EP4118342A1 - Bras de maintien pour armature de support - Google Patents
Bras de maintien pour armature de supportInfo
- Publication number
- EP4118342A1 EP4118342A1 EP21714247.0A EP21714247A EP4118342A1 EP 4118342 A1 EP4118342 A1 EP 4118342A1 EP 21714247 A EP21714247 A EP 21714247A EP 4118342 A1 EP4118342 A1 EP 4118342A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- opening
- support
- support arms
- plane
- arms
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001816 cooling Methods 0.000 claims abstract description 20
- 238000009423 ventilation Methods 0.000 claims abstract description 16
- 239000012530 fluid Substances 0.000 claims abstract description 5
- 230000000295 complement effect Effects 0.000 claims description 13
- 238000005086 pumping Methods 0.000 description 8
- 238000009826 distribution Methods 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 5
- 230000002787 reinforcement Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 230000005226 mechanical processes and functions Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000004873 anchoring Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P5/00—Pumping cooling-air or liquid coolants
- F01P5/02—Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
- F01P5/06—Guiding or ducting air to, or from, ducted fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P11/00—Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
- F01P11/10—Guiding or ducting cooling-air, to, or from, liquid-to-air heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/002—Axial flow fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/06—Units comprising pumps and their driving means the pump being electrically driven
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/08—Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/52—Casings; Connections of working fluid for axial pumps
- F04D29/522—Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/52—Casings; Connections of working fluid for axial pumps
- F04D29/54—Fluid-guiding means, e.g. diffusers
- F04D29/541—Specially adapted for elastic fluid pumps
- F04D29/542—Bladed diffusers
- F04D29/544—Blade shapes
Definitions
- Support arm for support frame
- the present invention relates to the automotive field, and more particularly that of air circulation for cooling an engine.
- motor vehicles evacuate the calories generated by their operation and are therefore equipped with heat exchangers, in particular cooling radiators, placed for example at the front of the vehicle and traversed for example from outside air.
- heat exchangers in particular cooling radiators, placed for example at the front of the vehicle and traversed for example from outside air.
- a fan is placed upstream or downstream.
- a propeller can be used to force air circulation.
- the propeller generates a relatively high flow rate and a relatively low pressure and exhibits flow oriented axially, that is, in the direction of an axis of rotation of the propeller.
- This presentation describes a support frame for a ventilation device for cooling a fluid flowing through a cooling circuit of a motor vehicle, said frame comprising an opening defining an opening perimeter, the opening being intended to receive a propeller, and a central support positioned in the center of said opening and shaped to receive a motor actuating said propeller so as to generate a ventilation flow, said central support being attached, through said opening, to the frame by at least six support arms, at least three first support arms being placed in a first plane or cone of revolution (or cone in this presentation), and at least three second holding arms being placed in a second plane or cone of revolution different from the first plane or cone of revolution, the first holding arms being each separated from everything second support arm at the level of the opening perimeter by a space covering at least a distance corresponding to a cord of said first support arms.
- a structure as described allows the reinforcement to be reinforced by distributing the support network formed by the support arms, while allowing the flow to flow between the support arms.
- This reinforcement of the frame can make it possible to reduce the constraints linked to the shape of said support arms, or else to avoid a so-called pumping phenomenon corresponding to a periodic, unwanted movement of the central support in the direction of the axis. propeller rotation caused by oscillation of the support arms.
- the first support arms are placed in a first plane and the second support arms are placed in a second plane parallel to the first plane.
- This distribution of the support arms in different planes makes it possible to stiffen the support structure of the central support, any oscillation of the support arms placed in the first plane being compensated for or avoided by the support arms placed in the second plane.
- Such a structure in fact improves the axial rigidity of the frame in the space of rotation of the propeller.
- the first support arms are placed in a first cone of revolution and the second support arms are placed in a second cone of revolution different from the first cone of revolution.
- Such a structure allows, by the use of different angles between the first and the second holding arms on the one hand, and the axis of rotation of the propeller on the other hand, a mechanical compensation limiting the effect of pumping mentioned above, any movement of the first arms being at least partly compensated by a voltage generated by the second arms, and vice versa.
- the first support arms form a first angle with a plane defined by the opening, the second support arms forming a second angle with the plane defined by the opening, the first and the second angle being of the same sign.
- the first support arms form a first angle with a plane defined by the opening
- the second support arms forming a second angle with the plane defined by the opening, the first and the second angle being of signs. opposites.
- This arrangement can allow an interlacing between the first and the second support arms allowing an improvement of torque transfer between the central support and the opening perimeter.
- each first support arm is separated from another first support arm by at least one second support arm. Such a distribution improves the rigidity of the assembly, a tension on the first support arms being compensated by a second support arm placed between them.
- the first support arms form groups of first support arms following one another along the opening perimeter, each group of first support arms being separated from another group of first support arms at the less by a second support arm or by a group of second support arms.
- a distribution allows partial interlacing between the first and second retaining arms, such partial interlacing making it possible to simplify the structure while benefiting from a distribution between the first and second retaining arms along the opening perimeter.
- the first and second holding arms are regularly distributed along the opening perimeter. This facilitates a balancing of the structure which will participate in reducing or avoiding the pumping phenomenon.
- the opening has the shape of a ring, the ring comprising three complementary sectors, each complementary sector covering 120 degrees of the ring, each complementary sector comprising the same number of first and second arms of maintenance.
- the support arms have an aerodynamic shape. Such a shape allows the holding arms not only to fulfill a role of supporting the central support, but also to aid in the generation of the cooling flow by cooperating with an aerodynamic shape of the propeller blades.
- the support arms have a doubly twisted aerodynamic shape.
- Such a shape has a particularly positive effect on the generation of the desired cooling flow.
- the mechanical flexibility introduced by the use of such a shape is compensated for by the rigidity of an arrangement of the support arms as in this description.
- each holding arm is linked to the frame by a corresponding stud, said studs extending perpendicularly to the opening, some of said studs linked to the first holding arms having a first height perpendicular to the opening and from a plane comprising the opening, some other of said studs linked to the second holding arms having a second height perpendicular to the opening and from the plane comprising the opening, the first height being different from the second height.
- Such an arrangement of studs allows the placement of the first and second arms at different heights at a location of connection with the frame in order to obtain a structure as described, while allowing passage of the flow between the studs.
- This disclosure also describes a ventilation device comprising a propeller whose motor is carried by the support frame according to the present description.
- a ventilation device comprising a propeller whose motor is carried by the support frame according to the present description.
- Such a device may for example allow a synergy between the shape of the propeller and the shape and position of the holding arm as described.
- This presentation also describes a cooling module for the heat engine of a motor vehicle comprising the ventilation device as described, the cooling module being able to implement an aerodynamic synergy between its various components, in particular the arms of maintenance as described.
- FIG. 1 A is an exemplary representation of a support frame according to this disclosure.
- FIG. 1 B is an example representation of a cross section of a support frame as shown in Figure 1 A.
- Fig. 1 C is an example representation of a cross section of a support frame as shown in Figure 1 A.
- FIG. 1C is an exemplary cross-sectional representation of a support frame as shown in Figure 1A.
- FIG. 1 D is an exemplary cross-sectional representation of a support frame as shown in Figure 1 A.
- FIG. 1 E is an exemplary cross-sectional representation of a support frame as shown in Figure 1 A.
- FIG. 1F is an example representation of a support frame according to this disclosure.
- FIG. 2A is an exemplary representation of a support frame according to this disclosure.
- FIG. 2B is a representation of part of the frame shown in Figure 2A.
- FIG. 3 is a representation of an example of a ventilation device according to the present disclosure.
- FIG. 4 is a representation of an example of a cooling module according to this disclosure.
- This disclosure relates to a support frame for a ventilation device for cooling a fluid flowing through a cooling circuit of a motor vehicle.
- This reinforcement can in certain cases be integrated into a motor-fan unit or GMV.
- the motor vehicle may be thermal or electric propulsion, or hybrid propulsion.
- This frame may correspond to a base comprising a nozzle.
- This frame may have a generally parallelepipedal shape, for example having outer dimensions of between 1 and 8 cm thick in the axial direction of rotation of the propeller, and dimensions of between 20 and 60 cm on the side in a plane normal to said axial direction.
- This frame may have a generally parallelepipedal shape, for example having outer dimensions of between 2 and 6 cm thick in the axial direction of rotation of the propeller, and dimensions of between 45 and 55 cm on the side in a plane normal to said axial direction.
- the frame according to this description comprises an opening defining an opening perimeter, the opening being intended to receive a propeller.
- Such an opening may have a generally circular opening perimeter having a diameter, for example between 30 and 50 cm.
- Such an opening may have a generally circular opening perimeter having a diameter, for example between 35 and 45 cm.
- Such an opening may have a generally circular opening perimeter having a diameter for example between 38 and 42 cm.
- This opening allows the circulation of a flow such as a flow of air generated by the rotation of the propeller.
- the shape of the opening corresponds to the shape of the propeller, the opening opening in a plane normal to the axis of rotation of the propeller.
- the opening has a generally ring-shaped shape having an opening perimeter corresponding to the outer perimeter of the ring.
- the opening perimeter determines the wall of a hollow cylindrical cavity in which the propeller is positioned, the cylindrical cavity having an axis corresponding to the axial direction or axis of rotation of the propeller.
- the frame can ensure attachment to a support, for example a cooling radiator or a vehicle frame, as well as the support of an electric motor for actuating the propeller and maintaining the axis around which the propeller - here turns.
- the frame can form a wall and limit or prevent recirculation between the upstream and downstream of the propeller.
- the attachment of an electric motor to the frame can be constituted by several holding arms having a mechanical holding function. Such support arms can take the form of an airplane wing, or of a stator blade, giving them an aerodynamic function beyond their mechanical function.
- the stator vanes allow for example a rectification of the flow.
- the frame according to this disclosure comprises a central support positioned in the center of said opening.
- the center of the opening can correspond to the center of a circle corresponding to a perimeter of the opening.
- the center of the opening may include where the axis of rotation of the propeller intersects with a plane including the opening.
- This central support is shaped to receive a motor actuating said propeller so as to generate a flow or flow of ventilation.
- the armature according to this disclosure not only defines a nozzle through which flows the flow generated by the propeller but also allows anchoring of a motor such as an electric motor operating the propeller.
- Said central support is attached, through said opening, to the frame by at least six retaining arms.
- Such holding arms have a mechanical function making it possible to attach the central support to the periphery of the frame through the opening. In order to ensure a certain rigidity of the assembly, the number of support arms must be sufficient.
- Each support arm forms a bridge between the central support and the peripheral part of the frame defining the opening.
- Each arm holding has two ends, one end being linked to the central support, the other end being linked, optionally by means of a stud, to the perimeter of the opening. Between the two ends, the support arms extend radially from the axis of rotation of the propeller.
- said central support is attached, through said opening, to the frame by at least eight support arms.
- said central support is attached, through said opening, to the frame by at least ten support arms. In some cases, said central support is attached, through said opening, to the frame by at least twelve support arms.
- the use of a higher number of support arms can contribute to better mechanical balancing of the assembly, and can provide increased freedom to use particularly aerodynamic shapes for said support arms.
- Such holding arms have a mechanical role of supporting a central support. Due to the fact that such support arms pass through the opening and are therefore in the flow generated by the propeller, the support arms have an influence on the aerodynamics of the assembly. It is therefore in certain cases desirable to adapt, for example, the shape of the support arms to the aerodynamics of the assembly. This can have consequences on the mechanical characteristics of the support arms. A compromise must therefore in certain cases be obtained in order on the one hand to obtain appropriate mechanical characteristics for the support arms, and on the other hand to use a particularly aerodynamic shape for the latter.
- the support frame according to the present disclosure makes it possible to resolve this compromise by improving the rigidity of the structure by a differentiated positioning of the support arms as described.
- Such a differentiated positioning makes it possible in particular to limit a so-called “pumping” phenomenon consisting, under certain conditions, of an unwanted periodic movement of the central support in the direction of the axis of rotation of the propeller, due to excessive flexibility of the arms. maintenance.
- the differentiated positioning of the support arms as described in this description makes it possible to reduce the occurrence of such “pumping”.
- Such a differentiated positioning makes it possible to improve the rigidity of the assembly and therefore to provide increased freedom as to the choice of the shape of the holding arms, for example by allowing the use of support arms lightened or having a particularly fine and aerodynamic shape.
- At least three first support arms are placed in a first plane or cone of revolution, and at least three second support arms are placed in a second plane or cone of revolution different from the first plane or cone of revolution. revolution.
- This differentiated placement of the support arms makes it possible to improve the rigidity of the structure, limiting the aforementioned pumping phenomenon. It is possible that this improvement in rigidity is obtained by the fact that a natural frequency of vibration of the first support arms is different from a natural frequency of vibration of the second support arms, leading to a synergistic stabilization of the assembly. and therefore to a limitation or even elimination of the unwanted pumping phenomenon.
- first plane or cone of revolution for the first three support arms makes it possible to obtain a certain homogeneity of placement of the first three support arms contributing to the mechanical stability of the assembly, as well as to its ease of manufacture.
- second plane or cone of revolution for the three second support arms makes it possible to obtain a certain homogeneity of placement of the first three support arms contributing to the mechanical stability of the assembly, as well as 'to its ease of manufacture.
- the first cone of revolution has as its axis the axis of rotation of the helix corresponding to the center of the opening perimeter.
- the second cone of revolution has as its axis the axis of rotation of the helix corresponding to the center of the opening perimeter.
- the foreground is parallel to a plane including the perimeter of the opening.
- the second plane is parallel to a plane including the perimeter of the opening.
- the number of the first support arms is equal to the number of the second support arms. In some cases, the number of the first support arms is greater than the number of the second support arms. In some cases, the number of the first support arms is less than double the number of the second support arms. In some cases, the number of first support arms is less than three times the number of second support arms.
- the first holding arms are each separated from any second holding arm at the level of the opening perimeter by a space covering at least a distance corresponding to a cord of said first holding arms.
- Arranging such a space between the first retaining arms and each second retaining arm makes it possible, on the one hand, to obtain satisfactory mechanical behavior of each type of retaining arm, avoiding an extreme proximity of a first and a second support arm leads to behavior similar to a single split support arm, which would not achieve the structural rigidity behavior sought in this disclosure.
- a chord of said first support arms corresponds for example to a thickness of a first support arm in a direction tangent to the opening perimeter, corresponding to an angular direction of movement of the rotating propeller.
- This chord can be measured at different points along the support arm, at a different distance from the axis of rotation of the propeller.
- the distance corresponding to this string can therefore vary for a first specific support arm.
- the string considered is the average string of the different strings of the first holding arm considered.
- the string considered is the middle string of the different strings of the first holding arm considered.
- the string considered is the maximum string of the different strings of the first holding arm considered.
- the string considered is the minimum string of the different strings of the first holding arm considered.
- the rope considered is the rope of the first holding arm considered at the location of its attachment to the perimeter of the opening, opposite to the central support.
- the rope considered is the rope of the first holding arm considered at the place of its attachment to the central support.
- the distance corresponding to the cord considered is related to the opening perimeter in order to determine the distance which must separate the first support arm from any second support arm. It is understood that the same first support arm will be located closer to any second support arm at the level of the central support, due to the structure of the assembly. This spacing, beyond mechanical consequences, allows a flow of the flow between the holding arms considered.
- the first support arms are each separated from any second support arm at the level of the opening perimeter by a space covering at least twice a distance corresponding to a cord of said first support arms.
- the first support arms are each separated from any second support arm at the level of the opening perimeter by a space covering at least three times a distance corresponding to three times one to a chord of said first support arms. maintenance. In certain cases, the first support arms are each separated from any second support arm at the level of the opening perimeter by a space covering at least four times a distance corresponding to three times one to one string of said first support arms. maintenance.
- Figure 1A shows a frame according to the present disclosure shows a support frame 100 of a ventilation device for cooling a fluid flowing through a cooling circuit of a motor vehicle, said frame 100 comprising an opening defining a circular opening perimeter 103, the opening being intended to receive a propeller, not shown, and a cylindrical central support 102 positioned at the center of said opening and shaped to receive a motor, not shown, actuating said propeller so as to generate a ventilation flow, said central support 102 being attached, through said opening, to the frame by six support arms 111 -116, at least three first support arms 111, 113, 115 being placed in a first plane or cone of revolution, and at least three second retaining arms 112, 114, 116 being placed in a second plane or cone of revolution different from the first plane or cone of revolution, the first support arms each being separated from any second support arm at the opening perimeter by a space 131 covering at least a distance corresponding to a chord of said first support arms.
- the frame comprises first arms 111, 113 and 115 alternated with the second arms 112, 114 and 116.
- each first support arm is separated from a another first support arm by a second support arm.
- Such a configuration is mechanically particularly balanced.
- each first support arm is separated from another first support arm by at least one second support arm.
- the frame may include additional support arms that are neither the first nor the second support arms, such additional support arms having their own configuration and placement.
- the frame shown in Figure 1A can have a number of different configurations.
- Figure 1B shows a possible section of the frame according to section S of Figure 1A in a plane perpendicular to the view of Figure 1A comprising the first holding arm 115 and the second holding arm 112
- the first support arms such as the first support arm 115 are placed in a first plane 141.
- the second support arms such as the second support arm 112 are placed in a second plane 142.
- the "placement" of a support arm "in” a plane or a cone of revolution involves the placement of a general axis of such a support arm in such an arm or cone, and not of the arm itself, a plane or a cone having in theory a zero thickness.
- Such a general axis of the arm can correspond to a theoretical straight segment joining the end of the corresponding arm in contact with the central support and the opposite end of the same arm in contact with the perimeter of the opening.
- the first plane and the second plane are planes normal to the axis 101 of rotation of the helix or central axis of the frame or central axis of the central support.
- the distance separating the first and the second plane can be in some cases at least the thickness of a first support arm measured at the junction of such first support arm with the opening perimeter in the direction of propeller rotation.
- the distance separating the first and the second plane can be in some cases at least twice the thickness of a first support arm measured at the junction of such first support arm with the opening perimeter in the direction of rotation of the propeller.
- the distance separating the first and the second plane can be in some cases at least three times the thickness of a first support arm measured at the junction of such first support arm with the opening perimeter in the direction of rotation of the propeller.
- An increased difference between said planes can contribute to mechanical stability. Excessive distance can make the bulk of the reinforcement excessive.
- the distance separating the first and the second plane can be in some cases at most four times the thickness of a first support arm measured at the junction of such first support arm with the opening perimeter in the direction of rotation of the propeller.
- the distance separating the first and the second plane can be in some cases at most three times the thickness of a first support arm measured at the junction of such first support arm with the opening perimeter in the direction of rotation of the propeller.
- Figure 1 C shows a possible section of the frame according to section S of Figure 1 A in a plane perpendicular to the view of Figure 1 A comprising the first holding arm 115 and the second holding arm 112
- the first support arms such as the first support arm 115 are placed in a first cone partially represented by the generator 151 of the first cone, the axis of the cone being the axis 101 of rotation of the first cone. 'Helix.
- the second support arms such as the second support arm 112 are placed in a second cone partially represented by the generator 152 of the second cone, the axis of the cone being the axis 101 of rotation of the Helix.
- the first cone of revolution is different from the second cone in order to achieve the effect sought in this talk.
- the first cone and the second cone are cones having the same axis 101 of rotation of the propeller or central axis of the frame or central axis of the central support.
- the first support arms forming a first angle 161 with a plane 104 defined by the opening
- the second support arms forming a second angle 162 with the plane 104 defined by the opening, the first and the second angle being of the same opposite sign.
- the first angle and the second angle differ by at least 5 degrees. In some cases, the first angle and the second angle differ by at least 10 degrees. In some cases, the first angle and the second angle differ by at least 15 degrees. In some cases, the first angle and the second angle differ by at least 20 degrees. In some cases, the first angle and the second angle differ by at least 30 degrees. In some cases, the first angle and the second angle differ by at least 45 degrees. In some cases, the first angle and the second angle differ by less than 90 degrees. In some cases, the first angle and the second angle differ by less than 60 degrees.
- An increased difference between said first and second angle can contribute to mechanical stability. An excessive difference can make the bulk of the reinforcement excessive.
