EP4114646A1 - Système électrosoudable à selle et installation de prise en charge sur conduite, multi-diamètres et à patins d'électrofusion - Google Patents

Système électrosoudable à selle et installation de prise en charge sur conduite, multi-diamètres et à patins d'électrofusion

Info

Publication number
EP4114646A1
EP4114646A1 EP21707741.1A EP21707741A EP4114646A1 EP 4114646 A1 EP4114646 A1 EP 4114646A1 EP 21707741 A EP21707741 A EP 21707741A EP 4114646 A1 EP4114646 A1 EP 4114646A1
Authority
EP
European Patent Office
Prior art keywords
saddle
boss
electrofusion
wings
strap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21707741.1A
Other languages
German (de)
English (en)
Inventor
Jean-Philippe GUIGNARD
Jérôme LALANDE
Vincent Beccavin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sainte Lizaigne SAS
Original Assignee
Sainte Lizaigne SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sainte Lizaigne SAS filed Critical Sainte Lizaigne SAS
Publication of EP4114646A1 publication Critical patent/EP4114646A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3404Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
    • B29C65/342Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising at least a single wire, e.g. in the form of a winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5224Joining tubular articles for forming fork-shaped connections, e.g. for making Y-shaped pieces
    • B29C66/52241Joining tubular articles for forming fork-shaped connections, e.g. for making Y-shaped pieces with two right angles, e.g. for making T-shaped pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/532Joining single elements to the wall of tubular articles, hollow articles or bars
    • B29C66/5324Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially annular, i.e. of finite length
    • B29C66/53241Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially annular, i.e. of finite length said articles being tubular and said substantially annular single elements being of finite length relative to the infinite length of said tubular articles
    • B29C66/53242Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially annular, i.e. of finite length said articles being tubular and said substantially annular single elements being of finite length relative to the infinite length of said tubular articles said single elements being spouts, e.g. joining spouts to tubes
    • B29C66/53243Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially annular, i.e. of finite length said articles being tubular and said substantially annular single elements being of finite length relative to the infinite length of said tubular articles said single elements being spouts, e.g. joining spouts to tubes said spouts comprising flanges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8145General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/81471General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps being a wrap-around tape or band
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/82Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
    • B29C66/828Other pressure application arrangements
    • B29C66/8286Hand placed clamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/841Machines or tools adaptable for making articles of different dimensions or shapes or for making joints of different dimensions
    • B29C66/8414Machines or tools adaptable for making articles of different dimensions or shapes or for making joints of different dimensions of different diameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B2/00Friction-grip releasable fastenings
    • F16B2/02Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening
    • F16B2/06Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening external, i.e. with contracting action
    • F16B2/08Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening external, i.e. with contracting action using bands
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L47/00Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics
    • F16L47/02Welded joints; Adhesive joints
    • F16L47/03Welded joints with an electrical resistance incorporated in the joint
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L47/00Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics
    • F16L47/26Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics for branching pipes; for joining pipes to walls; Adaptors therefor
    • F16L47/34Tapping pipes, i.e. making connections through walls of pipes while carrying fluids; Fittings therefor
    • F16L47/345Tapping pipes, i.e. making connections through walls of pipes while carrying fluids; Fittings therefor making use of attaching means embracing the pipe

Definitions

  • TITLE Electrofusion system with saddle and support installation on pipe, multi-diameter and electrofusion pads
  • the present invention relates generally to the field of fluid distribution networks and in particular water or town gas. It relates more specifically to an electrofusion saddle system for support on a polyethylene pipe / pipe, in particular in HDPE (high density polyethylene) or PELD (low density polyethylene), from PE50 to PE100, or even in PE-Xa (polyethylene reticle).
  • the system saddle allows its use on several pipe diameters as well as the possible insertion of an electrofusion pad into the saddle in the field when saddle installation is to take place. It has applications in particular in the field of connecting subscribers to a fluid network, the fluid being liquid or gaseous.
  • Saddle systems with tightening straps for support on water pipes are known.
  • the saddles are metallic and intended to be installed and tightened against the pipe with the interposition of a seal on the solid pipes.
  • the pipe is pierced through a nipple or boss of the saddle and through a valve installed on said nipple or boss.
  • water distribution networks increasingly use plastic pipes, typically HDPE which is a hot-melt material. It has been proposed to use heat-sealed saddle systems on these pipes by means of electrofusion devices.
  • DN nominal diameters
  • a given saddle cannot in practice adapt to a range of several nominal diameters: the saddles are mono-diameter. This results in a large number of different models in order to be able to operate on the different DNs encountered. Inventory management is complex and different quantities must be provided for each model depending on the frequency of use of the corresponding DN.
  • the present invention provides a saddle system whose particular structure allows it to be adapted to a wide range of pipe sizes.
  • a support system for a fluid distribution pipe in particular water, is proposed, the longitudinally elongated and cylindrical pipe being made of heat-sealable plastic, the system comprising a saddle of heat-sealable plastic material.
  • an electrofusion shoe and a tightening strap comprising an upper face on which is erected a central boss and a lower face intended to come to rest against the pipe, the saddle being elongated longitudinally and rounded transversely, the shoe electrofusion comprising two terminals connection and being attached to a housing on the underside of the saddle, the two connection thimbles passing through the thickness of the saddle in two thimble passages and opening out to the upper side of the saddle, the two thimble passages and the boss being aligned along a longitudinal inter-pod axis of the saddle, the saddle comprising laterally, on either side of the longitudinal inter-pod axis, two lateral wings, the underside of the saddle being concave downwards and in the form of a cylindrical surface of determined radius, the two wings of the saddle comprising two lateral fixing ends intended to allow attachment to the tightening strap, the tightening of the tightening strap allowing the application of the underside of the saddle with its two wings against the pipe.
  • the same saddle is configured to be fixed by electrofusion on pipes of nominal diameters between a minimum nominal diameter, DNmin, and a maximum nominal diameter, DNmax, with a DNmax / DNmin ratio between 1, 1 and 3 , 0 without mechanical deterioration or leakage during tightening and after electrofusion, and the wings have a flexibility gradient going from the boss towards the lateral fixing ends, the flexibility being maximum towards the lateral fixing ends and minimum towards the boss.
  • the flexibility is measured by a stiffness coefficient, the stiffness coefficient being smaller towards the lateral fixing ends than towards the boss,
  • the stiffness coefficient is measured along longitudinal sections of the wing
  • the flexibility gradient is obtained by at least one of the following structures: the presence of a plastic material whose composition varies from the boss towards the lateral fixing ends, the presence of the upper face of the wings, on each lateral side of the longitudinal inter-pod axis, of longitudinal grooves parallel to each other and to the longitudinal inter-pod axis, the thicknesses of material between the bottom of the grooves and the underside of the wings decreasing transversely, from groove to groove, from the boss towards the lateral end of the wing, the material thickness of the wings decreases going from the boss towards the lateral fixing ends, the length of the wings, as measured parallel to the longitudinal inter-pod axis, decreases going from the boss to the lateral fixing ends,
  • the plastic material whose composition varies is a plastic material with at least two components, with a homogeneous local mixture of the components and the relative proportions of the components varying from the boss to the lateral fixing ends,
  • the plastic material the composition of which varies is a plastic material with at least two components, said at least two components forming a laminated wing structure, that is to say without mixing of the components, and the relative thicknesses of the stratifications of the components varying from the boss to the lateral fixing ends,
  • the material thickness of the wings decreases going from the boss to the lateral fixing ends and the length of the wings, as measured parallel to the inter-pod longitudinal axis, decreases going from the boss to the lateral fixing ends,
  • the plastic material of the saddle and the plastic material of the pipe are identical, - the upper face of the wings comprises on each lateral side of the longitudinal inter-pod axis longitudinal grooves parallel to each other and to the longitudinal inter-pod axis,
  • the grooves are elongated longitudinally on the upper face of the saddle and they are parallel to the main axis of the pipe on which the saddle is intended to be installed,
  • - grooves are continuous from one longitudinal edge of the saddle to the other
  • - grooves are discontinuous from one longitudinal edge of the saddle to the other
  • the underside of the saddle is uniformly cylindrical in shape, concave downwards, in order to be able to apply uniformly against the pipe after tightening of the tightening strap,
  • an extra thickness of material projecting downwards from the underside may be present opposite the preinstalled electrofusion pad, said extra thickness being limited to a few tenths of a mm,
  • the underside of the saddle outside the housing intended to receive an electrofusion pad which forms a hollow in said lower face, is uniformly cylindrical in shape, concave down,
  • the same saddle is configured to be fixed by electrofusion on pipes of nominal diameters between a minimum nominal diameter, DNmin, and a maximum nominal diameter, DNmax, with a DNmax / DNmin ratio between 1, 1 to 2.5,
  • the same saddle is configured to be fixed by electrofusion on pipes with nominal diameters between a minimum nominal diameter, DNmin, and a maximum nominal diameter, DNmax, with a DNmax / DNmin ratio preferably between 2 and 2.1,
  • the system is configured to allow the application of a clamping force of up to 5 kN without mechanical damage or leakage during clamping and after electrofusion,
  • the system is configured to allow the application of a tightening force of at least 5 kN without mechanical damage or leakage during tightening and after electrofusion,
  • the saddle is chosen to respect the relation (D n - DNmin) / (DNmax
  • the saddle is configured so that the material thickness of the saddle wings, excluding furrows, is longitudinally constant, -the saddle is configured so that the material thickness of the fenders, excluding grooves, decreases going from the boss to the lateral ends,
  • the lateral end of the wing is a lateral end for fixing the strap which comprises a device for attaching the strap
  • - the lateral fixing ends of the wings each comprise a device for attaching the tightening strap which forms upwards an extra thickness of material compared to the thickness of the wing
  • the upper face in the circular junction part between the central boss and the upper face comprises at least two semi-circular zones of reduced thickness of the material of the saddle between the upper and lower faces, said two semi-circular zones d 'reduced thickness being arranged towards the two lateral sides of the boss,
  • each of the two lug passages has an upward thickness of material
  • the saddle is longer at the level of the longitudinal inter-pod axis than towards the two lateral ends of the two wings,
  • the saddle is as long at the level of the longitudinal inter-pod axis as it is towards the two lateral ends of the two wings,
  • the saddle is symmetrical with respect to a vertical plane passing through the longitudinal inter-lug axis, - the saddle is generally symmetrical with respect to a transverse vertical plane passing through the center of the boss,
  • the electrofusion pad has a square, rectangular or circular shape
  • the tightening strap is metallic
  • the metal tightening strap comprises a stainless steel band comprising a latch at each of its two ends
  • the tightening strap is made of plastic
  • the tightening strap is made of plastic and has notches
  • the plastic tightening strap consists of a strip with notches on the surface
  • the plastic tightening strap consists of a strip having on the surface a series of pulling holes through which a pulling tool for tightening can be inserted,
  • the pulling tool is a collet
  • the clamp has two ends which can move away or come closer, one end comprising a claw intended to be inserted into one of the traction holes and the other end comprising a tab with two fingers intended to bear on the lateral wing attachment end with saddle hooking device,
  • the tightening strap is a removable element intended to be removed once the saddle has been electrowelded on the pipe
  • the boss is intended to receive a metal insert internally
  • the system has a saddle with a metal insert in the boss
  • the saddle is obtained by molding a plastic material
  • the insert is molded into the boss of the saddle.
  • the invention also relates to a support installation on a fluid distribution pipe, in particular water or town gas, comprising the system of the invention.
  • the invention also relates to a saddle clamping assembly made of heat-sealable plastic material of a system according to the invention, the assembly comprising, on the one hand, for use with a saddle, a plastic clamping strap comprising notches. and at least one ball with two locking blades arranged inside the ball, the locking blades having spring tabs and locking fingers and, on the other hand, reusable, a pliers-type tool comprising a plate Toothed drive of the notched tightening strap.
  • the tightening assembly can be declined according to any structural modality and use of the elements of the system and its tools.
  • the invention finally relates to a method for installing a support system according to the invention on a fluid distribution pipe, in particular water, of nominal diameter, DN, determined, in which a saddle is chosen which is adaptable to a range of pipe diameters, the DN being included in said range, the surface of the pipe is prepared in the saddle installation area of the system, an electrofusion pad is installed in a seat of the saddle in case said electrofusion pad would not be preinstalled, we place the saddle and its electrofusion pad on the prepared surface of the pipe, we install a strap tightening at the lateral ends of the wings of the saddle and said strap is tightened so that the underside of the saddle rests against the surface of the pipe and the electrofusion pad is electrically supplied.
  • the preparation of the surface of the pipe consists of a surface abrasion and a cleaning of the surface of the pipe.
  • FIG. 1 is a perspective view of the system of the invention with a saddle and its tightening strap both made of plastic and a metal insert in the boss of the saddle,
  • FIG. 2 represents a trigonometric modeling diagram of the adaptation of the same saddle to pipes of minimum and maximum nominal diameters of a range
  • FIG. 3 represents a geometric modeling diagram of the adaptation of the same saddle to pipes with minimum and maximum nominal diameters of a range
  • FIG. 4 is a perspective view of a variant of the saddle of the system in figure 1,
  • FIG. 5 shows a perspective view of the saddle of the system of figure 1
  • FIG. 6 shows a cross-sectional view of the saddle of the system of figure 1
  • FIG. 7 shows a view from below, on the underside side, of the saddle of the system of FIG. 1,
  • FIG. 8 show a perspective view of a notched strap on which have been slid two ball joints with internally stainless steel locking strips
  • FIG. 9 is a perspective view of a ball joint making it possible to view its locking strip which is disposed inside the ball joint, in a slot passing through the latter,
  • FIG. 10 is a perspective view of a strap tightening tool
  • FIG. 11 shows, in a perspective view and in partial section, the mounting of a ball joint on the notched strap and its locking strip which allows the immobilization of the ball joint along the strap
  • FIG. 12 shows a sectional view of a ball joint being slid along the notched strap, its locking strip retracting when the notches pass through
  • FIG. 13 shows a sectional view of a ball joint blocked along the notched strap, its blocking strip abutting against a notch
  • FIG. 14 represents the blocking blade
  • FIG. 15 shows a sectional view of an improved ball joint allowing to visualize the two locking blades which are arranged inside the ball joint
  • FIG. 16 is a sectional view of an improved ball joint sliding along the notched strap, its locking strips retracting as the notches pass through
  • FIG. 17 shows a sectional view of a ball joint blocked along the notched strap, the blocking strips abutting against the notches
  • FIG. 18 shows a perspective view of the system of the invention being tightened a notch strap with an improved ball joint using an improved tool for tightening the strap
  • FIG. 19 shows a partial sectional view of a detail of the system of Figure 18 at a wing end with its improved ball joint and the strap. notches, the improved strap tightening tool being used during a recovery phase when tightening the strap, and
  • FIG. 20 shows a partial sectional view of a detail of the system of figure 18 at a wing end with its improved ball joint and the notched strap, the improved strap tightening tool being used during a phase. training when tightening the strap.
  • the invention relates to a system of multi-diameter, electro-weldable clamping saddles and straps for HDPE (high density polyethylene) pipes.
  • Each saddle can be fixed by electrofusion on pipes of different diameters thanks to the particular structure of the saddle which can be adapted and applied to pipes of different diameters.
  • the saddle system is optimized in particular in terms of:
  • the electrofusion saddle of the invention can therefore be adapted to a wide range of pipe diameters thanks to its thickness gradient between the longitudinal axis between the thimbles and the two lateral ends of attachment to the strap. for clamping on pipes and the advantageous combination of thickness gradient, average thickness, saddle size, grooves and possible semi-circular areas of reduced material thickness at the bottom of the boss of setting, so as to reconcile flexibility, tensile / flexural strength and heat propagation during electrofusion.
  • the longitudinal inter-lug axis is the axis passing through the centers of the lug passages and the boss which are therefore aligned.
  • the system of the invention makes it possible to avoid possible errors of DN planned for interventions in the field because the saddle can adapt to a wide range of nominal pipe diameters.
  • the result is a small number of saddle references, which results in savings in terms of weight and space requirements for storage, transport and assembly.
  • the HDPE saddle 2 centrally comprises a central boss 21 forming an open passage between the upper face and the lower face of the saddle.
  • a metal insert 4 is installed in the boss 21 and includes a screw 40 serving to the rotation blocking of the take-over valve to be mounted therein.
  • the metal insert is typically made of brass.
  • the metal insert is molded into the saddle and the screw is used to install the take-off valve.
  • the saddle 2 further comprises, on either side of the boss 21, two terminal passages 22 intended for connections of an electrofusion pad to an electrofusion machine for supplying the pad.
  • the boss 21 and the lug passages 22 are aligned on a longitudinal inter-lug axis which is parallel to the main axis of the pipe on which the saddle 2 can be installed.
  • the lug passages 22 and the boss 21 correspond to increased thicknesses of material relative to the upper face of the saddle 2.
  • no heightening of material is implemented along the length of the saddle.
  • 'Longitudinal axis inter-pods between the terminal passage 22 and the boss 21.
  • Figures 4 and 5 it is implemented an elevation of material along the longitudinal axis inter-pods between the terminal passage 22 and boss 21.
  • two wings 20a, 20b extend laterally to two lateral fixing ends each comprising a hooking device 28 for the tightening strap 3.
  • the tightening strap 3 is made of plastic and is a strap with notches.
  • the upper face of the saddle comprises at the junction with the boss 21 at least two semi-circular zones 27 of reduced thickness of the material of the saddle between the upper and lower faces.
  • These semi-circular zones 27 of reduced thickness being arranged towards the two lateral sides of the boss and are intended to facilitate the deformation of the saddle when it is clamped on the pipe.
  • These semi-circular zones 27 of reduced thickness are therefore oriented substantially vertically because they are made in the thickness of the saddle.
  • these semi-circular zones of reduced thickness are produced in the thickness of the boss and are therefore oriented substantially perpendicular to the vertical at the level of the junction between the sleeve and the saddle, c 'that is to say at the base of the sleeve, side of the upper face of the saddle.
  • the upper face of the saddle 2 comprises, essentially on the wings 20a, 20b, series of grooves 25 parallel to each other. Between the furrows 25 are ridges 24 of elevations between furrows. It can be noted that in this example, the grooves 25 on the side of the longitudinal inter-lug axis are interrupted by the boss 21. In variants, the grooves 25 do not interfere with the boss 21.
  • the saddle 2 is generally symmetrical with respect to a vertical sagittal plane carried by the longitudinal inter-pod axis.
  • the saddle 2 is also generally symmetrical with respect to a transverse plane perpendicular to the vertical sagittal plane and passing through the center of the boss 21.
  • Figure 4 shows alternative embodiments relating in particular to the structure of the boss 21 and the structure of the fastening devices
  • FIGS. 6 and 7 make it possible in particular to visualize the housing 5 hollowed out in the underside of the saddle 2 and intended to receive an electrofusion pad.
  • the depth of this housing 5 is about 1.2 mm but it is possible to provide a depth between 0.5 mm and 2 mm, or even between 0.8 mm and 1.5 mm or, preferably, between 1 mm and 1.3 mm, in particular depending on the shoe provided.
  • This substantially square-shaped housing has longitudinal appendages for the passage of electrical connections to the terminals.
  • the electrofusion pad comprises an electrical conductor intended to heat because of its ohmic resistance, wound in the form of a spiral coil, flat, in a very small thickness or of another form, for example helical with flush turns.
  • three saddle references can be provided, a first reference for pipes with DN between 50 and 90, a second reference for DN between 90 and 180, a third reference for DN between 180 and 400, the diameters being in mm and DN being the Nominal Diameter of the pipe / pipe and which corresponds to the outside diameter for plastic pipes.
  • the multi-diameter support system can be applied to pipes of very different values of nominal diameters, DN, and, typically, between 40 mm and 500 mm, different saddle references applying. at different ranges of DN between these values.
  • Exit bosses are also provided with a gas thread for drinking water.
  • the size of the electrofusion pad is adapted so that the pad surface is larger for references of saddles having a larger contact surface with the pipes as is the case with high DNs.
  • one size of pad can be used for “X” saddles and a single, larger size pad for “Y” saddles.
  • the RADIUS of the underside of the saddle is as follows in the following example of a range with 3 "X" saddles and 2 "Y" saddles:
  • the typical minimum DNs are pipe diameters for which the installation of the saddle must be particularly careful and the result well controlled due to the extreme stresses applied to the saddle and in particular to its wings but also to driving.
  • the tightening strap can be of another type and in particular a strap with ratchets or latches.
  • LENGTH of the saddle measured along the longitudinal inter-lug axis passing through the two lug passages and the center of the boss, we have the following dimensions given by way of example:
  • Another characteristic is the reduction in the saddle length laterally, that is to say towards the ends of the fenders, the fenders therefore having wide bases on the boss side and narrow tops next to their lateral ends for attachment to the strap, is another characteristic ( in addition to the reduction in thickness but also to the minimization of the lateral span DT / transverse dimension compared to conventional saddles) making it possible to reduce the quantity of material by moving away from the axis passing through the pods. This provides the flexibility required for multi-diameter plating of the saddle, without deterioration or breakage of the saddle.
  • the system is all the more adaptable to different nominal diameters as the amount of material of the saddle to be constrained by clamping on the pipe is reduced.
  • This reduction in material can be obtained in several ways, among others: by reducing the thickness of the wings going towards their lateral ends, by reducing the length of the wings going towards their lateral ends, by reducing the length of the saddle between the two lateral ends of the wings (decrease in TD / transverse dimension).
  • These ways of doing things can advantageously be combined and even combined with others such as, for example, the use of grooves. This gives more flexibility / deformability without resorting to excessive tightening forces, while being able to accommodate an electrofusion pad, and without becoming too fragile.
  • the adaptability is due to the existence of a flexibility gradient in the wings going from the boss towards the lateral binding ends, the flexibility being maximum towards the lateral binding ends and minimum towards the boss.
  • the energy applied to press a saddle is reflected in its curvature, bringing its side wings closer (towards small diameters of pipes) or away (towards large diameters of pipes).
  • This energy is proportional to the product of displacement R DQ and the tangential component of the force necessary for this displacement.
  • the saddle can be modeled on the basis of a cylindrical hollow tube of external diameter D and internal diameter d.
  • the moment of inertia is p (D 4 - d 4 ) / 64 and the modulus of inertia is p (D 4 - d 4 ) / 32 d.
  • the stress is proportional to the product of the modulus of the saddle material and the deflection, the risk of rupture being on the extended face (greater for small diameters). , lower towards large diameters).
  • the bending moment is proportional to EI / R where E is the modulus of elasticity of the material, I is the moment of inertia and R is the radius at the effective curvature of the saddle.
  • This flexibility gradient can be obtained in various ways, each sufficient in itself, but which can be combined with each other: by reducing the material thickness of the wings going towards the ends, by reducing the length (i.e. -d. longitudinally) of the wings going towards the ends, by the presence of increasingly deep longitudinal grooves going towards the ends (the thickness of the wings being uniform or decreasing), by a chemical formulation of the plastic material with properties mechanics varying transversely in the saddle.
  • a plastic material with at least two components, one of which is more flexible than the other (or less rigid than the other), the proportions of the two varying laterally, in the wings, the more flexible (or less rigid) being in greater proportion going towards the ends.
  • These two components can be mixed together, the wings being structurally homogeneous, or these two components can remain individualized, the wings being structurally stratified.
  • the plastic material with several components can thus constitute a material with a composition gradient, also called FGM (“Functional Gradient Materials”).
  • FGM Frctional Gradient Materials
  • Their simple structure consists of a gradual evolution from one part to another of a piece by a continuous change of composition. Their transition profile is defined in order to obtain the desired function.
  • the electrofusion pad which is attached / embedded in a housing on the underside of the saddle, its dimensions are adapted in particular as a function of the boss in question.
  • the pad which may or may not be flat may be overmolded in the saddle and it may be a pad which may be identical to those usable in the field without prior overmolding.
  • the housing has the following dimensions (the thickness corresponds to the depth of the housing):
  • the housing has the following dimensions:
  • figure 2 shows the unconstrained saddles (circular arc in solid line) and constrained (circular arc in dashed line), i.e. tight against pipes PE 100 (polyethylene) at DNmin (ie minimum diameter, diagram on the left of figure 2) and DNmax (maximum diameter, diagram on the right of figure 2), the pipes being represented in the form of circles.
  • PE 100 polyethylene
  • DNmin minimum diameter, diagram on the left of figure 2
  • DNmax maximum diameter, diagram on the right of figure 2
  • the saddle is tightened against the pipe (its diameter is reduced by the clamping stress) and in the other case it is widened (its diameter is increased by the clamping stress). It is also possible to determine the dimensions of the saddles according to another modelization, this time geometric, in relation to figure 3.
  • D n (which is equal to 2 R n ) is the “native” diameter, that is to say before possible deformation of the saddle which is the subject of the invention.
  • R n - RNmin the ratio of the ratio (R n - RNmin) / (RNmax - RNmin)
  • DNmax 2.05 DNmin
  • the coefficient 2.05 being advantageous but can preferably be chosen from 2.0 to 2.1.
  • DNmax 200 mm
  • DNmin 180 mm up to a ratio of 2.5, or even 3, for example from DN 75 to DN 225.
  • Rn / RNmax (Rn / RNmin) / R ”
  • the fastening device 28 has housings for the notches of the notched tightening strap or any other fastening means for other types of straps, in particular with ratchets or latches.
  • This reduction in thickness can for example correspond to a thickness of the wing on the boss side of 7.5 mm before the first groove and decreasing to a wing thickness of 4.5 mm after the last groove, on the side end side. of the wing.
  • the wings, on the boss side and outside a groove may have thicknesses between 6 mm and 9 mm and on the lateral end side and outside a groove, have thicknesses between 3 mm and 6 mm.
  • the difference in height of the wing between the side of the boss and the lateral end and outside the grooves and the rigging device can be between 2 and 6 mm. It is also possible to implement saddles without a thickness gradient on the wing, i.e.
  • the saddle may have wings of constant thickness, for example between 8 to 9 mm. These heights outside the grooves are measured at the highest point and outside the boss itself or the semi-circular zones of reduced thickness bordering the boss or the elevations or extra thicknesses of the longitudinal axis between the thimbles or of the attachment device 28 strap 3 at the lateral end of the wing 20a, 20b.
  • this reduction in thickness between the lower face and the upper face of the saddle towards the lateral ends of the wings may preferably only concern the bottom of the grooves.
  • provision is made for a constant thickness of the wings of 8.5 mm at the level of the ridges between the grooves and a height of material at the bottom of the groove (height of material defined by the shortest distance between the lower face and the groove bottom) ranging from 7.5 mm (towards the boss) to 5.4 mm (towards the ends of the wings) in the case of five grooves per side wing for a half-arch saddle B 70.5 mm.
  • the depth of the grooves can be between 0.5 mm and 4 mm.
  • the number of grooves may be between 3 and 11 per wing and is preferably between five and seven.
  • the depth of a groove is constant longitudinally but in alternative embodiments it may be different in length and, in particular decrease towards the longitudinal ends of the groove or even the groove does not go to the longitudinal edges of the wing.
  • the grooves are preferably extended longitudinally from one longitudinal edge to the other of each wing and they are therefore lateral to the boss.
  • lateral grooves can be provided at the lug passages which are interrupted by the boss because they are close to the longitudinal inter lug axis.
  • the grooves are arranged regularly angularly, for example every 5.5 ° along the wing.
  • the two lateral sides of each groove are two flat faces and the bottom of the groove is rounded with a small radius of about 0.5 mm in order to limit the risks of starting notches at the bottom of the grooves.
  • the shape of the grooves and of their lateral sides allow easy demolding of the saddle during its manufacture following an injection of HDPE into a saddle mold.
  • the faces closest to the vertical of the lateral sides of the grooves are oriented towards the center of the saddle, which can be obtained for example with an opening of 98 ° applied to all the grooves.
  • the wings therefore have a quantity of material which decreases going towards their lateral ends for attachment to the strap and, this, in two ways: on the one hand, by reducing the thickness / height of material between the lower face and the upper face of the saddle going towards the lateral ends of the wings and, on the other hand, by reducing the length (measured parallel to the longitudinal inter-pod axis) of the wings going towards the lateral ends of the wings.
  • the indications given can serve as a method for determining the dimensions of the saddles adaptable to different DN of pipes. It is thus possible to determine other numbers of saddle references for the pipe DNs encountered.
  • a number of references limited to:
  • the electrofusion pad is crossed at its center by a through hole corresponding to the through hole of the boss, the pad is preferably adapted to the dimensions of the boss.
  • the support system of the invention can be applied to fluids other than water and, for example, for gas.
  • a circular groove 26 sinking into the boss is provided around the internal passage channel of the nipple.
  • This circular groove is intended to receive a circular crown projecting downwards from the metal insert.
  • a metal ring independent of an insert is installed, preferably overmolded, in said circular groove 26.
  • the saddles can be delivered with the overmolded pads, therefore pre-installed, or with pads to be fitted into the saddle by the installer, when installing the saddle, just before electrofusion.
  • the electrofusion saddles and pads thus available in the form of separate / separate supplies can in particular avoid errors in the range of pipe or outlet diameter (40 or 55 mm) on which the connection is provided.
  • Electrofusion pads are generally 1.1 mm thick and the depth of the housing is planned accordingly.
  • the integration of the electrofusion pads by overmolding during the manufacture of the saddles by injection of PE (preferably HDPE) in a mold initially ensures the strength and the tightness between the back of the pads (face of the pad which will not be at the bottom. contact with the PE (HD) pipe and the inside of the saddle housings. electrofusion which ensures the holding and sealing between the back of the pads and the interior of the seat housing.
  • PE preferably HDPE
  • a saddle system according to the invention for support on a pipe begins by scraping the surface of the pipe using the hand tool to remove the oxide layer usually present. This driving surface is then cleaned with alcohol.
  • an electrofusion pad is positioned on the pipe and the saddle so that the pad is in its housing and the two connection terminals of the pad pass through the two terminal passages.
  • a tightening strap arranged between the two lateral ends of the wings and allowing the system to encircle the pipe is then tightened in order to force the saddle with its electrofusion pad to be applied by its entire underside on the surface of the pipe. .
  • the tightening strap may be a strap with latches.
  • the straps are plastics material strips, for example HDPE, PP, NYLON ®, or metal or woven or a combination of the foregoing.
  • the tightening straps have a suitable width and, for example 50 mm for type "X" saddles.
  • the length of the strap is adapted to the range of diameters provided for the various saddle references. It is possible to provide for cutting an excess length of strap once it is tight.
  • Figures 8 to 13 show an example of a notched tightening strap 3 and its ball joints 32, usable with the saddles of the invention as well as a tightening tool 39.
  • the strap 3 is made of flexible plastic so that it can be wrapped around the pipe.
  • the strap 3 has three main zones over its width, a central zone comprising orifices, in particular for traction, circular 31, and laterally two lateral zones of notches 30.
  • the zones of notches 30 are here discontinuous along the strap 3 but in variants the zones can be continuous.
  • the discontinuities in the lateral notch zones 30 allow a keying as regards the choice of the saddle reference with regard to the nominal diameter of the pipe on which it is to be installed.
  • the notch zones 30 are arranged so as to allow tightening and blocking of the strap if the correct saddle reference is used for the pipe on which said saddle is installed.
  • the notched strap 3 shown can be used for pipes with DN between 90 mm and 180 mm.
  • the ball joint 32 which resembles a roller, is substantially cylindrical just like the seat or cradle intended to receive it in the attachment device 28.
  • the ball has a through slot 37 allowing the insertion of the strap and sliding on the strap.
  • the ball 32 has internally, in the through slot 37, a locking strip 33 of stainless steel visible in the ball in Figure 9 and whose relationships with the notches are visible Figures 11 to 13.
  • This locking strip 33, Figure 14 comprises two lateral locking fingers 35 intended to interfere with the notches 30 of the strap 3 and, in the middle position, a spring tab 34 which is inclined by approximately 30 ° relative to the general plane of the locking strip 33, in the absence of stress exerted on the locking strip 33.
  • the spring tab 34 bears against the material of the ball joint and it is therefore not inclined towards the inside of the through slot 37 but on the opposite side.
  • the spring tab 34 allows the locking blade to take two main positions in the ball, a retracted position when the spring tab is constrained and allowing the sliding of the ball 32 along the strap in a tightening direction and a non-position. retracted blocking the ball 32 along the strap in a direction of loosening.
  • the locking strip 33 makes it possible to form a non-return pawl within the ball joint.
  • FIG. 11 one can better see the relationships between the notched strap 3 30, the ball 32 and its internal lamella, a lateral locking finger of which has been made visible.
  • the notched strap tightening system is centrable and can be reused if necessary.
  • the tightening system is ergonomic because it requires moderate efforts and can be tightened with a non-disproportionate tightening tool, in particular the pliers 39 in figure 10.
  • a rod or a screwdriver can be used and pry up against part of the saddle to pull up the strap.
  • the clamp 39 of FIG. 10 has two ends which can move apart or come closer, one of the ends comprising a claw 38 intended to be inserted into one of the traction holes 31 and the other end comprising a tab with two fingers intended to be supported on the lateral attachment end of the wing to the saddle attachment device.
  • the electrofusion is implemented. After the electrofusion, the assembly is allowed to cool for at least 30 min and then, if desired, the tightening strap can be removed if it is removable, such as a strap with latches or the strap. with notches with its ball joints that can be tilted thanks to the depression 36.
  • connection equipment with the drilling tool is installed on the boss of the saddle. It may be preferable that the tightening strap is left in place during the piercing operation and removed only afterwards if the strap is to be removed.
  • FIG. 15 an improved ball 32 with two locking blades 33 arranged inside the ball is shown in section.
  • the two locking strips 33 with spring tabs 34 and lateral locking fingers 35 have a Similar operation to the lamella of the single leaf patella shown above.
  • the maintenance and tightening of the strap 3 are improved both dynamically, during installation, and statically, after installation and tightening. It can be seen in the figures, during sliding ( Figure 16), the passage of the notches through the locking fingers 35, and after final tightening, the locking fingers 35 locked in the notches ( Figure 17).
  • the use of two locking strips 33 makes it possible to better distribute the clamping stresses and reduces the risks of sliding and loosening between notches and locking fingers.
  • An improved clamp 39 is implemented in Figure 18.
  • Figures 19 and 20 make it possible to better visualize the structure of this improved clamp 39 which comprises a toothed plate 41 for driving the notched strap 3.
  • the superimposed teeth of the toothed plate 41 drive the notches of the strap 3 to pull the strap upwards, during the tightening of the handles of the improved collet 39, clamping which drives the toothed plate upwards. 41.
  • the improved clamp 39 is placed from above the wing end of the saddle to allow tensioning of the strap and the saddle on the pipe by pulling and tightening the strap. .
  • the improved clamp 39 is brought back to a state where it can subsequently pull the strap again, the toothed plate 41 being lowered, its teeth slipping on the notches of the strap 3.
  • the improved ball joint 32 with its two locking strips 33 and the notched strap 3 operate in the manner of a ratchet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Branch Pipes, Bends, And The Like (AREA)

Abstract

Système (1) de prise en charge pour conduite thermosoudable de distribution de fluide allongée longitudinalement et cylindrique, le système (1) comportant une selle (2) en matière plastique thermosoudable allongée longitudinalement et arrondie transversalement, un patin d'électrofusion et une sangle de serrage (3), la selle (2) comportant une face supérieure avec un bossage (21) central et une face inférieure, le patin d'électrofusion étant rapporté dans un logement (5) de la face inférieure, deux passages de cosse (22) étant alignés avec le bossage (21) le long d'un axe longitudinal inter-cosses, la selle (2) comportant latéralement, deux ailes (20a, 20b) latérales comportant deux extrémités latérales de fixation (28) à la sangle (3), la face inférieure étant concave vers le bas et en forme de surface cylindrique de rayon déterminé. Selon l'invention, une même selle est configurée pour être fixée par électrofusion sur des conduites de diamètres nominaux compris entre des diamètres nominaux minimal, DNmin, et maximal, DNmax, de rapport DNmax/DNmin compris entre 1,1 et 3,0 et les ailes (20a, 20b) présentent un gradient de flexibilité en allant du bossage (21) vers les extrémités latérales de fixation, la flexibilité étant maximale vers les extrémités latérales de fixation et minimale vers le bossage (21).

Description

DESCRIPTION
TITRE : Système électrosoudable à selle et installation de prise en charge sur conduite, multi-diamètres et à patins d’électrofusion
Domaine technique
La présente invention concerne de manière générale le domaine des réseaux de distribution de fluides et notamment de l’eau ou du gaz de ville. Elle concerne plus spécifiquement un système électrosoudable à selle pour prise en charge sur une conduite/canalisation en polyéthylène, notamment en PEHD (polyéthylène haute densité) ou PELD (polyéthylène basse densité), du PE50 au PE100, ou encore en PE-Xa (polyéthylène réticulé). La selle du système permet son utilisation sur plusieurs diamètres de conduite ainsi que l’insertion éventuelle d’un patin d’électrosoudage dans la selle sur le terrain lorsque l’installation de la selle doit avoir lieu. Elle a des applications notamment dans le domaine du raccordement d’abonnés à un réseau de fluide, le fluide étant liquide ou gazeux.
Arrière-plan technologique
Les systèmes de selles à sangles de serrage pour prise en charge sur des conduites d’eau sont connus. En général, les selles sont métalliques et prévues pour être installées et serrées contre la conduite avec interposition d’un joint sur des conduites en dur. La conduite est percée en passant par un mamelon ou bossage de la selle et à travers un robinet installé sur ledit mamelon ou bossage. Actuellement, les réseaux de distribution d’eau utilisent de plus en plus des conduites en matière plastique, typiquement en PEHD qui est une matière thermofusible. Il a été proposé d’utiliser des systèmes de selles thermosoudées sur ces conduites grâce à des dispositifs d’électrofusion.
On connaît les documents suivants dans le domaine des selles électrosoudables : EP 1231045 mais les moyens de serrage ne sont pas détaillés, EP 0088703 mais les moyens de serrage apparaissent complexes à mettre en oeuvre, GB 0088703, DE 19935424, JP 2008025704, JP 2002174390, JP 2018105371 dans lequel la selle a un diamètre plus petit que la conduite, JP H10185068 mettant en oeuvre une couche de métal.
Du fait d’une standardisation des conduites, ces dernières sont de diamètres nominaux (DN) déterminés et la différence de diamètre entre deux DN successifs est relativement importante. Dans les systèmes connus, jusqu’au DN 225 mm inclus, une selle donnée ne peut pas en pratique s’adapter à une gamme de plusieurs diamètres nominaux : les selles sont mono-diamètre. Il en résulte un grand nombre de modèles différents pour pouvoir opérer sur les différents DN rencontrés. La gestion des stocks est complexe et on doit prévoir des quantités différentes pour chaque modèle en fonction de la fréquence d’utilisation du DN correspondant.
La présente invention propose un système de selle dont la structure particulière permet de s’adapter à une large gamme de DN de conduites.
Exposé de l’invention
On propose tout d’abord selon l’invention, un système de prise en charge pour conduite de distribution de fluide, notamment d’eau, la conduite allongée longitudinalement et cylindrique étant en matière plastique thermosoudable, le système comportant une selle en matière plastique thermosoudable, un patin d’électrofusion et une sangle de serrage, la selle comportant une face supérieure sur laquelle est érigé un bossage central et une face inférieure destinée à venir s’appliquer contre la conduite, la selle étant allongée longitudinalement et arrondie transversalement, le patin d’électrofusion comportant deux cosses de raccordement et étant rapporté dans un logement de la face inférieure de la selle, les deux cosses de raccordement traversant l’épaisseur de la selle dans deux passages de cosse et débouchant à la face supérieure de la selle, les deux passages de cosse et le bossage étant alignés le long d’un axe longitudinal inter cosses de la selle, la selle comportant latéralement, de part et d’autre de l’axe longitudinal inter-cosses, deux ailes latérales, la face inférieure de la selle étant concave vers le bas et en forme de surface cylindrique de rayon déterminé, les deux ailes de la selle comportant deux extrémités latérales de fixation destinées à permettre la fixation à la sangle de serrage, le serrage de la sangle de serrage permettant l’application de la face inférieure de la selle avec ses deux ailes contre la conduite.
Selon l’invention, une même selle est configurée pour être fixée par électrofusion sur des conduites de diamètres nominaux compris entre un diamètre nominal minimal, DNmin, et un diamètre nominal maximal, DNmax, de rapport DNmax/DNmin compris entre 1 ,1 et 3,0 sans détérioration mécanique ou fuite lors du serrage et après électrofusion, et les ailes présentent un gradient de flexibilité en allant du bossage vers les extrémités latérales de fixation, la flexibilité étant maximale vers les extrémités latérales de fixation et minimale vers le bossage.
D’autres caractéristiques non limitatives et avantageuses du système conforme à l’invention, prises individuellement ou selon toutes les combinaisons techniquement possibles, sont les suivantes :
- la flexibilité est mesurée par un coefficient de raideur, le coefficient de raideur étant plus petit vers les extrémités latérales de fixation que vers le bossage,
- le coefficient de raideur est mesuré le long de sections longitudinales de l’aile,
- le gradient de flexibilité est obtenu par au moins une des structurations suivantes : la présence d’une matière plastique dont la composition varie en allant du bossage vers les extrémités latérales de fixation, la présence à la face supérieure des ailes, de chaque côté latéral de l’axe longitudinal inter-cosses, de sillons longitudinaux parallèles entre eux et à l’axe longitudinal inter-cosses, les épaisseurs de matière entre le fond des sillons et la face inférieure des ailes allant en diminuant transversalement, de sillon en sillon, du bossage vers l’extrémité latérale de l’aile, l’épaisseur de matière des ailes diminue en allant du bossage vers les extrémités latérales de fixation, la longueur des ailes, telle que mesurée parallèlement à l’axe longitudinal inter-cosses, diminue en allant du bossage vers les extrémités latérales de fixation,
- la matière plastique dont la composition varie est une matière plastique à au moins deux composantes, à mélange local homogène des composantes et les proportions relatives des composantes variant en allant du bossage vers les extrémités latérales de fixation,
- la matière plastique dont la composition varie est une matière plastique à au moins deux composantes, lesdites au moins deux composantes formant une structure d’aile stratifiée, c’est-à-dire sans mélange des composantes, et les épaisseurs relatives des stratifications des composantes variant en allant du bossage vers les extrémités latérales de fixation,
- l’épaisseur de matière des ailes diminue en allant du bossage vers les extrémités latérales de fixation et la longueur des ailes, telle que mesurée parallèlement à axe longitudinal inter-cosses, diminue en allant du bossage vers les extrémités latérales de fixation,
- la matière plastique de la selle et la matière plastique de la conduite sont identiques, - la face supérieure des ailes comporte de chaque côté latéral de l’axe longitudinal inter-cosses des sillons longitudinaux parallèles entre eux et à l’axe longitudinal inter-cosses,
- les épaisseurs de matière entre le fond des sillons et la face inférieure vont en diminuant transversalement, de sillon en sillon, du bossage vers l’extrémité latérale de l’aile,
- les sillons sont allongés longitudinalement sur la face supérieure de la selle et ils sont parallèles à l’axe principal de la conduite sur laquelle la selle est prévue d’être installée,
- des sillons sont interrompus par le bossage,
- des sillons interrompus par le bossage sont latéraux aux passages de cosse,
- des sillons sont latéraux au bossage,
- des sillons sont continus d’un bord longitudinal à l’autre de la selle,
- des sillons sont discontinus d’un bord longitudinal à l’autre de la selle,
- des sillons n’atteignent pas les bords longitudinaux de la selle,
- la profondeur des sillons va en augmentant en allant du bossage vers les extrémités latérales des ailes,
- l’épaisseur de matière entre le fond du sillon et la face inférieure est constante longitudinalement,
- dans le cas d’une selle à patin d’électrofusion préinstallé, notamment par surmoulage, la face inférieure de la selle est uniformément de forme cylindrique, concave vers le bas, afin de pouvoir s’appliquer uniformément contre la conduite après serrage de la sangle de serrage,
- dans le cas d’une selle à patin d’électrofusion préinstallé, une surépaisseur de matière débordant vers le bas de la face inférieure peut être présente en regard du patin d’électrofusion préinstallé, ladite surépaisseur étant limitée à quelques dixièmes de mm,
- dans le cas d’une selle à patin d’électrofusion non préinstallé, la face inférieure de la selle, en dehors du logement destiné à recevoir un patin d’électrofusion qui forme un creux dans ladite face inférieure, est uniformément de forme cylindrique, concave vers le bas,
- une même selle est configurée pour être fixée par électrofusion sur des conduites de diamètres nominaux compris entre un diamètre nominal minimal, DNmin, et un diamètre nominal maximal, DNmax, de rapport DNmax/DNmin compris entre 1 ,1 à 2,5,
- une même selle est configurée pour être fixée par électrofusion sur des conduites de diamètres nominaux compris entre un diamètre nominal minimal, DNmin, et un diamètre nominal maximal, DNmax, de rapport DNmax/DNmin préférentiellement compris entre 2 à 2,1 ,
- le système est configuré pour permettre l’application d’une force de serrage jusqu’à 5 kN sans détérioration mécanique ou fuite lors du serrage et après électrofusion,
- le système est configuré pour permettre l’application d’une force de serrage d’au moins 5 kN sans détérioration mécanique ou fuite lors du serrage et après électrofusion,
- de préférence, la selle est choisie pour respecter la relation (Dn - DNmin) / (DNmax
- DNmin) = 0,34 à 0,40, où Dn est le diamètre de la face inférieure de la selle avant serrage,
- la selle est configurée afin que l’épaisseur de matière des ailes de la selle, hors sillons, soit constante longitudinalement, -la selle est configurée afin que l’épaisseur de matière des ailes, hors sillons, diminue en allant du bossage vers les extrémités latérales,
- l’extrémité latérale de l’aile est une extrémité latérale de fixation de la sangle qui comporte un dispositif d’accrochage de la sangle, - les extrémités latérales de fixation des ailes comportent chacune un dispositif de d’accrochage de la sangle de serrage qui forme vers le haut une surépaisseur de matière par rapport à l’épaisseur de l’aile,
- la face inférieure de la selle concave vers le bas est en forme de surface cylindrique de rayon de valeur déterminée, - la face supérieure de la selle, en dehors du bossage et des deux passages de cosse, comporte un arrondi transversal et est globalement convexe vers le haut,
- les fonds des sillons adjacents de la selle sont séparés entre eux par des élévations longitudinales parallèles aux sillons et se terminant vers le haut par des crêtes, lesdites crêtes étant portées par l’arrondi transversal de la face supérieure, - les crêtes des élévations sont aplaties,
- les crêtes des élévations sont arrondies,
- les crêtes des élévations sont anguleuses,
- les élévations, vues en coupe transversale de la selle, ne sont pas symétriques par rapport au rayon définissant la courbure cylindrique de la face inférieure de la selle,
- les élévations, vues en coupe transversale de la selle, sont symétriques par rapport au rayon définissant la courbure cylindrique de la face inférieure de la selle,
- les sillons, vus en coupe transversale de la selle, ne sont pas symétriques par rapport au rayon définissant la courbure cylindrique de la face inférieure de la selle,
- les sillons, vus en coupe transversale de la selle, sont symétriques par rapport au rayon définissant la courbure cylindrique de la face inférieure de la selle,
- la face supérieure dans la partie de jonction circulaire entre le bossage central et la face supérieure comporte au moins deux zones semi-circulaires d’épaisseur réduite de la matière de la selle entre les faces supérieure et inférieure, lesdites deux zones semi-circulaires d’épaisseur réduite étant disposées vers les deux côtés latéraux du bossage,
- à la face supérieure de la selle, chacun des deux passages de cosse comporte une surépaisseur vers le haut de matière,
- la face supérieure le long de l’axe longitudinal inter-cosses comporte une surélévation vers le haut de matière entre le bossage et chacun des deux passages de cosse,
- la selle est plus longue au niveau de l’axe longitudinal inter-cosses que vers les deux extrémités latérales des deux ailes,
- la selle est aussi longue au niveau de l’axe longitudinal inter-cosses que vers les deux extrémités latérales des deux ailes,
- la selle est symétrique par rapport à un plan vertical passant par l’axe longitudinal inter-cosses, - la selle est globalement symétrique par rapport à un plan vertical transversal passant par le centre du bossage,
- le fond des sillons est arrondi,
- le fond des sillons est anguleux,
- le fond des sillons est aplati, - le patin d’électrofusion installé dans le logement affleure à la face inférieure de la selle,
- le patin d’électrofusion est surmoulé dans la selle,
- le patin d’électrofusion surmoulé dans la selle est noyé dans la matière de la selle,
- le patin d’électrofusion a une forme carrée ou rectangulaire ou circulaire,
- la sangle de serrage est métallique,
- la sangle de serrage métallique comporte une bande inox comportant une grenouillère à chacune de ses deux extrémités,
- la sangle de serrage est en matière plastique,
- la sangle de serrage est en matière plastique et comporte des crans,
- la sangle de serrage en matière plastique est constituée d’une bande comportant en surface des crans,
- la sangle de serrage en matière plastique est constituée d’une bande comportant en surface des séries d’orifices de traction à travers lesquels un outil de traction pour serrage peut être inséré,
- l’outil de traction est une pince de serrage,
- la pince de serrage comporte deux extrémités pouvant s’écarter ou se rapprocher, une des extrémités comportant une griffe destinée à être insérée dans un des orifices de traction et l’autre extrémité comportant une patte à deux doigts destinés à prendre appui sur l’extrémité latérale de fixation de l’aile à dispositif d’accrochage de la selle,
- la sangle de serrage est laissée en place une fois la selle électrosoudée sur la conduite,
- la sangle de serrage est un élément amovible destiné à être enlevé une fois la selle électrosoudée sur la conduite,
- le bossage est destiné à recevoir intérieurement un insert métallique,
- le système comporte une selle avec un insert métallique dans le bossage
- la selle est obtenue par moulage d’une matière plastique,
- l’insert est surmoulé dans le bossage de la selle.
L’invention concerne également une installation de prise en charge sur une conduite de distribution de fluide, notamment d’eau ou de gaz de ville, comportant le système de l’invention.
L’invention concerne également un ensemble de serrage de selle en matière plastique thermosoudable d’un système selon l’invention, l’ensemble comportant, d’une part, pour utilisation avec une selle, une sangle de serrage en matière plastique comportant des crans et au moins une rotule à deux lamelles de blocage disposées à l’intérieur de la rotule, les lamelles de blocage ayant des pattes ressort et des doigts de blocage et, d’autre part, réutilisable, un outil à type de pince comportant une plaque dentée d’entraînement de la sangle de serrage crantée.
L’ensemble de serrage peut être décliné selon toute modalité structurelles et d’utilisation des éléments du système et de ses outils.
L’invention concerne enfin un procédé de pose d’un système de prise en charge selon l’invention sur une conduite de distribution de fluide, notamment d’eau, de diamètre nominal, DN, déterminé, dans lequel on choisit une selle adaptable à une gamme de diamètres de conduite, le DN étant compris dans ladite gamme, on prépare la surface de la conduite dans la zone d’installation de la selle du système, on installe dans un logement de la selle un patin d’électrofusion au cas où ledit patin d’électrofusion ne serait pas préinstallé, on place la selle et son patin d’électrofusion sur la surface préparée de la conduite, on installe une sangle de serrage aux extrémités latérales des ailes de la selle et on serre ladite sangle afin que la face inférieure de la selle s’applique contre la surface de la conduite et on alimente électriquement le patin d’électrofusion. Avantageusement, la préparation de la surface de la conduite consiste en une abrasion de surface et un nettoyage de surface de la conduite.
Brève description des dessins
[Fig. 1] représente une vue en perspective du système de l’invention avec une selle et sa sangle de serrage toutes deux en matière plastique ainsi qu’un insert métallique dans le bossage de la selle,
[Fig. 2] représente un schéma de modélisation trigonométrique de l’adaptation d’une même selle à des conduites de diamètres nominaux minimal et maximal d’une gamme,
[Fig. 3] représente un schéma de modélisation géométrique de l’adaptation d’une même selle à des conduites de diamètres nominaux minimal et maximal d’une gamme,
[Fig. 4] représente une vue en perspective d’une variante de la selle du système de la figure 1 ,
[Fig. 5] représente une vue en perspective de la selle du système de la figure 1 , [Fig. 6] représente une vue en coupe transversale de la selle du système de la figure 1,
[Fig. 7] représente une vue de dessous, côté face inférieure, de la selle du système de la figure 1 ,
[Fig. 8] représentent une vue en perspective d’une sangle à crans sur laquelle ont été coulissées deux rotules comportant intérieurement des lamelles de blocage en acier inoxydable,
[Fig. 9] représente une vue en perspective d’une rotule permettant de visualiser sa lamelle de blocage qui est disposée à l’intérieur de la rotule, dans une fente traversante de cette dernière,
[Fig. 10] représente une vue en perspective d’un outil de serrage de sangle,
[Fig. 11] représente par une vue en perspective et en coupe partielle, le montage d’une rotule sur la sangle à crans et de sa lamelle de blocage qui permet l’immobilisation de la rotule le long de la sangle,
[Fig. 12] représente une vue en coupe d’une rotule en train d’être coulissée le long de la sangle à crans, sa lamelle de blocage s’escamotant lors du passage des crans,
[Fig. 13] représente une vue en coupe d’une rotule bloquée le long de la sangle à crans, sa lamelle de blocage butant contre un cran,
[Fig. 14] représente la lamelle de blocage,
[Fig. 15] représente une vue en coupe d’une rotule perfectionnée permettant de visualiser les deux lamelles de blocage qui sont disposée à l’intérieur de la rotule, [Fig. 16] représente une vue en coupe d’une rotule perfectionnée en train de coulisser le long de la sangle à crans, ses lamelles de blocage s’escamotant lors du passage des crans,
[Fig. 17] représente une vue en coupe d’une rotule bloquée le long de la sangle à crans, les lamelles de blocage butant contre les crans,
[Fig. 18] représente une vue en perspective du système de l’invention en cours de serrage d’une sangle à cran avec une rotule perfectionnée grâce à un outil perfectionné de serrage de sangle adapté,
[Fig. 19] représente une vue en coupe partielle d’un détail du système de la figure 18 au niveau d’une extrémité d’aile avec sa rotule perfectionnée et la sangle à crans, l’outil perfectionné de serrage de sangle étant utilisé pendant une phase de reprise lors du serrage de la sangle, et
[Fig. 20] représente une vue en coupe partielle d’un détail du système de la figure 18 au niveau d’une extrémité d’aile avec sa rotule perfectionnée et la sangle à crans, l’outil perfectionné de serrage de sangle étant utilisé pendant une phase d’entrainement lors du serrage de la sangle.
Description détaillée d’un exemple de réalisation La description qui va suivre en regard des dessins annexés, donnés à titre d’exemples non limitatifs, fera bien comprendre en quoi consiste l’invention et comment elle peut être réalisée.
Dans son principe, l’invention concerne un système de selles et sangles de serrage multi-diamètres, électrosoudables, pour conduites PEHD (polyéthylène haute densité). Chaque selle peut être fixée par électrosoudage sur des conduites de diamètres différents grâce à la structure particulière de la selle qui peut s’adapter et s’appliquer sur des conduites de diamètres différents.
Le système de selle est optimisé notamment en termes :
- de gradient d’épaisseur (i.e. entre les faces inférieure et supérieure) de matière entre l’axe longitudinal inter-cosses (axe passant par les centres du bossage et des cosses de raccordement pour raccordement à une machine d’électrofusion) et les extrémités latérales des ailes de la selle,
- de structure par la présence de sillons à la face supérieure des ailes,
- de forme amincie en épaisseur (i.e. entre les faces inférieure et supérieure) d’au moins des parties latérales de la zone de raccordement entre le bossage et la face supérieure de la selle.
Contrairement aux selles connues, la selle électrosoudable de l’invention peut donc s’adapter à une large gamme de diamètres de conduites grâce à son gradient d’épaisseur entre l’axe longitudinal inter-cosses et les deux extrémités latérales de fixation à la sangle pour le serrage sur les conduites et à la combinaison avantageuse du gradient d’épaisseur, de l’épaisseur moyenne, de la taille de selle, des rainures et des éventuelles zones semi-circulaires d’épaisseur réduite de matière à la basse du bossage de prise, de manière à concilier souplesse, résistance à traction/flexion et propagation de la chaleur lors de l’électrofusion. L’axe longitudinal inter-cosses est l’axe passant par les centres des passages de cosse et du bossage qui sont donc alignés. La solution proposée permet de fournir des patins d’électrosoudage non surmoulés dans les selles avant utilisation sur le terrain et, aussi, des moyens de bridage amovibles.
Le système proposé est notamment configuré pour permettre l’application d’une force de serrage jusqu’à 5 kN sans détérioration mécanique ou fuite lors du serrage et après électrofusion, et, ceci, avec une selle qui est choisie pour respecter la relation (Dn - DNmin) / (DNmax - DNmin) = 0,34 à 0,40, où Dn est le diamètre de la face inférieure de la selle avant serrage.
Le système de l’invention permet d’éviter les erreurs éventuelles de DN prévu pour les interventions sur le terrain du fait que la selle peut s’adapter à une large gamme de diamètres nominaux de conduites. En outre, il en résulte un nombre restreint de références de selles, ce qui apporte des gains en termes de poids et d’encombrement pour le stockage, le transport et le montage.
Un tel système 1 de selle 2 avec sa sangle de serrage 3 est représenté figure 1. La selle 2 en PEHD comporte centralement un bossage 21 central formant un passage ouvert entre la face supérieure et la face inférieure de la selle. Un insert métallique 4 est installé dans le bossage 21 et inclut une vis 40 servant au blocage en rotation du robinet de prise en charge amené à y être monté. L’insert métallique est typiquement en laiton. L’insert métallique est surmoulé dans la selle et la vis sert à l’installation du robinet de prise en charge. La selle 2 comporte en outre, de part et d’autre du bossage 21 , deux passages de cosse 22 destinés à des raccordements d’un patin d’électrofusion à une machine d’électrofusion d’alimentation du patin. Le bossage 21 et les passages de cosse 22 sont alignés sur un axe longitudinal inter-cosses qui est parallèle à l’axe principal de la conduite sur laquelle la selle 2 peut être installée. Les passages de cosse 22 et le bossage 21 correspondent à des surépaisseurs de matière par rapport à la face supérieure de la selle 2. Dans cet exemple de la figure 1 , il n’est pas mis en oeuvre de surélévation de matière le long de l’axe longitudinal inter cosses entre le passage de cosse 22 et le bossage 21. En revanche, figures 4 et 5, il est mis en oeuvre une surélévation de matière le long de l’axe longitudinal inter-cosses entre le passage de cosse 22 et le bossage 21.
Latéralement, de part et d’autre du bossage 21 et des passages de cosse 22, deux ailes 20a, 20b s’étendent latéralement jusqu’à deux extrémités latérales de fixation comportant chacune un dispositif d’accrochage 28 de la sangle de serrage 3. Dans cet exemple la sangle de serrage 3 est en matière plastique et est une sangle à crans.
La face supérieure de la selle comporte au niveau de la jonction avec le bossage 21 au moins deux zones semi-circulaires 27 d’épaisseur réduite de la matière de la selle entre les faces supérieure et inférieure. Ces zones semi-circulaires 27 d’épaisseur réduite étant disposées vers les deux côtés latéraux du bossage et sont destinées à faciliter la déformation de la selle lors de son serrage sur la conduite. Ces zones semi-circulaires 27 d’épaisseur réduite sont donc orientées sensiblement verticalement car elles sont réalisées dans l’épaisseur de la selle. Dans une variante de réalisation (non représentée), ces zones semi-circulaires d’épaisseur réduite sont réalisées dans l’épaisseur du bossage et sont donc alors orientées sensiblement perpendiculairement à la verticale au niveau de la jonction entre le manchon et la selle, c’est-à-dire à la base du manchon, côté de la face supérieure de la selle.
La face supérieure de la selle 2 comporte, essentiellement sur les ailes 20a, 20b, des séries de sillons 25 parallèles entre eux. Entre les sillons 25 se situent des crêtes 24 d’élévations entre sillons. On peut noter que dans cet exemple, les sillons 25 côté de l’axe longitudinal inter-cosses sont interrompus par le bossage 21. Dans des variantes, les sillons 25 n’interfèrent pas avec le bossage 21.
La selle 2 est globalement symétrique par rapport à un plan sagittal vertical porté par l’axe longitudinal inter-cosses. La selle 2 est aussi globalement symétrique par rapport à un plan transversal perpendiculaire au plan sagittal vertical et passant par le centre du bossage 21.
La figure 4 permet de visualiser des variantes de réalisation concernant notamment la structure du bossage 21 et la structure des dispositifs d’accrochage
28 des extrémités latérales de fixation sur les ailes 20a, 20b et servant à l’accrochage de la sangle de serrage pour des sangles de serrage de types différents. En outre, sur la variante de réalisation de la figure 5, des surélévations
29 de matière le long de l’axe longitudinal inter-cosses entre les surépaisseurs correspondant aux passages de cosses 22 et bossage 21 , ont été agencées.
Les figures 6 et 7 permettent de notamment visualiser le logement 5 creusé dans la face inférieure de la selle 2 et destiné à recevoir un patin d’électrofusion. La profondeur de ce logement 5 est d’environ 1,2 mm mais on peut prévoir une profondeur comprise entre 0,5 mm et 2 mm, voire entre 0,8 mm et 1 ,5 mm ou, préférentiellement, entre 1 mm et 1,3 mm notamment en fonction du patin prévu. Ce logement de forme sensiblement carrée comporte des appendices longitudinaux pour le passage de raccordements électriques vers les cosses. Le patin d’électrofusion comporte un conducteur électrique destiné à chauffer du fait de sa résistance ohmique, enroulé en forme d’une bobine spiralée, à plat, sous une très faible épaisseur ou d’une autre forme, par exemple hélicoïdale à spires affleurantes.
Les optimisations signalées sont destinées à conférer une aptitude à la flexion de la selle et en particulier de ses ailes par serrage sur la conduite, avant l’électrofusion, tout en résistant aux contraintes thermomécaniques et hydrauliques caractéristiques de l’application une fois l’électrofusion réalisée. De cette aptitude, une selle donnée peut être installée sur des conduites d’une large gamme de diamètres. Cette installation avec électrofusion s’effectue sans apparition de fissure ou de craquelure visible sur la selle et l’arrachage de cette dernière de la conduite est impossible sauf à entraîner une déstructuration de la conduite et de la selle.
On prévoit en pratique différentes références de selles plus particulièrement adaptées à des gammes différentes de diamètres de conduites. D’une manière générale, pour les conduites d’eau rencontrées habituellement, on prévoit 2 à 4 références de selles et 1 à 3 modèles de patins d’électrofusion. Typiquement on peut prévoir 2 à 4 références de selles et 1 ou 2 patins pour des bossages de sortie « X » (voir ci-après) et, 2 à 3 références de selles et 1 à 3 patins pour des bossages de sortie « Y ».
Par exemple, on peut prévoir trois références de selles, une première référence pour des conduites de DN compris entre 50 et 90, une deuxième référence pour DN compris entre 90 et 180, une troisième référence pour DN compris entre 180 et 400, les diamètres étant en mm et DN étant le Diamètre Nominal de la conduite/canalisation et qui correspond au diamètre extérieur pour les conduites en matière plastique.
D’une manière générale, le système de prise en charge multi-diamètres peut s’appliquer à des conduites de valeurs très diverses de diamètres nominaux, DN, et, typiquement, entre 40 mm et 500 mm, différentes références de selles s’appliquant à différentes gammes de DN entre ces valeurs.
Ces différentes références se différentient essentiellement par leurs rayons de courbure initial/hors contrainte et leurs dimensions, essentiellement les dimensions de leurs ailes latérales qui doivent recouvrir des surfaces plus ou moins importantes en fonction des DN. On comprend que les dimensions longitudinales peuvent être différentes en fonction des références et, aussi, plus généralement, que toutes les dimensions peuvent être adaptées en fonction du diamètre du bossage destiné à la dérivation de prise en charge. En effet, on peut prévoir typiquement deux types de bossage de sortie, un premier, dit « X », de 40x3 en mm et un second, dit « Y », de 55x3 en mm. A noter que d’une manière générale et de préférence, on prévoit des bossages de sortie « Y » 55x3 en mm seulement pour des DN supérieurs ou égal à 90 mm.
On prévoit aussi les bossages de sortie en taraudage aux pas du gaz pour l’eau potable.
Enfin, la taille du patin électrosoudable est adaptée afin que la surface du patin soit plus grande pour des références de selles ayant une plus grande surface de contact avec les conduites comme cela est le cas avec des DN élevés. Cependant, afin d’optimiser encore plus le système, on peut faire appel à une seule taille de patin pour les selles « X » et une seule autre taille de patin, plus grande, pour les selles « Y ».
On décrit maintenant des exemples de dimensions dans le cas exemplatif de trois références de selles électrosoudables prévues pour des DN compris entre 40 mm et 400 mm. Ces dimensions de selles concernent des selles non contraintes. On considère ici une selle qui est configurée pour être serrée sur la conduite grâce à une sangle à crans.
Le RAYON de la face inférieure de la selle est le suivant dans l’exemple suivant d’une gamme à 3 selles « X » et 2 selles « Y » :
[TABLE 1]
Les DN minimaux typiques, inférieurs aux DN minimaux préférés, sont des diamètres de conduite pour lesquels l’installation de la selle doit être particulièrement soignée et le résultat bien contrôlé du fait des contraintes extrêmes appliquées à la selle et en particulier à ses ailes mais aussi à la conduite.
Pour la dimension transversale, DT, de la selle, entre les extrémités latérales des deux ailes, plus précisément entre les milieux des deux logements opposés de réception des crans de la sangle de serrage dans le cas d’une sangle à crans, on considère la dimension le long de l’arc de cercle entre les milieux des deux logements opposés pour crans de la sangle de serrage :
[TABLE 2]
A noter que la sangle de serrage peut être d’un autre type et notamment une sangle à cliquets ou à grenouillères. Pour la LONGUEUR de la selle, mesurée le long de l’axe longitudinal inter-cosses passant par les deux passages de cosse et le centre du bossage, on a les dimensions suivantes données à titre d’exemple :
[TABLE 3]
La diminution de la longueur de selle latéralement, c’est-à-dire vers les extrémités des ailes, les ailes étant donc à bases larges côté bossage et sommets étroits côté de leurs extrémités latérales de fixation à la sangle, est une autre caractéristique (en plus de la diminution d’épaisseur mais aussi de la minimisation de l’envergure latérale DT/dimension transversale par rapport aux selles classiques) permettant de réduire la quantité de matière en s’écartant de l’axe passant par les cosses. Ceci confère la souplesse requise pour un plaquage multi- diamètres de la selle, sans détérioration ni rupture de cette dernière.
Le système est d’autant plus adaptable à des diamètres nominaux différents que la quantité de matière de la selle devant être contrainte par serrage sur la conduite est réduite. Cette réduction de matière peut être obtenue de plusieurs manières, entre autres : par réduction d’épaisseur des ailes en allant vers leurs extrémités latérales, par diminution de la longueur des ailes en allant vers leurs extrémités latérales, par diminution de la longueur de la selle entre les deux extrémités latérales des ailes (diminution du DT/ de la dimension transversale). Ces manières de faire peuvent avantageusement être combinées et même combinées à d’autres comme, par exemple, l’utilisation des sillons. On obtient ainsi plus de souplesse/déformabilité et, ceci, sans recourir à des efforts démesurés de serrage, tout en étant capable de loger un patin d’électrofusion, et sans devenir trop fragile.
Plus généralement, l’adaptabilité est due à l’existence d’un gradient de flexibilité dans les ailes en allant du bossage vers les extrémités latérales de fixation, la flexibilité étant maximale vers les extrémités latérales de fixation et minimale vers le bossage.
La présence de ce gradient de flexibilité peut être déterminée par des mesures du coefficient de raideur. On peut noter que l’inverse de la raideur est la flexibilité ou la souplesse, qui se définit par son amplitude, c’est-à-dire la déflexion, et la force nécessaire à ce mouvement de déflexion. On peut donc aussi bien considérer la raideur que la flexibilité/souplesse.
Dans le cas d’espèce de la forme de la selle et de ses ailes et de son usage, la raideur à considérer est angulaire, en N.m/rad : ke = M / Q où M est le moment de force.
Ainsi, plus la selle avec ses ailes latérales est souple, plus ke est faible et donc plus M requis est faible pour une déflexion Q visée ou plus Q est grand pour un effort M donné.
L’énergie appliquée pour plaquer une selle se traduit par sa courbure, rapprochant (vers les petits diamètres de conduites) ou éloignant (vers les grands diamètres de conduites) ses ailes latérales. Cette énergie est proportionnelle au produit du déplacement R DQ et de la composante tangentielle de la force nécessaire à ce déplacement. A titre d’exemple simplifié, on peut modéliser la selle sur la base d’un tube creux cylindrique de diamètre externe D et de diamètre interne d. Dans un tel cas simplifié, le moment d’inertie est p (D4 - d4) / 64 et le module d’inertie est p (D4 - d4) / 32 d. Par conséquent, si l’épaisseur diminue, préférentiellement côté externe de l’aile, D diminue et donc le moment de force, le module et la raideur diminuent. Enfin, en un point hors de la fibre neutre d’une selle, la contrainte est proportionnelle au produit du module du matériau de la selle et de la déflexion, le risque de rupture se situant sur la face en extension (supérieure vers les petits diamètres, inférieure vers les grands diamètres). Le moment fléchissant est proportionnel à E I / R où E est le module d’élasticité du matériau, I est le moment d’inertie et R est le rayon à la courbure effective de la selle. Ainsi, si le module du matériau de la selle diminue, la contrainte maximale diminue donc de la même manière que si la déflexion était réduite.
Ce gradient de flexibilité peut être obtenu de diverses manières, chacune suffisante en elle-même, mais pouvant être combinées entre elles : par diminution de l’épaisseur de matière des ailes en allant vers les extrémités, par diminution de la longueur (c-à-d. longitudinalement) des ailes en allant vers les extrémités, par présence de sillons longitudinaux de plus en plus profonds en allant vers les extrémités (l’épaisseur des ailes étant uniforme ou diminuant), par une formulation chimique de la matière plastique à propriétés mécaniques variant transversalement dans la selle. Dans ce dernier cas, on peut mettre en oeuvre une matière plastique à au moins deux composantes dont une est plus souple que l’autre (ou moins rigide que l’autre), les proportions des deux variant latéralement, dans les ailes, la plus souple (ou la moins rigide) étant en proportion plus importante en allant vers les extrémités. Ces deux composantes peuvent être mélangées entre elles, les ailes étant structurellement homogènes, ou ces deux composantes peuvent rester individualisées, les ailes étant structurellement stratifiées.
La matière plastique à plusieurs composants peut ainsi constituer un matériau à gradient de composition, aussi appelé FGM (« Functional Gradient Materials »). Leur simple structure consiste en une évolution graduelle d'une partie à l’autre d’une pièce par un changement continu de la composition. Leur profil de transition est défini afin d'obtenir la fonction désirée.
Concernant les paramètres géométriques du bossage, les dimensions suivantes données à titre d’exemple peuvent être utilisées :
[TABLE 4]
Concernant les paramètres géométriques de la zone d’extrémité des ailes accueillant les crans de la sangle de serrage, et que sont la longueur creusée, la longueur de vide, la distance centre/bords et le rayon pour les crans, il est proposé :
[TABLE 5] p .
Concernant le patin d’électrofusion qui est rapporté/encastré dans un logement de la face inférieure de la selle, ses dimensions sont adaptées notamment en fonction du bossage considéré. A titre d’exemple, on considère un patin de forme carrée de 77x77 mm de côté. En pratique, seuls le bobinage et la connexion aux cosses, avec ou sans « pont », diffèrent. Dans des variantes dans lesquelles le patin est incorporé d’origine dans la selle, le patin qui peut être plan ou non, peut être surmoulé dans la selle et ce peut être un patin qui peut être identique à ceux utilisables sur le terrain sans surmoulage préalable.
Pour des bossages « X » de 40x3 en mm, le logement a les dimensions suivantes (l’épaisseur correspond à la profondeur du logement) :
TABLE 6]
Pour des bossages « Y » de 55x3 en mm, le logement a les dimensions suivantes :
TABLE 7]
On comprend qu’il est possible de réaliser des selles électrosoudables adaptables à des gammes de DN selon d’autres dimensions et nombre de références que celles présentées ci-dessus. On comprendra mieux cela par les explications suivantes qui donnent des indications plus générales sur des modalités de sélection et de calcul des dimensions des selles.
Dans la modélisation trigonométrique qui suit, la figure 2 montre les selles non contraintes (arc de cercle en trait continu) et contraintes (arc de cercle en trait discontinu), c-à-d serrées contre des conduites PE 100 (polyéthylène) aux DNmin (i.e. diamètre minimal, schéma sur la gauche de la figure 2) et DNmax (diamètre maximal, schéma sur la droite de la figure 2), les conduites étant représentées sous forme de cercles. Dans un cas, la selle est resserrée contre la conduite (son diamètre est réduit par la contrainte de serrage) et dans l’autre cas elle est élargie (son diamètre est augmenté par la contrainte de serrage). Il est également possible de déterminer les dimensions des selles selon une autre modélisation, cette fois géométrique, en relation avec la figure 3. Celle-ci montre sur un seul schéma la selle non contrainte (arc de cercle en trait continu) et contrainte (arcs de cercle en trait discontinu) c-à-d serrées contre des conduites PE 1 00 aux DNmin (i.e. diamètre minimal) et DNmax (diamètre maximal), les conduites étant des cercles.
Dans cette modélisation, on considère que l’extrémité de la selle à plaquer sur des conduites PEHD de différents diamètres parcourt une portion d’ellipse dans sa plage de déformation. Cette portion d’ellipse est caractérisée par un grand axe = 2a égal à son arc intérieur (celui qui est amené à être posé sur des conduites de différents diamètres) et un petit axe 2b = (2/TT) X 2a et elle a une excentricité e, égale à 0,771 dans le cas présent.
Une des caractéristiques essentielles des selles de l’invention est leur étendue latérale minimisée. En effet, l’arc d’ellipse parcouru par les extrémités latérales de la selle lors des déformations entre DNmin et DNmax est égal à a fois l’intégrale de Pmin à Pmax de V(1 - (e sin(P))2) dp. Il existe donc une relation de proportionnalité entre l’arc parcouru de DNmin à DNmax et a Db. Or Db = Da’ / 2 et Da’ = (B = a = q Rn) x ((1 / RNmin) - (1 / RNmax)) : l’arc maximal parcourable en termes de déformabilité et de résistance mécanique de la selle est donc lié mathématiquement et physiquement à ((1 / RNmin) - (1 / RNmax)).
Pour élargir la plage multi-diamètres, soit (1 /RNmax - 1 /RNmin) augmenté, le demi- arc a (= B) de la selle, qui est une des caractéristiques de leur conception, peut être minimisé.
Dans le cas de deux exemples de selles, on peut avoir les valeurs suivantes : [TABLE 8]
Ainsi, B72 ou B/2 multiplié par la variation d’angle par rapport à l’angle de référence Q en natif (avant déformation de la selle sur un diamètre de conduite éventuellement différent) constitue un bon estimatif de la déformation effective (avec un maximum à ne pas dépasser). A partir de ces résultats, on peut sélectionner pour les exemples donnés une valeur maximale proche de 15 mm pour di effective et d2 effective. On peut alors déterminer la plage et le gradient d’épaisseur ainsi que la longueur d’arc des selles permettant de respecter la relation (Dn - DNmin) / (DNmax - DNmin) = 0,34 à 0,40, ces bornes étant avantageuses et, cela, quel que soit le coefficient de sécurité appliqué pour éviter une rupture de la selle ou de la sangle de serrage sur les DN extrêmes. Dans cette description, Dn (qui est égal à 2 Rn) est le diamètre « natif », c’est-à-dire avant déformation éventuelle de la selle objet de l’invention. Considérant les valeurs du ratio (Rn - RNmin) / (RNmax - RNmin), on peut prendre une valeur, considérée optimale, qui est 0,363 = 1 - b/a = 1 - 2/TT.
On peut aussi considérer un rapport des DN extrêmes (les min et max) par la relation suivante : DNmax = 2,05 DNmin, le coefficient 2,05 étant avantageux mais pouvant préférentiellement être choisi de 2,0 à 2,1 . On peut éventuellement choisir un autre coefficient de valeur comprise entre 1 ,1 et 3,0 pour maximisation de l’applicabilité multi-DN du système. Ainsi, on peut par exemple prévoir un rapport DNmax sur DNmin de 1 , 1 avec DNmax = 200 mm et DNmin = 180 mm jusqu’à un rapport de 2,5, voire de 3, par exemple du DN 75 au DN 225.
Soit :
(Rn - RNmin) / (RNmax RNmin) = R = 0,37 RNmax / RNmin = R” = 2,05 (ou moins)
Rn / RNmin = 1 + R’ ((RNmax / RNmin) - 1 ) = 1 + R’ (R” - 1 )
= 1 ,3885 si R” = 2,05 (ou moins : 1 ,259 si R” = 1 ,7 par ex.)
Rn / RNmax = (Rn / RNmin) / R”
A noter que les minimums de q, B et B’ (i.e. les caractéristiques géométriques de la selle) sont imposés par les plus petits patins d’électrofusion pouvant assurer une adhésion suffisante sur les conduites PE100 considérées, auxquels il faut ajouter une zone périphérique d’environ 10 mm ainsi que la zone correspondant au dispositif d’accrochage 28 de l’extrémité latérale de fixation de sangle à l’extrémité latérale des ailes 20a, 20b. Le dispositif d’accrochage 28 comporte des logements des crans de la sangle de serrage à crans ou tout autre moyen d’accrochage pour d’autres types de sangles, notamment à cliquets ou grenouillères.
A partir des relations obtenues on peut réaliser, à titre d’exemple, les références suivantes de selles, les valeurs listées étant des diamètres nominaux en mm :
Pour un bossage de sortie de type « X » :
* Avec R” = 2,05 :
- choix de deux références avec 2 plages ne se chevauchant pas : 63-125 ; 140- 280,
- choix de trois références avec 3 plages ne se chevauchant pas : 40-75 ; 90-180 ; 200-400,
- choix de trois références avec 3 plages se rejoignant : 50-90 ; 90-180 ; 180-355.
* Avec R” = 1 ,7 :
- choix de trois références avec 3 plages ne se chevauchant pas : 63-90 ; 125- 180 ; 200-340,
- choix de trois références avec 3 plages se rejoignant : 63-90 ; 90-140 ; 140-250,
- choix de quatre références avec 4 plages se rejoignant : 63-90 ; 90-140 ; 140- 250 ; 250-400.
Pour un bossage de sortie de type « Y » :
* Avec R” = 2,05 :
- choix de deux références avec 2 plages ne se chevauchant pas : 90-180 ; 200- 400,
- choix de deux références avec 2 plages se rejoignant : 90-180 ; 180-355. * Avec R” = 1,7 :
- choix de deux références avec 2 plages ne se chevauchant pas : 90-140 ; 160- 280
- choix de trois références avec 3 plages ne se chevauchant pas : 90-140 ; 160- 280 ; 315-500
- choix de trois références avec 3 plages se rejoignant : 90-140 ; 140-225 ; 225- 355
Concernant la caractéristique de diminution de l’épaisseur de matière vers les extrémités latérales des ailes de la selle, on peut l’exprimer par un pourcentage de diminution d’épaisseur par mm d’arc par rapport à l’épaisseur présente vers l’axe longitudinal inter-cosses (hors surélévations et surépaisseurs dues aux passages de cosse et au bossage).
Cette diminution d’épaisseur peut par exemple correspondre à une épaisseur de l’aile côté bossage de 7,5 mm avant le premier sillon et diminuant jusqu’à une épaisseur d’aile de 4,5 mm après le dernier sillon, côté extrémité latérale de l’aile. Plus généralement, les ailes, côté bossage et en dehors d’un sillon, peuvent avoir des épaisseurs comprises entre 6 mm et 9 mm et côté extrémité latérale et en dehors d’un sillon, avoir des épaisseurs comprises entre 3 mm et 6 mm. La différence de hauteur de l’aile entre le côté du bossage et l’extrémité latérale et en dehors des sillons et le dispositif d’accrochage peut être comprise entre 2 à 6 mm. Il est également possible de mettre en œuvre des selles sans gradient d’épaisseur sur l’aile, c’est-à-dire qu’il n’y a pas de différence de hauteur de l’aile entre le côté du bossage et l’extrémité latérale et en dehors des sillons et du dispositif d’accrochage. Ainsi, la selle peut comporter des ailes d’épaisseur constante comprise par exemple entre 8 à 9 mm. Ces hauteurs hors sillons sont mesurées au plus haut et hors du bossage en lui-même ou des zones semi-circulaires d’épaisseur réduite bordant le bossage ou des surélévations ou surépaisseurs de l’axe longitudinal inter-cosses ou du dispositif d’accrochage 28 de sangle 3 à l’extrémité latérale de l’aile 20a, 20b.
A noter que cette diminution de l’épaisseur entre la face inférieure et la face supérieure de la selle en allant vers les extrémités latérales des ailes peut, de préférence, ne concerner que le fond des sillons. Ainsi, par exemple, on prévoit une épaisseur des ailes constante de 8,5 mm au niveau des crêtes entre les sillons et une hauteur de matière en fond de sillon (hauteur de matière définie par la distance au plus court entre la face inférieure et le fond de sillon) allant de 7,5 mm (vers le bossage) à 5,4 mm (vers les extrémités des ailes) dans le cas de cinq sillons par aile latérale pour une selle de demi-arc B = 70,5 mm.
Plus généralement, la profondeur des sillons peut être comprise entre 0,5 mm et 4 mm. Le nombre de sillons peut être compris entre 3 et 11 par aile et est de préférence compris entre cinq et sept. De préférence, la profondeur d’un sillon est constante longitudinalement mais dans des variantes de réalisation elle peut être différente sur la longueur et, notamment diminuer vers les extrémités longitudinales du sillon voire le sillon ne pas aller jusqu’aux bords longitudinaux de l’aile. Ainsi, les sillons sont de préférence étendus longitudinalement d’un bord longitudinal à l’autre de chaque aile et ils sont donc latéraux au bossage. On peut cependant prévoir des sillons latéraux aux passages de cosse qui sont interrompus par le bossage du fait qu’ils sont proches de l’axe longitudinal inter cosses.
De préférence, les sillons sont agencés régulièrement angulairement, par exemple tous les 5,5° le long de l’aile. De préférence, les deux côtés latéraux de chaque sillon sont deux faces planes et le fond du sillon est arrondi avec un rayon faible d’environ 0,5 mm afin de limiter les risques d’amorces d’entailles au fond des sillons.
On fait en sorte que la forme des sillons et de leurs côtés latéraux permette un démoulage aisé de la selle lors de sa fabrication suite à une injection de PEHD dans un moule de selle. Pour cela, on peut faire en sorte que les faces les plus proches de la verticale des côtés latéraux des sillons soient orientées vers le centre de la selle, ce qui peut être obtenu par exemple avec une ouverture de 98° appliquée à tous les sillons.
Les ailes ont donc une quantité de matière qui diminue en allant vers leurs extrémités latérales de fixation à la sangle et, cela, selon deux modalités : d’une part, par diminution de l’épaisseur/hauteur de matière entre la face inférieure et la face supérieure de la selle en allant vers les extrémités latérales des ailes et, d’autre part, par diminution de la longueur (mesurée parallèlement à l’axe longitudinal inter-cosses) des ailes en allant vers les extrémités latérales des ailes.
On comprend que les indications données peuvent servir de méthode de détermination des dimensions des selles adaptables à différents DN de conduites. On peut ainsi déterminer d’autres nombres de références de selle pour les DN de conduites rencontrés. Ainsi, au lieu des trois références de l’exemple donné précédemment et pour des conduites PEHD pour eau potable, typiquement de 63 mm voire 50 mm jusqu’à 315 mm voire 400 mm, on prévoit en variante un nombre de références limité à :
- 2 à 4 types de selles et 1 à 2 patin(s) d’électrofusion pour des bossages de sortie « X » 40x3 en mm, ce qui peut faire jusqu’à 8 références ;
- 2 à 3 types de selles et 1 à 3 patin(s) d’électrofusion pour des bossages de sortie « Y » 55x3 en mm, ce qui peut faire jusqu’à 9 références.
En outre, étant donné que le patin d’électrofusion est traversé en son centre par un orifice de passage correspondant à l’orifice de passage du bossage, le patin est de préférence adapté aux dimensions du bossage.
Jusqu’à présent on a considéré une prise en charge sur conduite d’eau mais on comprend que le système de prise en charge de l’invention peut s’appliquer à d’autres fluides que l’eau et, par exemple, pour le gaz.
Pour les inserts, les dimensions suivantes peuvent par ex. être utilisées :
[TABLE 9]
Il est aussi possible de prévoir des systèmes de prise en charge pour des bossages adaptés à des sorties au pas du gaz G 3/4”, 1”, TΊ/4 et 1 ” 1/2. Dans ce cas, les plages à couvrir peuvent être réparties selon le nombre de références données par le tableau suivant :
[TABLE 10]
Différents types de gorges et d’éventuelles lèvres d’étanchéité peuvent être mises en œuvre sur ou dans le canal central de l’insert en laiton pour garantir le vissage d’un robinet sans fuite une fois le système mis en service. De plus, afin d’améliorer l’accroche mécanique aux interfaces et l’étanchéité, la présence de crénelages ou de relief sur les faces de l’insert en laiton peut être mise à profit, tout comme l’ajout d’orifices amenés à être remplis de polyéthylène lors de l’étape d’injection.
On peut noter sur la coupe de la figure 6 d’une selle destinée à recevoir un insert métallique, qu’une gorge circulaire 26 s’enfonçant dans le bossage est prévue autour du canal de passage interne du mamelon. Cette gorge circulaire est destinée à recevoir une couronne circulaire débordant vers le bas de l’insert métallique. Dans une variante, une bague métallique indépendante d’un insert est installée, de préférence surmoulée, dans ladite gorge circulaire 26.
Concernant les patins d’électrofusion, les selles peuvent être livrées avec les patins surmoulés, donc préinstallés, ou avec des patins à encastrer dans la selle par l’installateur, lors de l’installation de la selle, juste avant électrofusion. Dans ce dernier cas, les selles et patins d’électrofusion ainsi disponibles sous forme de fournitures dissociées/séparées peuvent notamment éviter des erreurs de gamme de diamètre de conduite ou de sortie (40 ou 55 mm) sur laquelle le branchement est prévu. Les patins d’électrofusion ont en général une épaisseur de 1,1 mm et la profondeur du logement est prévue en conséquence.
L’intégration des patins d’électrofusion par surmoulage lors de la fabrication des selles par injection de PE (préférentiellement PEHD) dans un moule assure initialement la tenue et l’étanchéité entre l’arrière des patins (face du patin qui ne sera pas au contact avec la conduite PE(HD) et l’intérieur des logements de selles. Dans le cas où le patin d’électrofusion est installé par encastrement dans le logement de selle par l’utilisateur final sur le terrain, c’est l’étape d’électrofusion qui permet d’assurer la tenue et l’étanchéité entre l’arrière des patins et l’intérieur du logement de selle.
L’installation d’un système de selle selon l’invention pour une prise en charge sur une conduite, par ex. un tuyau PE100 DN125, commence par un grattage de la surface de la conduite à l’aide de l'outil manuel pour notamment éliminer la couche d’oxyde habituellement présente. On nettoie ensuite à l’alcool cette surface de conduite.
Ensuite, si le patin d’électrofusion n’est pas préinstallé, on positionne un patin d’électrofusion sur la conduite et la selle afin que le patin soit dans son logement et les deux cosses de raccordement du patin passent par les deux passages de cosse de la selle. Une sangle de serrage disposée entre les deux extrémités latérales des ailes et permettant au système d’encercler la conduite est alors serrée afin de contraindre la selle avec son patin d’électrofusion à s’appliquer par toute sa face inférieure sur la surface de la conduite.
La sangle de serrage peut être une sangle à grenouillères. Les sangles sont des bandes en matière plastique, par exemple PEHD, PP, NYLON®, ou métalliques ou en tissé ou une combinaison des précédents. Les sangles de serrage ont une largeur adaptée et, par exemple de 50 mm pour les selles de type « X ». La longueur de la sangle est adaptée aux gammes de diamètres prévus pour les différentes références de selles. On peut prévoir de couper un surplus de longueur de sangle une fois celle-ci serrée.
Sur les figures 8 à 13 on a représenté un exemple de sangle de serrage 3 à crans et ses rotules 32, utilisables avec les selles de l’invention ainsi qu’un outil de serrage 39.
Sur la figure 8, la sangle 3 est en matière plastique flexible pour pouvoir s’enrouler autour de la conduite. La sangle 3 comporte sur sa largeur trois zones principales, une zone centrale comportant des orifices, notamment de traction, circulaires 31 , et latéralement deux zones latérales de crans 30. Les zones de crans 30 sont ici discontinues le long de la sangle 3 mais dans des variantes les zones peuvent être continues. En fait, les discontinuités dans les zones latérales de cran 30 permettent un détrompage en ce qui concerne le choix de la référence de selle au regard du diamètre nominal de la conduite sur laquelle elle doit être installée. Les zones de crans 30 sont agencées de manière à permettre un serrage et blocage de la sangle si la bonne référence de selle est utilisée pour la conduite sur laquelle ladite selle est installée.
Typiquement, la sangle crantée 3 représentée peut s’utiliser pour des conduites de DN compris entre 90 mm et 180 mm.
La rotule 32, qui s’apparente à un rouleau, est sensiblement cylindrique tout comme le siège ou berceau destiné à la recevoir dans le dispositif d’accrochage 28.
Deux rotules 32 en matière plastique ont été coulissées/glissées le long de la sangle 3 figure 8. Ces rotules vont venir s’accrocher dans les dispositifs d’accrochage 28 adaptés qui sont aux deux extrémités latérales des ailes 20a,
20b de la selle 2. La rotule comporte une fente 37 traversante permettant l’insertion de la sangle et le coulissement sur la sangle.
La rotule 32 comporte intérieurement, dans la fente 37 traversante, une lamelle de blocage 33 en acier inoxydable visible dans la rotule sur la figure 9 et dont les rapports avec les crans sont visibles figures 11 à 13. Cette lamelle de blocage 33, figure 14, comporte deux doigts de blocage 35 latéraux destinés à interférer avec les crans 30 de la sangle 3 et, en position médiane, une patte ressort 34 qui est inclinée d’environ 30° par rapport au plan général de la lamelle de blocage 33, en l’absence de contrainte exercée sur la lamelle de blocage 33. La patte ressort 34 prend appui contre la matière de la rotule et elle n’est donc pas inclinée vers l’intérieur de la fente 37 traversante mais à l’opposée. La patte ressort 34 permet à la lamelle de blocage de prendre deux positions principales dans la rotule, une position escamotée lorsque la patte ressort est contrainte et permettant le coulissement de la rotule 32 le long de la sangle dans un sens de serrage et une position non escamotée bloquant la rotule 32 le long de la sangle dans un sens de desserrage. Ainsi, le coulissement des rotules ne peut s’effectuer que dans un sens de serrage correspondant à un rapprochement des deux rotules le long de la sangle. La lamelle de blocage 33 permet de former un cliquet anti-retour au sein de la rotule.
Sur la figure 11 , on peut mieux voir les relations entre la sangle 3 à crans 30, la rotule 32 et sa lamelle interne dont un doigt de blocage latéral a été rendu visible. On peut prévoir sur la surface de la rotule, comme représenté figure 11 , une dépression 36 destinée à réceptionner l’extrémité d’un tournevis à tête plate qui peut servir à basculer une rotule serrée sur une selle afin de la débloquer des crans de la sangle et desserrer et retirer la sangle si on le souhaite.
Le système de serrage à sangle à crans est centrable, éventuellement réutilisable. Le système de serrage est ergonomique car il requiert des efforts modérés et peut être serré avec un outil de serrage non démesuré, notamment la pince 39 de la figure 10. A la place de l’outil, on peut utiliser une tige ou un tournevis et faire levier contre une partie de la selle pour tirer vers le haut la sangle.
La pince de serrage 39 de la figure 10 comporte deux extrémités pouvant s’écarter ou se rapprocher, une des extrémités comportant une griffe 38 destinée à être insérée dans un des orifices de traction 31 et l’autre extrémité comportant une patte à deux doigts destinés à prendre appui sur l’extrémité latérale de fixation de l’aile à dispositif d’accrochage de la selle.
On peut noter figure 8, le long de la zone centrale comportant les orifices de traction 31 qui sont circulaires, la présence d’une ouverture allongée 31’ et elle correspond à une zone où il ne peut pas y avoir de fixation par les rotules 32. Plus généralement, les rotules ne peuvent être retenues le long de la sangle et permettre un serrage stable de la selle que dans les zones où les crans sont présents.
Une fois la selle 2 installée sur la conduite et la sangle 3 serrée pour que les ailes 20a, 20b latérales s’appliquent sur la surface de la conduite, l’électrofusion est mise en œuvre. Après l’électrofusion, on laisse refroidir l’ensemble pendant au moins 30 min et on peut ensuite, si on le souhaite, enlever la sangle de serrage dans le cas où elle serait amovible comme peut l’être une sangle à grenouillères ou la sangle à crans avec ses rotules que l’on peut basculer grâce à la dépression 36.
Lors du percement de la conduite pour prise en charge, l’équipement de raccordement avec l’outil de percement est installé sur le bossage de la selle. Il peut être préférable que la sangle de serrage soit laissée en place lors de l’opération de percement et enlevée seulement après si on a prévu d’enlever la sangle.
On va maintenant présenter une version perfectionnée du système dans laquelle les moyens de serrage de la selle sur la conduite sont perfectionnés.
Sur la figure 15, une rotule 32 perfectionnée à deux lamelles de blocage 33 disposées à l’intérieur de la rotule est représentée en coupe. Les deux lamelles de blocage 33 à pattes ressort 34 et doigts de blocage 35 latéraux, ont un fonctionnement similaire à la lamelle de la rotule à une seule lamelle présentée ci- dessus. Avec cette rotule perfectionnée le maintien et le serrage de la sangle 3 sont améliorés aussi bien en dynamique, lors de l’installation, qu’en statique, après installation et serrage. On peut voir sur les figures, pendant le coulissement (figure 16), le passage des crans par les doigts de blocage 35, et après le serrage final, les doigts de blocage 35 bloqués dans les crans (figure 17). L’utilisation de deux lamelles de blocage 33 permet de mieux répartir les contraintes de serrage et diminue les risques de ripage et desserrage entre crans et doigts de blocage. Une pince de serrage 39 perfectionnée est mise en oeuvre sur la figure 18. Les figures 19 et 20 permettent de mieux visualiser la structure de cette pince de serrage 39 perfectionnée qui comporte une plaque dentée 41 d’entraînement de la sangle 3 crantée. Sur la figure 20, les dents superposées de la plaque dentée 41 entraînent les crans de la sangle 3 pour tirer vers le haut la sangle, lors du serrage des poignées de la pince de serrage 39 perfectionnée, serrage qui entraîne vers le haut la plaque dentée 41. Ainsi, la pince de serrage 39 perfectionnée est mise en place par le dessus de l’extrémité d’aile de la selle pour permettre la mise en tension de la sangle et de la selle sur la conduite par traction et serrage de la sangle.
Sur la figure 19, on ramène la pince de serrage 39 perfectionnée dans un état où elle pourra, ultérieurement, de nouveau tirer la sangle, la plaque dentée 41 étant redescendue, ses dents ripant sur les crans de la sangle 3. La rotule 32 perfectionnée avec ses deux lamelles de blocage 33 et la sangle 3 crantée fonctionnent à la manière d’un cliquet.

Claims

REVENDICATIONS
1. Système (1 ) de prise en charge pour conduite de distribution de fluide, la conduite allongée longitudinalement et cylindrique étant en matière plastique thermosoudable, le système (1) comportant une selle (2) en matière plastique thermosoudable, un patin d’électrofusion et une sangle de serrage (3), la selle (2) comportant une face supérieure sur laquelle est érigé un bossage (21) central et une face inférieure destinée à venir s’appliquer contre la conduite, la selle (2) étant allongée longitudinalement et arrondie transversalement, le patin d’électrofusion comportant deux cosses de raccordement et étant rapporté dans un logement (5) de la face inférieure de la selle (2), les deux cosses de raccordement traversant l’épaisseur de la selle dans deux passages de cosse (22) et débouchant à la face supérieure de la selle (2), les deux passages de cosse (22) et le bossage (21) étant alignés le long d’un axe longitudinal inter-cosses de la selle (2), la selle (2) comportant latéralement, de part et d’autre de l’axe longitudinal inter-cosses, deux ailes (20a, 20b) latérales, la face inférieure de la selle étant concave vers le bas et en forme de surface cylindrique de rayon déterminé, les deux ailes (20a, 20b) de la selle (2) comportant deux extrémités latérales de fixation (28) destinées à permettre la fixation à la sangle de serrage (3), le serrage de la sangle de serrage (3) permettant l’application de la face inférieure de la selle (2) avec ses deux ailes (20a, 20b) contre la conduite, dans lequel : une même selle (2) est configurée pour être fixée par électrofusion sur des conduites de diamètres nominaux compris entre un diamètre nominal minimal, DNmin, et un diamètre nominal maximal, DNmax, de rapport DNmax/DNmin compris entre 1 ,1 et 3,0 sans détérioration mécanique ou fuite lors du serrage et après électrofusion, et dans lequel les ailes (20a, 20b) présentent un gradient de flexibilité en allant du bossage (21) vers les extrémités latérales de fixation, la flexibilité étant maximale vers les extrémités latérales de fixation et minimale vers le bossage (21).
2. Système (1) selon la revendication 1, dans lequel le gradient de flexibilité est obtenu par au moins une des structurations suivantes :
- la présence d’une matière plastique dont la composition varie en allant du bossage (21) vers les extrémités latérales de fixation,
- la présence à la face supérieure des ailes (20a, 20b), de chaque côté latéral de l’axe longitudinal inter-cosses, de sillons (25) longitudinaux parallèles entre eux et à l’axe longitudinal inter-cosses, les épaisseurs de matière entre le fond des sillons (25) et la face inférieure des ailes allant en diminuant transversalement, de sillon en sillon, du bossage (21) vers l’extrémité latérale de l’aile (20a, 20b),
- l’épaisseur de matière des ailes (20a, 20b) diminue en allant du bossage (21 ) vers les extrémités latérales de fixation,
- la longueur des ailes, telle que mesurée parallèlement à l’axe longitudinal inter cosses, diminue en allant du bossage (21) vers les extrémités latérales de fixation.
3. Système (1) selon la revendication 2, dans lequel l’épaisseur de matière des ailes (20a, 20b) diminue en allant du bossage (21) vers les extrémités latérales de fixation et la longueur des ailes, telle que mesurée parallèlement à l’axe longitudinal inter cosses, diminue en allant du bossage (21) vers les extrémités latérales de fixation.
4. Système (1) selon l’une quelconque des revendications 1 à 3, dans lequel le système est configuré pour permettre l’application d’une force de serrage jusqu’à 5 kN sans détérioration mécanique ou fuite lors du serrage et après électrofusion, et en ce que la selle est choisie pour respecter la relation (Dn - DNmin) / (DNmax - DNmin) = 0,34 à 0,40, où Dn est le diamètre de la face inférieure de la selle avant serrage.
5. Système (1) selon l’une quelconque des revendication 1 à 4, dans lequel la face supérieure des ailes (20a, 20b) comporte, de chaque côté latéral de l’axe longitudinal inter-cosses, des sillons (25) longitudinaux parallèles entre eux et à l’axe longitudinal inter-cosses.
6. Système (1) selon la revendication 5, dans lequel que les épaisseurs de matière entre le fond des sillons (25) et la face inférieure vont en diminuant transversalement, de sillon en sillon, du bossage (21) vers l’extrémité latérale de l’aile (20a, 20b).
7. Système (1) selon l’une quelconque des revendications 5 et 6, dans lequel le fond des sillons (25) est arrondi.
8. Système (1) selon l’une quelconque des revendications 1 à 7, dans lequel la face supérieure dans la partie de jonction circulaire entre le bossage (21) central et la face supérieure comporte au moins deux zones semi-circulaires (27) d’épaisseur réduite de la matière de la selle (2) entre les faces supérieure et inférieure, lesdites deux zones semi-circulaires (27) d’épaisseur réduite étant disposées vers les deux côtés latéraux du bossage (21).
9. Système (1) selon l’une quelconque des revendications 1 à 8, dans lequel le patin d’électrofusion est surmoulé dans la selle (2).
10. Système (1) selon l’une quelconque des revendications 1 à 9, dans lequel la sangle de serrage (3) est un élément amovible destiné à être enlevé une fois la selle (2) électrosoudée sur la conduite.
11. Système (1) selon l’une quelconque des revendications 1 à 10, dans lequel la sangle de serrage (3) est en matière plastique et comporte des crans (30).
12. Système (1) selon l’une quelconque des revendications 1 à 11, dans lequel, à la face supérieure de la selle (2), chacun des deux passages de cosse (22) comporte une surépaisseur vers le haut de matière et en ce que la face supérieure le long de l’axe longitudinal inter-cosses comporte une surélévation vers le haut de matière entre le bossage (21) et chacun des deux passages de cosse (22).
13. Installation de prise en charge sur une conduite de distribution de fluide, notamment d’eau, comportant le système (1) de l’une quelconque des revendications 1 à 12, électrosoudé sur ladite conduite.
14. Ensemble de serrage de selle en matière plastique thermosoudable d’un système (1) de l’une quelconque des revendications 1 à 12, l’ensemble comportant, d’une part, pour utilisation avec une selle, une sangle de serrage (3) en matière plastique comportant des crans (30) et au moins une rotule (32) à deux lamelles de blocage (33) disposées à l’intérieur de la rotule (32), les lamelles de blocage (33) ayant des pattes ressort (34) et des doigts de blocage (35) et, d’autre part, réutilisable, un outil (39) à type de pince comportant une plaque dentée (41) d’entraînement de la sangle de serrage (3) crantée.
EP21707741.1A 2020-03-02 2021-03-01 Système électrosoudable à selle et installation de prise en charge sur conduite, multi-diamètres et à patins d'électrofusion Pending EP4114646A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2002101A FR3107666B1 (fr) 2020-03-02 2020-03-02 Système électrosoudable à selle et installation de prise en charge sur conduite, multi-diamètres et à patins d’électrofusion
PCT/EP2021/055076 WO2021175794A1 (fr) 2020-03-02 2021-03-01 Système électrosoudable à selle et installation de prise en charge sur conduite, multi-diamètres et à patins d'électrofusion

Publications (1)

Publication Number Publication Date
EP4114646A1 true EP4114646A1 (fr) 2023-01-11

Family

ID=70614177

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21707741.1A Pending EP4114646A1 (fr) 2020-03-02 2021-03-01 Système électrosoudable à selle et installation de prise en charge sur conduite, multi-diamètres et à patins d'électrofusion

Country Status (4)

Country Link
EP (1) EP4114646A1 (fr)
FR (1) FR3107666B1 (fr)
IL (1) IL295849A (fr)
WO (1) WO2021175794A1 (fr)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MC1468A1 (fr) 1982-03-10 1983-06-17 Innotec Prise de derivation electrosoudable pour les canalisations plastiques
FR2706012B1 (fr) * 1993-06-03 1995-09-01 Innoge Sam Dispositif pour le maintien de raccords thermosoudables.
JPH10169847A (ja) * 1996-12-12 1998-06-26 Sekisui Chem Co Ltd 電気融着継手の固定方法
JPH10185068A (ja) 1996-12-24 1998-07-14 Sekisui Chem Co Ltd 電気融着継手の固定方法
DE19935424C2 (de) 1999-07-13 2002-04-18 Friatec Ag Armatur
JP2002174390A (ja) 2000-12-04 2002-06-21 Mitsui Chemicals Inc 電気融着サドル系継手
JP4326158B2 (ja) 2001-02-08 2009-09-02 三井化学産資株式会社 電気融着サドル系継手
JP2008025704A (ja) 2006-07-20 2008-02-07 Shizuoka Gas Co Ltd エレクトロフュージョン継手
EP3001087B1 (fr) * 2014-09-26 2017-11-08 Georg Fischer Wavin AG Collier de tuyeau
JP6904698B2 (ja) 2016-12-26 2021-07-21 株式会社クボタケミックス 分岐サドル継手

Also Published As

Publication number Publication date
FR3107666A1 (fr) 2021-09-03
FR3107666B1 (fr) 2022-02-25
WO2021175794A1 (fr) 2021-09-10
IL295849A (en) 2022-10-01

Similar Documents

Publication Publication Date Title
EP3469244B1 (fr) Embout de connexion de ligne flexible, ligne flexible et procédé associés
EP3014157B1 (fr) Conduite flexible et procédé associé
EP2878873B1 (fr) Dispositif de raccordement rapide de type cartouche
EP0870967A1 (fr) Joint verrouillé entre éléments de canalisation et jonc fendu métallique utilisable dand un tel joint
EP0913613A1 (fr) Manchon pour élément de tuyauterie
EP2558763A1 (fr) Dispositif de raccordement d'un tube a un element de circuit, procede de montage d'une rondelle d'ancrage sur un corps d'un tel dispositif de raccordement et procede de demontage d'un tel dispositif
FR2851634A1 (fr) Pince de raccord et structure de raccordement de raccord destinees a verifier le raccordement complet entre un raccord et un tuyau
EP1258666B9 (fr) Raccord instantané à fixation par bague élastique externe
EP1337780B1 (fr) Tuyau flexible a bride de raccordement et procede d'obtention d'un tel tuyau
EP3397886A1 (fr) Embout de connexion d'une ligne flexible, ligne flexible et procédé de montage associés
EP2429848B1 (fr) Support de fixation d'un tube support d'echappement
EP2889439B1 (fr) Dispositif d'ancrage avec entretoise pour armatures de cerclage
WO2021175794A1 (fr) Système électrosoudable à selle et installation de prise en charge sur conduite, multi-diamètres et à patins d'électrofusion
EP0090724B1 (fr) Dispositif de raccordement de fibres optiques et procédé le mettant en oeuvre
EP1336763B1 (fr) Dispositif de fixation à pince
WO2020109611A1 (fr) Entretoise pour remplacement de rails de chemin de fer
WO2004083657A1 (fr) Dispositif de fixation a pince
FR2950000A1 (fr) Traverse a profil ferme pour essieu arriere d'un vehicule automobile
WO2015007854A1 (fr) Embout de connexion d'une conduite flexible, et conduite flexible associée
EP3324093B1 (fr) Bride d adaptation pour piquage sur canalisation
FR2785359A1 (fr) Collier de prise en charge a bague anti-fluage de joint et procede de fabrication
WO2023046808A1 (fr) Dispositif de colmatage d'une fuite sur une canalisation de transport et/ou sur un réservoir de fluide
EP0641964A1 (fr) Dispositif de support de câble ou conduits
FR2857723A1 (fr) Dispositif de guidage pour flexibles hydrauliques
WO2022189738A1 (fr) Dispositif de prise en charge

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220831

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAV Requested validation state of the european patent: fee paid

Extension state: MA

Effective date: 20220831