EP4102154B1 - Heat exchanger for a refrigerated cabinet - Google Patents

Heat exchanger for a refrigerated cabinet Download PDF

Info

Publication number
EP4102154B1
EP4102154B1 EP21178283.4A EP21178283A EP4102154B1 EP 4102154 B1 EP4102154 B1 EP 4102154B1 EP 21178283 A EP21178283 A EP 21178283A EP 4102154 B1 EP4102154 B1 EP 4102154B1
Authority
EP
European Patent Office
Prior art keywords
heat
heating element
heat exchanger
slats
end sections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21178283.4A
Other languages
German (de)
French (fr)
Other versions
EP4102154A1 (en
Inventor
Manfred Gabriel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hauser GmbH
Original Assignee
Hauser GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hauser GmbH filed Critical Hauser GmbH
Priority to EP21178283.4A priority Critical patent/EP4102154B1/en
Priority to HUE21178283A priority patent/HUE065403T2/en
Publication of EP4102154A1 publication Critical patent/EP4102154A1/en
Application granted granted Critical
Publication of EP4102154B1 publication Critical patent/EP4102154B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/014Heaters using resistive wires or cables not provided for in H05B3/54

Definitions

  • the invention relates to a heat exchanger for a refrigerator with a fin package forming a flow channel and an electric defrost heater.
  • Heat exchangers with integrated defrost heating are known from the prior art.
  • the DE20203571 U1 shows such a heat exchanger with a flow channel for cooling air, in which grooves running transversely to the flow direction parallel to the longitudinal axis of the heat exchanger are provided. These grooves protrude into the flow channel and are used to accommodate heating elements for defrosting the heat exchanger.
  • the heating elements By arranging the heating elements in the grooves, the contact between the heating element and the heat exchanger is improved, thereby increasing the defrosting efficiency. Likewise, defective heating elements can be easily removed thanks to this arrangement.
  • the disadvantage of the prior art is that the heating elements are arranged within the flow channel due to their storage in the grooves. This reduces the effective cross section of the flow channel and also means that the amount of heat released by the heating elements directly heats the air to be cooled and thus not only slows down the defrosting process, but also reduces the cooling capacity of the heat exchanger during the defrosting process.
  • the DE20203571 U1 describes an arrangement of the heating elements on the outside of the heat exchanger in order not to reduce the flow cross section, but this leads to increased power loss of the heating elements In this case, a significant part of the heat energy released is not released to the heat exchanger, but to the environment.
  • the invention is therefore based on the object of designing a heat exchanger of the type described at the beginning, which can be defrosted efficiently and energy-savingly, particularly during operation, without impairing its cooling performance.
  • KR 100 686 764 B1 discloses a heat exchanger according to the preamble of claim 1.
  • the defrost heater comprises a surface heating element which adjoins the flow channel and runs at least in sections parallel to it and which is connected in a heat-conducting manner to adjacent end sections of the slats. Due to its spatial arrangement, the defrost heater does not have any element that protrudes into the flow channel. On the one hand, this does not reduce the effective flow cross section of the flow channel and, on the other hand, no power loss is generated for direct heating of the cooling fluid flow in the flow channel.
  • a surface heating element such as a heating foil, emits its heat predominantly transversely to an effective heat emission surface and thus enables a larger one Contact surface with the slats. This increases the heat input into the slats via heat conduction and reduces the heating of the cooling fluid in the flow channel, especially since the layer of ice on the slats that melts during defrosting insulates the cooling fluid from the heated slats.
  • the thermal energy can be introduced into the slats more efficiently and energy consumption can thus be reduced if the surface heating element is directly adjacent to the adjacent end sections of the slats. This means that the heat-conducting contact between the end sections of the fins and the Surface heating element is manufactured without any other intermediate components. As a result of these measures, energy or Heat losses are reduced because no energy is dissipated from any intermediate components or directed away from the slats.
  • the proportion of heat energy that is transferred by heat conduction can be increased by having the end sections of the slats run parallel to the surface heating element.
  • the parallel course increases the surface area of the slats that is available for contact with the surface heating element and thus for heat conduction. If the distance between mutually parallel slats is not changed at the same time, the air gaps between the end sections of the slats also become smaller, as a result of which the proportion of the amount of heat that is transferred through thermal radiation decreases in favor of more efficient heat conduction.
  • the fastest and most uniform defrosting result possible can be achieved and unnecessary heating of the cooling fluid can be avoided if at least 15%, preferably 30%, even more preferably 75% of the end sections of the Slats are connected to the surface heating element in a heat-conducting manner.
  • the heat input into the slats is extremely uniform, and it has been found that from this percentage onwards, heat conduction between the individual slats can largely be avoided and the ice layer that insulates the slats from the cooling fluid melts evenly. This largely avoids the selective heat input into the cooling fluid in areas in which the ice layer has already melted while further heating is required to melt other areas.
  • the dimensioning of the surface heating element can be easily adapted to the dimensions of the fin package to be heated if the surface heating element includes a heating cable.
  • a flat thermal bridge such as a heat-conducting plate or a heat-conducting foil, is adapted to the dimensions of the lamella pack and connected to the end sections of the lamellas in a heat-conducting manner. This thermal bridge is then heated using a heating cable, creating an effective heat dissipation surface.
  • the flat, easy-to-machine component of the surface heating element needs to be adapted to the dimensions of the lamella pack, with the heating cable being laid, for example, in a meandering shape on the thermal bridge depending on its length and connected to it in a heat-conducting manner.
  • the side of the surface heating element opposite the slats is covered with thermal insulation.
  • the thermal insulation has a heat reflection layer facing the slat pack, so that the surface heating element essentially only releases its heat energy in the direction of the slats.
  • the slats are heated less as the distance from the surface heating element increases, high heating outputs are required for correspondingly long slats in order to sufficiently defrost the end sections of the slats facing away from the surface heating element. Since the required heating output per length is not constant due to dissipation effects, this can lead to high energy requirements for longer slats. However, this energy requirement for efficient defrosting can be reduced and the heat exchanger can be defrosted more quickly if at least two surface heating elements are provided, which are connected in a heat-conducting manner on two opposite sides of the fin stack to adjacent end sections of the fins on one side. That's what it will be If the heat energy is applied to the slat pack from opposite sides, the slats only need to be defrosted along half their length, which means that the required heating output per length can be kept in an energetically efficient range.
  • a heat exchanger according to the invention for a refrigerated cabinet comprises a flow channel 1 formed by a plate pack, through which a cooling fluid, such as air, passes through in the flow direction 2, and an electric defrost heater.
  • the defrost heater is provided for defrosting the slats 5 and has a surface heating element 3, which is connected in a heat-conducting manner to the end sections 4 of the slats 5 of the slat pack.
  • the surface heating element 3 is connected directly to the adjacent end sections 4.
  • the interaction surface and thus the heat conduction between the end sections 4 of the slats 5 and the surface heating element 3 can be increased if the end sections 4 of the slats 5 run parallel to the surface heating element 3. This additionally reduces the proportion of thermal energy that is given off via thermal radiation and therefore cannot be specifically introduced into the slats 5.
  • the surface heating element can be composed of several components, for example it can include a heating cable 6, which is arranged in a meandering shape on a heat-conducting plate 7.
  • the thermal energy is supplied via the heating cable 6 and introduced into the end sections 4 of the slats 5 via the surface of the heat-conducting plate 7.
  • a significant advantage is that the effective heat emission surface of the surface heating element 3, i.e In this case, the free surface of the heat-conducting plate 7 can be easily adapted to the surface of the plate pack. So all you have to do is cut the easy-to-process and cheap heat-conducting plate 7 and arrange the heating cable 6 on it.
  • the thermal insulation 8 also has a heat reflection layer (not shown), for example an aluminum foil, on the side facing the end sections 4 of the slats 5. The heat energy otherwise absorbed by the thermal insulation 8 can therefore also be conducted into the end sections 4 of the slats 5.
  • a cooling line 9, through which an evaporating refrigerant flows, is connected to the fins 5 in order to cool them.
  • the slats 5 can be defrosted in a more energy-saving manner if a surface heating element 3 is provided on opposite sides of the slat pack.
  • the heat energy supplied to each surface heating element 3 can be dimensioned such that it only defrosts the slats 5 up to the middle, as a result of which less energy is dissipated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Defrosting Systems (AREA)

Description

Die Erfindung bezieht sich auf einen Wärmetauscher für ein Kühlmöbel mit einem einen Strömungskanal bildenden Lamellenpaket und einer elektrischen Abtauheizung.The invention relates to a heat exchanger for a refrigerator with a fin package forming a flow channel and an electric defrost heater.

Aus dem Stand der Technik sind Wärmetauscher mit integrierter Abtauheizung bekannt. Die DE20203571 U1 zeigt einen solchen Wärmetauscher mit einem Strömungskanal zum Kühlen von Luft, bei dem quer zur Strömungsrichtung parallel zur Wärmetauscherlängsachse verlaufende Nuten vorgesehen sind. Diese Nuten ragen in den Strömungskanal und dienen zur Aufnahme von Heizstäben zum Abtauen des Wärmetauschers. Durch die Anordnung der Heizstäbe in den Nuten wird der Kontakt zwischen Heizstab und Wärmetauscher verbessert und dadurch die Abtaueffizienz erhöht. Gleichermaßen können durch diese Anordnung defekte Heizstäbe einfach entnommen werden.Heat exchangers with integrated defrost heating are known from the prior art. The DE20203571 U1 shows such a heat exchanger with a flow channel for cooling air, in which grooves running transversely to the flow direction parallel to the longitudinal axis of the heat exchanger are provided. These grooves protrude into the flow channel and are used to accommodate heating elements for defrosting the heat exchanger. By arranging the heating elements in the grooves, the contact between the heating element and the heat exchanger is improved, thereby increasing the defrosting efficiency. Likewise, defective heating elements can be easily removed thanks to this arrangement.

Nachteilig am Stand der Technik ist allerdings, dass die Heizstäbe aufgrund ihrer Lagerung in den Nuten innerhalb des Strömungskanals angeordnet sind. Dies verringert den effektiven Querschnitt des Strömungskanals und führt außerdem dazu, dass mit der von den Heizstäben abgegebenen Wärmemenge auch direkt die zu kühlende Luft erwärmt und damit nicht nur der Abtauvorgang verlangsamt, sondern auch die Kühlleistung des Wärmetauschers während dem Abtauvorgang gesenkt wird. Die DE20203571 U1 beschreibt eine Anordnung der Heizstäbe an der Außenseite des Wärmetauschers, um den Strömungsquerschnitt nicht zu verringern, allerdings führt dies zu einer erhöhten Verlustleistung der Heizstäbe, da in diesem Fall ein erheblicher Teil der abgegebenen Wärmeenergie nicht an den Wärmetauscher, sondern an die Umgebung abgegeben wird.However, the disadvantage of the prior art is that the heating elements are arranged within the flow channel due to their storage in the grooves. This reduces the effective cross section of the flow channel and also means that the amount of heat released by the heating elements directly heats the air to be cooled and thus not only slows down the defrosting process, but also reduces the cooling capacity of the heat exchanger during the defrosting process. The DE20203571 U1 describes an arrangement of the heating elements on the outside of the heat exchanger in order not to reduce the flow cross section, but this leads to increased power loss of the heating elements In this case, a significant part of the heat energy released is not released to the heat exchanger, but to the environment.

Der Erfindung liegt somit die Aufgabe zugrunde, einen Wärmetauscher der eingangs geschilderten Art so auszugestalten, der insbesondere während des Betriebs effizient und energiesparend abgetaut werden kann, ohne dabei seine Kühlleistung zu beeinträchtigen.The invention is therefore based on the object of designing a heat exchanger of the type described at the beginning, which can be defrosted efficiently and energy-savingly, particularly during operation, without impairing its cooling performance.

KR 100 686 764 B1 offenbart ein Wärmetauscher gemäß dem Oberbegriff von Anspruch 1. KR 100 686 764 B1 discloses a heat exchanger according to the preamble of claim 1.

Die Aufgabe wird gelöst durch einen Wärmetauscher mit dem Merkmalen des Anspruchs 1, wobei die Abtauheizung ein an den Strömungskanal anschließendes und wenigstens abschnittsweise parallel zu diesem verlaufendes Flächenheizelement umfasst, das mit benachbarten Endabschnitten der Lamellen wärmeleitend verbunden ist. Aufgrund ihrer räumlichen Anordnung weist die Abtauheizung kein Element auf, das in den Strömungskanal ragt. Damit wird einerseits der effektive Strömungsquerschnitt des Strömungskanals nicht verringert und andererseits wird keine Verlustleistung zur direkten Erwärmung des Kühlfluidstroms im Strömungskanal generiert. Im Gegensatz zu einem Heizstab, der Wärmeenergie im Wesentlichen radial zu seiner Längsachse abgibt und mehrere Lamellen ausschließlich punktuell entlang seiner Längsachse wärmeleitend kontaktieren kann, gibt ein Flächenheizelement, wie beispielweise eine Heizfolie, seine Wärmemenge überwiegend quer zu einer effektiven Wärmeabgabefläche ab und ermöglicht somit eine größere Kontaktfläche mit den Lamellen. Dadurch wird der Wärmeeintrag in die Lamellen über Wärmeleitung erhöht und die Erwärmung des Kühlfluids im Strömungskanal vermindert, zumal die beim Abtauen abzuschmelzende Eisschicht auf den Lamellen das Kühlfluid gegenüber den erwärmten Lamellen isoliert.The object is achieved by a heat exchanger with the features of claim 1, wherein the defrost heater comprises a surface heating element which adjoins the flow channel and runs at least in sections parallel to it and which is connected in a heat-conducting manner to adjacent end sections of the slats. Due to its spatial arrangement, the defrost heater does not have any element that protrudes into the flow channel. On the one hand, this does not reduce the effective flow cross section of the flow channel and, on the other hand, no power loss is generated for direct heating of the cooling fluid flow in the flow channel. In contrast to a heating rod, which emits heat energy essentially radially to its longitudinal axis and can only contact several slats in a heat-conducting manner at certain points along its longitudinal axis, a surface heating element, such as a heating foil, emits its heat predominantly transversely to an effective heat emission surface and thus enables a larger one Contact surface with the slats. This increases the heat input into the slats via heat conduction and reduces the heating of the cooling fluid in the flow channel, especially since the layer of ice on the slats that melts during defrosting insulates the cooling fluid from the heated slats.

Obwohl die Wärmeleitung zwischen den Endabschnitten der Lamellen und dem Flächenheizelement auch über zwischenliegende Bleche oder andere Bauteile erfolgen kann, kann die Wärmeenergie effizienter in die Lamellen eingeleitet und so der Energieverbrauch gesenkt werden, wenn das Flächenheizelement direkt an die benachbarten Endabschnitte der Lamellen angrenzt. Dies bedeutet, dass der wärmeleitende Kontakt zwischen den Endabschnitten der Lamellen und dem Flächenheizelement ohne weitere dazwischenliegende Bauteile hergestellt wird. Zufolge dieser Maßnahmen können Energie-bzw. Wärmeverluste verringert werden, da keine Energie von etwaigen dazwischenliegenden Bauelementen dissipiert, bzw. von den Lamellen weggeleitet wird.Although the heat conduction between the end sections of the slats and the surface heating element can also take place via intermediate metal sheets or other components, the thermal energy can be introduced into the slats more efficiently and energy consumption can thus be reduced if the surface heating element is directly adjacent to the adjacent end sections of the slats. This means that the heat-conducting contact between the end sections of the fins and the Surface heating element is manufactured without any other intermediate components. As a result of these measures, energy or Heat losses are reduced because no energy is dissipated from any intermediate components or directed away from the slats.

Der Anteil an Wärmeenergie, der mittels Wärmeleitung übertragen wird, kann gesteigert werden, indem die Endabschnitte der Lamellen parallel zum Flächenheizelement verlaufen. Durch den parallelen Verlauf wird die Oberfläche der Lamellen, die zum Kontakt mit dem Flächenheizelement und damit zur Wärmeleitung zur Verfügung steht, vergrößert. Wird der Abstand zwischen zueinander parallel verlaufenden Lamellen nicht gleichzeitig verändert, verkleinern sich zusätzlich die Luftspalte zwischen den Endabschnitten der Lamellen, wodurch der Anteil der Wärmemenge, die durch Wärmestrahlung übertragen wird, zugunsten der effizienteren Wärmeleitung sinkt.The proportion of heat energy that is transferred by heat conduction can be increased by having the end sections of the slats run parallel to the surface heating element. The parallel course increases the surface area of the slats that is available for contact with the surface heating element and thus for heat conduction. If the distance between mutually parallel slats is not changed at the same time, the air gaps between the end sections of the slats also become smaller, as a result of which the proportion of the amount of heat that is transferred through thermal radiation decreases in favor of more efficient heat conduction.

Auch wenn der Wärmeeintrag bevorzugter Weise möglichst in die Endabschnitte aller Lamellen eingeleitet werden soll, kann bereits ein möglichst rasches und gleichmäßiges Abtauergebnis erzielt und eine unnötige Erwärmung des Kühlfluids vermieden werden, wenn wenigstens 15%, bevorzugt 30%, noch bevorzugter 75% der Endabschnitte der Lamellen mit dem Flächenheizelement wärmeleitend verbunden sind. Auf diese Weise erfolgt der Wärmeeintrag in die Lamellen äußerst gleichmäßig, wobei sich herausgestellt hat, dass ab diesem Prozentsatz eine Wärmeleitung zwischen den einzelnen Lamellen weitgehend unterbleiben kann und somit die die Lamellen gegenüber dem Kühlfluid isolierende Eisschicht gleichmäßig abschmilzt. Dadurch wird der punktuelle Wärmeeintrag in das Kühlfluid in Bereichen, in denen die Eisschicht bereits abgeschmolzen ist während eine weitere Erwärmung zum Abschmelzen anderer Bereiche erforderlich ist, weitgehend vermieden.Even if the heat input should preferably be introduced into the end sections of all slats as far as possible, the fastest and most uniform defrosting result possible can be achieved and unnecessary heating of the cooling fluid can be avoided if at least 15%, preferably 30%, even more preferably 75% of the end sections of the Slats are connected to the surface heating element in a heat-conducting manner. In this way, the heat input into the slats is extremely uniform, and it has been found that from this percentage onwards, heat conduction between the individual slats can largely be avoided and the ice layer that insulates the slats from the cooling fluid melts evenly. This largely avoids the selective heat input into the cooling fluid in areas in which the ice layer has already melted while further heating is required to melt other areas.

Die Dimensionierung des Flächenheizelements kann einfach an die Dimensionen des zu heizenden Lamellenpakets angepasst werden, wenn das Flächenheizelement ein Heizkabel umfasst. So kann beispielsweise zuerst eine flächige Wärmebrücke, wie beispielsweise ein Wärmeleitblech oder eine Wärmeleitfolie, an die Dimensionen des Lamellenpakets angepasst und wärmeleitend mit den Endabschnitten der Lamellen verbunden werden. Anschließend wird diese Wärmebrücke mittels Heizkabel beheizt, sodass eine effektive Wärmeabgabefläche entsteht. So muss nur die flächige, einfach zu bearbeitende Komponente des Flächenheizelements an die Dimensionen des Lamellenpakets angepasst werden, wobei das Heizkabel je nach Länge beispielsweise mäanderförmig auf der Wärmebrücke verlegt und mit dieser wärmeleitend verbunden wird.The dimensioning of the surface heating element can be easily adapted to the dimensions of the fin package to be heated if the surface heating element includes a heating cable. For example, one can first A flat thermal bridge, such as a heat-conducting plate or a heat-conducting foil, is adapted to the dimensions of the lamella pack and connected to the end sections of the lamellas in a heat-conducting manner. This thermal bridge is then heated using a heating cable, creating an effective heat dissipation surface. So only the flat, easy-to-machine component of the surface heating element needs to be adapted to the dimensions of the lamella pack, with the heating cable being laid, for example, in a meandering shape on the thermal bridge depending on its length and connected to it in a heat-conducting manner.

Damit keine hohe Verlustleistung generiert wird und außer dem Wärmetauscher keine weiteren Komponenten des Kühlmöbels beheizt werden, wird erfindungsgemäß die den Lamellen gegenüberliegende Seite des Flächenheizelementes mit einer Wärmeisolierung abgedeckt. So kann die vom Flächenheizelement abgegebene Wärmemenge räumlich gezielter in die Endabschnitte der Lamellen eingeleitet werden, während die Isolationsschicht benachbarte Bauteile thermisch abschirmt. Dadurch kann die Temperatur im Kühlmöbel konstanter gehalten werden, was den Energieverbrauch senkt. Erfindungsgemäß weist die Wärmeisolierung eine dem Lamellenpaket zugewandte Wärmereflektionsschicht auf, sodass das Flächenheizelement seine Wärmeenergie im Wesentlichen nur in Richtung der Lamellen abgibt.So that no high power loss is generated and no other components of the refrigerated cabinet are heated apart from the heat exchanger, according to the invention the side of the surface heating element opposite the slats is covered with thermal insulation. In this way, the amount of heat emitted by the surface heating element can be introduced into the end sections of the slats in a more spatially targeted manner, while the insulation layer thermally shields neighboring components. This allows the temperature in the refrigerator to be kept more constant, which reduces energy consumption. According to the invention, the thermal insulation has a heat reflection layer facing the slat pack, so that the surface heating element essentially only releases its heat energy in the direction of the slats.

Da die den Lamellen mit zunehmender Entfernung von dem Flächenheizelement weniger erwärmt werden, sind bei entsprechend langen Lamellen starke Heizleistungen nötig um die dem Flächenheizelement abgewandten Endabschnitte der Lamellen hinreichend abzutauen. Da die benötigte Heizleistung pro Länge aufgrund von Dissipationseffekten aber nicht konstant ist, kann dies zu hohem Energiebedarf bei längeren Lamellen führen. Dieser Energiebedarf zum effizienten Abtauen kann allerdings gesenkt und der Wärmetauscher schneller abgetaut werden, wenn wenigstens zwei Flächenheizelemente vorgesehen sind, die an zwei gegenüberliegenden Seiten des Lamellenpakets mit benachbarten Endabschnitten der Lamellen einer Seite wärmeleitend verbunden sind. Wird nämlich das Lamellenpaket von gegenüberliegenden Seiten mit der Wärmeenergie beaufschlagt, müssen die Lamellen nur jeweils zur halben Länge abgetaut werden, wodurch die benötigte Heizleistung pro Länge in einem energetisch effizienten Bereich gehalten werden kann.Since the slats are heated less as the distance from the surface heating element increases, high heating outputs are required for correspondingly long slats in order to sufficiently defrost the end sections of the slats facing away from the surface heating element. Since the required heating output per length is not constant due to dissipation effects, this can lead to high energy requirements for longer slats. However, this energy requirement for efficient defrosting can be reduced and the heat exchanger can be defrosted more quickly if at least two surface heating elements are provided, which are connected in a heat-conducting manner on two opposite sides of the fin stack to adjacent end sections of the fins on one side. That's what it will be If the heat energy is applied to the slat pack from opposite sides, the slats only need to be defrosted along half their length, which means that the required heating output per length can be kept in an energetically efficient range.

In der Zeichnung ist der Erfindungsgegenstand beispielsweise dargestellt. Es zeigen

  • Fig. 1 eine schematische Vorderansicht des erfindungsgemäßen Wärmetauschers,
  • Fig. 2 , eine schematische Draufsicht auf den Wärmetauscher und
  • Fig. 3 eine der Fig. 1 entsprechende Ansicht mit zwei Flächenheizelementen.
The subject matter of the invention is shown, for example, in the drawing. Show it
  • Fig. 1 a schematic front view of the heat exchanger according to the invention,
  • Fig. 2 , a schematic top view of the heat exchanger and
  • Fig. 3 one of the Fig. 1 Corresponding view with two surface heating elements.

Ein erfindungsgemäßer Wärmetauscher für ein Kühlmöbel umfasst einen von einem Lamellenpaket gebildeten Strömungskanal 1, der von einem Kühlfluid, wie beispielsweise Luft, in der Strömungsrichtung 2 durchlaufen wird, und eine elektrische Abtauheizung. Die Abtauheizung ist zum Abtauen der Lamellen 5 vorgesehen und weist ein Flächenheizelement 3, welches mit den Endabschnitten4 der Lamellen 5 des Lamellenpakets wärmeleitend verbunden ist, auf. Um die vom Flächenheizelement 3 abgegebene Wärmeenergie möglichst effizient und mit möglichst geringer Verlustleistung in die Lamellen 5 einzuleiten, ist das Flächenheizelement 3 direkt mit den benachbarten Endabschnitten 4 verbunden. Die Interaktionsfläche und damit die Wärmeleitung zwischen den Endabschnitten 4 der Lamellen 5 und dem Flächenheizelement 3 kann erhöht werden, wenn die Endabschnitte 4 der Lamellen 5 parallel zum Flächenheizelement 3 verlaufen. Dies verringert zusätzlich den Anteil der Wärmeenergie, die über Wärmestrahlung abgegeben wird und damit nicht gezielt in die Lamellen 5 eingeleitet werden kann.A heat exchanger according to the invention for a refrigerated cabinet comprises a flow channel 1 formed by a plate pack, through which a cooling fluid, such as air, passes through in the flow direction 2, and an electric defrost heater. The defrost heater is provided for defrosting the slats 5 and has a surface heating element 3, which is connected in a heat-conducting manner to the end sections 4 of the slats 5 of the slat pack. In order to introduce the heat energy emitted by the surface heating element 3 into the slats 5 as efficiently as possible and with the lowest possible power loss, the surface heating element 3 is connected directly to the adjacent end sections 4. The interaction surface and thus the heat conduction between the end sections 4 of the slats 5 and the surface heating element 3 can be increased if the end sections 4 of the slats 5 run parallel to the surface heating element 3. This additionally reduces the proportion of thermal energy that is given off via thermal radiation and therefore cannot be specifically introduced into the slats 5.

Das Flächenheizelement kann aus mehreren Bauteilen zusammengesetzt sein, beispielsweise kann es ein Heizkabel 6 umfassen, welches mäanderförmig auf einem Wärmeleitblech 7 angeordnet ist. In diesem Fall wird die Wärmeenergie über das Heizkabel 6 zugeführt, und über die Oberfläche des Wärmeleitblechs 7 in die Endabschnitte 4 der Lamellen 5 eingeleitet. Ein wesentlicher Vorteil dabei liegt darin, dass die effektive Wärmeabgabefläche des Flächenheizelements 3, also in diesem Fall die freie Oberfläche des Wärmeleitblechs 7, einfach an die Oberfläche des Lamellenpakets angepasst werden kann. So muss nur das einfach zu verarbeitende und billige Wärmeleitblech 7 zugeschnitten und das Heizkabel 6 auf diesem angeordnet werden. Da ausschließlich die Lamellen 5 abgetaut werden sollen, gilt es zu vermeiden, dass ein Teil der Wärmeenergie an andere Bauteile des Kühlmöbels abgegeben wird und dadurch sowohl die Abtau-, als auch die Kühlleistung gesenkt wird. Deswegen ist die den Lamellen 5 gegenüberliegenden Seite des Flächenheizelements 3 mit einer Wärmeisolierung 8 abgedeckt. Erfindungsgemäß weist die Wärmeisolierung 8 auf der den Endabschnitten 4 der Lamellen 5 zugewandten Seite noch eine Wärmereflexionsschicht (nicht dargestellt) auf, beispielsweise eine Aluminiumfolie. Somit kann die sonst von der Wärmeisolierung 8 aufgenommene Wärmenergie ebenfalls in die Endabschnitte 4 der Lamellen 5 geleitet werden. Eine Kühlleitung 9, die von einem verdampfenden Kältemittel durchströmt wird, ist mit den Lamellen 5 verbunden, um diese abzukühlen. Die Lamellen 5 können energiesparender abgetaut werden, wenn an gegenüberliegenden Seiten des Lamellenpakets ein Flächenheizelement 3 vorgesehen ist. So kann die zugeführte Wärmeenergie jedes Flächenheizelements 3 so bemessen sein, dass sie die Lamellen 5 nur bis zur Mitte abtaut, wodurch weniger Energie dissipiert wird.The surface heating element can be composed of several components, for example it can include a heating cable 6, which is arranged in a meandering shape on a heat-conducting plate 7. In this case, the thermal energy is supplied via the heating cable 6 and introduced into the end sections 4 of the slats 5 via the surface of the heat-conducting plate 7. A significant advantage is that the effective heat emission surface of the surface heating element 3, i.e In this case, the free surface of the heat-conducting plate 7 can be easily adapted to the surface of the plate pack. So all you have to do is cut the easy-to-process and cheap heat-conducting plate 7 and arrange the heating cable 6 on it. Since only the slats 5 are to be defrosted, it is important to avoid that part of the heat energy is given off to other components of the refrigerator, thereby reducing both the defrosting and cooling performance. That is why the side of the surface heating element 3 opposite the slats 5 is covered with thermal insulation 8. According to the invention, the thermal insulation 8 also has a heat reflection layer (not shown), for example an aluminum foil, on the side facing the end sections 4 of the slats 5. The heat energy otherwise absorbed by the thermal insulation 8 can therefore also be conducted into the end sections 4 of the slats 5. A cooling line 9, through which an evaporating refrigerant flows, is connected to the fins 5 in order to cool them. The slats 5 can be defrosted in a more energy-saving manner if a surface heating element 3 is provided on opposite sides of the slat pack. The heat energy supplied to each surface heating element 3 can be dimensioned such that it only defrosts the slats 5 up to the middle, as a result of which less energy is dissipated.

Claims (6)

  1. Heat exchanger for a refrigerated cabinet with a fin stack forming a flow channel (1) and an electric defrost heater, wherein the defrost heater comprises a sheet-type heating element (3) adjoining the flow channel (1) and extending at least in sections parallel thereto, which is connected in a heat-conducting manner to adjacent end sections (4) of the fins (5), the side of the sheet-type heating element (3) opposite the fins (5) being covered with a heat insulation (8), characterized in that the heat insulation (8) has a heat-reflecting layer on the side facing the end sections (4) of the fins (5).
  2. Heat exchanger according to claim 1, characterized in that the sheet-type heating element (3) is directly adjoining the adjacent end sections (4) of the fins (5).
  3. Heat exchanger according to claim 1 or 2, characterized in that the end sections (4) of the fins (5) run parallel to the sheet-type heating element (3).
  4. Heat exchanger according to one of claims 1 to 3, characterized in that at least 15% of the end sections (4) of the fins (5) are connected to the sheet-type heating element (3) in a heat-conducting manner.
  5. Heat exchanger according to one of claims 1 to 4, characterized in that the sheet-type heating element comprises a heating cable (6).
  6. Heat exchanger according to one of claims 1 to 5, characterized in that at least two sheet-type heating elements (3) are provided, which are connected in a heat-conducting manner to adjacent end sections (4) of the fins (5) of one side on two opposite sides of the fin pack.
EP21178283.4A 2021-06-08 2021-06-08 Heat exchanger for a refrigerated cabinet Active EP4102154B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21178283.4A EP4102154B1 (en) 2021-06-08 2021-06-08 Heat exchanger for a refrigerated cabinet
HUE21178283A HUE065403T2 (en) 2021-06-08 2021-06-08 Heat exchanger for a refrigerated cabinet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP21178283.4A EP4102154B1 (en) 2021-06-08 2021-06-08 Heat exchanger for a refrigerated cabinet

Publications (2)

Publication Number Publication Date
EP4102154A1 EP4102154A1 (en) 2022-12-14
EP4102154B1 true EP4102154B1 (en) 2024-01-17

Family

ID=76355275

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21178283.4A Active EP4102154B1 (en) 2021-06-08 2021-06-08 Heat exchanger for a refrigerated cabinet

Country Status (2)

Country Link
EP (1) EP4102154B1 (en)
HU (1) HUE065403T2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2251295B (en) * 1990-12-31 1994-09-28 Samsung Electronics Co Ltd Defrost assembly
ITVE20010033A1 (en) * 2001-07-17 2003-01-17 Alper Srl DEVICE FOR QUICK DEFROSTING OF EVAPORATORS
DE20203571U1 (en) 2002-03-06 2002-05-29 Linde Ag Evaporator with integrated defrost heater
KR100686764B1 (en) * 2003-06-18 2007-02-23 엘지전자 주식회사 Rexam heater
KR101037651B1 (en) * 2008-06-27 2011-05-30 주식회사 아모그린텍 Defrost Heater of Surface Type
DE102011006862A1 (en) * 2011-04-06 2012-10-11 BSH Bosch und Siemens Hausgeräte GmbH Evaporator assembly for a refrigeration device

Also Published As

Publication number Publication date
HUE065403T2 (en) 2024-05-28
EP4102154A1 (en) 2022-12-14

Similar Documents

Publication Publication Date Title
EP0662209B1 (en) Thermoelectric heating or cooling device
EP0350528A1 (en) Radiator
DE102009040544A1 (en) Heat exchanger with a cold storage
EP0401752A2 (en) Refrigerant condensor for a vehicle air conditioner
EP3039367B1 (en) Method for manufacturing a plate heat exchanger with a plurality of heat exchanger blocks connected with solder-coated holders
EP2679932A2 (en) Thermoelectric tempering unit
DE10258455A1 (en) Defroster for the evaporator of a refrigerator
DE112020005112T5 (en) High-performance cold plate with even temperature
EP3266098B1 (en) Drive system comprising at least one heat pipe, and the use of same in a drive system
DE112014004473T5 (en) Cold storage heat exchanger
DE202009010235U1 (en) Cooling element for solar cell modules
EP0703424B1 (en) Heat exchanger constructed as an assembly of plates
DE202009005871U1 (en) Thermoelectric heat pump and household appliance manufactured therewith for the care of laundry items
EP1722182A2 (en) Cooling and/or freezing apparatus
WO2009087106A1 (en) Heat exchanger lamellar module, heat exchanger and electrical heating module
DE102016124103A1 (en) Liquid cooled cooling device
WO2010149673A1 (en) Heat sink for an inductor or a transformer and inductor and transformer having such a heat sink
WO2016050457A1 (en) Heat exchanger
DE102017222350A1 (en) HEAT EXCHANGER FOR DOUBLE-SIDED COOLING OF ELECTRONIC MODULES
EP3230664B1 (en) No-frost refrigerator
EP4102154B1 (en) Heat exchanger for a refrigerated cabinet
DE3143334A1 (en) HEAT EXCHANGER WITH AN AIRBABELING BUNDLE OF PARALLEL TRIMMING TUBES
DE3918455A1 (en) Coolant liquefier for car air conditioning
DE102004023037A1 (en) Ribbed heat sink structure for cooling computer etc., has heat conducting medium in passages in baseplate, and radiating fins
EP3113220B1 (en) Cooling element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230504

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230609

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231012

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GABRIEL, MANFRED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20231102

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021002470

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240117

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E065403

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240117