- the first or second angle can be between -5 and +5 degrees.
- the first or second angle can be between -15 and +15 degrees.
- the first or second angle can be between -20 and +20 degrees.
- the first or second angle can be between -30 and +30 degrees.
- Figure 1 D shows a possible section of the frame according to section S of Figure 1 A in a plane perpendicular to the view of Figure 1 A comprising the first holding arm 115 and the second holding arm 112
- the first support arms such as the first support arm 115 are placed in a first cone partially represented by the generator 153 of the first cone, the axis of the cone being the axis 101 of rotation of the first cone. 'Helix.
- the second support arms such as the second support arm 112 are placed in a second cone partially represented by the generator 154 of the second cone, the axis of the cone being the axis 101 of rotation of the Helix.
- the first cone of revolution is different from the second cone in order to achieve the effect sought in this talk.
- the first cone and the second cone are cones having the same axis 101 of rotation of the propeller or central axis of the frame or central axis of the central support.
- the first support arms forming a first angle 163 with a plane 104 defined by the opening
- the second support arms forming a second angle 164 with the plane 104 defined by the opening, the first and the second angle being of opposite signs.
- Figure 1 E shows a possible section of the frame according to section S of Figure 1 A in a plane perpendicular to the view of Figure 1 A comprising the first holding arm 115 and the second holding arm 112
- the first support arms such as the first support arm 115 are placed in a cone partially represented by the generatrix 155 of the first cone, the axis of the cone being the axis 101 of rotation of the cone. Helix.
- the second support arms such as the second support arm 112 are placed in a plane 144 parallel to the plane including the opening.
- Figure 1F shows an example of a frame 105 similar to the example shown in Figure 1A, the frame 105 comprising six first retaining arms 117 and six second retaining arms 118, the first retaining arms 117 forming groups of two first support arms following one another along the opening perimeter, each group of first arms of two support arms 117 being separated from another group of two first support arms 117 at least by a group of second support arms 118.
- the first support arms form groups of first support arms succeeding each other along the opening perimeter, each group of first support arms being separated from another group of first support arms at least by a second support arm or by a group of second support arms. This makes it possible to increase the number of support arms while maintaining a homogeneous structure.
- the opening has a ring shape, the ring comprising three complementary sectors, each complementary sector covering 120 degrees of the ring, each complementary sector comprising the same number of first and second retaining arms.
- the ring forming the opening is defined by the circumference of the central support 102 and by the opening perimeter 103.
- three complementary sectors of 120 degrees of this ring are limited by the axes 160.
- Each of these three sectors shown comprises four support arms, the same number of first support arms and second support arms, precisely in this case two support arms 117 and two support arms 118 per sector. This provides a balanced structure, avoiding or reducing vibrations during a rotating propeller movement.
- the ring comprises six complementary sectors, each complementary sector covering 60 degrees of the ring, each complementary sector comprising the same number of first and second support arms.
- the support arms have an aerodynamic shape, such as the twelve support arm 210-221 between the opening perimeter 203 and the central support 202 of the frame 200. This can make it possible to improve the flow obtained by the use of the frame by adding to the support arms an aerodynamic role beyond their role as mechanical supports.
- the support arms 210-221 include six first support arms 211, 213, 215, 217, 219, and 221 and six second support arms 210, 212, 214, 216, 218 and 220. In this case, the first and second support arms are alternated.
- the first support arms are attached to a first level N1 of the central support, the second support arms being attached to a second level N2 of the central support, the level N1 being different from the level N2 along an axis 201 of propeller rotation, said axis 201 being normal to a plane comprising the opening.
- the first support arms are attached to a third level N3 of the central support, the second support arms being attached to a fourth level N4 of the central support, the different level N3. from level N4 along axis 201 of propeller rotation.
- each holding arm is linked to the frame by a corresponding stud, said studs extending perpendicularly to the opening, some of said studs linked to the first holding arms having a first height perpendicular to the opening and from a plane comprising the opening, some other of said studs linked to the second holding arms having a second height perpendicular to the opening and from the plane comprising the opening, the first height being different from the second height.
- the use of such pads can facilitate the generation of a flow in the radial direction passing between consecutive pads.
- each holding arm 210-221 is linked to the frame 200 by a corresponding stud, said studs extending perpendicular to the opening, some of said studs linked to the first support arms having a first height, corresponding to the level N3, perpendicular to the opening and from a plane comprising the opening, certain other of said studs linked to the second holding arms having a second height, corresponding to the level N4, perpendicular to the opening and from the plane comprising the opening, the first height being different from the second height.
- An aerodynamic shape may include a leading edge and a trailing edge, a flow being incident with the leading edge, the flow following a lower surface and an upper surface. The lower surface and upper surface meet at the trailing edge beyond which the tide flows.
- An aerodynamic shape includes a chord line and a camber line, the chord line following a straight line joining the leading edge and the trailing edge, the camber line being a curve joining the leading edge and the trailing edge. leakage, the camber line being a curve halfway between the intrados and the extrados. A leading edge continues to a point of maximum thickness.
- the support arms have a particularly aerodynamic double twisted shape.
- the holding arms 210-221 have for example a doubly twisted shape which aims to reduce a drag due to the friction of the air against said holding arms during the operation of a propeller.
- Such arms can take, beyond their mechanical function, a dual aerodynamic and acoustic function.
- aerodynamically shaped holding arms are in some cases constituted by thin blades, of large wingspan and of elongated section, with a rope the length of which is at least 1.5 times greater than that of their thickness, in particular at their point of greatest thickness.
- These support arms have an aerodynamic profile to reduce their drag, and a profile setting changes throughout their span, between their foot carried by the central support 202 and their head connected to the opening perimeter 203.
- the profile setting of section of said support arm can for example evolve along their span, starting from a substantially radial orientation at the level of its foot and of the central support 202, to come to a much more axial orientation at mid-span of the support arm, and to return to a substantially radial orientation at the level of its head and of the opening perimeter 203.
- the law of wedging is- i.e.
- the angle that the chord of this section makes with the axial direction of rotation of the propeller, normal to the plane defined by the opening, is scalable along the span to adapt to the direction and the gyration of the flow at the outlet of the propeller. This is beneficial both for aerodynamic efficiency and for the reduction of instabilities which generate noise.
- the root setting, as well as the head setting has a significant value (for example greater than 70 °), while the central part of the blade, that is to say that included in 25 and 75% of the wingspan , takes to have a relatively weak setting (for example less than 20 °).
- the retaining arms 210-221 have, for example, a double twisted shape along a line connecting the mid-chord points of the retaining arm, the twisting being constituted by a rotation of the section of the stator, in a tangential plane. , when describing this line from the foot to the head of the support arm. It is said to be double twisted because the twist increases from the foot towards the mid-span, to decrease from the mid-span towards the head and return to a low twist level. According to an embodiment not shown, the evolution of the setting could be interrupted, or follow another law, in the central part of the stator. Such a doubly twisted shape reduces the rigidity of the arms which therefore particularly benefit from the various configurations as described in the present disclosure.
- first support arms join with the central support at a first level of a propeller axis of rotation and the second support arms join with the central support at a second level of an axis of rotation.
- propeller rotation, the first level and the second level being separated by at least 50% of the maximum thickness of a first support arm, the thickness being measured along the span of the support arm (or stator ), without taking into account its ends.
- the first support arms join the opening perimeter at a first level of a propeller axis of rotation and the second support arms join the central support at a second level of a propeller axis of rotation, the first level and the second level being separated by at least 50% of the maximum thickness of a first support arm, the thickness being measured at along the span of the support arm (or stator), without taking its ends into account.
- first support arms join with the central support at a first level of a propeller axis of rotation and the second support arms join with the central support at a second level of an axis of rotation.
- first level and the second level being separated by at most three times the maximum length of a chord of a first support arm, the chord being between a leading edge and a corresponding trailing edge of said support arm.
- the first support arms join the opening perimeter at a first level of a propeller axis of rotation and the second support arms join the central support at a second level of a propeller axis of rotation, the first level and the second level being separated by at most three times the maximum length of a rope of a first support arm, the rope being between a leading edge and an edge of corresponding leakage of said holding arm.
- first support arms cross the second support arms.
- Such a configuration is particularly rigid while allowing a limited bulk.
- Figure 3 shows a simplified view of an example of a ventilation device 30 comprising a propeller 310 whose motor 320 is carried a support frame 300 according to this description.
- the propeller 310 has an axis of rotation 301 which may for example correspond to the axis 101 or 201 of the preceding figures.
- the propeller can be placed either between the armature and the motor to be cooled.
- the armature can also be located between the propeller and the engine to be cooled.
- the combination of the aerodynamic function of the propeller with the aerodynamic shape of the studs according to this disclosure results in an improvement in the efficiency of the system as a whole. This performance is further improved by combining the aerodynamic capabilities of the propeller, of the studs as described herein, and of an aerodynamic form of support arm.
- FIG 4 illustrates an example of a cooling module 40 of the heat engine of a motor vehicle comprising a ventilation device according to this disclosure.
- the module includes the elements represented in the Figure 3, as well as a radiator 400 subjected to the flow generated by the propeller 310 and modified by the aerodynamic shape of the pads as described in this presentation.
- the propeller is placed between the radiator 400 and the frame 300, but the frame 300 could also be placed between the propeller and the radiator.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
Abstract
Des exemples de réalisations comprennent une armature de support d'un dispositif de ventilation pour le refroidissement d'un fluide parcourant un circuit de refroidissement d'un véhicule automobile. L'armature comporte une ouverture destinée à recevoir une hélice et un support central pour recevoir un moteur actionnant l'hélice. Le support central est rattaché à l'armature par au moins six bras de maintien, au moins trois premiers bras de maintien étant placés dans un premier plan ou cône de révolution, et au moins trois seconds bras de maintien étant placés dans un second plan ou cône de révolution différent du premier plan ou cône de révolution. Les premiers bras de maintien sont chacun séparés de tout second bras de maintien par un espace couvrant au moins une distance correspondant à une corde desdits premiers bras de maintien.
Description
Bras de maintien pour armature de support
Domaine technique
[0001] La présente invention concerne le domaine de l’automobile, et plus particulièrement celui de la circulation d’air pour le refroidissement d’un moteur.
Technique antérieure
[0002] Selon l’état de la technique, les véhicules à moteur évacuent les calories que génère leur fonctionnement et sont pour cela équipés d'échangeurs thermiques, notamment radiateurs de refroidissement, placés par exemple à l'avant du véhicule et traversés par exemple par de l'air extérieur. Pour forcer la circulation de cet air à travers le ou les échangeurs, un ventilateur est placé en amont ou en aval. Une hélice peut servir à forcer la circulation d'air. Dans certains exemples, l’hélice génère un débit relativement élevé et une pression relativement faible et présente un écoulement orienté de façon axiale, c’est-à-dire dans la direction d’un axe de rotation de l’hélice.
Résumé
[0003] La présente invention est définie par les revendications indépendantes ci- jointes. D'autres caractéristiques et avantages découlant des concepts divulgués ici sont exposés dans la description qui suit. Ils se dégagent en partie de la description ou pourront être acquis par la pratique des technologies décrites. Les caractéristiques et avantages de ces concepts peuvent être réalisés et obtenus au moyen des instruments et combinaisons signalés en particulier dans les revendications ci-jointes. Ces caractéristiques et d'autres caractéristiques des technologies décrites transparaîtront plus largement au travers de la description suivante et des revendications ci-jointes, ou pourront être déduites de la pratique des concepts exposés ici.
[0004] Le présent exposé décrit une armature de support d'un dispositif de ventilation pour le refroidissement d'un fluide parcourant un circuit de refroidissement d'un véhicule automobile, ladite armature comportant une ouverture définissant un périmètre d’ouverture, l’ouverture étant destinée à recevoir une hélice, et un support central positionné au centre de ladite ouverture et conformé pour
recevoir un moteur actionnant ladite hélice de façon à générer un flux de ventilation, ledit support central étant rattaché, à travers ladite ouverture, à l'armature par au moins six bras de maintien, au moins trois premiers bras de maintien étant placés dans un premier plan ou cône de révolution (ou cône dans cet exposé), et au moins trois seconds bras de maintien étant placés dans un second plan ou cône de révolution différent du premier plan ou cône de révolution, les premiers bras de maintien étant chacun séparés de tout second bras de maintien au niveau du périmètre d’ouverture par un espace couvrant au moins une distance correspondant à une corde desdits premiers bras de maintien.
[0005] Une structure telle que décrite permet de renforcer l’armature en répartissant le réseau de maintien formé par les bras de maintien, tout en permettant au flot de s’écouler entre bras de maintien. Ce renforcement de l’armature peut permettre de réduire des contraintes liées à la forme desdits bras de maintien, ou bien d’éviter un phénomène dit de pompage correspondant à un mouvement périodique, non désiré, du support central dans la direction de l’axe de rotation de l’hélice provoqué par une oscillation des bras de maintien.
[0006] Dans certaines réalisations, les premiers bras de maintien sont placés dans un premier plan et les seconds bras de maintien sont placés dans un second plan parallèle au premier plan. Cette répartition des bras de maintien dans différents plans permet de rigidifier la structure de maintien du support central, une oscillation éventuelle des bras de maintien placés dans le premier plan étant compensée ou évitée par les bras de maintien placés dans le second plan. Une telle structure améliore en effet la rigidité axiale de l’armature dans l’ace de rotation de l’hélice.
[0007] Dans certaines réalisations, les premiers bras de maintien sont placés dans un premier cône de révolution et les seconds bras de maintien sont placés dans un second cône de révolution différent du premier cône de révolution. Une telle structure permet, de par l’utilisation de différents angles entre les premiers et les seconds bras de maintien d’une part, el l’axe de rotation de l’hélice d’autre part, une compensation mécanique limitant l’effet de pompage susmentionné, un éventuel mouvement des premiers bras étant au moins en partie compensé par une tension générée par les seconds bras, et réciproquement. Dans certains cas particuliers, les premiers bras de maintien forment un premier angle avec un plan défini par
l’ouverture, les seconds bras de maintien formant un second angle avec le plan défini par l’ouverture, le premier et le second angle étant du même signe. Une telle disposition peut permettre de limiter le phénomène de pompage tout en facilitant un processus de démoulage sans dépouille dû à l’utilisation d’angles allant dans une même direction. Dans certains cas particuliers, les premiers bras de maintien forment un premier angle avec un plan défini par l’ouverture, les seconds bras de maintien formant un second angle avec le plan défini par l’ouverture, le premier et le second angle étant de signes opposés. Cette disposition peut permettre un entrelacement entre les premiers et les seconds bras de maintien permettant une amélioration de transfert de couple entre le support central et le périmètre d’ouverture.
[0008] Dans certaines réalisations, chaque premier bras de maintien est séparé d’un autre premier bras de maintien par au moins un second bras de maintien. Une telle répartition permet d’améliorer la rigidité de l’ensemble, une tension sur les premiers bras de maintien étant compensée par un second bras de maintien placé entre ceux-ci.
[0009] Dans certaines réalisations, les premiers bras de maintien forment des groupes de premiers bras de maintien se succédant au long du périmètre d’ouverture, chaque groupe de premiers bras de maintien étant séparé d’un autre groupe de premiers bras de maintien au moins par un second bras de maintien ou par un groupe de seconds bras de maintien. Une telle répartition permet un entrelacement partiel entre les premiers et seconds bras de maintien, un tel entrelacement partiel permettant de simplifier la structure tout en bénéficiant d’une répartition entre les premiers et les seconds bras de maintien au long du périmètre d’ouverture.
[0010] Dans certaines réalisations, les premiers et seconds bras de maintien sont régulièrement répartis au long du périmètre d’ouverture. Ceci facilite un équilibrage de la structure qui participera à réduire ou éviter le phénomène de pompage.
[0011] Dans certaines réalisations, l’ouverture a une forme d’anneau, l’anneau comprenant trois secteurs complémentaires, chaque secteur complémentaire couvrant 120 degrés de l’anneau, chaque secteur complémentaire comprenant un même nombre de premiers et de seconds bras de maintien. Une telle répartition
permet d’obtenir une structure particulièrement bien équilibrée conduisant à faciliter une rotation régulière de l’ensemble.
[0012] Dans certaines réalisations, les bras de maintien ont une forme aérodynamique. Une telle forme permet aux bras de maintien non seulement de remplir un rôle en tant que soutien du support central, mais également à contribuer à la génération du flot de refroidissement en coopérant avec une forme aérodynamique de pales de l’hélice.
[0013] Dans certaines réalisations, les bras de maintien ont une forme aérodynamique doublement vrillée. Une telle forme a un effet particulièrement positif sur la génération du flot de refroidissement désiré. La flexibilité mécanique introduite par l’utilisation d’une telle forme est compensée par la rigidité d’une disposition des bras de maintien telle que dans la présente description.
[0014] Dans certaines réalisations, chaque bras de maintien est lié à l’armature par un plot correspondant, lesdits plots s’étendant perpendiculairement à l’ouverture, certains desdits plots liés aux premiers bras de maintien ayant une première hauteur perpendiculairement à l’ouverture et à partir d’un plan comprenant l’ouverture, certains autres desdits plots liés aux seconds bras de maintien ayant une seconde hauteur perpendiculairement à l’ouverture et à partir du plan comprenant l’ouverture, la première hauteur étant différente de la seconde hauteur. Une telle disposition de plots permet le placement des premiers et seconds bras à des hauteurs différentes à un endroit de liaison avec l’armature afin d’obtenir une structure telle que décrite, tout en permettant un passage du flot entre les plots.
[0015] Le présent exposé décrit également un dispositif de ventilation comprenant une hélice dont le moteur est porté par l’armature de support selon la présente description. Un tel dispositif peut par exemple permettre une synergie entre la forme de l'hélice et la forme et position des bras de maintien tels que décrits.
[0016] Le présent exposé décrit également un module de refroidissement du moteur thermique d’un véhicule automobile comprenant le dispositif de ventilation tels que décrits, le module de refroidissement pouvant mettre en oeuvre une synergie aérodynamique entre ses différents composants, en particuliers les bras de maintien tels que décrits.
Brève description des dessins
[0017] D’autres caractéristiques, détails et avantages apparaîtront à la lecture de la description détaillée ci-après, et à l’analyse des dessins annexés, sur lesquels :
Fig. 1 A [0018] [Fig. 1A] est une représentation d’exemple d’armature de support selon le présent exposé.
Fig. 1 B
[0019] [Fig. 1 B] est une représentation d’exemple de section d’une armature de support telle que représentée par la Figure 1 A. Fig. 1C
[0020] [Fig. 1C] est une représentation d’exemple de section d’une armature de support telle que représentée par la Figure 1 A.
Fig. 1 D
[0021] [Fig. 1 D] est une représentation d’exemple de section d’une armature de support telle que représentée par la Figure 1 A.
Fig. 1E
[0022] [Fig. 1 E] est une représentation d’exemple de section d’une armature de support telle que représentée par la Figure 1 A.
Fig. 1F [0023] [Fig. 1 F] est une représentation d’exemple d’armature de support selon le présent exposé.
Fig. 2A
[0024] [Fig. 2A] est une représentation d’exemple d’armature de support selon le présent exposé.
Fig. 2B
[0025] [Fig. 2B] est une représentation d’une partie de l’armature représentée par la Figure 2A.
Fig. 3
[0026] [Fig. 3] est une représentation d’un exemple de dispositif de ventilation selon le présent exposé.
Fig. 4
[0027] [Fig. 4] est une représentation d’un exemple de module de refroidissement selon cet exposé.
Description des modes de réalisation
[0028] Cet exposé concerne une armature de support d'un dispositif de ventilation pour le refroidissement d'un fluide parcourant un circuit de refroidissement d'un véhicule automobile. Cette armature peut dans certains cas se trouver intégrée à un groupe moto-ventilateur ou GMV. Le véhicule automobile peut-être à propulsion thermique ou électrique, ou à propulsion hybride. Cette armature peut correspondre à un socle comprenant une buse. Cette armature peut avoir une forme généralement parallélépipédique, par exemple ayant des dimensions extérieures d’entre 1 et 8 cm d’épaisseur dans la direction axiale de rotation de l’hélice, et des dimensions d’entre 20 et 60 cm de côté dans un plan normal à ladite direction axiale. Cette armature peut avoir une forme généralement parallélépipédique, par exemple ayant des dimensions extérieures d’entre 2 et 6 cm d’épaisseur dans la direction axiale de rotation de l’hélice, et des dimensions d’entre 45 et 55 cm de côté dans un plan normal à ladite direction axiale.
[0029] L’armature selon cet exposé comprend une ouverture définissant un périmètre d’ouverture, l’ouverture étant destinée à recevoir une hélice. Une telle ouverture peut avoir un périmètre d’ouverture généralement circulaire ayant un diamètre par exemple entre 30 et 50 cm. Une telle ouverture peut avoir un périmètre d’ouverture généralement circulaire ayant un diamètre par exemple entre 35 et 45 cm. Une telle ouverture peut avoir un périmètre d’ouverture généralement circulaire ayant un diamètre par exemple entre 38 et 42 cm. Cette ouverture permet la circulation d’un flot tel qu’un flot d’air généré par la rotation de l’hélice. Dans certains
exemples, la forme de l’ouverture correspond à la forme de l’hélice, l’ouverture s’ouvrant dans un plan normal à l’axe de rotation de l’hélice. Dans certains cas, l’ouverture a une forme généralement en forme d’anneau ayant un périmètre d’ouverture correspondant au périmètre externe de l’anneau.
[0030] Le périmètre d’ouverture détermine la paroi d’une cavité cylindrique creuse dans laquelle est positionnée l'hélice, la cavité cylindrique ayant un axe correspondant à la direction axiale ou axe de rotation de l’hélice. L’armature peut assurer l'accrochage à un support, par exemple un radiateur de refroidissement ou un châssis de véhicule, ainsi que le support d’un moteur électrique d'actionnement de l'hélice et le maintien de l'axe autour duquel celle-ci tourne. Par ailleurs, sur le plan aérodynamique, l’armature peut former une paroi et limiter ou empêcher les recirculations entre l'amont et l'aval de l'hélice. L'accrochage d’un moteur électrique à l’armature peut être constitué par plusieurs bras de maintien ayant une fonction de tenue mécanique. De tels bras de maintien peuvent prendre une forme d'aile d'avion, ou d'aube de stators leur donnant une fonction aérodynamique au-delà de leur fonction mécanique. Les aubes de stators permettent par exemple un redressement de l'écoulement.
[0031] L’armature selon cet exposé comprend un support central positionné au centre de ladite ouverture. Le centre de l’ouverture peut correspondre au centre d’un cercle correspondant à un périmètre de l’ouverture. Le centre de l’ouverture peut comprendre l’endroit où l’axe de rotation de l’hélice est en intersection avec un plan comprenant l’ouverture. Ce support central est conformé pour recevoir un moteur actionnant ladite hélice de façon à générer un flux ou flot de ventilation. L’armature selon cet exposé non seulement permet de définir une buse par laquelle s’écoule le flot généré par l’hélice mais également permet d’ancrer un moteur tel qu’un moteur électrique actionnant l’hélice.
[0032] Ledit support central est rattaché, à travers ladite ouverture, à l'armature par au moins six bras de maintien. De tels bras de maintien ont une fonction mécanique permettant de rattacher le support central à la périphérie de l’armature à travers de l’ouverture. Afin d’assurer une certaine rigidité de l’ensemble, le nombre de bras de maintien doit être suffisant. Chaque bras de maintien forme un pont entre le support central et la partie périphérique de l’armature définissant l’ouverture. Chaque bras
de maintien a deux extrémités, une extrémité étant liée au support central, l’autre extrémité se trouvant liée, éventuellement par l’intermédiaire d’un plot, au périmètre de l’ouverture. Entre les deux extrémités, les bras de maintien s’étendent radialement à partir de l’axe de rotation de l’hélice. Dans certains cas, ledit support central est rattaché, à travers ladite ouverture, à l'armature par au moins huit bras de maintien. Dans certains cas, ledit support central est rattaché, à travers ladite ouverture, à l'armature par au moins dix bras de maintien. Dans certains cas, ledit support central est rattaché, à travers ladite ouverture, à l'armature par au moins douze bras de maintien. L’utilisation d’un nombre plus élevé de bras de maintien peu contribuer à un meilleur équilibrage mécanique de l’ensemble, et peu procurer une liberté accrue d’utilisation de formes particulièrement aérodynamiques pour lesdits bras de maintien.
[0033] De tels bras de maintien ont un rôle mécanique de soutient d’un support central. Dû au fait que de tels bras de maintien traversent l’ouverture et se trouvent donc dans le flot généré par l’hélice, les bras de maintien ont une influence sur l’aérodynamisme de l’ensemble. Il est donc dans certains cas souhaitable d’adapter par exemple la forme des bras de maintien à l’aérodynamisme de l’ensemble. Ceci peut avoir des conséquences sur les caractéristiques mécaniques des bras de maintien. Un compromis doit donc dans certains cas être obtenu afin d’une part d’obtenir des caractéristiques mécaniques appropriées pour les bras de maintien, et d’autre part d’utiliser pour ceux-ci une forme particulièrement aérodynamique. L’armature de support selon le présent exposé permet de résoudre ce compromis en améliorant la rigidité de la structure par un positionnement différencié des bras de maintien tel que décrits. Un tel positionnement différencié permet en particulier de limiter un phénomène dit de « pompage » consistant dans certaines conditions en un mouvement périodique non désiré du support central dans la direction de l’axe de rotation de l’hélice, dû à une flexibilité excessive des bras de maintien. Le positionnement différencié des bras de maintien tel que décrit dans cet exposé permet de réduire l’occurrence d’un tel « pompage ». Un tel positionnement différencié permet d’améliorer la rigidité de l’ensemble et donc de procurer une liberté accrue quant au choix de la forme des bras de maintien, par exemple en
permettant l’utilisation de bras de maintien allégés ou aillant une forme particulièrement fine et aérodynamique.
[0034] Selon cet exposé, au moins trois premiers bras de maintien sont placés dans un premier plan ou cône de révolution, et au moins trois seconds bras de maintien sont placés dans un second plan ou cône de révolution différent du premier plan ou cône de révolution. Ce placement différentié des bras de maintien permet l’amélioration de la rigidité de la structure limitant le phénomène de pompage susmentionné. Il est possible que cette amélioration de la rigidité soit obtenue par le fait qu’une fréquence propre de vibration des premiers bras de maintien soit différente d’une fréquence propre de vibration des seconds bras de maintien, conduisant à une stabilisation synergétique de l’ensemble et donc à une limitation ou même à une suppression du phénomène non désiré de pompage. L’introduction d’une telle différence de positionnement procure une liberté accrue quant au choix de la forme ou même des matériaux utilisés pour les bras de maintien pour une rigidité donnée de la structure. L’utilisation d’un même premier plan ou cône de révolution pour les trois premiers bras de maintien permet d’obtenir une certaine homogénéité de placement des trois premiers bras de maintien contribuant à la stabilité mécanique de l’ensemble, ainsi qu’à sa facilité de fabrication. De même, l’utilisation d’un même second plan ou cône de révolution pour les trois seconds bras de maintien permet d’obtenir une certaine homogénéité de placement des trois premiers bras de maintien contribuant à la stabilité mécanique de l’ensemble, ainsi qu’à sa facilité de fabrication. Dans certains cas, le premier cône de révolution a comme axe l’axe de rotation de l’hélice correspondant au centre du périmètre d’ouverture. Dans certains cas, le second cône de révolution a comme axe l’axe de rotation de l’hélice correspondant au centre du périmètre d’ouverture. Dans certains cas, le premier plan est parallèle à un plan comprenant le périmètre de l’ouverture. Dans certains cas, le second plan est parallèle à un plan comprenant le périmètre de l’ouverture. Dans certains cas, le nombre des premiers bras de maintien est égal au nombre des seconds bras de maintien. Dans certains cas, le nombre des premiers bras de maintien est supérieur au nombre des seconds bras de maintien. Dans certains cas, le nombre des premiers bras de maintien est inférieur au double du nombre des seconds bras de maintien. Dans certains cas, le nombre des
premiers bras de maintien est inférieur au triple du nombre des seconds bras de maintien.
[0035] Selon cet exposé, les premiers bras de maintien sont chacun séparés de tout second bras de maintien au niveau du périmètre d’ouverture par un espace couvrant au moins une distance correspondant à une corde desdits premiers bras de maintien. Aménager un tel espace entre les premiers bras de maintien et chaque second bras de maintien permet d’une part d’obtenir un comportement mécanique satisfaisant de chaque type de bras de maintien, évitant qu’une proximité extrême d’un premier et d’un second bras de maintien mène à un comportement similaire à un unique bras de maintien fendu, qui ne permettrait pas d’obtenir le comportement de rigidité structurelle recherché dans cet exposé. Une corde desdits premiers bras de maintien correspond par exemple à une épaisseur d’un premier bras de maintien selon une direction tangente au périmètre d’ouverture, correspondant à une direction angulaire de déplacement de l’hélice en rotation. Cette corde peut être mesurée à différents points au long du bras de maintien, à une différente distance de l’axe de rotation de l’hélice. La distance correspondant à cette corde peut donc varier pour un premier bras de maintien spécifique. Dans certains cas, la corde considérée est la corde moyenne des différentes cordes du premier bras de maintien considéré. Dans certains cas, la corde considérée est la corde médiane des différentes cordes du premier bras de maintien considéré. Dans certains cas, la corde considérée est la corde maximum des différentes cordes du premier bras de maintien considéré. Dans certains cas, la corde considérée est la corde minimum des différentes cordes du premier bras de maintien considéré. Dans certains cas, la corde considérée est la corde du premier bras de maintien considéré à l’endroit de son rattachement au périmètre de l’ouverture, opposé au support central. Dans certains cas, la corde considérée est la corde du premier bras de maintien considéré à l’endroit de son rattachement au support central. La distance correspondant à la corde considérée est rapportée au périmètre d’ouverture afin de déterminer la distance devant séparer le premier bras de maintien de tout second bras de maintien. Il est entendu que le même premier bras de maintien se trouvera plus proche de tout second bras de maintien au niveau du support central, dû à la structure de l’ensemble. Cet espacement, au-delà de conséquences mécaniques,
permet un écoulement du flot entre les bras de maintien considérés. Dans certains cas, les premiers bras de maintien sont chacun séparés de tout second bras de maintien au niveau du périmètre d’ouverture par un espace couvrant au moins le double d’une distance correspondant à une corde desdits premiers bras de maintien. Dans certains cas, les premiers bras de maintien sont chacun séparés de tout second bras de maintien au niveau du périmètre d’ouverture par un espace couvrant au moins le triple d’une distance correspondant au triple d’une à une corde desdits premiers bras de maintien. Dans certains cas, les premiers bras de maintien sont chacun séparés de tout second bras de maintien au niveau du périmètre d’ouverture par un espace couvrant au moins le quadruple d’une distance correspondant au triple d’une à une corde desdits premiers bras de maintien.
[0036] La Figure 1A représente une armature selon le présent exposé représente une armature de support 100 d'un dispositif de ventilation pour le refroidissement d'un fluide parcourant un circuit de refroidissement d'un véhicule automobile, ladite armature 100 comportant une ouverture définissant un périmètre d’ouverture circulaire 103, l’ouverture étant destinée à recevoir une hélice non représentée, et un support central cylindrique 102 positionné au centre de ladite ouverture et conformé pour recevoir un moteur, non représenté, actionnant ladite hélice de façon à générer un flux de ventilation, ledit support central 102 étant rattaché, à travers ladite ouverture, à l'armature par six bras de maintien 111 -116, au moins trois premiers bras de maintien 111 , 113, 115 étant placés dans un premier plan ou cône de révolution, et au moins trois seconds bras de maintien 112, 114, 116 étant placés dans un second plan ou cône de révolution différent du premier plan ou cône de révolution, les premiers bras de maintien étant chacun séparés de tout second bras de maintien au niveau du périmètre d’ouverture par un espace 131 couvrant au moins une distance correspondant à une corde desdits premiers bras de maintien.
[0037] Dans la configuration de la Figure 1A, l’armature comprend des premiers bras 111 , 113 et 115 alternés avec les seconds bras 112, 114 et 116. En d’autres termes, chaque premier bras de maintien est séparé d’un autre premier bras de maintien par un second bras de maintien. Une telle configuration est mécaniquement particulièrement équilibrée.
[0038] Dans certains cas, chaque premier bras de maintien est séparé d’un autre premier bras de maintien par au moins un second bras de maintien.
[0039] L’armature peut comprendre des bras de maintien additionnels n’étant ni des premiers ni des seconds bras de maintien, de tels bras de maintien additionnels ayant leur propre configuration et placement.
[0040] L’armature représentée par la Figure 1A peut avoir un certain nombre de configurations différentes.
[0041] La Figure 1 B représente une section possible de l’armature selon la section S de la Figure 1 A dans un plan perpendiculaire à la vue de la Figure 1 A comprenant le premier bras de maintien 115 et le second bras de maintien 112. Dans ce cas-ci, les premiers bras de maintien tels que le premier bras de maintien 115 sont placés dans un premier plan 141 . Dans ce cas-ci, les seconds bras de maintien tels que le second bras de maintien 112 sont placés dans un second plan 142. Il est bien sûr entendu dans cet exposé que le « placement » d’un bras de maintien « dans » un plan ou un cône de révolution implique le placement d’un axe général du tel bras de maintien dans un tel bras ou cône, et non pas du bras lui-même, un plan ou un cône ayant en théorie une épaisseur nulle. Un tel axe général du bras peut correspondre à un segment de droite théorique joignant l’extrémité du bras correspondant en contact avec le support central el l’extrémité opposée du même bras en contact avec le périmètre de l’ouverture. Dans cet exemple, le premier plan et le second plan sont des plans normaux à l’axe 101 de rotation de l’hélice ou axe central de l’armature ou axe central du support central. La distance séparant le premier et le deuxième plan peut être dans certains cas d’au moins l’épaisseur d’un premier bras de maintien mesurée au niveau de la jonction du tel premier bras de maintien avec le périmètre d’ouverture dans la direction de rotation de l’hélice. La distance séparant le premier et le deuxième plan peut être dans certains cas d’au moins le double de l’épaisseur d’un premier bras de maintien mesurée au niveau de la jonction du tel premier bras de maintien avec le périmètre d’ouverture dans la direction de rotation de l’hélice. La distance séparant le premier et le deuxième plan peut être dans certains cas d’au moins le triple de l’épaisseur d’un premier bras de maintien mesurée au niveau de la jonction du tel premier bras de maintien avec le périmètre d’ouverture dans la direction de rotation de l’hélice. Une différence accrue
entre lesdits plans peut contribuer à la stabilité mécanique. Une distance excessive peut rendre l’encombrement de l’armature excessif. La distance séparant le premier et le deuxième plan peut être dans certains cas d’au plus le quadruple de l’épaisseur d’un premier bras de maintien mesurée au niveau de la jonction du tel premier bras de maintien avec le périmètre d’ouverture dans la direction de rotation de l’hélice. La distance séparant le premier et le deuxième plan peut être dans certains cas d’au plus le triple de l’épaisseur d’un premier bras de maintien mesurée au niveau de la jonction du tel premier bras de maintien avec le périmètre d’ouverture dans la direction de rotation de l’hélice.
[0042] La Figure 1 C représente une section possible de l’armature selon la section S de la Figure 1 A dans un plan perpendiculaire à la vue de la Figure 1 A comprenant le premier bras de maintien 115 et le second bras de maintien 112. Dans ce cas-ci, les premiers bras de maintien tels que le premier bras de maintien 115 sont placés dans un premier cône partiellement représenté par la génératrice 151 du premier cône, l’axe du cône étant l’axe 101 de rotation de l’hélice. Dans ce cas-ci, les seconds bras de maintien tels que le second bras de maintien 112 sont placés dans un second cône partiellement représenté par la génératrice 152 du second cône, l’axe du cône étant l’axe 101 de rotation de l’hélice. Le premier cône de révolution est différent du second cône afin d’obtenir l’effet recherché dans cet exposé. Dans cet exemple, le premier cône et le second cône sont des cônes ayant un même axe 101 de rotation de l’hélice ou axe central de l’armature ou axe central du support central. Dans cet exemple, les premiers bras de maintien formant un premier angle 161 avec un plan 104 défini par l’ouverture, les seconds bras de maintien formant un second angle 162 avec le plan 104 défini par l’ouverture, le premier et le second angle étant de même signe opposés.
[0043] Dans certains cas, le premier angle et le second angle diffèrent par au moins 5 degrés. Dans certains cas, le premier angle et le second angle diffèrent par au moins 10 degrés. Dans certains cas, le premier angle et le second angle diffèrent par au moins 15 degrés. Dans certains cas, le premier angle et le second angle diffèrent par au moins 20 degrés. Dans certains cas, le premier angle et le second angle diffèrent par au moins 30 degrés. Dans certains cas, le premier angle et le second angle diffèrent par au moins 45 degrés. Dans certains cas, le premier angle
et le second angle diffèrent par moins de 90 degrés. Dans certains cas, le premier angle et le second angle diffèrent par moins de 60 degrés. Une différence accrue entre lesdits premier et second angle peut contribuer à la stabilité mécanique. Une différence excessive peut rendre l’encombrement de l’armature excessif. Le premier ou le second angle peut être d’entre -5 et +5 degrés. Le premier ou le second angle peut être d’entre -15 et +15 degrés. Le premier ou le second angle peut être d’entre -20 et +20 degrés. Le premier ou le second angle peut être d’entre -30 et +30 degrés.
[0044] La Figure 1 D représente une section possible de l’armature selon la section S de la Figure 1 A dans un plan perpendiculaire à la vue de la Figure 1 A comprenant le premier bras de maintien 115 et le second bras de maintien 112. Dans ce cas-ci, les premiers bras de maintien tels que le premier bras de maintien 115 sont placés dans un premier cône partiellement représenté par la génératrice 153 du premier cône, l’axe du cône étant l’axe 101 de rotation de l’hélice. Dans ce cas-ci, les seconds bras de maintien tels que le second bras de maintien 112 sont placés dans un second cône partiellement représenté par la génératrice 154 du second cône, l’axe du cône étant l’axe 101 de rotation de l’hélice. Le premier cône de révolution est différent du second cône afin d’obtenir l’effet recherché dans cet exposé. Dans cet exemple, le premier cône et le second cône sont des cônes ayant un même axe 101 de rotation de l’hélice ou axe central de l’armature ou axe central du support central. Dans cet exemple, les premiers bras de maintien formant un premier angle 163 avec un plan 104 défini par l’ouverture, les seconds bras de maintien formant un second angle 164 avec le plan 104 défini par l’ouverture, le premier et le second angle étant de signes opposés.
[0045] La Figure 1 E représente une section possible de l’armature selon la section S de la Figure 1 A dans un plan perpendiculaire à la vue de la Figure 1 A comprenant le premier bras de maintien 115 et le second bras de maintien 112. Dans ce cas-ci, les premiers bras de maintien tels que le premier bras de maintien 115 sont placés dans un cône partiellement représenté par la génératrice 155 du premier cône, l’axe du cône étant l’axe 101 de rotation de l’hélice. Dans ce cas-ci, les seconds bras de maintien tels que le second bras de maintien 112 sont placés dans un plan 144 parallèle au plan comprenant l’ouverture.
[0046] La Figure 1 F représente un exemple d’armature 105 similaire à l’exemple représenté par la Figure 1A, l’armature 105 comprenant six premiers bras de maintien 117 et six seconds bras de maintien 118, les premiers bras de maintien 117 formant des groupes de deux premiers bras de maintien se succédant au long du périmètre d’ouverture, chaque groupe de premiers bras de deux bras de maintien 117 étant séparé d’un autre groupe de deux premiers bras de maintien 117 au moins par un groupe de seconds bras de maintien 118.
[0047] Dans certains cas, tel que dans le cas représenté par la Figure 1 F, les premiers bras de maintien forment des groupes de premiers bras de maintien se succédant au long du périmètre d’ouverture, chaque groupe de premiers bras de maintien étant séparé d’un autre groupe de premiers bras de maintien au moins par un second bras de maintien ou par un groupe de seconds bras de maintien. Ceci permet d’augmenter le nombre de bras de maintien tout en conservant une structure homogène.
[0048] Dans certains cas, tels que représentés par exemple par les Figures 1 A, 1 F ou 2A, l’ouverture a une forme d’anneau, l’anneau comprenant trois secteurs complémentaires, chaque secteur complémentaire couvrant 120 degrés de l’anneau, chaque secteur complémentaire comprenant un même nombre de premiers et de seconds bras de maintien. Prenant comme exemple l’armature 105 représentée par la Figure 1 F, l’anneau formant l’ouverture est défini par la circonférence du support central 102 et par le périmètre d’ouverture 103. Sur cette même Figure 1 F, trois secteurs complémentaires de 120 degrés de cet anneau sont limités par les axes 160. Chacun de ces trois secteurs représentés comprend quatre bras de maintien, un même nombre de premiers bras de maintien et de second bras de maintien, précisément dans ce cas-ci deux bras de maintien 117 et deux bras de maintien 118 par secteur. Ceci procure une structure équilibrée, évitant ou réduisant des vibrations lors d’un mouvement de rotation d’hélice. Dans certains cas, l’anneau comprend six secteurs complémentaires, chaque secteur complémentaire couvrant 60 degrés de l’anneau, chaque secteur complémentaire comprenant un même nombre de premiers et de seconds bras de maintien.
[0049] Dans certains cas, tels que par exemple illustré par l’armature 200 de la Figure 2A, les bras de maintien ont une forme aérodynamique, tels que les douze
bras de maintien 210-221 entre le périmètre d’ouverture 203 et le support central 202 de l’armature 200. Ceci peut permettre d’améliorer le flot obtenu par l’utilisation de l’armature en ajoutant aux bras de maintien un rôle aérodynamique au-delà de leur rôle de supports mécaniques. Les bras de maintien 210-221 comprennent six premiers bras de maintien 211 , 213, 215, 217, 219, et 221 et six seconds bras de maintiens 210, 212, 214, 216, 218 et 220. Dans ce cas, les premiers et seconds bras de maintien sont alternés. Dans ce cas, tel qu’illustré plus en détail sur la Figure 2B, les premiers bras de maintien sont attachés à un premier niveau N1 du support central, les seconds bras de maintien étant attachés à un second niveau N2 du support central, le niveau N1 étant différent du niveau N2 au long d’un axe 201 de rotation d’hélice, ledit axe 201 étant normal à un plan comprenant l’ouverture. Dans ce cas, tel qu’illustré plus sur la Figure 2B, les premiers bras de maintien sont attachés à un troisième niveau N3 du support central, les seconds bras de maintien étant attachés à un quatrième niveau N4 du support central, le niveau N3 différent du niveau N4 au long de l’axe 201 de rotation d’hélice. Ces décalages de niveau amènent à réaliser un exemple selon cet exposé évitant de placer tous les bras de maintien dans un même plan ou cône de révolution afin d’obtenir une structure particulièrement rigide, particulièrement efficace dans un cas d’utilisation de bras de maintien à forme aérodynamique tendant à être plus flexibles.
[0050] Dans certains cas, chaque bras de maintien est lié à l’armature par un plot correspondant, lesdits plots s’étendant perpendiculairement à l’ouverture, certains desdits plots liés aux premiers bras de maintien ayant une première hauteur perpendiculairement à l’ouverture et à partir d’un plan comprenant l’ouverture, certains autres desdits plots liés aux seconds bras de maintien ayant une seconde hauteur perpendiculairement à l’ouverture et à partir du plan comprenant l’ouverture, la première hauteur étant différente de la seconde hauteur. L’utilisation de tels plots peut permettre de faciliter la génération d’un flot en direction radiale passant entre des plots consécutifs.
[0051] Dans le cas de l’armature représentée par les Figures 2A et 2B, chaque bras de maintien 210-221 est lié à l’armature 200 par un plot correspondant, lesdits plots s’étendant perpendiculairement à l’ouverture, certains desdits plots liés aux premiers bras de maintien ayant une première hauteur, correspondant au niveau
N3, perpendiculairement à l’ouverture et à partir d’un plan comprenant l’ouverture, certains autres desdits plots liés aux seconds bras de maintien ayant une seconde hauteur, correspondant au niveau N4, perpendiculairement à l’ouverture et à partir du plan comprenant l’ouverture, la première hauteur étant différente de la seconde hauteur.
[0052] Une forme aérodynamique peu comprendre un bord d’attaque et un bord de fuite, un flot étant incident avec le bord d’attaque, le flot suivant un intrados et un extrados. L’intrados et l’extrados se rejoignent au bord de fuite au-delà duquel le flot s’écoule. Une forme aérodynamique comprend une ligne de corde et une ligne de cambrure, la ligne de corde suivant une droite joignant le bord d’attaque et le bord de fuite, la ligne de cambrure étant une courbe joignant le bord d’attaque et le bord de fuite, la ligne de cambrure étant une courbe à mi-distance entre l’intrados et l’extrados. Un bord d’attaque se poursuit jusqu’à un point d’épaisseur maximale.
[0053] Dans certains cas, les bras de maintien ont une forme doublement vrillée particulièrement aérodynamique.
[0054] Les bras de maintien 210-221 ont par exemple une forme doublement vrillée qui vise à réduire une traînée due au frottement de l'air contre lesdits bras de maintien lors du fonctionnement d’une hélice. De tels bras peuvent prendre au-delà de leur fonction mécanique une double fonction aérodynamique et acoustique. Au lieu de bras en forme de plaques planes orientées selon la direction de l'écoulement qui traverse l'hélice, des bras de maintien à forme aérodynamique sont dans certains cas constitués par des pales minces, de grande envergure et de section allongée, avec une corde dont la longueur est supérieure d'au moins 1 ,5 fois à celle de leur épaisseur, en particulier en leur point de plus grande épaisseur. Ces bras de maintien ont un profil aérodynamique pour réduire leur traînée, et un calage du profil évolue tout au long de leur envergure, entre leur pied porté par le support central 202 et leur tête connectée au périmètre d’ouverture 203. Le calage du profil de section d'un dit bras de maintien peut par exemple évoluer le long de leur envergure, en partant d'une orientation sensiblement radiale au niveau de son pied et du support central 202, pour venir à une orientation nettement plus axiale à mi- envergure du bras de maintien, et pour revenir vers une orientation sensiblement radiale au niveau de sa tête et du périmètre d’ouverture 203. La loi du calage, c'est-
à-dire de l'angle que fait la corde de cette section avec la direction axiale de rotation de l’hélice, normale au plan défini par l’ouverture, est évolutive le long de l'envergure pour s'adapter à la direction et à la giration de l'écoulement en sortie d'hélice. Ceci est bénéfique à la fois pour le rendement aérodynamique et pour la réduction des instabilités qui sont génératrices de bruit. Dans certains cas le calage de pied, de même que le calage de tête, a une valeur importante (par exemple supérieure à 70°), alors que la partie centrale de la pale, soit celle comprise en 25 et 75% de l'envergure, prend avoir un calage relativement faible (par exemple inférieur à 20°). Les bras de maintien 210-221 présentent par exemple une forme doublement vrillée tout le long d'une ligne reliant les points à mi-corde du bras de maintien, le vrillage étant constitué par une rotation de la section du stator, dans un plan tangentiel, lorsqu'on décrit cette ligne depuis le pied jusqu'à la tête du bras de maintien. Elle est dite doublement vrillée car le vrillage augmente du pied vers la mi-envergure, pour décroître de la mi-envergure vers la tête et revenir à un niveau faiblement vrillé. Selon un mode de réalisation non illustré, l'évolution du calage pourrait s'interrompre, ou suivre une autre loi, dans la partie centrale du stator. Une telle forme doublement vrillée diminue la rigidité des bras qui bénéficient donc particulièrement des différentes configurations tels que décrites dans le présent exposé.
[0055] Dans certains cas, les premiers bras de maintien se joignent au support central à un premier niveau d’un axe de rotation d’hélice et les seconds bras de maintien se joignent au support central à un second niveau d’un axe de rotation d’hélice, le premier niveau et le second niveau étant séparés par au moins 50% de l’épaisseur maximum d’un premier bras de maintien, l’épaisseur étant mesurée au long de l’envergure du bras de maintien (ou stator), sans prendre en compte ses extrémités.
[0056] Dans certains cas, les premiers bras de maintien se joignent au périmètre d’ouverture à un premier niveau d’un axe de rotation d’hélice et les seconds bras de maintien se joignent au support central à un second niveau d’un axe de rotation d’hélice, le premier niveau et le second niveau étant séparés par au moins 50% de l’épaisseur maximum d’un premier bras de maintien, l’épaisseur étant mesurée au
long de l’envergure du bras de maintien (ou stator), sans prendre en compte ses extrémités.
[0057] Dans certains cas, les premiers bras de maintien se joignent au support central à un premier niveau d’un axe de rotation d’hélice et les seconds bras de maintien se joignent au support central à un second niveau d’un axe de rotation d’hélice, le premier niveau et le second niveau étant séparés par au plus le triple de la longueur maximum d’une corde d’un premier bras de maintien, la corde étant entre un bord d’attaque et un bord de fuite correspondant dudit bras de maintien.
[0058] Dans certains cas, les premiers bras de maintien se joignent au périmètre d’ouverture à un premier niveau d’un axe de rotation d’hélice et les seconds bras de maintien se joignent au support central à un second niveau d’un axe de rotation d’hélice, le premier niveau et le second niveau étant séparés par au plus le triple de la longueur maximum d’une corde d’un premier bras de maintien, la corde étant entre un bord d’attaque et un bord de fuite correspondant dudit bras de maintien.
[0059] Dans certains cas, les premiers bras de maintien croisent les seconds bras de maintien. Une telle configuration est particulièrement rigide tout en permettant un encombrement limité.
[0060] La Figure 3 représente une vue simplifiée d’un exemple de dispositif de ventilation 30 comprenant une hélice 310 dont le moteur 320 est porté une armature de support 300 selon cet exposé. L’hélice 310 a un axe de rotation 301 pouvant par exemple correspondre à l’axe 101 ou 201 des Figures précédentes. L’hélice peut être placée soit entre l’armature et le moteur à refroidir. L’armature peut aussi se trouver entre l’hélice et le moteur à refroidir. La combinaison de la fonction aérodynamique de l’hélice avec la forme aérodynamique des plots selon cet exposé permet d’obtenir une amélioration du rendement du système dans son ensemble. Ce rendement est encore amélioré en combinant les capacités aérodynamiques de l’hélice, des plots selon cet exposé et d’une forme aérodynamique de bras de maintien.
[0061] La Figure 4 illustre un exemple de module de refroidissement 40 du moteur thermique d'un véhicule automobile comprenant un dispositif de ventilation selon cet exposé. Dans ce cas-ci, le module comprend les éléments représentés dans la
Figure 3, ainsi qu’un radiateur 400 soumis au flot généré par l’hélice 310 et modifié par la forme aérodynamique des plots tels que décrits dans cet exposé. Dans ce cas-ci, l’hélice est placée entre le radiateur 400 et l’armature 300, mais l’armature 300 pourrait également être placée entre l’hélice et le radiateur.
Claims
[Revendication 1] Armature de support d'un dispositif de ventilation pour le refroidissement d'un fluide parcourant un circuit de refroidissement d'un véhicule automobile, ladite armature comportant une ouverture définissant un périmètre d’ouverture, l’ouverture étant destinée à recevoir une hélice, et un support central positionné au centre de ladite ouverture et conformé pour recevoir un moteur actionnant ladite hélice de façon à générer un flux de ventilation, ledit support central étant rattaché, à travers ladite ouverture, à l'armature par au moins six bras de maintien, au moins trois premiers bras de maintien étant placés dans un premier plan ou cône de révolution, et au moins trois seconds bras de maintien étant placés dans un second plan ou cône de révolution différent du premier plan ou cône de révolution, les premiers bras de maintien étant chacun séparés de tout second bras de maintien au niveau du périmètre d’ouverture par un espace couvrant au moins une distance correspondant à une corde desdits premiers bras de maintien.
[Revendication 2] L’armature selon la revendication 1 , les premiers bras de maintien étant placés dans un premier plan et les seconds bras de maintien étant placés dans un second plan parallèle au premier plan.
[Revendication 3] L’armature selon la revendication 1 , les premiers bras de maintien étant placés dans un premier cône de révolution et les seconds bras de maintien étant placés dans un second cône de révolution différent du premier cône de révolution.
[Revendication 4] L’armature selon la revendication 3, les premiers bras de maintien formant un premier angle avec un plan défini par l’ouverture, les seconds bras de maintien formant un second angle avec le plan défini par l’ouverture, le premier et le second angle étant de signes opposés.
[Revendication 5] L’armature selon la revendication 3, les premiers bras de maintien formant un premier angle avec un plan défini par l’ouverture, les seconds bras de maintien formant un second angle avec le plan défini par l’ouverture, le premier et le second angle étant du même signe.
[Revendication 6] L’armature selon l’une quelconque des revendications 1 à 5, les premiers bras de maintien formant des groupes de premiers bras de maintien se
succédant au long du périmètre d’ouverture, chaque groupe de premiers bras de maintien étant séparé d’un autre groupe de premiers bras de maintien au moins par un second bras de maintien ou par un groupe de seconds bras de maintien.
[Revendication 7] L’armature selon l’une quelconque des revendications précédentes, l’ouverture ayant une forme d’anneau, l’anneau comprenant trois secteurs complémentaires, chaque secteur complémentaire couvrant 120 degrés de l’anneau, chaque secteur complémentaire comprenant un même nombre de premiers et de seconds bras de maintien.
[Revendication 8] L’armature selon l’une quelconque des revendications précédentes, chaque bras de maintien étant lié à l’armature par un plot correspondant, lesdits plots s’étendant perpendiculairement à l’ouverture, certains desdits plots liés aux premiers bras de maintien ayant une première hauteur perpendiculairement à l’ouverture et à partir d’un plan comprenant l’ouverture, certains autres desdits plots liés aux seconds bras de maintien ayant une seconde hauteur perpendiculairement à l’ouverture et à partir du plan comprenant l’ouverture, la première hauteur étant différente de la seconde hauteur.
[Revendication 9] Un dispositif de ventilation comprenant une hélice dont le moteur est porté par l’armature de support selon l'une des revendications précédentes.
[Revendication 10] Un module de refroidissement du moteur thermique d'un véhicule automobile comprenant le dispositif de ventilation selon la revendication 9.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2002499A FR3108147B1 (fr) | 2020-03-13 | 2020-03-13 | Bras de maintien pour armature de support |
PCT/FR2021/050328 WO2021181024A1 (fr) | 2020-03-13 | 2021-02-25 | Bras de maintien pour armature de support |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4118342A1 true EP4118342A1 (fr) | 2023-01-18 |
Family
ID=71784160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21714247.0A Pending EP4118342A1 (fr) | 2020-03-13 | 2021-02-25 | Bras de maintien pour armature de support |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230104481A1 (fr) |
EP (1) | EP4118342A1 (fr) |
CN (1) | CN115135885A (fr) |
FR (1) | FR3108147B1 (fr) |
WO (1) | WO2021181024A1 (fr) |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3883264A (en) * | 1971-04-08 | 1975-05-13 | Gadicherla V R Rao | Quiet fan with non-radial elements |
US4548548A (en) * | 1984-05-23 | 1985-10-22 | Airflow Research And Manufacturing Corp. | Fan and housing |
US4805868A (en) * | 1986-07-25 | 1989-02-21 | General Motors Corporation | Isolation bracket assembly for engine cooling fan and motor |
US5342167A (en) * | 1992-10-09 | 1994-08-30 | Airflow Research And Manufacturing Corporation | Low noise fan |
JPH10205497A (ja) * | 1996-11-21 | 1998-08-04 | Zexel Corp | 冷却空気導入排出装置 |
FR2766235B1 (fr) * | 1997-07-17 | 1999-09-24 | Valeo Climatisation | Dispositif de fixation d'un groupe moto-ventilateur sur un element d'un vehicule automobile, notamment un echangeur de chaleur |
US6206635B1 (en) * | 1998-12-07 | 2001-03-27 | Valeo, Inc. | Fan stator |
EP1600640A3 (fr) * | 2004-04-26 | 2009-11-04 | Behr GmbH & Co. KG | Capot d'un ventilateur pour un échangeur de chaleur, en particulier pour des véhicules |
DE102012004617A1 (de) * | 2012-03-06 | 2013-09-12 | Ziehl-Abegg Ag | Axialventilator |
ITBO20120499A1 (it) * | 2012-09-20 | 2014-03-21 | Spal Automotive Srl | Unita' di ventilazione. |
FR3008132B1 (fr) * | 2013-07-04 | 2017-07-14 | Valeo Systemes Thermiques | Buse de ventilateur d automobile a bras doublement vrilles |
WO2016199195A1 (fr) * | 2015-06-08 | 2016-12-15 | 三菱電機株式会社 | Ventilateur axial |
-
2020
- 2020-03-13 FR FR2002499A patent/FR3108147B1/fr active Active
-
2021
- 2021-02-25 CN CN202180014864.7A patent/CN115135885A/zh active Pending
- 2021-02-25 WO PCT/FR2021/050328 patent/WO2021181024A1/fr active Application Filing
- 2021-02-25 EP EP21714247.0A patent/EP4118342A1/fr active Pending
- 2021-02-25 US US17/911,046 patent/US20230104481A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
FR3108147B1 (fr) | 2022-02-25 |
US20230104481A1 (en) | 2023-04-06 |
CN115135885A (zh) | 2022-09-30 |
FR3108147A1 (fr) | 2021-09-17 |
WO2021181024A1 (fr) | 2021-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2510243B1 (fr) | Helice de ventilateur, en particulier pour vehicule automobile | |
EP3084134B1 (fr) | Pièce ou ensemble de pièces de turbomachine et turbomachine associée | |
FR2889261A1 (fr) | Dispositif eolien | |
EP2699792B1 (fr) | Roue pour machine hydraulique, machine hydraulique équipée d'une telle roue et installation de conversion d'énergie comprenant une telle machine hydraulique | |
WO2018055285A1 (fr) | Machine electrique refroidie par une hélice double flux | |
WO2018138439A1 (fr) | Profil amélioré de bord d'attaque d'aubes | |
CA3117485A1 (fr) | Turbomachine a double helices non carenees | |
EP0680874B1 (fr) | Redresseur à aubes pour dispositif anti-couple à rotor et stator redresseur carénés d'hélicoptère | |
FR3021706A1 (fr) | Turbopropulseur d'aeronef comportant deux helices coaxiales. | |
EP2821653B1 (fr) | Buse de ventilateur d'automobile à bras doublement vrillés | |
EP4118342A1 (fr) | Bras de maintien pour armature de support | |
EP4025789B1 (fr) | Moyeu polysphérique de turbomachine pour pales à calage variable | |
FR3028299B1 (fr) | Ventilateur pour automobile a pales optimisees pour les forts debits | |
FR3108146A1 (fr) | Plots aérodynamiques pour bras de maintien | |
BE1027876A1 (fr) | Module pour turbomachine | |
EP4229286B1 (fr) | Système propulsif aéronautique ayant un rendement propulsif amélioré | |
WO2016050304A1 (fr) | Ventilateur pour automobile á pales optimisées pour l'acoustique et l'aérodynamique | |
EP4367022A1 (fr) | Propulseur aeronautique | |
FR3092359A1 (fr) | Dispositif de canalisation d’un flux de gaz dans une turbomachine d’aeronef | |
WO2021181025A1 (fr) | Systeme de ventilation pour moteur | |
FR3010747A1 (fr) | Ventilateur pour automobile a pales optimisees pour l'acoustique et l'aerodynamique | |
EP4278075A1 (fr) | Ensemble propulsif pour aeronef comprenant une aube de redresseur intégrée à une partie amont d'un mat d'accrochage de hauteur réduite | |
FR3141445A1 (fr) | Propulseur aeronautique a integration amelioree | |
WO2017077250A1 (fr) | Rotor pour hydrolienne | |
FR3081521A1 (fr) | Aube de turbomachine dont des sections presentent une portion aval d'epaisseur reduite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220829 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |