leur utilisation pour la transfection de cellules
JP2009502765A (ja) 新規なカルボシランデンドリマー、その調製方法及びその使用
US9695421B2 (en) Dengue virus-specific siRNA, double helix oligo-RNA structure comprising siRNA, and composition for suppressing proliferation of dengue virus comprising RNA structure
EP4127026A1 (fr) Copolymère linéaire pour la transfection de gènes
WO2012090223A1 (fr) Dendrimères poly(étherimine) et leurs utilisations
US20210214726A1 (en) Peptide Docking Vehicle for Targeted Nucleic Acid Delivery
KR100466254B1 (ko) 세포내 전달을 위한 올리고뉴클레오티드와 친수성 고분자로 구성되는 유전자 전달용 접합체, 고분자 전해질 복합 미셀 및 그의 제조방법
US20230203491A1 (en) Double-stranded oligonucleotide and composition for treating covid-19 containing same
US20220282248A1 (en) Molecular targeted nucleic acid medicine for gastric cancer
KR101200176B1 (ko) 풀루란 유도체?폴리에틸렌이민 접합체를 포함하는 생리활성 물질 전달체 및 이의 제조방법
FR2963350A1 (fr) Nouveaux copolymeres a bloc et leurs utilisations pour delivrer une substance active dans une cellule.
KR102570826B1 (ko) Covid-19를 포함하는 호흡기 바이러스 감염증, 바이러스 감염에 의한 폐섬유증, 또는 호흡기 질환 예방 또는 치료를 위한 초음파 방식 연무식 흡입기를 이용한 이중가닥 올리고뉴클레오티드 구조체 투여용 조성물
KR20120097865A (ko) 간세포 표적 유전자 전달체로서 갈락토실화 폴리에틸렌글리콜-키토산-그라프트-스페르민 공중합체 및 이를 이용한 유전자 치료
JP3095248B2 (ja) 核酸運搬体
CA2324931A1 (fr) Nouveaux agents de transfert d'acides nucleiques, compositions les contenant et leurs applications
FR2777017A1 (fr) Nouveaux agents de transfert d'acides nucleiques, compositions les contenant et leurs applications

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220916

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)