EP4114647A1 - Installation pour localiser un traceur d'une preforme tissee - Google Patents
Installation pour localiser un traceur d'une preforme tisseeInfo
- Publication number
- EP4114647A1 EP4114647A1 EP21714251.2A EP21714251A EP4114647A1 EP 4114647 A1 EP4114647 A1 EP 4114647A1 EP 21714251 A EP21714251 A EP 21714251A EP 4114647 A1 EP4114647 A1 EP 4114647A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- preform
- installation
- camera
- mold
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/21—Polarisation-affecting properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/54—Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
- B29C70/541—Positioning reinforcements in a mould, e.g. using clamping means for the reinforcement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/14—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
- B29C45/14065—Positioning or centering articles in the mould
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/30—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D99/00—Subject matter not provided for in other groups of this subclass
- B29D99/0025—Producing blades or the like, e.g. blades for turbines, propellers, or wings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/002—Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8806—Specially adapted optical and illumination features
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/94—Investigating contamination, e.g. dust
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
- G02B27/286—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/14—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
- B29C45/14065—Positioning or centering articles in the mould
- B29C2045/14172—Positioning or centering articles in the mould using light to define the position of the insert
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/08—Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N2021/1765—Method using an image detector and processing of image signal
- G01N2021/177—Detector of the video camera type
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N2021/8444—Fibrous material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N2021/8472—Investigation of composite materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8806—Specially adapted optical and illumination features
- G01N2021/8848—Polarisation of light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/062—LED's
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/063—Illuminating optical parts
- G01N2201/0634—Diffuse illumination
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/63—Control of cameras or camera modules by using electronic viewfinders
- H04N23/631—Graphical user interfaces [GUI] specially adapted for controlling image capture or setting capture parameters
- H04N23/632—Graphical user interfaces [GUI] specially adapted for controlling image capture or setting capture parameters for displaying or modifying preview images prior to image capturing, e.g. variety of image resolutions or capturing parameters
Definitions
- the present invention relates to the general field of parts made of composite material.
- a part made of composite material comprises a reinforcement (for example a fibrous reinforcement) and a matrix (for example a polymer resin).
- a so-called "weaving” operation consists of flat weaving a flat preform by means of a loom from strands of fibers (eg strands of carbon fibers).
- the preform is intended to form the reinforcement of the composite part.
- a so-called "cutting” operation consists of cutting the planar preform using a cutting mold.
- a so-called "forming” operation consists of forming the planar preform in three dimensions using a forming mold.
- a so-called “injection” operation consists of injecting the die into an injection mold in which the preform is located in three dimensions, so as to obtain the composite part.
- the weaving operation it is known to integrate at least one strand comprising fibers of a light-colored material (for example glass fibers) forming a tracer, and in other words a reference that can be used throughout the entire process. manufacturing process.
- a tracer comprising glass fibers
- the tracer is visually identifiable by the color white glass fibers.
- the preform comprises several markers.
- a plotter can for example be used to position the preform relative to a mold.
- the objective of the present invention is therefore to provide a simple, effective and economical solution making it possible to respond to the aforementioned problem.
- the invention thus proposes an installation for locating at least one strand comprising fibers of a first material of a preform woven from a piece of composite material, the preform comprising on the surface strands of fibers of a second material and minus the strand comprising fibers of the first material forming a tracer, the installation comprising a camera; characterized in that the installation further comprises:
- a light source emitting an incident unpolarized beam capable of being directed towards the preform
- polarizer having a first direction of polarization, the polarizer being able to polarize the unpolarized incident beam before interacting with the preform to obtain a polarized incident beam;
- the first material being selected from glass, aramid and alumina oxide; the second material being chosen from carbon and silicon carbide; the camera being able to film a reflected beam resulting from the interaction of the polarized incident beam with the preform, the reflected beam having previously passed through the cross analyzer, so as to locate the tracer of the preform.
- Such an installation makes it possible to easily locate the tracer of the preform from the images filmed by the camera, with the aim, for example, of positioning or checking the preform. Such an installation thus makes it possible to significantly reduce the number of defective preforms, and consequently of defective parts.
- the installation exploits the differences in optical properties between the first material and the second material, to highlight the fibers of the first material on the images filmed by the camera.
- the camera thus films only the light rays reflected by the fibers of the first material of the tracer.
- the installation according to the invention may include one or more of the following characteristics and / or steps, taken in isolation from each other or in combination with each other:
- the installation comprises a diffuser, the unpolarized incident beam passing through the diffuser before passing through the polarizer; - the installation includes a screen on which live images filmed by the camera are displayed;
- the installation includes a control device configured to automatically process images filmed by the camera;
- the light source comprises a plurality of light emitting diodes;
- the first material is glass or aramid
- the second material is carbon
- the present invention also relates to a method for positioning a preform woven from a piece of composite material relative to a mold, the preform comprising on the surface at least one strand comprising fibers of a first material forming a tracer and strands. fibers of a second material, by means of the installation as described above, the first material being chosen from glass, aramid and alumina oxide, the second material being chosen from carbon and carbide silicon, the method comprising a step consisting in: a) positioning the preform relative to the mold from the images filmed by the camera by positioning the tracer of the preform relative to a mark.
- the positioning method according to the invention may include one or more of the following characteristics and / or steps, taken in isolation from each other or in combination with each other:
- step a) is performed by an operator using a screen on which the images filmed by the camera are displayed live;
- the mark is formed by a slit opening into a cavity of the mold in which the preform is located, the unpolarized incident beam from the light source being directed towards the preform via the slit;
- the positioning method is implemented during a cutting operation of the preform in a cutting mold and / or a three-dimensional forming operation of the preform in a forming mold and / or an operation of injecting a die into an injection mold in which the preform is located.
- the present invention also relates to a method of checking a preform woven from a piece of composite material, the preform comprising on the surface at least one strand comprising fibers of a first material forming a tracer and strands of fibers of a second material, by means of the installation as described above, the first material being chosen from glass, aramid and alumina oxide, the second material being chosen from carbon and silicon carbide, the process comprising a step consisting in: a) checking that the tracer of the preform is within a predefined interval from the images filmed by the camera.
- control method according to the invention may include one or more of the following characteristics and / or steps, taken in isolation from each other or in combination with each other:
- step a) is carried out by a control device configured to automatically process the images filmed by the camera;
- control method is implemented during an operation of cutting the preform in a cutting mold and / or a three-dimensional forming operation of the preform in a forming mold and / or an injection operation of a die in an injection mold in which the preform is located.
- Figure 1 is a schematic view of an installation according to the invention
- FIG.2 Figure 2 is a perspective view of a blade preform
- Figure 3 is a perspective view of a mold for forming the blade preform illustrated in Figure 2;
- Figure 4 is a perspective view of a wedge attached to the mold shown in Figure 3;
- Figure 5 is a perspective view of a housing preform
- Figure 6 is a perspective view of a mold for forming the housing preform illustrated in Figure 5;
- Figure 7 is an image obtained by an installation according to the prior art
- Figure 8 is an image obtained by an installation according to the invention.
- Figure 1 is shown schematically an installation 1 for locating at least one strand 2 comprising fibers of a first material (forming a tracer) of a woven preform 3 of a composite material part.
- the composite material part is for example a part of an aircraft turbomachine, such as a fan blade or a fan casing.
- the composite material part comprises a reinforcement in the form of a woven fiber preform 3, 3a, 3b and an organic matrix such as a polymer resin.
- Such a part is manufactured according to a manufacturing process comprising various operations.
- a weaving operation involves flat weaving a flat preform using a loom from strands of fibers.
- the woven preform then comprises warp strands (in other words strands extending along the length of the preform) and weft strands (in other words strands extending along the width of the preform).
- the preform is for example woven by means of a Jacquard loom.
- the weaving of the preform is a three-dimensional weaving.
- a cutting operation consists of cutting the planar preform using a cutting mold.
- a forming operation involves three-dimensional forming the planar preform using a forming mold.
- the forming mold has an imprint the shape of which corresponds substantially to that of the part to be produced.
- an injection operation involves injecting the die (for example, a polymer resin) into an injection mold in which the three-dimensional preform is located.
- the die for example, a polymer resin
- the injection operation is obtained via a process known by the acronym RTM for "Resin Transfert Molding".
- RTM Resin Transfert Molding
- Such an RTM process uses an injection mold comprising two facing shells which are movable with respect to each other.
- the shells each comprise an imprint, the imprints defining a cavity in which the preform is placed and the matrix injected.
- the various operations of the manufacturing process are carried out in the order defined above.
- the various operations of the manufacturing process can be carried out manually and / or automatically.
- the preform 3, 3a, 3b comprises on the surface at least the strand 2 comprising fibers of a first material forming a tracer and strands 4 of fibers of a second material.
- a plotter corresponds to a reference (or a mark) that can be used throughout the part manufacturing process, for example in order to position or control the preform 3, 3a, 3b during an operation.
- the first material is chosen from glass, aramid and alumina oxide.
- the second material is chosen from carbon and silicon carbide.
- the fibers of the first material are light and the fibers of the second material are dark.
- the first material is glass and the second material is carbon.
- carbon fibers are black in color and the glass fibers are white in color.
- the first material is aramid and the second material is carbon.
- carbon fibers are black in color and aramid fibers are yellow in color.
- the first material is silicon carbide and the second material is aluminum oxide.
- silicon carbide fibers are black in color and alumina oxide fibers are yellowish-white in color.
- a tracer is located on the surface of the preform 3, 3a, 3b.
- a tracer can include two thirds of fibers of the first material and one third of fibers of the second material.
- a plotter can also include one hundred percent fibers of the first material.
- the preform 3, 3a, 3b can obviously include several markers.
- the plotter is integrated into the preform 3, 3a, 3b during the weaving operation.
- a tracer may be a warp strand (hereinafter referred to as a warp tracer or a longitudinal tracer) or a weft strand (hereinafter referred to as a weft tracer or a transverse tracer).
- the installation 1 for locating at least one tracer of the woven preform 3, 3a, 3b comprises:
- a light source 6 emitting an incident unpolarized beam f1 capable of being directed towards the preform 3, 3a, 3b;
- polarizer 7 having a first direction of polarization, the polarizer 7 being able to polarize the unpolarized incident beam f1 before interacting with the preform 3, 3a, 3b to obtain a polarized incident beam f2;
- a cross analyzer 8 having a second direction of polarization.
- the camera 5 is able to film a reflected beam f3 resulting from the interaction of the polarized incident beam f2 with the preform 3, 3a, 3b, the reflected beam f3 having previously passed through the cross analyzer 8, so as to locate the tracer of the preform 3, 3a, 3b.
- Such an installation 1 makes it possible to easily locate the tracer (s) of the preform.
- the tracer (s) appear distinctly on the images filmed by the camera 5.
- Installation 1 significantly accentuates the color of the fibers of the first material on the images filmed by the camera 5.
- the installation 1 exploits the differences in optical properties between the first material and the second material, to highlight the fibers of the first material on the images filmed by the camera 5.
- the second material exhibits a specular reflection while the first material exhibits diffuse reflection. Unlike diffuse reflection, specular reflection has the particularity of conserving polarization.
- the crossed analyzer 8 thus makes it possible to stop the light rays reflected by the fibers of the second material and to allow only the light rays reflected by the fibers of the first material of the tracer to pass, so as to make the fibers of the first material appear distinctly on the surface.
- the images filmed by the camera 5. the camera 5 films only the light rays reflected by the fibers of the first material of the tracer.
- the polarizer 7 has a first direction of polarization (or first direction of transmission), the polarizer 7 makes it possible to polarize the light rays of the beam indicating linearly (or rectilinearly) along the first direction of polarization.
- a polarizer 7 is called a “linear polarizer” or “rectilinear polarizer”.
- the crossed analyzer 8 has a second direction of polarization (or second direction of transmission), perpendicular or substantially perpendicular to the first direction of polarization of the polarizer 7, the analyzer 8 being as such crossed with the polarizer 7.
- the polarization directions are defined in a plane perpendicular to the beam propagation direction.
- the installation 1 comprises a diffuser (not shown), the unpolarized incident beam f1 passing through the diffuser before passing through the polarizer 7.
- a diffuser makes it possible to obtain uniform illumination.
- the installation 1 can include a screen 9 on which are displayed live images filmed by the camera 5. Such a screen 9 can for example allow an operator to locate the plotter, so as to position or control the preform.
- the installation 1 can include a control device configured to control the light source 6 and the camera 5.
- the control device can also be configured to control the screen 9.
- the control device can be configured to automatically process the images filmed by the camera 5.
- the control device can include, for example, a computer (or a computer processing system). information) and image processing software.
- the images filmed by the camera 5 are recorded with the aim of guaranteeing traceability of the preforms, and more generally of the parts made of composite material obtained by the manufacturing process.
- the camera 5 has a variable angle of view, the latter being adjusted so as to cover the desired field.
- the light source 6 comprises a plurality of light emitting diodes better known by the English acronym LED for "light emitting diode". Light-emitting diodes are, for example, in the form of an LED bar.
- the invention is also concerned with a method for positioning a woven preform 3, 3a, 3b relative to a mold 11 a, 11 b, the preform 3, 3a, 3b comprising at least one strand 2 on the surface comprising fibers of the first material forming a tracer and strands 4 of fibers of the second material, by means of the installation 1.
- the positioning method comprises a step a) consisting in positioning the preform 3, 3a, 3b relative to the mold 11a, 11b from the images filmed by the camera 5 by positioning the tracer of the preform 3, 3a, 3b relative to a mark.
- Step a) of the positioning process can be carried out by an operator using a screen 9 of the installation 1 on which the images filmed by the camera 5 are displayed live.
- Step a) of the positioning process can be carried out automatically using, in particular, an installation control device 1.
- the positioning method can be implemented throughout the manufacturing process of a part made of composite material, and in particular during the cutting operation and / or during the forming operation and / or during the cutting. injection operation.
- the invention is also interested in a method of checking a woven preform 3, 3a, 3b, the preform 3, 3a, 3b comprising at the surface at least one strand 2 comprising fibers of the first material forming a tracer and strands. 4 of fibers of the second material, by means of installation 1.
- the checking method comprises a step a) consisting in checking that the tracer of the preform 3, 3a, 3b is within a predefined interval from the images filmed by the camera 5.
- Step a) of the control process can be carried out by an operator using a screen 9 of the installation 1 on which the images filmed by the camera 5 are displayed live.
- Step a) of the control method can be carried out by a control device of the installation 1 configured to automatically process the images filmed by the camera 5.
- the control method can be implemented throughout the manufacturing process of a composite material part, and in particular during the cutting operation and / or during the forming operation and / or during the cutting. injection operation.
- Figures 2 to 4 show an operation for forming a preform of a fan blade 3a.
- FIG. 2 illustrates the planar blade preform 3a capable of being formed in three dimensions using a forming mold 11a illustrated in Figures 3 and 4.
- the blade preform 3a comprises a portion 13 capable of forming a blade root, ci -after referred to as the "part of foot 13".
- the blade preform 3a also comprises a part 14 capable of forming a blade blade, hereinafter referred to as the “blade part 14”.
- the blade preform 3a comprises a junction 15 between the root portion 13 and the blade portion 14, the junction 15 being able to form blade surfaces.
- the blade preform 3a comprises in particular on the surface a lower transverse marker 2a at the level of the junction 15.
- the forming mold 11a includes an indentation 16 to three-dimensionally form the vane preform 3a. More specifically, the footprint 16 comprises a section 17 capable of forming the foot portion 13 in three dimensions, hereinafter referred to as the "foot section 17". The cavity 16 also includes a section 18 capable of forming the blade portion 14 in three dimensions, hereinafter referred to as the "blade section 18". Finally, the footprint 16 comprises a section 19 capable of forming the junction 15 in three dimensions, hereinafter referred to as the "junction section 19".
- the forming mold 11a also comprises a slot 12 opening both on a lower face of the mold 11a and in the cavity 16. The slot 12 is located at the level of the junction section 19 and forms a mark used in particular for positioning. of the blade preform 3a relative to the mold 11a.
- the forming mold 11a further comprises a wedge 21 capable of being fixed on two projecting supports 22 bordering the indentation 16 at the level of the foot section 17.
- the wedge 21 makes it possible to immobilize the foot portion 13 by compression and the junction 15 of the blade preform 3a.
- the installation 1 comprises a screen 9 on which the images filmed by the camera 5 are displayed live.
- the incident beam f1 from the light source 6 is directed towards the screen.
- blade preform 3a placed in the cavity 16 via the slot 12 of the mold 11a.
- the positioning method described above is implemented to position the blade preform 3a relative to the forming mold 11a.
- an operator manually positions the lower transverse plotter 2a of the blade preform 3a in the slot 12 forming the mark, using the screen 9 of the installation 1 on which the filmed images are displayed live. by the camera 5. For this, using the screen 9, the operator moves the blade preform 3a on the mold 11a until the lower transverse marker 2a is included in the slot 12.
- the blade preform 3a is positioned relative to the forming mold 11a not only by positioning the lower transverse marker 2a in the slot 12 but also by making an upper transverse marker (not shown) of the blade preform coincide.
- 3a with a reference projected onto the mold 11a by one or more lasers.
- the upper transverse plotter is for example placed at the level of the junction 15.
- the reference projected by the laser (s) defines the theoretical position of the upper transverse plotter.
- control method described above is implemented to control the position of the blade preform 3a following its positioning, and in other words following the placement of the blade. the shim 21 on the two supports 22.
- the blade preform 3a is here shaped by an operator who spreads the preform 3a in the cavity 16 until the tracers upper longitudinal sections (not shown) of the preform 3a coincide with references projected onto the mold 11a by one or more lasers.
- the references projected by the laser (s) define the theoretical positions of each of the upper longitudinal tracers.
- Figure 5 illustrates the planar casing preform 3b capable of being formed in three dimensions using a forming mold 11b illustrated in Figure 6.
- the housing preform 3b is in the form of a rectangular sheet.
- the casing preform 3b comprises in particular on the surface at least one upper longitudinal marker 2b.
- the forming mold 11b comprises a cylindrical cavity 23 for forming in three dimensions the casing preform 3b.
- the mold 11b is movable in rotation about an axis of rotation X passing through the axis of revolution of the cylindrical cavity 23.
- the installation 1 comprises a control device 10 configured to automatically process the images filmed by the camera 5.
- the installation 1 further comprises a screen 9 on the screen. which are displayed live the images filmed by the camera 5.
- the incident beam f1 from the light source 6 is directed towards the casing preform 3b placed on the cavity 23.
- the casing preform 3b is here shaped by an operator who wraps the preform 3b around the imprint 23 by making the upper longitudinal marker 2b of the preform 3b coincide with a reference projected onto the mold 11b by a or more lasers.
- the reference projected by the laser (s) defines the theoretical position of the upper longitudinal tracer 2b.
- the control method described above is implemented to control the shaping of the casing preform 3b.
- the control device 10 automatically checks that the upper longitudinal marker 2b is indeed within a predefined interval. For this, the control device 10 compares the actual position of the upper longitudinal marker 2b and the predefined interval.
- the real position of the upper longitudinal plotter 2b is for example determined from the images filmed by the camera 5 and from image processing software.
- the terms “lower” and “upper” associated with the preforms 3a, 3b and with the molds 11a, 11b are defined with respect to the positions of the latter in the figures.
- FIG. 7 is an image filmed by a camera of an installation according to the prior art of a preform sample 3 comprising a longitudinal plotter and two transverse plotters.
- Figure 8 is an image filmed by a camera 5 of an installation 1 according to the invention of the same preform sample 3.
- the installation 1 according to the invention makes it possible to significantly accentuate the white color of the tracers, and thus to easily locate the tracers of the preform 3, for example in order to position or control the preform 3.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Composite Materials (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Moulding By Coating Moulds (AREA)
- Woven Fabrics (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
Installation (1) pour localiser un toron (2) comprenant des fibres d'un premier matériau d'une préforme tissée (3), la préforme (3) comportant en surface des torons (4) de fibres d'un second matériau et le toron (2) comprenant des fibres du premier matériau formant un traceur, l'installation (1) comprenant : - une caméra (5); - une source lumineuse (6) émettant un faisceau incident non polarisé (f1) apte à être dirigé vers la préforme (3); - un polariseur (7) apte à polariser le faisceau incident non polarisé (f1) avant d'interagir avec la préforme (3) pour obtenir un faisceau incident polarisé (f2); - un analyseur croisé (8); le premier matériau étant choisi parmi le verre, l'aramide et l'oxyde d'alumine; le second matériau étant choisi parmi le carbone et le carbure de silicium; la caméra (5) étant apte à filmer un faisceau réfléchi (f3) issu de l'interaction du faisceau incident polarisé (f2) avec la préforme (3), le faisceau réfléchi (f3) ayant préalablement traversé l'analyseur croisé (8), de manière à localiser le traceur de la préforme (3).
Description
DESCRIPTION
TITRE : INSTALLATION POUR LOCALISER UN TRACEUR D’UNE
PREFORME TISSEE
Domaine technique de l'invention
La présente invention se rapporte au domaine général des pièces en matériau composite.
Arrière-plan technique
Classiquement, une pièce en matériau composite comprend un renfort (par exemple un renfort fibreux) et une matrice (par exemple une résine polymère).
Le procédé de fabrication d’une telle pièce comprend diverses opérations. Premièrement, une opération dite de « tissage » consiste à tisser à plat une préforme plane au moyen d’un métier à tisser à partir de torons de fibres (par exemple des torons de fibres de carbone). La préforme est destinée à former le renfort de la pièce composite.
Deuxièmement, une opération dite de « découpage » consiste à découper la préforme plane à l’aide d’un moule de découpage.
Troisièmement, une opération dite de « formage » consiste à former en trois dimensions la préforme plane à l’aide d’un moule de formage. Quatrièmement, une opération dite d’« injection » consiste à injecter la matrice dans un moule d’injection dans lequel se trouve la préforme en trois dimensions, de manière à obtenir la pièce composite.
Lors de l’opération de tissage, il est connu d’intégrer au moins un toron comprenant des fibres d’un matériau de couleur claire (par exemple des fibres de verre) formant un traceur, et autrement dit une référence utilisable tout au long du procédé de fabrication. Dans le cas d’un traceur comprenant des fibres de verre, le traceur est identifiable visuellement par la couleur
blanche des fibres de verre. Classiquement, la préforme comprend plusieurs traceurs.
Tel que mentionné ci-dessus, lors du procédé de fabrication, il est connu d’utiliser ce traceur en tant que référence. Un traceur peut par exemple être utilisé pour positionner la préforme par rapport à un moule.
Dans le cas d’un positionnement manuel de la préforme et pour localiser un traceur disposé dans une zone de la préforme qui n’est pas directement visible par l’opérateur, pour des raisons ergonomiques, il est connu d’employer une caméra filmant la zone souhaitée et un écran sur lequel sont affichées en direct les images filmées. Pour positionner la préforme par rapport au moule, l’opérateur doit ainsi positionner le traceur par rapport à un repère, à l’aide de l’écran.
Toutefois, en pratique, il a été constaté que l’opérateur n’arrive pas à distinguer correctement le traceur sur l’écran, malgré la couleur blanche des fibres de verre. En effet, les propriétés optiques du carbone (réflexion spéculaire) atténuent considérablement la couleur blanche des fibres de verre.
Ainsi, en pratique, les opérateurs ne s’aident pas de l’écran et positionnent approximativement le traceur de la préforme par rapport au repère. Un tel positionnement accroît considérablement le nombre de préformes défectueuses et ne permet pas d’avoir une traçabilité des préformes. L’objectif de la présente invention est donc d’apporter une solution simple, efficace et économique permettant de répondre à la problématique précitée.
Résumé de l'invention
L’invention propose ainsi une installation pour localiser au moins un toron comprenant des fibres d’un premier matériau d’une préforme tissée d’une pièce en matériau composite, la préforme comportant en surface des torons de fibres d’un second matériau et au moins le toron comprenant des fibres du premier matériau formant un traceur, l’installation comprenant une caméra ;
caractérisée en ce que l’installation comprend en outre :
- une source lumineuse émettant un faisceau incident non polarisé apte à être dirigé vers la préforme ;
- un polariseur présentant une première direction de polarisation, le polariseur étant apte à polariser le faisceau incident non polarisé avant d’interagir avec la préforme pour obtenir un faisceau incident polarisé ;
- un analyseur croisé présentant une seconde direction de polarisation ; le premier matériau étant choisi parmi le verre, l’aramide et l’oxyde d’alumine ; le second matériau étant choisi parmi le carbone et le carbure de silicium ; la caméra étant apte à filmer un faisceau réfléchi issu de l’interaction du faisceau incident polarisé avec la préforme, le faisceau réfléchi ayant préalablement traversé l’analyseur croisé, de manière à localiser le traceur de la préforme.
Une telle installation permet de localiser aisément le traceur de la préforme à partir des images filmées par la caméra, dans le but par exemple de positionner ou contrôler la préforme. Une telle installation permet ainsi de diminuer significativement le nombre de préformes défectueuses, et par conséquent de pièces défectueuses.
En effet, l’installation exploite les différences de propriétés optiques entre le premier matériau et le second matériau, pour mettre en avant les fibres du premier matériau sur les images filmées par la caméra. La caméra filme ainsi uniquement les rayons lumineux réfléchis par les fibres du premier matériau du traceur.
Une telle installation permet également de garantir la traçabilité des préformes, et de manière plus générale des pièces en matériau composite. L’installation selon l’invention peut comprendre une ou plusieurs des caractéristiques et/ou étapes suivantes, prises isolément les unes des autres ou en combinaison les unes avec les autres :
- l’installation comprend un diffuseur, le faisceau incident non polarisé traversant le diffuseur avant de traverser le polariseur ;
- l’installation comprend un écran sur lequel sont affichées en direct des images filmées par la caméra ;
- l’installation comprend un dispositif de contrôle configuré pour traiter de manière automatisée des images filmées par la caméra ; la source lumineuse comprend une pluralité de diodes électroluminescentes ;
- le premier matériau est le verre ou l’aramide, et le second matériau est le carbone.
La présente invention concerne encore un procédé de positionnement d’une préforme tissée d’une pièce en matériau composite par rapport à un moule, la préforme comportant en surface au moins un toron comprenant des fibres d’un premier matériau formant un traceur et des torons de fibres d’un second matériau, au moyen de l’installation telle que décrite précédemment, le premier matériau étant choisi parmi le verre, l’aramide et l’oxyde d’alumine, le second matériau étant choisi parmi le carbone et le carbure de silicium, le procédé comprenant une étape consistant à : a) positionner la préforme par rapport au moule à partir des images filmées par la caméra en positionnant le traceur de la préforme par rapport à un repère.
Le procédé de positionnement selon l’invention peut comprendre une ou plusieurs des caractéristiques et/ou étapes suivantes, prises isolément les unes des autres ou en combinaison les unes avec les autres :
- l’étape a) est réalisée par un opérateur à l’aide d’un écran sur lequel sont affichées en direct les images filmées par la caméra ;
- le repère est formé par une fente débouchant dans une empreinte du moule dans laquelle se trouve la préforme, le faisceau incident non polarisé de la source lumineuse étant dirigé vers la préforme via la fente ;
- le procédé de positionnement est mis en œuvre lors d’une opération de découpage de la préforme dans un moule de découpage et/ou une opération de formage en trois dimensions de la préforme dans un moule de formage
et/ou une opération d’injection d’une matrice dans un moule d’injection dans lequel se trouve la préforme.
La présente invention concerne également un procédé de contrôle d’une préforme tissée d’une pièce en matériau composite, la préforme comportant en surface au moins un toron comprenant des fibres d’un premier matériau formant un traceur et des torons de fibres d’un second matériau, au moyen de l’installation telle que décrite précédemment, le premier matériau étant choisi parmi le verre, l’aramide et l’oxyde d’alumine, le second matériau étant choisi parmi le carbone et le carbure de silicium, le procédé comprenant une étape consistant à : a) contrôler que le traceur de la préforme se trouve dans un intervalle prédéfini à partir des images filmées par la caméra.
Le procédé de contrôle selon l’invention peut comprendre une ou plusieurs des caractéristiques et/ou étapes suivantes, prises isolément les unes des autres ou en combinaison les unes avec les autres :
- l’étape a) est réalisée par un dispositif de contrôle configuré pour traiter de manière automatisée des images filmées par la caméra ;
- le procédé de contrôle est mis en œuvre lors d’une opération de découpage de la préforme dans un moule de découpage et/ou une opération de formage en trois dimensions de la préforme dans un moule de formage et/ou une opération d’injection d’une matrice dans un moule d’injection dans lequel se trouve la préforme.
Brève description des figures
L’invention sera mieux comprise et d’autres détails, caractéristiques et avantages de l’invention apparaîtront plus clairement à la lecture de la description suivante faite à titre d’exemple non limitatif et en référence aux dessins annexés dans lesquels :
[Fig.1 ] la figure 1 est une vue schématique d’une installation selon l’invention ;
[Fig.2] la figure 2 est une vue en perspective d’une préforme d’aube ;
[Fig.3] la figure 3 est une vue en perspective d’un moule de formage de la préforme d’aube illustrée sur la figure 2 ;
[Fig.4] la figure 4 est une vue en perspective d’une cale rapportée sur le moule illustré sur la figure 3 ;
[Fig.5] la figure 5 est une vue en perspective d’une préforme de carter ;
[Fig.6] la figure 6 est une vue en perspective d’un moule de formage de la préforme de carter illustrée sur la figure 5 ;
[Fig.7] la figure 7 est une image obtenue par une installation selon l’art antérieur ;
[Fig.8] la figure 8 est une image obtenue par une installation selon l’invention.
Description détaillée de l'invention
Sur la figure 1 est représentée schématiquement une installation 1 pour localiser au moins un toron 2 comprenant des fibres d’un premier matériau (formant un traceur) d’une préforme tissée 3 d’une pièce en matériau composite.
La pièce en matériau composite est par exemple une pièce d’une turbomachine d’aéronef, telle qu’une aube d’une soufflante ou un carter d’une soufflante.
La pièce en matériau composite comprend un renfort se présentant sous la forme d’une préforme fibreuse tissée 3, 3a, 3b et une matrice organique telle qu’une résine polymère.
Une telle pièce est fabriquée suivant un procédé de fabrication comprenant diverses opérations.
Premièrement, une opération de tissage consiste à tisser à plat une préforme plane au moyen d’un métier à tisser à partir de torons de fibres. La préforme tissée comprend alors des torons de chaîne (autrement dit des torons s’étendant suivant la longueur de la préforme) et des torons de trame (autrement dit des torons s’étendant suivant la largeur de la préforme).
La préforme est par exemple tissée au moyen d’un métier Jacquard. Avantageusement, le tissage de la préforme est un tissage tridimensionnel.
Deuxièmement, une opération de découpage consiste à découper la préforme plane à l’aide d’un moule de découpage.
Troisièmement, une opération de formage consiste à former en trois dimensions la préforme plane à l’aide d’un moule de formage.
Le moule de formage présente une empreinte dont la forme correspond sensiblement à celle de la pièce à réaliser.
Quatrièmement, une opération d’injection consiste à injecter la matrice (par exemple une résine polymère) dans un moule d’injection dans lequel se trouve la préforme en trois dimensions.
Avantageusement, l’opération d’injection est obtenue via un procédé connu sous l’acronyme anglais RTM pour « Resin Transfert Molding ». Un tel procédé RTM utilise un moule d’injection comprenant deux coquilles en regard et mobiles l’une par rapport à l’autre. Les coquilles comprennent chacune une empreinte, les empreintes délimitant une cavité dans laquelle est placée la préforme et injectée la matrice.
Avantageusement, les différentes opérations du procédé de fabrication sont réalisées suivant l’ordre défini ci-dessus. Les différentes opérations du procédé de fabrication peuvent être réalisées de manière manuelle et/ou automatisée.
La préforme 3, 3a, 3b comporte en surface au moins le toron 2 comprenant des fibres d’un premier matériau formant un traceur et des torons 4 de fibres d’un second matériau. Un traceur correspond à une référence (ou une marque) utilisable tout au long du procédé de fabrication de la pièce, afin par exemple de positionner ou contrôler la préforme 3, 3a, 3b lors d’une opération.
Le premier matériau est choisi parmi le verre, l’aramide et l’oxyde d’alumine. Le second matériau est choisi parmi le carbone et le carbure de silicium. Avantageusement, pour faciliter l’identification d’un traceur, les fibres du premier matériau sont claires et les fibres du second matériau sont foncées. Dans une première combinaison privilégiée, le premier matériau est du verre et le second matériau est du carbone. Classiquement, les fibres de carbone
sont de couleur noire et les fibres de verre sont de couleur blanche.
Dans une seconde combinaison privilégiée, le premier matériau est de l’aramide et le second matériau est du carbone. Classiquement, les fibres de carbone sont de couleur noire et les fibres d’aramide sont de couleur jaune. Dans une troisième combinaison privilégiée, le premier matériau est du carbure de silicium et le second matériau est de l’oxyde d’alumine. Classiquement, les fibres de carbure de silicium sont de couleur noire et les fibres d’oxyde d’alumine sont de couleur blanche-jaunâtre.
Pour faciliter son identification, un traceur se trouve à la surface de la préforme 3, 3a, 3b.
A titre d’exemple, un traceur peut comprendre deux tiers de fibres du premier matériau et un tiers de fibres du second matériau. Un traceur peut également comprendre cent pour cent de fibres du premier matériau.
La préforme 3, 3a, 3b peut bien évidemment comprendre plusieurs traceurs. Avantageusement, le traceur est intégré à la préforme 3, 3a, 3b lors de l’opération de tissage.
Un traceur peut être un toron de chaîne (ci-après dénommé traceur de chaîne ou traceur longitudinal) ou un toron de trame (ci-après dénommé traceur de trame ou traceur transversal).
Selon l’invention, l’installation 1 pour localiser au moins un traceur de la préforme tissée 3, 3a, 3b comprend :
- une caméra 5 ;
- une source lumineuse 6 émettant un faisceau incident non polarisé f1 apte à être dirigé vers la préforme 3, 3a, 3b ;
- un polariseur 7 présentant une première direction de polarisation, le polariseur 7 étant apte à polariser le faisceau incident non polarisé f1 avant d’interagir avec la préforme 3, 3a, 3b pour obtenir un faisceau incident polarisé f2 ;
- un analyseur croisé 8 présentant une seconde direction de polarisation.
La caméra 5 est apte à filmer un faisceau réfléchi f3 issu de l’interaction du faisceau incident polarisé f2 avec la préforme 3, 3a, 3b, le faisceau réfléchi
f3 ayant préalablement traversé l’analyseur croisé 8, de manière à localiser le traceur de la préforme 3, 3a, 3b.
Une telle installation 1 permet de localiser aisément le ou les traceurs de la préforme. Le ou les traceurs apparaissent distinctement sur les images filmées par la caméra 5. L’installation 1 permet d’accentuer significativement la couleur des fibres du premier matériau sur les images filmées par la caméra 5.
Pour cela, l’installation 1 exploite les différences de propriétés optiques entre le premier matériau et le second matériau, pour mettre en avant les fibres du premier matériau sur les images filmées par la caméra 5. Le second matériau présente une réflexion spéculaire tandis que le premier matériau présente une réflexion diffuse. Contrairement à la réflexion diffuse, une réflexion spéculaire présente la particularité de conserver la polarisation. L’analyseur croisé 8 permet ainsi de stopper les rayons lumineux réfléchis par les fibres du second matériau et de ne laisser passer que les rayons lumineux réfléchis par les fibres du premier matériau du traceur, de manière à faire apparaître distinctement les fibres du premier matériau sur les images filmées par la caméra 5. Autrement dit, la caméra 5 filme uniquement les rayons lumineux réfléchis par les fibres du premier matériau du traceur.
Le polariseur 7 présente une première direction de polarisation (ou première direction de transmission), le polariseur 7 permet de polariser les rayons lumineux du faisceau indicent de manière linéaire (ou rectiligne) suivant la première direction de polarisation. A ce titre, un tel polariseur 7 est appelé « polariseur linéaire » ou « polariseur rectiligne ».
Avantageusement, l’analyseur croisé 8 présente une seconde direction de polarisation (ou seconde direction de transmission), perpendiculaire ou sensiblement perpendiculaire à la première direction de polarisation du polariseur 7, l’analyseur 8 étant à ce titre croisé avec le polariseur 7. Les directions de polarisation sont définies dans un plan perpendiculaire à la direction de propagation du faisceau.
Avantageusement, l’installation 1 comprend un diffuseur (non représenté), le
faisceau incident non polarisé f1 traversant le diffuseur avant de traverser le polariseur 7. Un tel diffuseur permet d’obtenir un éclairage homogène. L’installation 1 peut comprendre un écran 9 sur lequel sont affichées en direct des images filmées par la caméra 5. Un tel écran 9 peut par exemple permettre à un opérateur de localiser le traceur, de manière à positionner ou contrôler la préforme.
L’installation 1 peut comprendre un dispositif de contrôle configuré pour contrôler la source lumineuse 6 et la caméra 5. Dans le cas où l’installation comprend un écran 9, le dispositif de contrôle peut également être configuré pour contrôler l’écran 9. Le dispositif de contrôle peut être configuré pour traiter de manière automatisée les images filmées par la caméra 5. Pour traiter de manière automatisée les images filmées par la caméra 5, le dispositif de contrôle peut comprendre par exemple un ordinateur (ou un système de traitement de l’information) et un logiciel de traitement d’images. Avantageusement, les images filmées par la caméra 5 sont enregistrées dans le but de garantir une traçabilité des préformes, et de manière plus générale des pièces en matériau composite obtenues par le procédé de fabrication.
Avantageusement, la caméra 5 présente un angle de champ variable, ce dernier étant réglé de manière à couvrir le champ souhaité. Avantageusement, la source lumineuse 6 comprend une pluralité de diodes électroluminescentes plus connues sous l’acronyme anglais LED pour « light emitting diode ». Les diodes électroluminescentes se présentent par exemple sous la forme d’une barre de LED.
L’invention s’intéresse également à un procédé de positionnement d’une préforme tissée 3, 3a, 3b par rapport à un moule 11 a, 11 b, la préforme 3, 3a, 3b comportant en surface au moins un toron 2 comprenant des fibres du premier matériau formant un traceur et des torons 4 de fibres du second matériau, au moyen de l’installation 1.
Le procédé de positionnement comprend une étape a) consistant à positionner la préforme 3, 3a, 3b par rapport au moule 11a, 11b à partir des
images filmées par la caméra 5 en positionnant le traceur de la préforme 3, 3a, 3b par rapport à un repère.
L’étape a) du procédé de positionnement peut être réalisée par un opérateur à l’aide d’un écran 9 de l’installation 1 sur lequel sont affichées en direct les images filmées par la caméra 5.
L’étape a) du procédé de positionnement peut être réalisée de manière automatisée à l’aide notamment d’un dispositif de contrôle de l’installation 1 . Le procédé de positionnement peut être mis en œuvre tout au long du procédé de fabrication d’une pièce en matériau composite, et notamment lors de l’opération de découpage et/ou lors de l’opération de formage et/ou lors de l’opération d’injection.
L’invention s’intéresse également à un procédé de contrôle d’une préforme tissée 3, 3a, 3b, la préforme 3, 3a, 3b comportant en surface au moins un toron 2 comprenant des fibres du premier matériau formant un traceur et des torons 4 de fibres du second matériau, au moyen de l’installation 1 .
Le procédé de contrôle comprend une étape a) consistant à contrôler que le traceur de la préforme 3, 3a, 3b se trouve dans un intervalle prédéfini à partir des images filmées par la caméra 5.
L’étape a) du procédé de contrôle peut être réalisée par un opérateur à l’aide d’un écran 9 de l’installation 1 sur lequel sont affichées en direct les images filmées par la caméra 5.
L’étape a) du procédé de contrôle peut être est réalisée par un dispositif de contrôle de l’installation 1 configuré pour traiter de manière automatisée des images filmées par la caméra 5.
Le procédé de contrôle peut être mis en œuvre tout au long du procédé de fabrication d’une pièce en matériau composite, et notamment lors de l’opération de découpage et/ou lors de l’opération de formage et/ou lors de l’opération d’injection.
Sur les figures 2 à 4 est représentée une opération de formage d’une préforme d’une aube de soufflante 3a.
La figure 2 illustre la préforme d’aube 3a plane apte à être formée en trois
dimensions à l’aide d’un moule de formage 11 a illustré sur les figures 3 et 4. Tel qu’illustré sur la figure 2, la préforme 3a d’aube comprend une partie 13 apte à former un pied d’aube, ci-après dénommée la « partie de pied 13 ». La préforme d’aube 3a comprend également une partie 14 apte à former une pale d’aube, ci-après dénommée la « partie de pale 14 ». Enfin, la préforme d’aube 3a comprend une jonction 15 entre la partie de pied 13 et la partie de pale 14, la jonction 15 étant apte à former des portées d’aube.
La préforme d’aube 3a comprend notamment en surface un traceur transversal inférieur 2a au niveau de la jonction 15.
Tel qu’illustré sur les figures 3 et 4, le moule de formage 11a comprend une empreinte 16 pour former en trois dimensions la préforme d’aube 3a. Plus précisément, l’empreinte 16 comprend un tronçon 17 apte à former en trois dimensions la partie de pied 13, ci-après dénommé le « tronçon de pied 17 ». L’empreinte 16 comprend également un tronçon 18 apte à former en trois dimensions la partie de pale 14, ci-après dénommé le « tronçon de pale 18 ». Enfin, l’empreinte 16 comprend un tronçon 19 apte à former en trois dimensions la jonction 15, ci-après dénommé le « tronçon de jonction 19 ». Le moule de formage 11a comprend également une fente 12 débouchant à la fois sur une face inférieure du moule 11 a et dans l’empreinte 16. La fente 12 se trouve au niveau du tronçon de jonction 19 et forme un repère utilisé notamment pour le positionnement de la préforme d’aube 3a par rapport au moule 11a.
Le moule de formage 11a comprend en outre une cale 21 apte à venir se fixer sur deux supports 22 en saillie bordant l’empreinte 16 au niveau du tronçon de pied 17. La cale 21 permet d’immobiliser par compression la partie de pied 13 et la jonction 15 de la préforme d’aube 3a.
Tel qu’illustré sur la figure 3, pour cette opération de formage, l’installation 1 comprend un écran 9 sur lequel sont affichées en direct les images filmées par la caméra 5. Le faisceau incident f1 de la source lumineuse 6 est dirigé vers la préforme d’aube 3a placée dans l’empreinte 16 via la fente 12 du moule 11a.
Lors de l’opération de formage, le procédé de positionnement décrit ci- dessus est mis en œuvre pour positionner la préforme d’aube 3a par rapport au moule de formage 11 a.
En effet, un opérateur positionne manuellement le traceur transversal inférieur 2a de la préforme d’aube 3a dans la fente 12 formant le repère, à l’aide de l’écran 9 de l’installation 1 sur lequel sont affichées en direct les images filmées par la caméra 5. Pour cela, à l’aide de l’écran 9, l’opérateur déplace la préforme d’aube 3a sur le moule 11a jusqu’à ce que le traceur transversal inférieur 2a soit compris dans la fente 12.
On note que la préforme d’aube 3a est positionnée par rapport au moule de formage 11a non seulement en positionnant le traceur transversal inférieur 2a dans la fente 12 mais également en faisant coïncider un traceur transversal supérieur (non représenté) de la préforme d’aube 3a avec une référence projetée sur le moule 11a par un ou plusieurs lasers. Le traceur transversal supérieur est par exemple placé au niveau de la jonction 15. La référence projetée par le ou les lasers définit la position théorique du traceur transversal supérieur. A la suite du positionnement de la préforme d’aube 3a, l’opérateur immobilise la partie de pied 13 et la jonction 15 de la préforme d’aube 3a en fixant la cale 21 sur les deux supports 22 du moule 11a, la partie de pied 13 et la jonction 15 se trouvant alors comprimées entre l’empreinte 16 et la cale 21.
Lors de l’opération de formage, le procédé de contrôle décrit ci-dessus est mis en œuvre pour contrôler la position de la préforme d’aube 3a à la suite de son positionnement, et autrement dit à la suite de la mise en place de la cale 21 sur les deux supports 22.
En effet, un opérateur contrôle que le traceur transversal inférieur 2a se trouve bien dans l’intervalle défini par la fente 12, à l’aide de l’écran 9 de l’installation 1 sur lequel sont affichées en direct les images filmées par la caméra 5.
On note que la préforme d’aube 3a est ici mise en forme par un opérateur qui étale la préforme 3a dans l’empreinte 16 jusqu’à ce que des traceurs
longitudinaux supérieurs (non représentés) de la préforme 3a coïncident avec des références projetées sur le moule 11a par un ou plusieurs lasers. Les références projetées par le ou les lasers définissent les positions théoriques de chacun des traceurs longitudinaux supérieurs.
Sur les figures 5 et 6 est représentée une opération de formage d’une préforme d’un carter de soufflante 3b.
La figure 5 illustre la préforme de carter 3b plane apte à être formée en trois dimensions à l’aide d’un moule de formage 11 b illustré sur la figure 6.
Tel qu’illustré sur la figure 5, la préforme de carter 3b se présente sous la forme d’une feuille rectangulaire. La préforme de carter 3b comprend notamment en surface au moins un traceur longitudinal supérieur 2b.
Tel qu’illustré sur la figure 6, le moule de formage 11 b comprend une empreinte 23 cylindrique pour former en trois dimensions la préforme de carter 3b. Le moule 11 b est mobile en rotation autour d’un axe de rotation X passant par l’axe de révolution de l’empreinte 23 cylindrique.
Tel qu’illustré sur la figure 6, pour cette opération de formage, l’installation 1 comprend un dispositif de contrôle 10 configuré pour traiter de manière automatisée des images filmées par la caméra 5. L’installation 1 comprend en outre un écran 9 sur lequel sont affichées en direct les images filmées par la caméra 5. Le faisceau incident f1 de la source lumineuse 6 est dirigé vers la préforme de carter 3b placée sur l’empreinte 23.
On note que la préforme de carter 3b est ici mise en forme par un opérateur qui enroule la préforme 3b autour de l’empreinte 23 en faisant coïncider le traceur longitudinal supérieur 2b de la préforme 3b avec une référence projetée sur le moule 11 b par un ou plusieurs lasers. La référence projetée par le ou les lasers définit la position théorique du traceur longitudinal supérieur 2b.
Lors de l’opération de formage, le procédé de contrôle décrit ci-dessus est mis en œuvre pour contrôler la mise en forme de la préforme de carter 3b. En effet, le dispositif de contrôle 10 vérifie de manière automatisée que le traceur longitudinal supérieur 2b se trouve bien dans un intervalle prédéfini.
Pour cela, le dispositif de contrôle 10 compare la position réel du traceur longitudinal supérieur 2b et l’intervalle prédéfini. La position réel du traceur longitudinal supérieur 2b est par exemple déterminé à partir des images filmées par la caméra 5 et d’un logiciel de traitement d’images. Dans la présente demande, les termes « inférieur » et « supérieur » associés aux préformes 3a, 3b et aux moules 11a, 11b sont définis par rapport aux positionnements de ces derniers sur les figures.
La figure 7 est une image filmée par une caméra d’une installation selon l’art antérieur d’un échantillon de préforme 3 comprenant un traceur longitudinal et deux traceurs transversaux.
La figure 8 est une image filmée par une caméra 5 d’une installation 1 selon l’invention du même échantillon de préforme 3.
On constate que l’installation 1 selon l’invention permet d’accentuer significativement la couleur blanche des traceurs, et ainsi de localiser aisément les traceurs de la préforme 3, dans le but par exemple de positionner ou contrôler la préforme 3.
Claims
1. Installation (1) pour localiser au moins un toron (2) comprenant des fibres d’un premier matériau d’une préforme tissée (3, 3a, 3b) d’une pièce en matériau composite, la préforme (3, 3a, 3b) comportant en surface des torons (4) de fibres d’un second matériau et au moins le toron (2) comprenant des fibres du premier matériau formant un traceur (2a, 2b), l’installation (1) comprenant une caméra (5) ; caractérisée en ce que l’installation (1) comprend en outre :
- une source lumineuse (6) émettant un faisceau incident non polarisé (f1) apte à être dirigé vers la préforme (3, 3a, 3b) ;
- un polariseur (7) présentant une première direction de polarisation, le polariseur (7) étant apte à polariser le faisceau incident non polarisé (f1) avant d’interagir avec la préforme (3, 3a, 3b) pour obtenir un faisceau incident polarisé (f2) ;
- un analyseur croisé (8) présentant une seconde direction de polarisation ; le premier matériau étant choisi parmi le verre, l’aramide et l’oxyde d’alumine ; le second matériau étant choisi parmi le carbone et le carbure de silicium ; la caméra (5) étant apte à filmer un faisceau réfléchi (f3) issu de l’interaction du faisceau incident polarisé (f2) avec la préforme (3, 3a, 3b), le faisceau réfléchi (f3) ayant préalablement traversé l’analyseur croisé (8), de manière à localiser le traceur (2a, 2b) de la préforme (3, 3a, 3b).
2. Installation (1) selon la revendication 1 , caractérisée en ce que l’installation (1) comprend un diffuseur, le faisceau incident non polarisé (f1) traversant le diffuseur avant de traverser le polariseur (7).
3. Installation (1) selon l’une des revendications précédentes, caractérisée en ce que l’installation (1 ) comprend un écran (9) sur lequel sont affichées en direct des images filmées par la caméra (5).
4. Installation (1) selon l’une des revendications précédentes, caractérisée en ce que l’installation (1) comprend un dispositif de contrôle (10) configuré pour traiter de manière automatisée des images filmées par la caméra (5).
5. Installation (1) selon l’une des revendications précédentes, caractérisée en ce que la source lumineuse (6) comprend une pluralité de diodes électroluminescentes.
6. Installation (1) selon l’une des revendications précédentes, caractérisée en ce que le premier matériau est le verre ou l’aramide, et le second matériau est le carbone.
7. Procédé de positionnement d’une préforme tissée (3, 3a, 3b) d’une pièce en matériau composite par rapport à un moule (11a, 11b), la préforme (3, 3a, 3b) comportant en surface au moins un toron (2) comprenant des fibres d’un premier matériau formant un traceur (2a, 2b) et des torons (4) de fibres d’un second matériau, au moyen de l’installation (1) selon l’une des revendications 1 à 6, le premier matériau étant choisi parmi le verre, l’aramide et l’oxyde d’alumine, le second matériau étant choisi parmi le carbone et le carbure de silicium, le procédé comprenant une étape consistant à : a) positionner la préforme (3, 3a, 3b) par rapport au moule (11 a, 11 b) à partir des images filmées par la caméra (5) en positionnant le traceur (2a, 2b) de la préforme (3, 3a, 3b) par rapport à un repère.
8. Procédé de positionnement selon la revendication précédente, caractérisé en ce que l’étape a) est réalisée par un opérateur à l’aide d’un écran (9) sur lequel sont affichées en direct les images filmées par la caméra (5).
9. Procédé de positionnement selon l’une des revendications 7 à 8, caractérisé en ce que le repère est formé par une fente (12) débouchant dans une empreinte (16) du moule (11 a) dans laquelle se trouve la préforme (3a), le faisceau incident non polarisé (f1) de la source lumineuse (6) étant dirigé vers la préforme (3a) via la fente (12).
10. Procédé de positionnement selon l’une des revendications 7 à 9, caractérisé en ce que le procédé de positionnement est mis en œuvre lors d’une opération de découpage de la préforme (3, 3a, 3b) dans un moule de découpage et/ou une opération de formage en trois dimensions de la préforme (3, 3a, 3b) dans un moule de formage (11a, 11 b) et/ou une opération d’injection d’une matrice dans un moule d’injection dans lequel se trouve la préforme (3, 3a, 3b).
11 . Procédé de contrôle d’une préforme tissée (3, 3a, 3b) d’une pièce en matériau composite, la préforme (3, 3a, 3b) comportant en surface au moins un toron (2) comprenant des fibres d’un premier matériau formant un traceur (2a, 2b) et des torons (4) de fibres d’un second matériau, au moyen de l’installation (1) selon l’une des revendications 1 à 6, le premier matériau étant choisi parmi le verre, l’aramide et l’oxyde d’alumine, le second matériau étant choisi parmi le carbone et le carbure de silicium, le procédé comprenant une étape consistant à : a) contrôler que le traceur (2a, 2b) de la préforme (3, 3a, 3b) se trouve dans un intervalle prédéfini à partir des images filmées par la caméra (5).
12. Procédé de contrôle selon la revendication précédente, caractérisé en ce que l’étape a) est réalisée par un dispositif de contrôle (10) configuré pour traiter de manière automatisée des images filmées par la caméra (5).
13. Procédé de contrôle selon l’une des revendications 11 à 12, caractérisé en ce que le procédé de contrôle est mis en œuvre lors d’une opération de découpage de la préforme (3, 3a, 3b) dans un moule de découpage et/ou une opération de formage en trois dimensions de la préforme (3, 3a, 3b) dans un moule de formage (11a, 11 b) et/ou une opération d’injection d’une matrice dans un moule d’injection dans lequel se trouve la préforme (3, 3a, 3b).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2002177A FR3107854B1 (fr) | 2020-03-04 | 2020-03-04 | Installation pour localiser un traceur d’une preforme tissee |
PCT/FR2021/050345 WO2021176171A1 (fr) | 2020-03-04 | 2021-03-01 | Installation pour localiser un traceur d'une preforme tissee |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4114647A1 true EP4114647A1 (fr) | 2023-01-11 |
Family
ID=71111552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21714251.2A Pending EP4114647A1 (fr) | 2020-03-04 | 2021-03-01 | Installation pour localiser un traceur d'une preforme tissee |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230085892A1 (fr) |
EP (1) | EP4114647A1 (fr) |
CN (1) | CN115151408A (fr) |
FR (1) | FR3107854B1 (fr) |
WO (1) | WO2021176171A1 (fr) |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2625850A (en) * | 1950-02-16 | 1953-01-20 | John S Stanton | Method and apparatus for assessing transient stresses within bodies |
KR100757378B1 (ko) * | 2006-04-16 | 2007-09-11 | 한양대학교 산학협력단 | Led를 이용한 현미경 타원해석기 |
HU229699B1 (en) * | 2007-05-23 | 2014-05-28 | Mta Termeszettudomanyi Kutatokoezpont Mta Ttk | Imaging optical checking device with pinhole camera (reflectometer, polarimeter, ellipsicmeter) |
DE102008018752A1 (de) * | 2008-04-14 | 2009-10-22 | Universität Bremen | Verfahren zur Herstellung von textilen Halbzeugstapeln und Preforms |
US8339602B1 (en) * | 2008-09-15 | 2012-12-25 | J.A. Woollam Co., Inc. | View-finder in ellipsometer or the like systems |
CN102203589B (zh) * | 2008-11-10 | 2013-06-19 | 株式会社尼康 | 评估装置及评估方法 |
US8169612B2 (en) * | 2009-05-28 | 2012-05-01 | Koosur Technologies Inc. | System and method for performing ellipsometric measurements on an arbitrarily large or continuously moving sample |
FR2985939B1 (fr) * | 2012-01-25 | 2014-02-14 | Snecma | Procede de fabrication d'une pale d'helice a structure composite, comprenant un ajustement de position entre deux parties |
JP6342280B2 (ja) * | 2014-09-25 | 2018-06-13 | 関西熱化学株式会社 | 石炭における高輝度成分を識別する方法、装置及びコンピュータプログラム。 |
US11458651B2 (en) * | 2019-02-15 | 2022-10-04 | Coats & Clark, Inc. | Pre-consolidation of thermoplastic fiber preforms and method of making the same |
-
2020
- 2020-03-04 FR FR2002177A patent/FR3107854B1/fr active Active
-
2021
- 2021-03-01 CN CN202180016437.2A patent/CN115151408A/zh active Pending
- 2021-03-01 EP EP21714251.2A patent/EP4114647A1/fr active Pending
- 2021-03-01 US US17/908,020 patent/US20230085892A1/en active Pending
- 2021-03-01 WO PCT/FR2021/050345 patent/WO2021176171A1/fr unknown
Also Published As
Publication number | Publication date |
---|---|
FR3107854A1 (fr) | 2021-09-10 |
US20230085892A1 (en) | 2023-03-23 |
WO2021176171A1 (fr) | 2021-09-10 |
FR3107854B1 (fr) | 2023-05-26 |
CN115151408A (zh) | 2022-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2989449B1 (fr) | Machine a tisser ou enrouler une texture fibreuse permettant un contrôle d'anomalies par analyse d'images | |
CN107000340B (zh) | 用于检查模具中的预成型件的位置的方法 | |
EP2872745B1 (fr) | Procédé et système de découpe d'une préforme destinée à la fabrication d'une pièce de turbomachine | |
EP2297672B1 (fr) | Procede et dispositif optique pour analyser une marque sur une paroi courbe translucide ou transparente | |
WO2022195034A1 (fr) | Procédé d'acquisition d'un code marqué sur une feuille de verre ou de vitrocéramique, et système correspondant | |
EP4114647A1 (fr) | Installation pour localiser un traceur d'une preforme tissee | |
FR3011935A1 (fr) | Procede et dispositif pour inspecter les soudures d'emballages | |
FR3098279A1 (fr) | Ensemble de projection de véhicule automobile et Procédé de réglage dudit ensemble de projection | |
FR2981171A1 (fr) | Piece optique comprenant une ame et une pluralite de couches | |
EP3206805B1 (fr) | Procédé, dispositif et ligne d'inspection pour la lecture optique de reliefs sur une paroi latérale d'un récipient | |
EP0533534B1 (fr) | Dispositif d'émission ou d'absorption de lumière pour le contrôle sans contact d'objets | |
KR20220089238A (ko) | 내압용기의 표면 투과 수소량 측정 장치 | |
CN1519828A (zh) | 光头装置 | |
WO2011036402A1 (fr) | Procede pour ajuster une position d'un element transparent | |
FR3039884A1 (fr) | Systeme d'eclairage pour projecteur de vehicule automobile comprenant un module d'eclairage a encombrement reduit | |
FR3136281A1 (fr) | Eprouvette de caracterisation pour une piece de turbomachine et procede de fabrication correspondant | |
FR2925174A1 (fr) | Miroir d'imagerie, procede de fabrication et application a un systeme d'imagerie laser | |
FR2981160A1 (fr) | Dispositif et procede d'inspection et de controle de plaquettes semi-conductrices. | |
FR3136833A1 (fr) | Module d’éclairage automobile avec écran bloqueur servant à positionner les sources lumineuses | |
FR3116754A1 (fr) | Contrôle de decadrage dans une preforme enroulee sur un tambour d’un moule d’injection | |
FR3143754A1 (fr) | Procédé de réglage d’un système d’analyse d’un échantillon par faisceau laser | |
KR20220133096A (ko) | λ/4판의 결점 검사 방법 | |
FR3140575A1 (fr) | Dispositif et procédé de détection d’une anomalie au cours d’une fabrication d’une pièce composite par drapage automatique | |
FR2565581A1 (fr) | Procede et installation de realisation d'un dispositif de couplage a fibre optique | |
FR3093824A1 (fr) | Dispositif d’affichage à cristaux liquides et son procédé de diagnostic in situ. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220825 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |