EP4278075A1 - Ensemble propulsif pour aeronef comprenant une aube de redresseur intégrée à une partie amont d'un mat d'accrochage de hauteur réduite - Google Patents
Ensemble propulsif pour aeronef comprenant une aube de redresseur intégrée à une partie amont d'un mat d'accrochage de hauteur réduiteInfo
- Publication number
- EP4278075A1 EP4278075A1 EP22702295.1A EP22702295A EP4278075A1 EP 4278075 A1 EP4278075 A1 EP 4278075A1 EP 22702295 A EP22702295 A EP 22702295A EP 4278075 A1 EP4278075 A1 EP 4278075A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- propulsion assembly
- fan
- upstream
- radial
- aircraft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000011144 upstream manufacturing Methods 0.000 title claims abstract description 46
- 230000002829 reductive effect Effects 0.000 title description 6
- 230000007704 transition Effects 0.000 claims description 33
- 239000007789 gas Substances 0.000 claims description 15
- 230000004323 axial length Effects 0.000 claims description 6
- 210000003462 vein Anatomy 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 7
- 230000009467 reduction Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000010354 integration Effects 0.000 description 3
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000001141 propulsive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/40—Arrangements for mounting power plants in aircraft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/20—Mounting or supporting of plant; Accommodating heat expansion or creep
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C7/00—Structures or fairings not otherwise provided for
- B64C7/02—Nacelles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/10—Aircraft characterised by the type or position of power plants of gas-turbine type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/40—Arrangements for mounting power plants in aircraft
- B64D27/402—Arrangements for mounting power plants in aircraft comprising box like supporting frames, e.g. pylons or arrangements for embracing the power plant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/40—Arrangements for mounting power plants in aircraft
- B64D27/404—Suspension arrangements specially adapted for supporting vertical loads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/40—Arrangements for mounting power plants in aircraft
- B64D27/406—Suspension arrangements specially adapted for supporting thrust loads, e.g. thrust links
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/141—Shape, i.e. outer, aerodynamic form
- F01D5/142—Shape, i.e. outer, aerodynamic form of the blades of successive rotor or stator blade-rows
- F01D5/143—Contour of the outer or inner working fluid flow path wall, i.e. shroud or hub contour
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K1/00—Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
- F02K1/54—Nozzles having means for reversing jet thrust
- F02K1/64—Reversing fan flow
- F02K1/66—Reversing fan flow using reversing fan blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K3/00—Plants including a gas turbine driving a compressor or a ducted fan
- F02K3/02—Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
- F02K3/04—Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
- F02K3/068—Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type being characterised by a short axial length relative to the diameter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/10—Aircraft characterised by the type or position of power plants of gas-turbine type
- B64D27/12—Aircraft characterised by the type or position of power plants of gas-turbine type within, or attached to, wings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K1/00—Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
- F02K1/54—Nozzles having means for reversing jet thrust
- F02K1/64—Reversing fan flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/12—Fluid guiding means, e.g. vanes
- F05D2240/122—Fluid guiding means, e.g. vanes related to the trailing edge of a stator vane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/40—Transmission of power
- F05D2260/403—Transmission of power through the shape of the drive components
- F05D2260/4031—Transmission of power through the shape of the drive components as in toothed gearing
- F05D2260/40311—Transmission of power through the shape of the drive components as in toothed gearing of the epicyclical, planetary or differential type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/70—Adjusting of angle of incidence or attack of rotating blades
- F05D2260/74—Adjusting of angle of incidence or attack of rotating blades by turning around an axis perpendicular the rotor centre line
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- the present invention relates to the field of propulsion systems for aircraft. It relates more particularly to propulsion assemblies comprising a nacelle of reduced length, referred to as a “short nacelle”, such as that described in document EP 2 628919 Al.
- a primary gas circulation stream is provided, as well as a secondary gas circulation stream delimited radially outwards by an aerodynamic outer casing forming a nacelle.
- the turbomachine generally comprises a fan sucking in a mass of air which is then divided into a primary flow circulating in the primary stream, and a secondary flow circulating in the secondary stream.
- the primary flow typically passes through one or more compressors, for example a low pressure compressor and a high pressure compressor, a combustion chamber, one or more turbines, for example a high pressure turbine and a low pressure turbine, then finally a nozzle of gas exhaust.
- the high pressure turbine drives the high pressure compressor in rotation via a first shaft, called the high pressure shaft
- the low pressure turbine drives the low pressure compressor and the fan in rotation via a second shaft, called the low pressure shaft.
- turbojets with an increased bypass ratio corresponds to the ratio between the flow rate of the secondary flow (cold), and the flow rate of the primary flow (hot) which crosses the primary body).
- the fan is decoupled from the low pressure turbine, thus making it possible to independently optimize their respective rotation speeds.
- the decoupling is achieved using a reducer such as an epicyclic reduction mechanism, placed between the upstream end of the low pressure shaft and the fan.
- the fan then becomes driven indirectly by the low-pressure shaft, via the reduction mechanism and an additional shaft, called the fan shaft, which is fixed between the reduction mechanism and the hub of the fan.
- This decoupling thus makes it possible to reduce the speed of rotation and the pressure ratio of the fan (“fan pressure ratio”), and to increase the power extracted by the low pressure turbine. Thanks to the reduction mechanism, the low-pressure shaft can thus rotate at higher rotational speeds than in conventional turbojet engines.
- the turbomachine is equipped, downstream of the fan, with an annular row of stator vanes (also called outlet guide vanes, or OGV vanes, standing for “Outlet Guide Vanes”).
- stator vanes also called outlet guide vanes, or OGV vanes, standing for “Outlet Guide Vanes”.
- OGV vanes standing for “Outlet Guide Vanes”.
- These stator vanes are located in the cold part of the turbomachine, in the secondary stream. Their main purpose is to straighten the flow of cold air coming from the fan blades.
- the engine attachment pylon of the turbomachine may have to penetrate partly into the secondary stream, downstream of the stator vanes, thereby generating aerodynamic losses by friction, with a negative impact on the overall performance of this propulsion system.
- the invention firstly relates to a propulsion assembly for an aircraft comprising a turbofan engine equipped with a fan, an outer casing aerodynamics forming a nacelle arranged around the fan, as well as an attachment pylon intended to ensure the attachment of the turbomachine to a wing element of the aircraft, the propulsion assembly having a primary flow path gases, as well as a secondary gas circulation stream delimited by an inner radial delimitation surface as well as by an outer radial delimitation surface formed by the aerodynamic outer casing, the turbomachine further comprising an annular row of vanes stator arranged in the secondary stream downstream of the fan, each stator vane extending through the secondary stream with a head end connected to the outer aerodynamic casing, as well as a root end connected to the surface of internal radial delimitation of the secondary stream, the attachment pylon comprising a part housed in the secondary stream, called the upstream part, as well as a
- the upstream part of the attachment mast housed in the secondary vein extends radially from the internal radial delimitation surface, over a radial height of the mast strictly less than a total radial height of the secondary vein, and further, the upstream portion of the engine mount extends downstream from a root portion of one of the stator vanes.
- the invention thus provides an attachment pylon which extends only over part of the radial height of the secondary stream into which it penetrates, in order to advantageously limit the aerodynamic losses by friction in this same secondary stream.
- the invention provides for the integration of the root part of one of the stator vanes with the upstream part of this attachment strut, in order to form an aerodynamic continuity between these two parts, in the axial direction. Such an integration makes it possible to further minimize aerodynamic losses, and also to reduce the transverse heterogeneities of static pressure (distortion), rising from the downstream towards the fan.
- the radial height of the mast represents locally, for example, 20 to 70% of the total radial height of the secondary stream, and more particularly 30 to 60% of the total radial height of the secondary stream. This percentage can obviously change along the upstream part of the mast, and therefore not remain constant.
- the stator vane integrated into the attachment pylon comprises, radially outwards from the upstream part of this pylon, a free trailing edge extending as far as the outer aerodynamic casing. This free trailing edge thus extends radially over part of the height of the secondary vein complementary to the radial height of the mast.
- the vane integrated into the engine mount comprises the following parts, succeeding one another radially from the inside outwards:
- the trailing edge of the transition part has a transverse thickness which increases going radially towards the root part of the integrated blade. This makes it possible to obtain a smooth transition between the usually fine thickness of the trailing edge of the tip part of the integrated stator vane, and the much greater thickness of the fictitious trailing edge of the root part of this blade, this trailing edge blending into the front end of the attachment mast.
- the transition part has a chord of greater length than that of the head part.
- said transition part comprises a truncated trailing edge so that the chord of the transition part has an increasing length going from the foot part towards the head part.
- the proposed solution makes it possible to soften the connection between the root part and the transition part of the integrated blade, since this connection is made at the place where the respective thicknesses are the most similar, that is that is to say in whole or in part upstream of the thick fictitious trailing edge of the root part of this blade.
- the radial thickness transition is advantageously smoother, here also with gains in terms of aerodynamic performance.
- the ratio between the total axial length of the aerodynamic outer casing, and the diameter of the fan is less than 1.25.
- This report illustrates a so-called “short” nacelle design, generally associated with the fact that it does not incorporate a thrust reverser system.
- the thrust reversal system is integrated into the fan which has for this purpose rotary fan blades with variable pitch.
- This architecture in which the thrust reversal function is performed by the fan is known as “VPF architecture” (from the English “Variable Pitch Fan”).
- the invention also relates to a part of an aircraft comprising such a propulsion assembly, as well as a wing element, the aerodynamic outer envelope forming the nacelle extending entirely upstream of a leading edge of the element. of sail.
- a propulsion assembly as well as a wing element
- the aerodynamic outer envelope forming the nacelle extending entirely upstream of a leading edge of the element. of sail.
- an upper part of the casing is arranged axially opposite the leading edge of the wing, and an apex of the exterior of the aerodynamic outer casing extends higher than the wing element considered in line with the connection of the attachment pylon with said wing element.
- the invention also relates to an aircraft comprising at least one such part, and preferably two parts respectively integrating the two wings of the aircraft.
- FIG. 1 shows a schematic view in longitudinal half-section of a propulsion assembly according to a first preferred embodiment of the invention, the section plane passing through the hourly positions at 12 o'clock and 6 o'clock of the turbojet equipping this propulsion assembly;
- FIG. 2 shows a front view of the propulsion assembly shown in Figure 1, the rectifier blades having been removed from the secondary stream for greater clarity, with the exception of one of them which is integrated into the mast , the fan blades having also been removed;
- FIG. 3 is a top view of an aircraft fitted with the propulsion assembly shown in the preceding figures;
- FIG. 4 shows a sectional view taken along line IV-IV of FIG. 1, line IV-IV being parallel or substantially parallel to the longitudinal central axis of the turbojet engine, and crossing a radially inner end portion of an integrated vane transition portion;
- FIG. 5 shows a sectional view taken along line V-V of FIG. 1, line V-V being parallel or substantially parallel to the longitudinal central axis of the turbojet engine, and crossing a radially outer end portion of a foot part integrated dawn;
- FIG. 6 shows a sectional view taken along line VI-VI of Figure 5;
- FIG. 7 is a sectional view similar to that of FIG. 4, with the integrated blade in the form of an alternative embodiment
- FIG. 8 is a sectional view similar to that of FIG. 5, with the integrated blade taking the form of the alternative embodiment shown in the preceding figure;
- FIG. 9 shows a sectional view taken along line IX-IX of Figure 8;
- FIG. 10 represents a sectional view similar to that of FIG. 1, less detailed, and showing the propulsion assembly according to a second preferred embodiment of the invention
- FIG. 11 shows a sectional view taken along line XI-XI of FIG. 10, line XI-XI being parallel or substantially parallel to the longitudinal central axis of the turbojet, and crossing a radially inner end portion of an integrated vane transition portion;
- FIG. 12 shows a sectional view taken along line XII-XII of FIG. 10, line XII-XII being parallel or substantially parallel to the central longitudinal axis of the turbojet engine, and crossing a radially outer end portion of an integrated blade root part;
- FIG. 13 represents a sectional view similar to that of FIG. 1, less detailed, and showing the propulsion assembly according to a third preferred embodiment of the invention
- FIG. 14 shows a sectional view taken along line XIV-XIV of FIG. 13, line XIV-XIV being parallel or substantially parallel to the central longitudinal axis of the turbojet, and crossing a radially inner end portion of an integrated vane transition portion;
- FIG. 15 shows a sectional view taken along line XV-XV of FIG. 13, line XV-XV being parallel or substantially parallel to the central longitudinal axis of the turbojet, and crossing a radially outer end portion of an integrated blade root part.
- FIG. 1 there is shown a part 100 of an aircraft, comprising a propulsion assembly 200 and a wing element 202, here an aircraft wing.
- a propulsion assembly 200 comprises a turbofan engine 1 with a double spool, an outer aerodynamic envelope 5 forming a nacelle, as well as an attachment strut 7 intended for mounting the turbojet engine 1 on the wing 202.
- the attachment strut 7 is shown only with its outer contour formed by one or more aerodynamic fairings.
- a so-called primary structure (not shown) is conventionally provided, intended to ensure the transfer of forces between the turbojet engine 1 and the wing 202. More specifically, the primary structure of the pylon is generally fixed on a forward wing spar 208 .
- the fairings of the engine mount 7 incorporate a certain number of conventional elements connecting the engine to the aircraft, such as pipes, heat exchangers, electrical cables, drive shafts mechanics, structural parts of the engine suspension system, etc.
- the bypass and double-spool turbojet engine 1 has a very high bypass ratio, for example greater than 15. Consequently, its outer diameter is large, and this is the reason why it is arranged in a position substantially raised by relative to the wing 202 which carries it, so as to retain sufficient ground clearance despite the large diameter.
- the outer casing forming the nacelle 5 is located entirely upstream with respect to a leading edge 210 of the wing 202.
- upstream and downstream are considered along a main direction 14 of gas flow within the turbojet, when the latter is in normal propulsion configuration.
- the terms “front” and “rear” are for their part employed in relation to a direction opposite to the main direction of flow of the gases 14.
- An upper part of the casing 5 is arranged facing axially from the leading edge 210 of the wing 202, which reflects the raised character of the propulsion unit 200 with a short nacelle.
- a top of the exterior of the aerodynamic outer casing 5 extends higher than the wing element 202 considered in line with the connection of the attachment strut 7 with said wing element.
- the turbojet engine 1 conventionally comprises a gas generator 2 on either side of which are arranged a low pressure compressor 4 and a low pressure turbine 12, this gas generator 2 comprising a high pressure compressor 6, a combustion chamber 8 and a high pressure turbine 10.
- the low pressure compressor 4 and the low pressure turbine 12 form a low pressure body, and are connected to each other by a low pressure shaft 11 centered on a central longitudinal axis 3 of the turbojet engine.
- the high pressure compressor 6 and the high pressure turbine 10 form a high pressure body, and are connected to each other by a high pressure shaft 13 also centered on the axis 3, and arranged around the low pressure shaft 11.
- the turbojet engine 1 also comprises, upstream of the gas generator 2 and of the low pressure compressor 4, a single fan 15 which is here arranged directly behind an air inlet cone of the engine.
- the fan 15 comprises a ring of fan blades 17 rotating around the axis 3, this ring being surrounded by a fan casing 9.
- the fan blades 17 are variable-pitch, that is to say that their incidence can be controlled by a control mechanism 20 arranged at least partly in the inlet cone, and designed to cause these blades 17 to pivot around their respective longitudinal axes 22.
- This control mechanism 20 of known design of the type mechanical, electrical, hydraulic, and/or pneumatic, is itself controlled by an electronic control unit (not shown), which makes it possible to order the value of the pitch angles of the blades 17 according to the needs encountered, in particular to exercise reverse thrust function.
- this is a propulsion unit 200 whose thrust reversal function is effectively integrated into the fan 15, and not into the outer casing forming the nacelle 5, as is most commonly meet.
- This casing 5 can therefore have a short length compared to the diameter of the fan 15.
- the ratio between the total axial length "Lt" of the casing 5, and the diameter "D" of the fan 15, is less than 1.25.
- the propulsion assembly 200 In the remainder of the description of the propulsion assembly 200, reference is made to the longitudinal direction X parallel to the axis 3 of the turbojet, and also referred to as the axial direction, to the transverse direction Y also referred to as the lateral direction, and finally to the vertical direction Z also called the direction of the height, these three directions X, Y and Z being mutually orthogonal. Reference is also made to the radial direction R, to be considered in relation to axis 3.
- the fan 15, of the VPF type is not directly driven by the low pressure shaft 11, but only indirectly driven by this shaft, via a reduction mechanism 24, which allows it to rotate with a slower speed. Nevertheless, a solution with direct drive of the fan 15, by the low pressure shaft 11, falls within the scope of the invention.
- the turbojet engine 1 defines a primary stream 16 of gas circulation, intended to be crossed by a primary flow 16a, as well as a secondary stream 18 of gas circulation, intended to be crossed by a secondary flow 18a located radially towards outside with respect to the primary flow.
- the flow from the fan 15 is thus divided at the level of a nozzle 26 for separating the flows.
- the secondary vein 18 is delimited radially outwards in part by an outer shroud 23, integrated into the casing 5.
- the shroud 23 is preferably metallic, and it extends towards the behind the fan casing 9. More specifically, the shroud 23 internally has a surface 23a for external radial delimitation of the secondary stream 18.
- the shroud can alternatively be based on a composite having carbon fibers, such as known casings of module of blower.
- stator vanes 30 In the radial direction R between the two veins 16, 18, there is provided an inter-vein compartment 44 in which several pieces of equipment/services 58 are arranged. Internal radial delimitation of the secondary stream 18. Downstream of the fan 15, in the secondary stream 18, there is provided an annular row of stator vanes 30 centered on the axis 3, these stator vanes 30 also being called vanes OGV or outlet guide vanes.
- each of the vanes 30 of the annular row passes through the entire secondary stream 18 in the direction R, even if a slight inclination of these blades 30 in the X direction is possible, as shown in Figure 1.
- Each stator vane 30 thus has a head end 31 connected to the outer shroud 23 of the casing 5 forming the nacelle, just as it has a root end 33 connected to the internal radial delimitation surface 40a of the secondary stream. 18. More specifically, this connection of the end of the foot 33 preferably takes place at an upstream part of the surface 40a defined by the outer shroud 40 of the inter-vein compartment 44, part at which it is formed an intermediate casing hub 32.
- the stator vanes 30 are circumferentially spaced from each other, and make it possible to straighten the secondary flow after it has passed through the fan 15.
- these vanes 30 can also fulfill a function structural, ensuring the transfer of forces from the reducer 24 and the rolling bearings of the motor shafts and the fan hub, to the outer shroud 23.
- the entity 32 forms the hub of an intermediate casing, and the latter is completed by radial arms formed by the stator vanes 30, and also completed by the outer shroud 23 on which are fixed the head ends 31 of these dawns 30.
- the inter-vein compartment 44 is also delimited by an inner shroud 42, configured to externally delimit the primary gas flow vein 16.
- the two ferrules 40, 42 extend downstream from the separation spout 26, which connects them.
- Downstream of the stator blades 30, a plurality of air discharge ducts 46 are provided, distributed around the axis 3.
- Each discharge duct 46 extends generally radially, possibly with an axial component going downstream , going from the inner shroud 42 to the outer shroud 40, so as to be able to communicate the primary stream 16 with the secondary stream 18.
- Each air discharge conduit 46 opens into the primary stream 16 through an orifice of inlet 48 equipped with a discharge valve VBV 50, the inlet orifice 48 being arranged axially between the low pressure compressor 4 and the high pressure compressor 6. Likewise, each discharge duct of air 46 opens into the secondary stream 18, through an outlet orifice 52 equipped with discharge fins 54.
- the attachment mast 7 extends over a limited height in the radial direction R, also corresponding to the vertical direction Z in the area where this mast is located. Indeed, the mast 7 is conventionally arranged in a clock position at 12 o'clock, extending in length upstream in the direction X, from a lower portion of the wing 202, close to the front spar 208 and of the leading edge 210 of the wing 202.
- the attachment pylon 7 comprises a downstream part 7a which extends forward from the wing 202, connecting along the outer ring 40, over a significant length of the latter.
- This downstream part 7a extends in the direction X up to near a trailing edge 35 of the casing 5 forming the nacelle. From this trailing edge 35, the mast continues continuously via an upstream part 7b which is completely housed in the secondary vein 18, still remaining connected full length to the outer shroud 40 of the inter-vein compartment 44.
- the mast 7 is closed radially inwards by the outer shroud 40, which it espouses continuously over an extended axial length in the direction X, which can go from the low pressure compressor 4 or even beyond that -ci upstream, to the low pressure turbine 12, or even beyond it downstream.
- the part upstream 7b of the mast 7 extends radially from surface 40a over a radial mast height "Hm", strictly less than a total radial height "Ht" of the secondary stream 18. All along this upstream part 7b of the mast, that -it is therefore never in contact with the surface 23a of outer radial delimitation of the secondary stream 18.
- the radial height of the mast Hm locally represents 30 to 60% of the total radial height Ht of the secondary stream 18.
- the radial mast height Hm locally represents 20 to 70% of the total radial height of the secondary vein.
- This percentage is not necessarily identical all along the upstream part of the mast 7b, but on the contrary it can change locally, always preferably remaining within the range of values mentioned above.
- This change in percentage can be explained by a fairly variable radial height of the mast Hm along the upstream part 7b, whereas the total radial height of the vein Ht remains substantially constant, or slightly variable.
- the crest line 60 of the mast 7 is straight or substantially straight, preferably parallel or substantially parallel to the direction X.
- the radial height of the mast can be approximately 50% of the total radial height Ht of the secondary stream near the trailing edge 66 of the integrated blade 30.
- a second feature of the invention resides in the integration of one of the stator vanes 30 into the upstream part of the mast 7b. This is in fact the blade 30 located in the same clockwise position as that of the mast 7, and arranged axially upstream of the latter. Instead of having a discontinuity of material between the trailing edge of this blade 30, and the front end of the mast 7, provision is therefore made to integrate them into one another, thus resulting in an axial continuity of material between these two entities within the secondary stream 18. To do this, the integrated stator vane 30 comprises the following parts, succeeding each other radially from the inside out.
- the integrated blade 30 comprises a transition part 62b, then a head part 62c ending with the head end 31 connected to the delimitation surface 23a.
- the specificity of this integrated blade 30 resides firstly in the root part 62a from which extends, axially downstream, the upstream part of the mast 7b.
- the foot part 62a has a fictitious trailing edge 64 which merges into the front end of the upstream part of the mast 7b, since no material discontinuity is observed between these two entities, according to direction X.
- the continuity of material is achieved either by an aerodynamic wall in one piece, that is to say made of a single piece, or by the association of several walls presenting an acceptable aerodynamic junction, for example by covering with offsetting, or any other technique known in this field.
- the integrated blade 30 has, radially outwards from the upstream part of the mast 7b, that is to say radially outwards from the foot part 62a, a trailing edge free 66 extending to the boundary surface 23a.
- the free trailing edge 66 thus corresponds to the trailing edge of the transition part 62b and of the head part 62c combined.
- the fictitious trailing edge 64 of the foot part 62a extends over the radial height Hm, while the free trailing edge 66 extends over a height corresponding to the differential between the heights Ht and Hm.
- the free trailing edge 66 of the head part 62c has a particularly thin conventional thickness "e"
- the trailing edge 66 of the transition part 62b has a variable transverse thickness "e'" which increases going radially inwards so as to pass gradually from the value "e” to the value "E”.
- two connecting spokes 68 can be respectively provided on the intrados side and on the extrados side of the transition part 62b, as is best visible in FIG. 6. This makes it possible to obtain a smooth transition between the thicknesses E e substantially different from the parts 62a, 62c, to limit the aerodynamic losses observed at this break in thickness.
- the transition zone 62b has a profile identical or similar to that of the head part 62c, implying a reduced thickness "e" for its free trailing edge 66, identical or similar to the thickness of the trailing edge of the leading part 62c. This results in a sudden break in thickness between the foot part 62a and the transition part 62b, as is best seen in Figure 9.
- the transition part 62b has a chord “C” of greater length than that of the head part 62c.
- the transition part 62b is equipped with a trailing edge extension 72, for example of generally triangular shape and arranged so that the chord C has an increasing axial length an going radially from the inside towards the outside, that is to say from the head part 62c to the foot part 62a.
- the trailing edge extension 72 preferably has a transverse thickness that continuously decreases going downstream, as far as the free trailing edge 66 of the transition part 62b. A reduction in thickness is also observed going radially outwards, approaching the free trailing edge 66.
- the transition part 62b comprises a free trailing edge 66 truncated, for example so as to form a notch 74 opening axially downstream.
- This notch 74 in the trailing edge 66 is preferably generally triangular in shape. It can extend into the head part 62c, as can be seen in FIG. 13.
- the shape retained for the notch 74 can be such that the free trailing edge 66 of the two successive parts 62b, 62c is substantially straight. , being inclined in the direction X as is also visible in FIG. 13, since its radially outer end is located further downstream than its radially inner end.
- the notch 74 is made so as to truncate a downstream portion of the transition part 62b, so that the chord "C" of this part 62b has an increasing axial length going radially from the inside to the outside, c i.e. by going from the foot part 62b to the head part 62c.
- the chord length increases as one approaches the head part 62c, until finding a conventional chord length and identical or substantially identical to that of the other blades 30 of the annular row.
- This third preferred embodiment also provides a solution making it possible to soften the radial connection between the parts 62a, 62b, since it takes place at the place where the respective transverse thicknesses are the most similar, that is to say say in whole or in part upstream of the thick fictitious trailing edge 64 of the foot part 62a, as clearly shown by the alignment of Figures 14 and 15.
- the radial transition in thickness advantageously proves to be more gentle, with here too gains in terms of aerodynamic performance.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
L'invention se rapporte à un ensemble propulsif (200) pour aéronef comprenant une turbomachine (1) à double flux équipée d'une soufflante (15), une enveloppe extérieure aérodynamique (5) formant nacelle ainsi qu'un mât d'accrochage, l'ensemble propulsif présentant une veine secondaire (18) délimitée par une surface de délimitation radiale externe (23a) formée par l'enveloppe (5), la turbomachine comportant des aubes de redresseur (30), et le mât d'accrochage (7) comprenant une partie logée dans la veine secondaire, dite partie amont (7b), Selon l'invention, la partie amont (7b) du mât s'étend radiaiement à partir de la surface de délimitation radiale interne (40a), sur une hauteur radiale de mât (Hm) strictement inférieure à une hauteur radiale totale (Ht) de la veine secondaire (18), et la partie amont (7b) du mât s'étend vers l'aval depuis une partie de pied (62a) de l'une des aubes de redresseur (30),
Description
DESCRIPTION
Titre : ENSEMBLE PROPULSIF POUR AERONEF COMPRENANT UNE AUBE DE REDRESSEUR INTÉGRÉE À UNE PARTIE AMONT D'UN MAT D'ACCROCHAGE DE HAUTEUR RÉDUITE
DOMAINE TECHNIQUE La présente invention se rapporte au domaine des ensembles propulsifs pour aéronef. Elle concerne plus particulièrement les ensembles propulsifs comprenant une nacelle de longueur réduite, dite « nacelle courte », comme celle décrite dans le document EP 2 628919 Al.
ETAT DE LA TECHNIQUE ANTERIEURE Dans un ensemble propulsif comprenant une turbomachine à double flux, il est prévu une veine primaire de circulation des gaz, ainsi qu'une veine secondaire de circulation des gaz délimitée radialement vers l'extérieur par une enveloppe extérieure aérodynamique formant nacelle. La turbomachine comprend généralement une soufflante aspirant une masse d'air qui est ensuite divisée en un flux primaire circulant dans la veine primaire, et en un flux secondaire circulant dans la veine secondaire.
Le flux primaire traverse typiquement un ou plusieurs compresseurs, par exemple un compresseur basse pression et un compresseur haute pression, une chambre de combustion, une ou plusieurs turbines, par exemple une turbine haute pression et une turbine basse pression, puis enfin une tuyère d'échappement des gaz. De manière connue, la turbine haute pression entraîne en rotation le compresseur haute pression par l'intermédiaire d'un premier arbre, dit arbre haute pression, tandis que la turbine basse pression entraîne en rotation le compresseur basse pression et la soufflante par l'intermédiaire d'un deuxième arbre, dit arbre basse pression. Afin d'améliorer le rendement propulsif de la turbomachine et de réduire sa consommation spécifique ainsi que le bruit émis par la soufflante, il a été proposé des turboréacteurs à taux de dilution augmenté (« bypass ratio » en anglais, qui correspond au rapport entre le débit du flux secondaire (froid), et le débit du flux primaire (chaud) qui traverse le corps primaire).
Pour atteindre de tels taux de dilution, la soufflante est découplée de la turbine basse pression, permettant ainsi d'optimiser indépendamment leurs vitesses de rotation respectives. Habituellement, le découplage est réalisé à l'aide d'un réducteur tel qu'un mécanisme de réduction épicycloïdal, placé entre l'extrémité amont de l'arbre basse pression et la soufflante. La soufflante devient alors entraînée indirectement par l'arbre basse pression, par l'intermédiaire du mécanisme de réduction et d'un arbre supplémentaire, dit arbre de soufflante, qui est fixé entre le mécanisme de réduction et le moyeu de la soufflante. Ce découplage permet ainsi de réduire la vitesse de rotation et le rapport de pression de la soufflante (« fan pressure ratio » en anglais), et d'augmenter la puissance extraite par la turbine basse pression. Grâce au mécanisme de réduction, l'arbre basse pression peut ainsi tourner à des vitesses de rotation plus élevées que dans les turboréacteurs conventionnels.
Toujours dans les réalisations conventionnelles, la turbomachine est équipée, en aval de la soufflante, d'une rangée annulaire d'aubes de redresseur (également dites aubes directrices de sortie, ou aubes OGV, de l'anglais « Outlet Guide Vanes »). Ces aubes de redresseur sont situées dans la partie froide de la turbomachine, dans la veine secondaire. Elles visent essentiellement à redresser le flux d'air froid en provenance des aubes de soufflante.
Dans les configurations d'ensemble propulsif à nacelle courte, le mât d'accrochage de la turbomachine peut être amené à pénétrer en partie dans la veine secondaire, en aval des aubes de redresseur, générant de ce fait des pertes aérodynamiques par frottement, avec un impact négatif sur le rendement global de cet ensemble propulsif.
EXPOSÉ DE L'INVENTION
Pour répondre à l'inconvénient mentionné ci-dessus, relatif aux réalisations de l'art antérieur, l'invention a tout d'abord pour objet un ensemble propulsif pour aéronef comprenant une turbomachine à double flux équipée d'une soufflante, une enveloppe extérieure aérodynamique formant nacelle agencée autour de la soufflante, ainsi qu'un mât d'accrochage destiné à assurer la fixation de la turbomachine sur un élément de voilure de l'aéronef, l'ensemble propulsif présentant une veine primaire de circulation
des gaz, ainsi qu'une veine secondaire de circulation des gaz délimitée par une surface de délimitation radiale interne ainsi que par une surface de délimitation radiale externe formée par l'enveloppe extérieure aérodynamique, la turbomachine comportant en outre une rangée annulaire d'aubes de redresseur agencées dans la veine secondaire en aval de la soufflante, chaque aube de redresseur s'étendant à travers la veine secondaire en présentant une extrémité de tête raccordée sur l'enveloppe extérieure aérodynamique, ainsi qu'une extrémité de pied raccordée sur la surface de délimitation radiale interne de la veine secondaire, le mât d'accrochage comprenant une partie logée dans la veine secondaire, dite partie amont, ainsi qu'une partie aval agencée en aval d'un bord de fuite de l'enveloppe extérieure aérodynamique, elle-même destinée à être agencée entièrement en amont d'un bord d'attaque de l'élément de voilure.
Selon l'invention, la partie amont du mât d'accrochage logée dans la veine secondaire s'étend radialement à partir de la surface de délimitation radiale interne, sur une hauteur radiale de mât strictement inférieure à une hauteur radiale totale de la veine secondaire, et de plus, la partie amont du mât d'accrochage s'étend vers l'aval depuis une partie de pied de l'une des aubes de redresseur.
L'invention prévoit ainsi un mât d'accrochage qui ne s'étend que sur une partie de la hauteur radiale de la veine secondaire dans laquelle il pénètre, afin de limiter avantageusement les pertes aérodynamiques par frottement dans cette même veine secondaire. En mesure complémentaire de la précédente, l'invention prévoit l'intégration de la partie de pied de l'une des aubes de redresseur avec la partie amont de ce mât d'accrochage, afin de former une continuité aérodynamique entre ces deux parties, dans la direction axiale. Une telle intégration permet de minimiser encore davantage les pertes aérodynamiques, et également de réduire les hétérogénéités transversales de pression statique (distorsion), remontant depuis l'aval vers la soufflante.
La combinaison de ces mesures permet globalement d'améliorer le rendement propulsif de la turbomachine.
L'invention prévoit de préférence au moins l'une quelconque des caractéristiques optionnelles suivantes, prises isolément ou en combinaison.
De préférence, la hauteur radiale de mât représente localement par exemple 20 à 70 % de de la hauteur radiale totale de la veine secondaire, et plus particulièrement 30 à 60 % de la hauteur radiale totale de la veine secondaire. Ce pourcentage peut bien évidemment évoluer le long de la partie amont du mât, et donc ne pas rester constant. De préférence, l'aube de redresseur intégrée au mât d'accrochage comporte, radialement vers l'extérieur à partir de la partie amont de ce mât, un bord de fuite libre s'étendant jusqu'à l'enveloppe extérieure aérodynamique. Ce bord de fuite libre s'étend ainsi radialement sur une partie de la hauteur de la veine secondaire complémentaire de la hauteur radiale du mât. De préférence, l'aube intégrée au mât d'accrochage comporte les parties suivantes, se succédant radialement de l'intérieur vers l'extérieur :
- la partie de pied intégrée à la partie amont du mât d'accrochage ;
- une partie de transition ; et
- une partie de tête. Selon un premier mode de réalisation préféré de l'invention, le bord de fuite de la partie de transition présente une épaisseur transversale qui augmente en allant radialement vers la partie de pied de l'aube intégrée. Cela permet d'obtenir une transition douce entre l'épaisseur habituellement fine du bord de fuite de la partie de tête de l'aube de redresseur intégrée, et l'épaisseur bien plus conséquente du bord de fuite fictif de la partie de pied de cette aube, ce bord de fuite se fondant dans l'extrémité avant du mât d'accrochage.
Alternativement, une rupture brutale d'épaisseur pourrait être prévue dans la direction radiale, entre la partie de pied de l'aube intégrée et sa partie de transition, dont l'épaisseur pourrait alors être identique ou similaire à celle de la partie de tête de l'aube. Selon un second mode de réalisation préféré de l'invention, la partie de transition présente une corde de longueur supérieure à celle de la partie de tête. En augmentant localement la longueur de la corde, il est possible de conserver un bord de fuite fin limitant les pertes de culot, tout en prévoyant une épaisseur d'aube plus conséquente en amont de ce bord de fuite, à l'endroit où il se raccorde radialement avec le bord de fuite fictif épais de la partie de pied de cette aube. Cela permet avantageusement de limiter le
différentiel d'épaisseur entre la partie pied et la partie de transition de l'aube intégrée, et donc d'adoucir le raccordement avec pour conséquence des gains en termes de performances aérodynamiques.
Selon un troisième mode de réalisation préféré de l'invention, ladite partie de transition comprend un bord de fuite tronqué de sorte que la corde de la partie de transition présente une longueur croissante en allant de la partie de pied vers la partie de tête. Ici encore, la solution proposée permet d'adoucir le raccordement entre la partie de pied et la partie de transition de l'aube intégrée, puisque ce raccordement s'effectue à l'endroit où les épaisseurs respectives sont les plus semblables, c'est-à-dire en tout ou partie en amont du bord de fuite fictif épais de la partie de pied de cette aube. La transition radiale d'épaisseur s'avère avantageusement plus douce, avec ici aussi des gains en termes de performances aérodynamiques.
De préférence, le rapport entre la longueur axiale totale de l'enveloppe extérieure aérodynamique, et le diamètre de la soufflante, est inférieur à 1,25. Ce rapport illustre une conception de nacelle dite « courte », généralement associée au fait qu'elle n'intègre pas de système d'inversion de poussée. Dans une telle nacelle courte, destinée à se situer en regard axialement et en amont du bord d'attaque de l'élément de voilure, le système d'inversion de poussée est intégré à la soufflante qui présente à cet effet des aubes de soufflantes rotatives à calage variable. Cette architecture dans laquelle la fonction d'inversion de poussée est remplie par la soufflante est connue sous l'appellation « architecture VPF » (de l'anglais « Variable Pitch Fan »).
L'invention a également pour objet une partie d'aéronef comprenant un tel ensemble propulsif, ainsi qu'un élément de voilure, l'enveloppe extérieure aérodynamique formant nacelle s'étendant entièrement en amont d'un bord d'attaque de l'élément de voilure. De préférence, une partie supérieure de l'enveloppe se trouve agencée en regard axialement du bord d'attaque de l'aile, et un sommet de l'extérieur de l'enveloppe extérieure aérodynamique s'étend plus haut que l'élément de voilure considéré au droit du raccordement du mât d'accrochage avec ledit élément de voilure.
Enfin, l'invention a également pour objet un aéronef comportant au moins une telle partie, et de préférence deux parties intégrant respectivement les deux ailes de l'aéronef.
D'autres avantages et caractéristiques de l'invention apparaîtront dans la description détaillée non limitative ci-dessous.
BRÈVE DESCRIPTION DES DESSINS
Cette description sera faite au regard des dessins annexés parmi lesquels ; [Fig. 1] représente une vue schématique en demi-coupe longitudinale d'un ensemble propulsif selon un premier mode de réalisation préféré de l'invention, le plan de coupe passant par les positions horaires à 12h et 6h du turboréacteur équipant cet ensemble propulsif ;
[Fig. 2] représente une vue de devant de l'ensemble propulsif montré sur la figure 1, les aubes de redresseurs ayant été retirées de la veine secondaire pour davantage de clarté, à l'exception de l'une d'elles qui est intégrée au mât, les aubes de soufflante ayant aussi été retirées ;
[Fig. 3] est une vue de dessus d'un aéronef équipé de l'ensemble propulsif montré sur les figures précédentes ; [Fig. 4] représente une vue en coupe prise le long de ligne IV-IV de la figure 1, la ligne IV- IV étant parallèle ou sensiblement parallèle à l'axe central longitudinal du turboréacteur, et traversant une portion d'extrémité radialement intérieure d'une partie de transition de l'aube intégrée ;
[Fig. 5] représente une vue en coupe prise le long de ligne V-V de la figure 1, la ligne V-V étant parallèle ou sensiblement parallèle à l'axe central longitudinal du turboréacteur, et traversant une portion d'extrémité radialement extérieure d'une partie de pied de l'aube intégrée ;
[Fig. 6] représente une vue en coupe prise le long de ligne VI-VI de la figure 5 ;
[Fig. 7] est une vue en coupe similaire à celle de la figure 4, avec l'aube intégrée se présentant sous la forme d'une alternative de réalisation ;
[Fig. 8] est une vue en coupe similaire à celle de la figure 5, avec l'aube intégrée se présentant sous la forme de l'alternative de réalisation montrée sur la figure précédente ; [Fig. 9] représente une vue en coupe prise le long de ligne IX-IX de la figure 8 ;
[Fig. 10] représente une vue en coupe similaire à celle de la figure 1, moins détaillée, et montrant l'ensemble propulsif selon un second mode de réalisation préféré de l'invention
[Fig. 11] représente une vue en coupe prise le long de ligne XI-XI de la figure 10, la ligne XI-XI étant parallèle ou sensiblement parallèle à l'axe central longitudinal du turboréacteur, et traversant une portion d'extrémité radialement intérieure d'une partie de transition de l'aube intégrée ;
[Fig. 12] représente une vue en coupe prise le long de ligne XII-XII de la figure 10, la ligne XII-XII étant parallèle ou sensiblement parallèle à l'axe central longitudinal du turboréacteur, et traversant une portion d'extrémité radialement extérieure d'une partie de pied de l'aube intégrée ;
[Fig. 13] représente une vue en coupe similaire à celle de la figure 1, moins détaillée, et montrant l'ensemble propulsif selon un troisième mode de réalisation préféré de l'invention ; [Fig. 14] représente une vue en coupe prise le long de ligne XIV-XIV de la figure 13, la ligne XIV-XIV étant parallèle ou sensiblement parallèle à l'axe central longitudinal du turboréacteur, et traversant une portion d'extrémité radialement intérieure d'une partie de transition de l'aube intégrée ; et
[Fig. 15] représente une vue en coupe prise le long de ligne XV-XV de la figure 13, la ligne XV-XV étant parallèle ou sensiblement parallèle à l'axe central longitudinal du turboréacteur, et traversant une portion d'extrémité radialement extérieure d'une partie de pied de l'aube intégrée.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PRÉFÉRÉS
En référence aux figures 1 et 2, il est représenté une partie 100 d'un aéronef, comprenant un ensemble propulsif 200 ainsi qu'un élément de voilure 202, ici une aile d'aéronef. De préférence, ce sont deux parties 100 qui sont agencées latéralement de part et d'autre du fuselage 204 de l'aéronef 300 montré sur la figure 3 (un seul des deux ensembles propulsifs 200 étant représenté sur cette figure 3).
L'ensemble propulsif 200 comporte un turboréacteur 1 à double flux et à double corps, une enveloppe aérodynamique extérieure 5 formant nacelle, ainsi qu'un mât d'accrochage 7 destiné au montage du turboréacteur 1 sur l'aile 202. Sur les figures, le mât d'accrochage 7 est uniquement représenté avec son contour extérieur formé par un ou plusieurs carénages aérodynamiques. A l'intérieur de ces carénages, il est prévu de manière conventionnelle une structure dite primaire (non représentée), destinée à assurer le transfert des efforts entre le turboréacteur 1 et l'aile 202. Plus précisément, la structure primaire du mât est généralement fixée sur un longeron avant 208 de voilure.
En plus de renfermer la structure primaire, les carénages du mât d'accrochage 7 intègrent un certain nombre d'éléments classiques reliant le moteur à l'aéronef, comme des canalisations, des échangeurs de chaleurs, des câbles électriques, des arbres d'entraînement mécanique, des pièces structurales du système de suspension du moteur, etc.
Le turboréacteur 1 à double flux et à double corps présente un taux de dilution très élevé, par exemple supérieur à 15. Par conséquent, son diamètre extérieur est élevé, et c'est la raison pour laquelle il est agencé dans une position sensiblement relevée par rapport à l'aile 202 qui le porte, de façon à conserver une garde au sol suffisante malgré le diamètre important. Comme cela est visible sur les figures 1 à 3, l'enveloppe extérieure formant nacelle 5 se situe entièrement en amont par rapport à un bord d'attaque 210 de l'aile 202. A cet égard, il est noté que les termes « amont » et « aval » sont considérés selon une direction principale 14 d'écoulement des gaz au sein du turboréacteur, lorsque celui- ci se trouve en configuration normale de propulsion. Les termes « avant » et « arrière » sont quant à eux employés en relation à une direction opposée à la direction principale d'écoulement des gaz 14. Une partie supérieure de l'enveloppe 5 se trouve agencée en regard axialement du bord d'attaque 210 de l'aile 202, ce qui traduit le caractère surélevé de l'ensemble propulsif 200 à nacelle courte. De plus, un sommet de l'extérieur de l'enveloppe extérieure aérodynamique 5 s'étend plus haut que l'élément de voilure 202 considéré au droit du raccordement du mât d'accrochage 7 avec ledit élément de voilure.
Le turboréacteur 1 comporte de façon classique un générateur de gaz 2 de part et d'autre duquel sont agencés un compresseur basse pression 4 et une turbine basse pression 12, ce générateur de gaz 2 comprenant un compresseur haute pression 6, une chambre de combustion 8 et une turbine haute pression 10. Le compresseur basse pression 4 et la turbine basse pression 12 forment un corps basse pression, et sont reliés l'un à l'autre par un arbre basse pression 11 centré sur un axe central longitudinal 3 du turboréacteur. De même, le compresseur haute pression 6 et la turbine haute pression 10 forment un corps haute pression, et sont reliés l'un à l'autre par un arbre haute pression 13 également centré sur l'axe 3, et agencé autour de l'arbre basse pression 11. Le turboréacteur 1 comporte par ailleurs, en amont du générateur de gaz 2 et du compresseur basse pression 4, une soufflante 15 unique qui est ici agencée directement à l'arrière d'un cône d'entrée d'air du moteur. La soufflante 15 comporte une couronne d'aubes de soufflante 17 rotatives autour de l'axe 3, cette couronne étant entourée d'un carter de soufflante 9. Les aubes de soufflante 17 sont à calage variable, c'est-à-dire que leur incidence peut être pilotée par un mécanisme de commande 20 agencé au moins en partie dans le cône d'entrée, et conçu pour faire pivoter ces aubes 17 autour de leurs axes longitudinaux respectifs 22. Ce mécanisme de commande 20, de conception connue du type mécanique, électrique, hydraulique, et/ou pneumatique, est lui-même piloté par une unité de commande électronique (non représentée), qui permet d'ordonner la valeur des angles de calage des aubes 17 en fonction des besoins rencontrés, notamment pour exercer la fonction d'inversion de poussée.
Comme évoqué ci-dessus, il s'agit ici d'un ensemble propulsif 200 dont la fonction d'inversion de poussée est effectivement intégrée à la soufflante 15, et non à l'enveloppe extérieure formant nacelle 5, comme cela est le plus communément rencontré. Cette enveloppe 5 peut par conséquent présenter une longueur courte en comparaison du diamètre de la soufflante 15. De préférence, le rapport entre la longueur axiale totale « Lt » de l'enveloppe 5, et le diamètre « D » de la soufflante 15, est inférieur à 1, 25.
Dans la suite de la description de l'ensemble propulsif 200, il est fait référence à la direction longitudinale X parallèle à l'axe 3 du turboréacteur, et également dénommée direction axiale, à la direction transversale Y également dite direction latérale, et enfin à
la direction verticale Z également dite direction de la hauteur, ces trois direction X, Y et Z étant orthogonales entre elles. Il est également fait référence à la direction radiale R, à considérer en rapport à l'axe 3.
La soufflante 15, du type VPF, n'est pas entraînée directement par l'arbre basse pression 11, mais seulement entraînée indirectement par cet arbre, via un mécanisme de réduction 24, ce qui lui permet de tourner avec une vitesse plus lente. Néanmoins, une solution à entraînement direct de la soufflante 15, par l'arbre basse pression 11, entre dans le cadre de l'invention.
En outre, le turboréacteur 1 définit une veine primaire 16 de circulation des gaz, destinée à être traversée par un flux primaire 16a, ainsi qu'une veine secondaire 18 de circulation des gaz, destinée à être traversée par un flux secondaire 18a situé radialement vers l'extérieur par rapport au flux primaire. Le flux de la soufflante 15 se trouve ainsi divisé au niveau d'un bec 26 de séparation des flux.
Comme cela est connu de l'homme du métier, la veine secondaire 18 est délimitée radialement vers l'extérieur en partie par une virole externe 23, intégrée à l'enveloppe 5. La virole 23 est préférentiellement métallique, et elle prolonge vers l'arrière le carter de soufflante 9. Plus précisément, la virole 23 présente intérieurement une surface 23a de délimitation radiale externe de la veine secondaire 18. La virole peut être en alternative à base de composite présentant des fibres de carbone, comme des carters connus de module de soufflante.
Dans la direction radiale R entre les deux veines 16, 18, il est prévu un compartiment inter-veines 44 dans lequel sont agencés plusieurs équipements / servitudes 58. Ce compartiment 44 est formé en partie par une virole externe 40, présentant extérieurement une surface 40a de délimitation radiale interne de la veine secondaire 18. En aval de la soufflante 15, dans la veine secondaire 18, il est prévu une rangée annulaire d'aubes de redresseur 30 centrée sur l'axe 3, ces aubes statoriques 30 étant également dites aubes OGV ou aubes directrices de sortie.
Une seule de ces aubes 30 est visible sur la figure 1, celle spécifique à l'invention. Néanmoins, il est noté que de manière conventionnelle, chacune des aubes 30 de la rangée annulaire traverse l'intégralité de la veine secondaire 18 selon la direction R,
même si une légère inclinaison de ces aubes 30 dans la direction X est possible, comme cela a été représenté sur la figure 1.
Chaque aube de redresseur 30 présente ainsi une extrémité de tête 31 raccordée sur la virole externe 23 de l'enveloppe 5 formant nacelle, de même qu'elle comporte une extrémité de pied 33 raccordée sur la surface 40a de délimitation radiale interne de la veine secondaire 18. Plus précisément, ce raccordement de l'extrémité de pied 33 s'effectue préférentiellement au niveau d'une partie amont de la surface 40a définie par la virole externe 40 du compartiment inter-veines 44, partie au niveau de laquelle il est formé un moyeu de carter intermédiaire 32. De manière connue, les aubes statoriques 30 sont espacées circonférentiellement les unes des autres, et permettent de redresser le flux secondaire après son passage à travers la soufflante 15. De plus, ces aubes 30 peuvent également remplir une fonction structurale, en assurant le transfert des efforts provenant du réducteur 24 et des paliers de roulement des arbres moteur et du moyeu de soufflante, vers la virole extérieure 23. En d'autres termes, l'entité 32 forme le moyeu d'un carter intermédiaire, et ce dernier est complété par des bras radiaux formés par les aubes statoriques 30, et également complété par la virole extérieure 23 sur laquelle sont fixées les extrémités de tête 31 de ces aubes 30.
Le compartiment inter-veines 44 est également délimité par une virole interne 42, configurée pour délimiter extérieurement la veine primaire 16 d'écoulement des gaz. Les deux viroles 40, 42 s'étendent vers l'aval à partir du bec de séparation 26, qui les relie. En aval des aubages statoriques 30, il est prévu une pluralité de conduits de décharge d'air 46, répartis autour de l'axe 3. Chaque conduit de décharge 46 s'étend globalement radialement, éventuellement avec une composante axiale allant vers l'aval, en allant de la virole interne 42 à la virole externe 40, de manière à pouvoir faire communiquer la veine primaire 16 avec la veine secondaire 18. Chaque conduit de décharge d'air 46 débouche dans la veine primaire 16 à travers un orifice d'entrée 48 équipé d'une vanne de décharge VBV 50, l'orifice d'entrée 48 étant agencé axialement entre le compresseur basse pression 4 et le compresseur haute pression 6. De même, chaque conduit de décharge
d'air 46 débouche dans la veine secondaire 18, à travers un orifice de sortie 52 équipé d'ailettes de décharge 54.
Le mât d'accrochage 7 s'étend sur une hauteur limitée selon la direction radiale R, correspondant également à la direction verticale Z dans la zone où se trouve ce mât. En effet, le mât 7 est conventionnellement agencé dans une position horaire à 12h, en s'étendant en longueur vers l'amont selon la direction X, à partir d'une portion inférieure de l'aile 202, proche du longeron avant 208 et du bord d'attaque 210 de l'aile 202.
Le mât d'accrochage 7 comporte une partie aval 7a qui s'étend vers l'avant à partir de l'aile 202, en se raccordant le long de la virole externe 40, sur une longueur importante de celle-ci. Cette partie aval 7a s'étend selon la direction X jusqu'à proximité d'un bord de fuite 35 de l'enveloppe 5 formant nacelle. A partir de ce bord de fuite 35, le mât se poursuit de manière continue par une partie amont 7b qui se trouve intégralement logée dans la veine secondaire 18, toujours en restant raccordée de tout son long sur la virole externe 40 du compartiment inter-veines 44. Ainsi, le mât 7 est fermé radialement vers l'intérieur par la virole externe 40, qu'il épouse de manière continue sur une longueur axiale étendue selon la direction X, pouvant aller du compresseur basse pression 4 voire au-delà de celui-ci vers l'amont, jusqu'à la turbine basse pression 12, voire au-delà de celle-ci vers l'aval.
L'une des particularités de l'invention réside donc dans la hauteur réduite de la partie amont 7b du mât 7, selon la direction radiale R correspondant également ici à la direction verticale Z. Par hauteur réduite ou partielle, il est entendu que la partie amont 7b s'étend radialement à partir de la surface 40a sur une hauteur radiale de mât « Hm », strictement inférieure à une hauteur radiale totale « Ht » de la veine secondaire 18. Tout le long de cette partie amont 7b du mât, celle-ci n'est donc jamais au contact de la surface 23a de délimitation radiale externe de la veine secondaire 18. De préférence, la hauteur radiale de mât Hm représente localement 30 à 60 % de la hauteur radiale totale Ht de la veine secondaire 18. De manière plus générale, la hauteur radiale de mât Hm localement représente 20 à 70 % de de la hauteur radiale totale de la veine secondaire. Ce pourcentage n'est pas nécessairement identique tout le long de la partie amont de mât 7b, mais il peut au contraire évoluer localement, toujours en restant de préférence dans
l'intervalle de valeurs mentionné ci-dessus. Cette évolution de pourcentage peut s'expliquer par une hauteur radiale de mât Hm assez variable le long de la partie amont 7b, alors que la hauteur radiale totale de veine Ht reste elle sensiblement constante, ou peu variable. A cet égard, il est noté que la ligne de crête 60 du mât 7 est droite ou sensiblement droite, de préférence parallèle ou sensiblement parallèle à la direction X. La hauteur radiale du mât peut être d'environ 50 % de la hauteur radiale totale Ht de la veine secondaire à proximité du bord de fuite 66 de l'aube intégrée 30. De plus, elle peut être de hauteur croissante, par exemple avec courbure de manière continûment variable vers l'aval. Une seconde particularité de l'invention réside dans l'intégration de l'une des aubes de redresseur 30 à la partie amont de mât 7b. Il s'agit en effet de l'aube 30 se situant dans la même position horaire que celle du mât 7, et agencée axialement en amont de celui-ci. Au lieu de présenter une discontinuité de matière entre le bord de fuite de cette aube 30, et l'extrémité avant du mât 7, il est donc prévu de les intégrer l'un à l'autre, entraînant ainsi une continuité axiale de matière entre ces deux entités au sein de la veine secondaire 18. Pour ce faire, l'aube de redresseur intégrée 30 comporte les parties suivantes, se succédant radialement de l'intérieur vers l'extérieur. Il s'agit tout d'abord d'une partie de pied 62a intégrée axialement à la partie amont de mât 7b, cette partie de pied 62a comportant l'extrémité de pied 33 raccordée sur la surface de délimitation 40a. Ensuite, l'aube intégrée 30 comporte une partie de transition 62b, puis une partie de tête 62c se terminant par l'extrémité de tête 31 raccordée sur la surface de délimitation 23a. Ainsi, la spécificité de cette aube intégrée 30 réside en premier lieu dans la partie de pied 62a à partir de laquelle s'étend, axialement vers l'aval, la partie amont de mât 7b. En d'autres termes, la partie de pied 62a présente un bord de fuite fictif 64 qui se fond dans l'extrémité avant de la partie amont de mât 7b, puisqu'aucune discontinuité de matière n'est observée entre ces deux entités, selon la direction X. Au niveau de l'intrados et de l'extrados de cet ensemble intégré 62a, 7b, la continuité de matière est réalisée soit par une paroi aérodynamique d'une seule pièce, c'est-à-dire réalisée d'un seul tenant, soit par l'association de plusieurs parois présentant une jonction aérodynamique acceptable,
par exemple par recouvrement avec soyage, ou toute autre technique connue dans ce domaine.
En revanche, l'aube intégrée 30 présente, radialement vers l'extérieur à partir de la partie amont de mât 7b, c'est-à-dire radialement vers l'extérieur à partir de la partie de pied 62a, un bord de fuite libre 66 s'étendant jusqu'à la surface de délimitation 23a. Le bord de fuite libre 66 correspond ainsi au bord de fuite de la partie de transition 62b et de la partie de tête 62c cumulées. Le bord de fuite fictif 64 de la partie pied 62a s'étend sur la hauteur radiale Hm, tandis que le bord de fuite libre 66 s'étend sur une hauteur correspondant au différentiel entre les hauteurs Ht et Hm. Dans le premier mode de réalisation préféré montré sur les figures 1 et 4 à 6, il est représenté le bord de fuite fictif 64 de la partie de pied 62a avec une épaisseur conséquente selon la direction Y, cette épaisseur « E » référencée sur la figure 6 étant croissante en allant vers l'aval en direction de la partie amont de mât 7b. Cette épaisseur transversale / latérale E du bord de fuite fictif 64 est largement supérieure à celle du bord de fuite 66 de la partie de transition 62b et de la partie de tête 62c. En effet, le bord de fuite libre 66 de la partie de tête 62c présente une épaisseur conventionnelle « e » particulièrement fine, tandis que le bord de fuite 66 de la partie de transition 62b présente une épaisseur transversale « e' » variable, qui augmente en allant radialement vers l'intérieur de manière à passer progressivement de la valeur « e » à la valeur « E ». Pour ce faire, deux rayons de raccordement 68 peuvent être respectivement prévus du côté intrados et du côté extrados de la partie de transition 62b, comme cela est le mieux visible sur la figure 6. Cela permet d'obtenir une transition douce entre les épaisseurs E,e sensiblement différentes des parties 62a, 62c, pour limiter les pertes aérodynamiques observées au niveau de cette rupture d'épaisseur. Selon une alternative montrée sur les figures 7 à 9, la zone de transition 62b présente un profil identique ou similaire à celui de la partie de tête 62c, impliquant une épaisseur réduite « e » pour son bord de fuite libre 66, identique ou similaire à l'épaisseur du bord de fuite de la partie de tête 62c. Il en résulte une rupture brutale d'épaisseur entre la partie de pied 62a et la partie de transition 62b, comme cela est le mieux visible sur la figure 9.
Selon un second mode de réalisation préféré représenté sur les figures 10 à 12, la partie de transition 62b présente une corde « C » de longueur supérieure à celle de la partie de tête 62c. Pour ce faire, la partie de transition 62b est équipée d'une extension de bord de fuite 72, par exemple de forme générale triangulaire et agencée de sorte que la corde C présente une longueur axiale croissante an allant radialement de l'intérieur vers l'extérieur, c'est-à-dire de la partie de tête 62c vers la partie de pied 62a. L'extension de bord de fuite 72 présente de préférence une épaisseur transversale se réduisant continuellement en allant vers l'aval, jusqu'au bord de fuite libre 66 de la partie de transition 62b. Une réduction d'épaisseur s'observe également en allant radialement vers l'extérieur, en se rapprochant du bord de fuite libre 66.
En augmentant ainsi localement la longueur de la corde C au sein de la partie de transition 62b, il est possible de conserver un bord de fuite libre 66 de faible épaisseur limitant les pertes de culot, tout en prévoyant une épaisseur d'aube plus conséquente en amont de ce bord de fuite 66, à l'endroit où il se raccorde radialement avec le bord de fuite fictif épais 64 de la partie de pied 62a. Cela permet avantageusement de limiter le différentiel d'épaisseur transversale entre les parties 62a, 62b, et donc d'adoucir le raccordement radial, avec pour conséquence des gains en termes de performances aérodynamiques.
Selon un troisième mode de réalisation préféré représenté sur les figures 13 à 15, la partie de transition 62b comprend un bord de fuite libre 66 tronqué, par exemple de manière à former une encoche 74 s'ouvrant axialement vers l'aval. Cette encoche 74 dans le bord de fuite 66 est préférentiellement de forme générale triangulaire. Elle peut s'étendre jusque dans la partie de tête 62c, comme cela est visible sur la figure 13. La forme retenue pour l'encoche 74 peut être telle que le bord de fuite libre 66 des deux parties successives 62b, 62c soit sensiblement droit, en étant incliné selon la direction X comme cela est également visible sur la figure 13, puisque son extrémité radialement extérieure se situe plus en aval que son extrémité radialement intérieure.
L'encoche 74 est réalisée de manière à tronquer une portion aval de la partie de transition 62b, de sorte que la corde « C » de cette partie 62b présente une longueur axiale croissante en allant radialement de l'intérieur vers l'extérieur, c'est-à-dire en allant
de la partie de pied 62b vers la partie de tête 62c. En d'autres termes, la longueur de corde augmente au fur et à mesure que l'on se rapproche de la partie de tête 62c, jusqu'à retrouver une longueur de corde conventionnelle et identique ou sensiblement identique à celle des autres aubes 30 de la rangée annulaire. Ce troisième mode de réalisation préféré apporte également une solution permettant d'adoucir le raccordement radial entre les parties 62a, 62b, puisqu'il s'effectue à l'endroit où les épaisseurs transversales respectives sont les plus semblables, c'est-à-dire en tout ou partie en amont du bord de fuite fictif épais 64 de la partie de pied 62a, comme le montre clairement l'alignement des figures 14 et 15. Avec une telle configuration, la transition radiale d'épaisseur s'avère avantageusement plus douce, avec ici aussi des gains en termes de performances aérodynamiques.
Bien entendu, diverses modifications peuvent être apportées par l'homme du métier à l'invention qui vient d'être décrite, uniquement à titre d'exemples non limitatifs et dont la portée est définie par les revendications annexées. En particulier, les différents modes de réalisation préférés décrits ci-dessus sont combinables entre eux.
Claims
1. Ensemble propulsif (200) pour aéronef comprenant une turbomachine (1) à double flux équipée d'une soufflante (15), une enveloppe extérieure aérodynamique (5) formant nacelle agencée autour de la soufflante, ainsi qu'un mât d'accrochage (7) destiné à assurer la fixation de la turbomachine (1) sur un élément de voilure (202) de l'aéronef, l'ensemble propulsif présentant une veine primaire (16) de circulation des gaz, ainsi qu'une veine secondaire (18) de circulation des gaz délimitée par une surface de délimitation radiale interne (40a) ainsi que par une surface de délimitation radiale externe (23a) formée par l'enveloppe extérieure aérodynamique (5), la turbomachine (1) comportant en outre une rangée annulaire d'aubes de redresseur (30) agencées dans la veine secondaire (18) en aval de la soufflante (15), chaque aube de redresseur (30) s'étendant à travers la veine secondaire (18) en présentant une extrémité de tête (31) raccordée sur l'enveloppe extérieure aérodynamique (5), ainsi qu'une extrémité de pied (33) raccordée sur la surface de délimitation radiale interne (40a) de la veine secondaire, le mât d'accrochage (7) comprenant une partie logée dans la veine secondaire, dite partie amont (7b), ainsi qu'une partie aval (7a) agencée en aval d'un bord de fuite (35) de l'enveloppe extérieure aérodynamique (5), elle-même destinée à être agencée entièrement en amont d'un bord d'attaque (210) de l'élément de voilure (202), caractérisé en ce que la partie amont (7b) du mât d'accrochage logée dans la veine secondaire (18) s'étend radialement à partir de la surface de délimitation radiale interne (40a), sur une hauteur radiale de mât (Hm) strictement inférieure à une hauteur radiale totale (Ht) de la veine secondaire (18), et en ce que la partie amont (7b) du mât d'accrochage (7) s'étend vers l'aval depuis une partie de pied (62a) de l'une des aubes de redresseur (30).
2. Ensemble propulsif selon la revendication 1, caractérisé en ce que la hauteur radiale de mât (Hm) représente localement 20 à 70 % de la hauteur radiale totale (Ht) de la veine secondaire (18).
3. Ensemble propulsif selon la revendication 1 ou 2, caractérisé en ce que l'aube de redresseur (30) intégrée au mât d'accrochage (7) comporte, radialement vers l'extérieur à
partir de la partie amont (7b) de ce mât, un bord de fuite libre (66) s'étendant jusqu'à l'enveloppe extérieure aérodynamique (5).
4. Ensemble propulsif selon l'une quelconque des revendications précédentes, caractérisé en ce que l'aube (30) intégrée au mât d'accrochage (7) comporte les parties suivantes, se succédant radialement de l'intérieur vers l'extérieur :
- la partie de pied (62a) intégrée à la partie amont (7b) du mât d'accrochage ;
- une partie de transition (62b) ; et
- une partie de tête (62c).
5. Ensemble propulsif selon la revendication 4, caractérisé en ce que le bord de fuite (66) de la partie de transition (62b) présente une épaisseur transversale (e') qui augmente en allant radialement vers la partie de pied (62a) de l'aube intégrée (30).
6. Ensemble propulsif selon la revendication 4 ou 5, caractérisé en ce que la partie de transition (62b) présente une corde (C) de longueur supérieure à celle de la partie de tête (62c), ou en ce que ladite partie de transition (62b) comprend un bord de fuite (66) tronqué de sorte que la corde (C) de la partie de transition (62b) présente une longueur croissante en allant de la partie de pied (62a) vers la partie de tête (62c).
7. Ensemble propulsif selon l'une quelconque des revendications précédentes, caractérisé en ce que le rapport entre la longueur axiale totale (Lt) de l'enveloppe extérieure aérodynamique (5), et le diamètre (D) de la soufflante (15), est inférieur à 1,25.
8. Ensemble propulsif selon l'une quelconque des revendications précédentes, caractérisé en ce que la soufflante (15) comporte des aubes de soufflantes rotatives (17) à calage variable, et en ce que l'enveloppe extérieure aérodynamique (5) formant nacelle est dépourvu de système d'inversion de poussée.
9. Partie d'aéronef (100) comprenant un ensemble propulsif (200) selon l'une quelconque des revendications précédentes, ainsi qu'un élément de voilure (202), l'enveloppe extérieure aérodynamique (5) formant nacelle s'étendant entièrement en amont d'un bord d'attaque (210) de l'élément de voilure (202).
10. Partie d'aéronef selon la revendication précédente, caractérisée en ce qu'une partie supérieure de l'enveloppe (5) se trouve agencée en regard axialement du bord d'attaque (210) de l'aile (202), et en ce qu'un sommet de l'extérieur de l'enveloppe extérieure
aérodynamique (5) s'étend plus haut que l'élément de voilure (202) considéré au droit du raccordement du mât d'accrochage (7) avec ledit élément de voilure.
11. Aéronef (300) comportant au moins une partie (100) selon la revendication 9 ou 10.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2100258A FR3118787B1 (fr) | 2021-01-12 | 2021-01-12 | Ensemble propulsif pour aeronef comprenant une aube de redresseur integree a une partie amont d’un mat d’accrochage de hauteur reduite |
PCT/FR2022/050026 WO2022152994A1 (fr) | 2021-01-12 | 2022-01-05 | Ensemble propulsif pour aeronef comprenant une aube de redresseur intégrée à une partie amont d'un mat d'accrochage de hauteur réduite |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4278075A1 true EP4278075A1 (fr) | 2023-11-22 |
Family
ID=75278171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22702295.1A Pending EP4278075A1 (fr) | 2021-01-12 | 2022-01-05 | Ensemble propulsif pour aeronef comprenant une aube de redresseur intégrée à une partie amont d'un mat d'accrochage de hauteur réduite |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240116644A1 (fr) |
EP (1) | EP4278075A1 (fr) |
CN (1) | CN116917610A (fr) |
FR (1) | FR3118787B1 (fr) |
WO (1) | WO2022152994A1 (fr) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2707249B1 (fr) * | 1993-07-07 | 1995-08-11 | Snecma | Intégration d'un moteur à double flux et à nacelle de grand diamètre. |
FR2878229B1 (fr) * | 2004-11-23 | 2008-04-18 | Airbus France Sas | Systeme de fixation d'un mat de moteur a l'aile d'un aeronef |
US8844265B2 (en) * | 2007-08-01 | 2014-09-30 | United Technologies Corporation | Turbine section of high bypass turbofan |
US8221071B2 (en) * | 2008-09-30 | 2012-07-17 | General Electric Company | Integrated guide vane assembly |
GB201202790D0 (en) * | 2012-02-20 | 2012-04-04 | Rolls Royce Plc | An aircraft propulsion system |
US10814990B2 (en) * | 2018-06-28 | 2020-10-27 | The Boeing Company | Aircraft propulsion system with a low-fan-pressure-ratio engine in a forward over-wing flow installation, and method of installing the same |
FR3090033B1 (fr) * | 2018-12-18 | 2020-11-27 | Safran Aircraft Engines | Ensemble d’aube directrice de sortie et de bifurcation pour turbomachine |
-
2021
- 2021-01-12 FR FR2100258A patent/FR3118787B1/fr active Active
-
2022
- 2022-01-05 CN CN202280018205.5A patent/CN116917610A/zh active Pending
- 2022-01-05 US US18/261,124 patent/US20240116644A1/en active Pending
- 2022-01-05 EP EP22702295.1A patent/EP4278075A1/fr active Pending
- 2022-01-05 WO PCT/FR2022/050026 patent/WO2022152994A1/fr active Application Filing
Also Published As
Publication number | Publication date |
---|---|
FR3118787A1 (fr) | 2022-07-15 |
CN116917610A (zh) | 2023-10-20 |
WO2022152994A1 (fr) | 2022-07-21 |
FR3118787B1 (fr) | 2023-06-09 |
US20240116644A1 (en) | 2024-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3377732B1 (fr) | Partie avant de turbomachine d'aéronef | |
CA2963487C (fr) | Stator de turbomachine d'aeronef | |
EP2895703B1 (fr) | Turbomachine comportant une pluralité d'aubes de stator à calage variable montées en amont de la soufflante | |
FR3050721A1 (fr) | Ensemble moteur pour aeronef comprenant un bord d'attaque de mat integre a une rangee annulaire d'aubes directrices de sortie non carenees | |
FR2935349A1 (fr) | Turbomachine a helices non carenees | |
FR2938502A1 (fr) | Turbomachine comportant une helice non carenee equipee de moyens de guidage d'air | |
EP2760737B1 (fr) | Pale pour une helice de turbomachine, notamment a soufflante non carenee, helice et turbomachine correspondantes | |
FR2982842A1 (fr) | Avion | |
EP4278075A1 (fr) | Ensemble propulsif pour aeronef comprenant une aube de redresseur intégrée à une partie amont d'un mat d'accrochage de hauteur réduite | |
FR3085415A1 (fr) | Aube comprenant une structure en materiau composite et une coque metallique | |
EP3829975B1 (fr) | Turbomachine à hélices coaxiales | |
FR2935348A1 (fr) | Turbomachine a helices non carenees | |
FR3115071A1 (fr) | Aube composite et attache de pied d’aube anti-rotation | |
WO2016174358A1 (fr) | Aube de stator a calage variable, comprenant des cloisons transversales entrecroisées et procédé de fabrication d'une telle aube | |
FR3131732A1 (fr) | Ensemble propulsif a helice pour aeronef, comprenant une aube de stator integree a une partie d’extremite amont d’un mat d’accrochage de hauteur reduite | |
WO2017187093A1 (fr) | Ensemble de redressement de flux d'air et turbomachine comprenant un tel ensemble | |
EP4229286B1 (fr) | Système propulsif aéronautique ayant un rendement propulsif amélioré | |
FR3118094A1 (fr) | Aube de stator avec portion mobile, module de turbomachine equipe d’une telle aube de stator et turbomachine correspondante | |
EP4240949A1 (fr) | Ensemble pour turbomachine d'aeronef a double flux, l'ensemble etant equipe d'ailettes de decharge d'air pilotees en incidence | |
FR3108663A1 (fr) | Aube de soufflante rotative de turbomachine, soufflante et turbomachine munies de celle-ci | |
FR2942512A1 (fr) | Aube pour recepteur de turbomachine, comprenant un pied scinde en deux portions montees l'une sur l'autre. | |
FR3107917A1 (fr) | Carter de roue mobile pour turbomachine | |
FR3056630A1 (fr) | Disque aubage monobloc de soufflante pour turbomachine d'aeronef | |
FR3043649A1 (fr) | Voilure motorisee et aeronef equipe d'une telle voilure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230802 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |