EP4100338A1 - Valve doseuse avec chambre de dosage améliorée - Google Patents

Valve doseuse avec chambre de dosage améliorée

Info

Publication number
EP4100338A1
EP4100338A1 EP21708277.5A EP21708277A EP4100338A1 EP 4100338 A1 EP4100338 A1 EP 4100338A1 EP 21708277 A EP21708277 A EP 21708277A EP 4100338 A1 EP4100338 A1 EP 4100338A1
Authority
EP
European Patent Office
Prior art keywords
valve
chamber
seal
metering
metering chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21708277.5A
Other languages
German (de)
English (en)
Inventor
Arnaud Colomb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aptar France SAS
Original Assignee
Aptar France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aptar France SAS filed Critical Aptar France SAS
Publication of EP4100338A1 publication Critical patent/EP4100338A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/44Valves specially adapted therefor; Regulating devices
    • B65D83/52Valves specially adapted therefor; Regulating devices for metering
    • B65D83/54Metering valves ; Metering valve assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/75Aerosol containers not provided for in groups B65D83/16 - B65D83/74
    • B65D83/752Aerosol containers not provided for in groups B65D83/16 - B65D83/74 characterised by the use of specific products or propellants

Definitions

  • the present invention relates to a metering valve for a fluid dispenser device.
  • metering valves in which on each actuation of the valve, a precise dose of fluid product is dispensed, are well known in the state of the art, and are generally assembled on a reservoir containing the fluid product and a propellant gas used. to achieve expulsion of the dose.
  • So-called retention valves include a valve which, in the rest position, partially closes the metering chamber. More precisely, the exterior of the valve cooperates in a sealed manner with the chamber seal of the metering chamber, so that the metering chamber is only connected to the reservoir, in this rest position, via the internal channel of the metering chamber. the valve.
  • the so-called non-priming valves have a metering chamber which at rest is open to the reservoir and which fills when actuated, when the user returns the device to the inverted position of use.
  • the dose dispensed at each actuation may vary, for example from 25 to 75 ⁇ l.
  • One solution is to use a larger or smaller insert in the dosing chamber, depending on the desired volume. This solution has the drawback of modifying the behavior of the valve seal, which rests on said insert, in particular from a deformation and swelling point of view of the seal.
  • HFA-134a and / or HFA-227 gases are also harmful to the environment, and it is necessary to replace them with gases that are less harmful to the environment, such as HFA- 152a or the HF01234ze.
  • the object of the present invention is to provide a metering valve which does not reproduce the aforementioned drawbacks.
  • the object of the present invention is thus to provide a metering valve which does not modify the behavior of the valve seal, whatever the volume of the metering chamber.
  • Another object of the present invention is to provide a metering valve which guarantees reliable operation with less harmful gas, such as HFA-152a or HF01234ze, without modifying the materials of the seals.
  • Another object of the present invention is to provide a metering valve which is simple and inexpensive to manufacture and assemble, and of reliable operation.
  • the present invention therefore relates to a metering valve for dispensing a fluid product, comprising a valve body containing a metering chamber, said metering chamber being defined by a chamber insert and two annular seals, a valve seal and a seal. chamber, said chamber insert comprising a cylindrical wall, an upper edge cooperating with said valve seal and a lower edge cooperating with said chamber seal, a valve sliding axially in said valve body between a rest position and a position of distribution, to selectively distribute the contents of said metering chamber, said valve being biased towards its rest position by a spring cooperating on the one hand with said valve body and on the other hand with said valve, said upper edge of said valve insert. chamber having an annular cutout formed on the radially inner side of said upper edge, such that the width of said upper edge in c ontact with said valve seal is always the same, regardless of the width of said cylindrical wall.
  • said annular cutout is rectangular in cross section.
  • said lower edge of said chamber insert is extended radially inwardly by a flange which increases the contact surface with said chamber seal, said contact surface always being the same, regardless of the width of said cylindrical wall.
  • said metering chamber has a variable volume, in particular between 25 and 75 ⁇ l, defined by the radial width of said cylindrical wall.
  • the metering chamber has a volume of 50 ⁇ l.
  • the metering chamber has a volume of 28 ml.
  • the axial dimension of said annular cutout is less than 15%, advantageously less than 10%, of the axial dimension of said cylindrical wall.
  • the axial dimension of said annular cutout is less than the axial dimension of a radial shoulder of said valve which, in the rest position of said valve, rests under said valve seal.
  • a subject of the present invention is also a device for dispensing fluid product comprising a metering valve as defined above, said valve being mounted on a reservoir containing fluid product and a propellant gas.
  • said propellant gas comprises HFA-152a and / or HF01234ze.
  • Figure 1 is a schematic cross-sectional view of a dispensing valve according to a first embodiment, in the rest position of the valve, in the upright storage position of the valve,
  • Figure 2 is a view similar to that of Figure 1, according to a second embodiment, in the actuating position of the valve,
  • Figures 3 and 4 are vertical sectional detail views of the metering chamber of Figures 1 and 2, and
  • Figures 5 and 6 are detail cutaway perspective views of the metering chamber of Figures 3 and 4.
  • FIG. 1 represents the valve in the upright storage position, that is to say the position in which the valve is placed above the reservoir.
  • FIG. 2 represents the valve in the actuation position. It should be noted that the normal position of use of such a valve is an inverted position, with the valve placed under the reservoir, but in this figure 2, the position of use of the valve has been shown in the upright position, to simplify the comparison with the rest position of Figure 1.
  • the metering valve shown in Figure 1 comprises a valve body 10 extending along a longitudinal central axis and containing a metering chamber 20.
  • This metering chamber 20 is defined between two annular seals, a valve seal 21 and a chamber seal 22, in a well known manner.
  • This metering chamber 20 is filled before or after each actuation with a dose of fluid from the reservoir.
  • valve 30 slides between a rest position, which is that shown in Figure 1, and a dispensing position, shown in Figure 2, in which the valve 30 is depressed. 'inside the valve body 10.
  • This valve is intended to be assembled on a reservoir containing fluid and a propellant gas, preferably by means of a fixing element 5, which can be a crimp, screw or snap cap, and advantageously with the interposition of 'a neck seal 6.
  • a ring 4 can be assembled around the valve body 10, in particular to reduce the dead volume in the inverted position and to limit the contact of the fluid product with the neck seal 6.
  • This ring 4 can be of any shape, and the example of FIG. 1 is not limiting.
  • the reservoir contains the fluid product and the propellant gas, in particular a formulation consisting of one or more active principle (s) in suspension and / or in solution in a liquefied propellant gas, as well as optionally excipients.
  • the propellant preferably comprises HFA-152a.
  • other non-harmful gases can be used, such as HF01234ze.
  • the valve body 10 comprises a cylindrical part 15 in which the spring 8 is disposed and in which the flange 320 slides between its rest and dispensing positions. In the position of FIG. 1, this cylindrical part 15 is the lower part of the valve body.
  • This cylindrical part 15 comprises one or more longitudinal openings 11, such as slits, extending laterally in said cylindrical part 15 of the valve body, over a part of the axial height of the valve body in the direction of the central axis. longitudinal. These openings 11 allow the metering chamber 20 to be filled after each actuation, when in the inverted position of use (with the valve placed under the reservoir), the valve 30 returns from its dispensing position to its rest position.
  • the valve 30 is biased towards its rest position by a spring 8, which is arranged in the valve body 10 and which cooperates on the one hand with this valve body 10, and on the other hand with the valve 30, preferably with a radial flange 320 of the valve 30.
  • a metering chamber 20 is defined inside the valve body 10, said valve 30 sliding inside said metering chamber 20 to allow distribution of the contents thereof. ci when the valve is actuated.
  • the valve 30 can be made in two parts, namely an upper part 31 (also called the top of the valve) and a lower part 32 (also called the bottom of the valve).
  • the upper part 31 comprises a central axial channel 35 provided with an axial outlet orifice 301 and a radial inlet channel 302 which is arranged in the metering chamber 20 when the valve 30 is in the dispensing position.
  • the upper part 31 also comprises a radial shoulder which, in the rest position shown in FIG. 1, rests under the valve seal 21, in a known manner.
  • the lower part 32 is in this embodiment assembled inside the upper part 31.
  • An internal channel 33 is provided in the valve 30, in particular in the lower part 32, which makes it possible to connect the metering chamber 20 to the reservoir, to fill said metering chamber 20 when, after each actuation of the valve, the valve 30 returns to its resting position under the effect of the spring 8. This filling takes place when the device is still in the inverted position of use, with the valve placed below the reservoir.
  • valve 30 when the valve 30 is in the rest position, the metering chamber 20, outside the valve 30, is substantially isolated from the reservoir 1 by the cooperation between the lower part 32 of the valve 30 and the chamber seal 22. In this rest position, the metering chamber 20 therefore remains connected to the reservoir 1 only via said internal channel 33.
  • the valve shown in Figures 1 and 2 is therefore a retention valve.
  • the invention is however also applicable to other types of valves, in particular valves of the non-priming type.
  • the pump body 10 comprises at its lower axial edge an axial profile 16 projecting upwards, to define the actuation position of the valve by cooperating with the lower edge of the valve 30.
  • This implementation guarantees a definition. precise and identical to each actuation of this actuation position, independent of the compression of the spring 8. It also makes it possible to relieve the spring 8, which makes it possible to increase its life.
  • This axial profile 16 can advantageously be produced in the form of a sleeve offset radially towards the inside of said cylindrical part 15, as shown in FIG. 1.
  • This particular implementation makes it possible to form a receiving space for the spring 8 between said sleeve 16 and said cylindrical part 15, making it possible to guide the spring 8 and to maintain it in a repeatable position, thus limiting the risks of tilting the valve. 30.
  • this projecting profile 16 shown in FIG. 1 is not essential for the operation of the valve, and it could be implemented independently of the structure of the metering chamber.
  • the volume of the metering chamber 20 is defined by means of a chamber insert 40, of substantially cylindrical shape, with a cylindrical wall 49 having a greater or lesser radial thickness depending on the desired volume.
  • a cylindrical wall 49 which defines the volume of the metering chamber 20.
  • This volume can advantageously vary between 25 and 75 pl.
  • the radial width of the cylindrical wall 49 is less than in the example of Figures 4 and 6, which show a metering chamber 20 whose volume is 28 mI.
  • the valve seal 21 rests on the upper edge 41 of the chamber insert 40, and the chamber seal 22 contacts the lower edge 43 of the chamber insert 40.
  • the upper edge 41 advantageously has a projecting profile 42. which penetrates into the valve seal 21, and the lower edge 43 advantageously comprises a projecting profile 44 which penetrates into the chamber seal 22.
  • the lower edge 43 extends radially inwards by a flange 46 which increases the surface area. contact with the chamber seal 22.
  • the upper edge 41 of the chamber insert 40 comprises an annular cutout 45, preferably rectangular in section, formed on the radially inner side of said upper edge 41.
  • the upper edge 41 in contact with the valve seal 21 always has the same width, whatever the width of the cylindrical wall 49.
  • the positioning of the valve seal 21 on the chamber insert 40 is therefore always identical, whatever the width of the cylindrical wall 49 and therefore the volume of the metering chamber 20.
  • It is the cutout 45 which will have a greater or lesser width depending on the width of the cylindrical wall 49. Therefore, the behavior of the valve seal 21 will always be the same, regardless of the volume of the metering chamber 20.
  • this annular cutout 45 is small.
  • the annular cutout 45 is thus formed only at the level of said upper edge 41, without significantly extending axially in the metering chamber.
  • this annular cutout 45 has virtually no impact on the volume of the metering chamber 20 defined by the radial dimension of the cylindrical wall 49.
  • the axial dimension of the annular cutout 45 is less than 15%. , advantageously less than 10%, of the axial dimension of the cylindrical wall 49.
  • the axial dimension of the annular cutout 45 is less than the dimension axial of the radial shoulder of the upper part 31 of the valve 30, as visible in Figures 1, 3 and 4.
  • cutout 45 also makes it possible to absorb and compensate for the deformation of the valve seal 21, in particular its greater swelling in contact with the HFA-152a or HF01234ze gas compared to conventional FIFA-134a and / or FIFA-227 gases. .
  • the lower edge 43 and said flange 46 together form a contact surface with the chamber seal 22 which is always identical, regardless of the width of the cylindrical wall 49.
  • the positioning of the seal chamber 22 on the chamber insert 40 is therefore always the same, whatever the width of the cylindrical wall 49 and therefore the volume of the metering chamber 20.
  • the behavior of the chamber seal 22 will always be the same. same, regardless of the volume of the metering chamber 20.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
  • Closures For Containers (AREA)
  • Nozzles (AREA)

Abstract

Valve doseuse avec chambre de dosage améliorée Demandeur(s) : La société par actions simplifiée dite APTAR FRANCE SAS Inventeur(s) : Arnaud COLOMB Abrégé : Valve doseuse de distribution de produit fluide, comportant un corps de valve (10) contenant une chambre de dosage (20), ladite chambre de dosage (20) étant définie par un insert de chambre (40) et deux joints annulaires, un joint de soupape (21) et un joint de chambre (22), ledit insert de chambre (40) comportant une paroi cylindrique (49), un bord supérieur (41) coopérant avec ledit joint de soupape (21) et un bord inférieur (43) coopérant avec ledit joint de chambre (22), une soupape (30) coulissant axialement dans ledit corps de valve (10) entre une position de repos et une position de distribution, pour sélectivement distribuer le contenu de ladite chambre de dosage (20), ladite soupape (30) étant sollicitée vers sa position de repos par un ressort (8) coopérant d'une part avec ledit corps de valve (10) et d'autre part avec ladite soupape (30), ledit bord supérieur (41) dudit insert de chambre (40) comportant une découpe annulaire (45) formée sur le côté radialement interne dudit bord supérieur (41), de sorte que la largeur dudit bord supérieur (41) en contact avec ledit joint de soupape (21) est toujours la même, quelle que soit la largeur de ladite paroi cylindrique (49).

Description

Valve doseuse avec chambre de dosage améliorée
La présente invention concerne une valve doseuse pour un dispositif de distribution de produit fluide.
Les valves dite doseuses, dans lesquelles à chaque actionnement de la valve, une dose précise de produit fluide est distribuée, sont bien connues dans l’état de la technique, et sont généralement assemblées sur un réservoir contenant le produit fluide et un gaz propulseur utilisé pour réaliser l’expulsion de la dose.
On connaît principalement deux types de valves doseuses. Les valves dites à rétention comportent une soupape qui, en position de repos, obture partiellement la chambre de dosage. Plus précisément, l'extérieur de la soupape coopère de manière étanche avec le joint de chambre de la chambre de dosage, de sorte que la chambre de dosage n'est reliée au réservoir, dans cette position de repos, que via le canal interne de la soupape. Les valves dites sans amorçage comportent une chambre de dosage qui au repos est ouverte sur le réservoir et qui se remplit au moment de l’actionnement, lorsque l'utilisateur retourne le dispositif en position inversée d'utilisation.
Selon le produit à distribuer et/ou le patient, la dose distribuée à chaque actionnement peut varier, par exemple de 25 à 75 pl. Une solution est d'utiliser un insert plus ou moins large dans la chambre de dosage, selon le volume souhaité. Cette solution présente l'inconvénient de modifier le comportement du joint de soupape, qui repose sur ledit insert, notamment d'un point de vue déformation et gonflement du joint.
Par ailleurs, il y a une quinzaine d'années, pour des raisons écologiques, les propulseurs utilisés précédemment, qui étaient généralement à base de CFC, ont été remplacés par d'autres gaz propulseurs, à savoir les gaz propulseurs HFA-134a et/ou HFA-227. Il s'est avéré que cette modification du gaz propulseur engendrait des contraintes différentes sur les joints, que ce soit au niveau de la performance d'étanchéité dudit joint, notamment de son gonflement, ou au niveau des extractibles lorsque ledit joint était en contact avec ces nouveaux gaz propulseurs. De ce fait, les matériaux de joint habituellement utilisés dans les valves aérosol en conjonction avec des gaz CFC ne pouvaient pas être simplement appliqués aux nouveaux gaz propulseur HFA-134a et/ou FIFA-227. La transition a donc pris de nombreuses années, avec en particulier le développement de nouveaux matériaux de joints.
Aujourd'hui, il s'avère que les gaz HFA-134a et/ou HFA-227 sont également nocifs pour l'environnement, et il est nécessaire de les remplacer par des gaz moins nocifs pour l'environnement, tels que le HFA-152a ou le HF01234ze.
Or, à nouveau ce remplacement modifie le comportement des matériaux de joints aujourd'hui utilisés dans les valves doseuses, et notamment augmente le gonflement des joints. Ceci peut représenter un problème pour un actionnement fiable de la valve, générant potentiellement des blocages de la soupape et impliquant une force d'actionnement supérieure. Une solution serait de développer de nouveaux matériaux de joints spécifiquement adaptés à ce nouveau gaz propulseur, mais l'expérience passée du remplacement des gaz CFC a montré que ceci peut prendre plusieurs années. La présente invention cherche au contraire à garder les mêmes matériaux de joints, et propose donc une modification structurelle de la valve permettant de compenser l'augmentation du gonflement des joints, tout en limitant autant que possible les modifications sur la chaîne de fabrication et d'assemblage de la valve.
Les documents WO2014096657, FR3042785 et FR2860502 décrivent des dispositifs de l'état de la technique.
La présente invention a pour but de fournir une valve doseuse qui ne reproduit pas les inconvénients susmentionnés.
La présente invention a ainsi pour but de fournir une valve doseuse qui ne modifie pas le comportement du joint de soupape, quel que soit le volume de la chambre de dosage. La présente invention a aussi pour but de fournir une valve doseuse qui garantit un fonctionnement fiable avec du gaz moins nocif, tel que le HFA-152a ou le HF01234ze, sans modifier les matériaux des joints.
La présente invention a également pour but de fournir une valve doseuse qui soit simple et peu coûteuse à fabriquer et à assembler, et de fonctionnement fiable.
La présente invention a donc pour objet une valve doseuse de distribution de produit fluide, comportant un corps de valve contenant une chambre de dosage, ladite chambre de dosage étant définie par un insert de chambre et deux joints annulaires, un joint de soupape et un joint de chambre, ledit insert de chambre comportant une paroi cylindrique, un bord supérieur coopérant avec ledit joint de soupape et un bord inférieur coopérant avec ledit joint de chambre, une soupape coulissant axialement dans ledit corps de valve entre une position de repos et une position de distribution, pour sélectivement distribuer le contenu de ladite chambre de dosage, ladite soupape étant sollicitée vers sa position de repos par un ressort coopérant d'une part avec ledit corps de valve et d'autre part avec ladite soupape, ledit bord supérieur dudit insert de chambre comportant une découpe annulaire formée sur le côté radialement interne dudit bord supérieur, de sorte que la largeur dudit bord supérieur en contact avec ledit joint de soupape est toujours la même, quelle que soit la largeur de ladite paroi cylindrique.
Avantageusement, ladite découpe annulaire est de forme rectangulaire en section transversale.
Avantageusement, ledit bord inférieur dudit insert de chambre se prolonge radialement vers l'intérieur par une bride qui augmente la surface de contact avec ledit joint de chambre, ladite surface de contact étant toujours la même, quelle que soit la largeur de ladite paroi cylindrique.
Avantageusement, ladite chambre de dosage a un volume variable, notamment compris entre 25 et 75 pi, définit par la largeur radiale de ladite paroi cylindrique.
Avantageusement, la chambre de dosage a un volume de 50 pi.
Avantageusement, la chambre de dosage a un volume de 28 mI. Avantageusement, la dimension axiale de ladite découpe annulaire est inférieure à 15%, avantageusement inférieure à 10%, de la dimension axiale de ladite paroi cylindrique.
Avantageusement, la dimension axiale de ladite découpe annulaire est inférieure à la dimension axiale d'un épaulement radial de ladite soupape qui, en position de repos de ladite soupape, s'appuie sous ledit joint de soupape.
La présente invention a aussi pour objet un dispositif de distribution de produit fluide comportant une valve doseuse telle que définie ci-dessus, ladite valve étant montée sur un réservoir contenant du produit fluide et un gaz propulseur.
Avantageusement, ledit gaz propulseur comprend du HFA-152a et/ou du HF01234ze.
Ces caractéristiques et avantages et d’autres de la présente invention apparaîtront plus clairement au cours de la description détaillée suivante de celle-ci, faite en référence aux dessins joints, donnés à titre d’exemples non limitatifs, et sur lesquels
[Figure 1] La figure 1 est une vue schématique en section transversale d’une valve de distribution selon un premier mode de réalisation, en position de repos de la soupape, dans la position droite de stockage de la valve,
[Figure 2] La figure 2 est une vue similaire à celle de la figure 1 , selon un second mode de réalisation, en position d'actionnement de la soupape,
[Figure 3] Les figures 3 et 4 sont des vues de détail en section verticale de la chambre de dosage des figures 1 et 2, et
[Figure 4] cf. [Figure 3]
[Figure 5] Les figures 5 et 6 sont des vues de détail en perspective découpée de la chambre de dosage des figures 3 et 4.
[Figure 6] cf. [Figure 5]
Dans la description ci-après, les termes "haut", "bas", "inférieur", "supérieur" et "vertical" se réfèrent à la position droite représentée sur la figure 1 , et les termes "axial" et "radial" se réfèrent à l'axe central longitudinal de la valve. La figure 1 représente la valve en position droite de stockage, c'est-à- dire la position dans laquelle la valve est disposée au-dessus du réservoir. La figure 2 représente la valve en position d'actionnement. Il est à noter que la position d'utilisation normale d'une telle valve est une position inversée, avec la valve disposée sous le réservoir, mais dans cette figure 2, la position d'utilisation de la valve a été représentée en position droite, pour simplifier la comparaison avec la position de repos de la figure 1 .
La valve doseuse représentée sur la figure 1 comporte un corps de valve 10 s’étendant le long d’un axe central longitudinal et contenant une chambre de dosage 20. Cette chambre de dosage 20 est définie entre deux joints annulaires, un joint de soupape 21 et un joint de chambre 22, de manière bien connue. Cette chambre de dosage 20 se remplit avant ou après chaque actionnement avec une dose de produit fluide à partir du réservoir.
À l’intérieur dudit corps de valve 10, une soupape 30 coulisse entre une position de repos, qui est celle représentée sur la figure 1 , et une position de distribution, représentée sur la figure 2, dans laquelle la soupape 30 est enfoncée à l’intérieur du corps de valve 10.
Cette valve est destinée à être assemblée sur un réservoir contenant du produit fluide et un gaz propulseur, de préférence au moyen d’un élément de fixation 5, qui peut être une capsule à sertir, à visser ou à encliqueter, et avantageusement avec interposition d’un joint de col 6. Éventuellement, une bague 4 peut être assemblée autour du corps de valve 10, notamment pour diminuer le volume mort en position inversée et pour limiter le contact du produit fluide avec le joint de col 6. Cette bague 4 peut être de forme quelconque, et l'exemple de la figure 1 n'est pas limitatif. De manière générale, le réservoir contient le produit fluide et le gaz propulseur, en particulier une formulation constituée d'un ou plusieurs principe(s) actif(s) en suspension et/ou en solution dans un gaz propulseur liquéfié, ainsi qu’éventuellement des excipients. Le gaz propulseur comprend de préférence du HFA-152a. En variante, on peut utiliser d'autres gaz non nocifs, tel que le HF01234ze.
Le corps de valve 10 comporte une partie cylindrique 15 dans laquelle est disposé le ressort 8 et dans laquelle la collerette 320 coulisse entre ses positions de repos et de distribution. Dans la position de la figure 1 , cette partie cylindrique 15 est la partie inférieure du corps de valve. Cette partie cylindrique 15 comporte une ou plusieurs ouvertures longitudinales 11 , telles que des fentes, s’étendant latéralement dans ladite partie cylindrique 15 du corps de valve, sur une partie de la hauteur axiale du corps de valve dans le sens de l’axe central longitudinal. Ces ouvertures 11 permettent le remplissage de la chambre de dosage 20 après chaque actionnement, lorsqu'en position inversée d'utilisation (avec la valve disposée sous le réservoir), la soupape 30 revient de sa position de distribution vers sa position de repos.
La soupape 30 est sollicitée vers sa position de repos par un ressort 8, qui est disposé dans le corps de valve 10 et qui coopère d’une part avec ce corps de valve 10, et d’autre part avec la soupape 30, de préférence avec une collerette radiale 320 de la soupape 30. Une chambre de dosage 20 est définie à l’intérieur du corps de valve 10, ladite soupape 30 coulissant à l’intérieur de ladite chambre de dosage 20 pour permettre la distribution du contenu de celle-ci lorsque la valve est actionnée.
De manière connue, la soupape 30 peut être réalisée en deux parties, à savoir une partie haute 31 (également appelée haut de soupape) et une partie basse 32 (également appelée bas de soupape).
La partie haute 31 comporte un canal axial central 35 pourvu d'un orifice de sortie axial 301 et d'un canal d’entrée radial 302 qui est disposé dans la chambre de dosage 20 lorsque la soupape 30 est en position de distribution. La partie haute 31 comporte également un épaulement radial qui, en position de repos représentée sur la figure 1 , s'appuie sous le joint de soupape 21 , de manière connue.
La partie basse 32 est dans ce mode de réalisation assemblée à l’intérieur de la partie haute 31 .
Un canal interne 33 est prévu dans la soupape 30, en particulier dans la partie basse 32, qui permet de relier la chambre de dosage 20 au réservoir, pour remplir ladite chambre de dosage 20 lorsque, après chaque actionnement de la valve, la soupape 30 revient vers sa position de repos sous l'effet du ressort 8. Ce remplissage se fait quand le dispositif est encore en position inversée d'utilisation, avec la valve disposée en-dessous du réservoir.
Dans l'exemple de la figure 1 , lorsque la soupape 30 est en position de repos, la chambre de dosage 20, à l'extérieur de la soupape 30, est sensiblement isolée du réservoir 1 par la coopération entre la partie basse 32 de la soupape 30 et le joint de chambre 22. Dans cette position de repos, la chambre de dosage 20 reste donc reliée au réservoir 1 uniquement via ledit canal interne 33. La valve représentée sur les figures 1 et 2 est donc une valve à rétention. L'invention est toutefois aussi applicable à d'autres types de valves, notamment les valves du type sans amorçage.
Avantageusement, le corps de pompe 10 comporte à son bord axial inférieur un profil axial 16 saillant vers le haut, pour définir la position d'actionnement de la valve en coopérant avec le bord inférieur de la soupape 30. Cette mise en œuvre garantit une définition précise et identique à chaque actionnement de cette position d'actionnement, indépendante de la compression du ressort 8. Elle permet aussi de soulager le ressort 8, ce qui permet d'augmenter sa durée de vie.
Ce profil axial 16 peut avantageusement être réalisé sous la forme d'un manchon décalé radialement vers l'intérieur de ladite partie cylindrique 15, comme représenté sur la figure 1 . Cette mise en œuvre particulière permet de former un espace de réception pour le ressort 8 entre ledit manchon 16 et ladite partie cylindrique 15, permettant de guider le ressort 8 et de la maintenir dans une position répétable, limitant ainsi les risques de tiltage de la soupape 30. Il est à noter que ce profil saillant 16 représenté sur la figure 1 n'est pas indispensable au fonctionnement de la valve, et il pourrait être mis en œuvre indépendamment de la structure de la chambre de dosage.
Le volume de la chambre de dosage 20 est défini au moyen d'un insert de chambre 40, de forme sensiblement cylindrique, avec une paroi cylindrique 49 ayant une épaisseur radiale plus ou moins grande selon le volume souhaité. Ainsi, c'est principalement cette paroi cylindrique 49 qui définit le volume de la chambre de dosage 20. Ce volume peut avantageusement varier entre 25 et 75 pl. Ainsi, dans l'exemple des figures 3 et 5, qui montrent une chambre de dosage 20 dont le volume est de 50 mI, la largeur radiale de la paroi cylindrique 49 est moins grande que dans l'exemple des figures 4 et 6, qui montrent une chambre de dosage 20 dont le volume est de 28 mI.
Le joint de soupape 21 repose sur le bord supérieur 41 de l'insert de chambre 40, et le joint de chambre 22 est au contact du bord inférieur 43 de l'insert de chambre 40. Le bord supérieur 41 comporte avantageusement un profil saillant 42 qui pénètre dans le joint de soupape 21 , et le bord inférieur 43 comporte avantageusement un profil saillant 44 qui pénètre dans le joint de chambre 22. Avantageusement, le bord inférieur 43 se prolonge radialement vers l'intérieur par une bride 46 qui augmente la surface de contact avec le joint de chambre 22.
Selon l'invention, le bord supérieur 41 de l'insert de chambre 40 comporte une découpe annulaire 45, de préférence rectangulaire en section, formée sur le côté radialement interne dudit bord supérieur 41 . Ainsi, le bord supérieur 41 en contact avec le joint de soupape 21 a toujours la même largeur, quelle que soit la largeur de la paroi cylindrique 49. Le positionnement du joint de soupape 21 sur l'insert de chambre 40 est donc toujours identique, quelle que soit la largeur de la paroi cylindrique 49 et donc le volume de la chambre de dosage 20. C'est la découpe 45 qui aura une largeur plus ou moins grande selon la largeur de la paroi cylindrique 49. De ce fait, le comportement du joint de soupape 21 sera toujours le même, quel que soit le volume de la chambre de dosage 20.
Comme visible sur les figures, la dimension axiale de cette découpe annulaire 45 est faible. La découpe annulaire 45 est ainsi formée seulement au niveau dudit bord supérieur 41 , sans s'étendre axialement de manière significative dans la chambre de dosage. Ainsi, cette découpe annulaire 45 n'a quasiment pas d'impact sur le volume de la chambre de dosage 20 défini par la dimension radiale de la paroi cylindrique 49. En particulier, la dimension axiale de la découpe annulaire 45 est inférieure à 15%, avantageusement inférieure à 10%, de la dimension axiale de la paroi cylindrique 49. De même, la dimension axiale de la découpe annulaire 45 est inférieure à la dimension axiale de l'épaulement radial de la partie haute 31 de la soupape 30, comme visible sur les figures 1 , 3 et 4.
La présence de la découpe 45 permet par ailleurs d'absorber et de compenser la déformation du joint de soupape 21 , notamment son gonflement supérieur au contact du gaz HFA-152a ou HF01234ze par rapport aux gaz FIFA-134a et/ou FIFA-227 conventionnels.
Avantageusement, dans la variante avec la bride 46, le bord inférieur 43 et ladite bride 46 forment ensemble une surface de contact avec le joint de chambre 22 qui est toujours identique, quelle que soit la largeur de la paroi cylindrique 49. Le positionnement du joint de chambre 22 sur l'insert de chambre 40 est donc toujours identique, quelle que soit la largeur de la paroi cylindrique 49 et donc le volume de la chambre de dosage 20. De ce fait, le comportement du joint de chambre 22 sera toujours le même, quel que soit le volume de la chambre de dosage 20. Bien que la présente invention ait été décrite en référence à deux modes de réalisation particuliers de celle-ci, il est entendu qu’elle n’est pas limitée par les exemples représentés. Au contraire, l’homme du métier peut y apporter toutes modifications utiles sans sortir du cadre de la présente invention tel que défini par les revendications annexées.

Claims

REVENDICATIONS
1. Valve doseuse de distribution de produit fluide, comportant un corps de valve (10) contenant une chambre de dosage (20), ladite chambre de dosage (20) étant définie par un insert de chambre (40) et deux joints annulaires, un joint de soupape (21) et un joint de chambre (22), ledit insert de chambre (40) comportant une paroi cylindrique (49), un bord supérieur (41) coopérant avec ledit joint de soupape (21) et un bord inférieur (43) coopérant avec ledit joint de chambre (22), une soupape (30) coulissant axialement dans ledit corps de valve (10) entre une position de repos et une position de distribution, pour sélectivement distribuer le contenu de ladite chambre de dosage (20), ladite soupape
(30) étant sollicitée vers sa position de repos par un ressort (8) coopérant d'une part avec ledit corps de valve (10) et d'autre part avec ladite soupape (30), caractérisée en ce que ledit bord supérieur (41) dudit insert de chambre (40) comporte une découpe annulaire (45) formée sur le côté radialement interne dudit bord supérieur (41), de sorte que la largeur dudit bord supérieur (41) en contact avec ledit joint de soupape (21) est toujours la même, quelle que soit la largeur de ladite paroi cylindrique (49). 2. Valve selon la revendication 1, dans laquelle ladite découpe annulaire
(45) est de forme rectangulaire en section transversale.
3. Valve selon la revendication 1 ou 2, dans laquelle ledit bord inférieur (43) dudit insert de chambre (40) se prolonge radialement vers l'intérieur par une bride (46) qui augmente la surface de contact avec ledit joint de chambre (22), ladite surface de contact étant toujours la même, quelle que soit la largeur de ladite paroi cylindrique (49).
4. Valve selon l'une quelconque des revendications précédentes, dans laquelle ladite chambre de dosage (20) a un volume variable, notamment compris entre 25 et 75 pi, définit par la largeur radiale de ladite paroi cylindrique (49).
5. Valve selon la revendication 4, dans laquelle la chambre de dosage a un volume de 50 mI.
6. Valve selon la revendication 4, dans laquelle la chambre de dosage a un volume de 28 mI. 7. Valve selon l'une quelconque des revendications précédentes, dans laquelle la dimension axiale de ladite découpe annulaire (45) est inférieure à 15%, avantageusement inférieure à 10%, de la dimension axiale de ladite paroi cylindrique (49).
8. Valve selon l'une quelconque des revendications précédentes, dans laquelle la dimension axiale de ladite découpe annulaire (45) est inférieure à la dimension axiale d'un épaulement radial de ladite soupape (30) qui, en position de repos de ladite soupape (30), s'appuie sous ledit joint de soupape (21).
9. Dispositif de distribution de produit fluide caractérisé en ce qu’il comporte une valve doseuse selon l’une quelconque des revendications précédentes, ladite valve étant montée sur un réservoir contenant du produit fluide et un gaz propulseur.
10. Dispositif selon la revendication 9, dans lequel ledit gaz propulseur comprend du HFA-152a et/ou du HF01234ze.
EP21708277.5A 2020-02-07 2021-02-05 Valve doseuse avec chambre de dosage améliorée Pending EP4100338A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2001216A FR3107039B1 (fr) 2020-02-07 2020-02-07 Valve doseuse avec chambre de dosage améliorée
PCT/FR2021/050217 WO2021156580A1 (fr) 2020-02-07 2021-02-05 Valve doseuse avec chambre de dosage améliorée

Publications (1)

Publication Number Publication Date
EP4100338A1 true EP4100338A1 (fr) 2022-12-14

Family

ID=70008967

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21708277.5A Pending EP4100338A1 (fr) 2020-02-07 2021-02-05 Valve doseuse avec chambre de dosage améliorée

Country Status (7)

Country Link
US (2) US11878855B2 (fr)
EP (1) EP4100338A1 (fr)
JP (1) JP2023513514A (fr)
CN (1) CN115052820A (fr)
BR (1) BR112022015020A2 (fr)
FR (1) FR3107039B1 (fr)
WO (1) WO2021156580A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3107039B1 (fr) * 2020-02-07 2022-03-18 Aptar France Sas Valve doseuse avec chambre de dosage améliorée
FR3131738B1 (fr) * 2022-01-07 2024-03-08 Aptar France Sas Valve doseuse avec chambre de dosage améliorée

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8624670D0 (en) * 1986-10-15 1986-11-19 Glaxo Group Ltd Valve for aerosol container
GB8917285D0 (en) * 1989-07-28 1989-09-13 Harris Pharma Ltd A valve for an aerosol dispenser
FR2670139B1 (fr) 1992-01-15 1993-12-24 Valois Valve doseuse utilisable en position inversee.
GB2316673B (en) * 1996-09-03 1999-12-29 Bespak Plc Metering valve
MXPA02011569A (es) * 2000-05-23 2003-04-25 Glaxo Group Ltd Contenedor de aerosol para formulaciones de xinafoato de salmeterol.
GB2385315B (en) 2002-01-15 2004-06-30 Bespak Plc Improvements in or relating to valves for dispensers
GB2401099A (en) * 2003-04-30 2004-11-03 Bespak Plc Improvements in valves for pressurised dispensing containers
CN1874756B (zh) * 2003-08-29 2012-02-29 葛兰素集团有限公司 药用计量剂量吸入器和其相关方法
FR2860502B1 (fr) * 2003-10-07 2007-09-14 Valois Sas Valve doseuse et dispositif de distribution de produit fluide comportant une telle valve
GB2417479B (en) 2004-08-26 2006-09-13 Bespak Plc Improvements in metering valves for pressurised dispensing containers
GB2417480B (en) 2004-12-15 2006-08-02 Bespak Plc Improvements in or relating to valves
GB2430188B (en) 2005-09-20 2009-03-18 Bespak Plc Improvements in or relating to valves
GB2451225B (en) 2007-05-15 2009-07-08 Bespak Plc Improvements in or relating to dispensing apparatus
WO2009015456A1 (fr) * 2007-07-30 2009-02-05 Generex Pharmaceuticals Inc. Formulation pharmaceutique sous forme micellaire mélangée et distributeur pour administration orale d'agents en pulvérisation
FR2999542B1 (fr) * 2012-12-17 2014-12-05 Rexam Healthcare La Verpillier Valve doseuse de distribution d'un aerosol
CN105980262B (zh) * 2014-02-14 2020-08-04 明申医药公司 喷雾递送装置
GB2537638A (en) * 2015-04-21 2016-10-26 Consort Medical Plc Medicament delivery device
FR3042785B1 (fr) * 2015-10-22 2020-03-06 Nemera La Verpilliere Valve doseuse amelioree pour la distribution d'un fluide.
GB2545025A (en) * 2015-12-04 2017-06-07 Mexichem Fluor Sa De Cv Pharmaceutical composition
FR3107039B1 (fr) * 2020-02-07 2022-03-18 Aptar France Sas Valve doseuse avec chambre de dosage améliorée

Also Published As

Publication number Publication date
FR3107039A1 (fr) 2021-08-13
US20240083666A1 (en) 2024-03-14
CN115052820A (zh) 2022-09-13
BR112022015020A2 (pt) 2022-09-20
FR3107039B1 (fr) 2022-03-18
WO2021156580A1 (fr) 2021-08-12
US20230107497A1 (en) 2023-04-06
JP2023513514A (ja) 2023-03-31
US11878855B2 (en) 2024-01-23

Similar Documents

Publication Publication Date Title
EP1670698B1 (fr) Valve doseuse et dispositif de distribution de produit fluide comportant une telle valve
EP2906484B1 (fr) Valve doseuse de distribution d'un aerosol
EP1477234A2 (fr) Ensemble pour le conditionnement et la distribution d'un produit, notamment sous forme d'un échantillon
EP3003907B1 (fr) Valve doseuse et dispositif de distribution de produit fluide comportant une telle valve
WO2021156580A1 (fr) Valve doseuse avec chambre de dosage améliorée
EP2459466B1 (fr) Valve de distribution de produit fluide
WO2012072962A1 (fr) Valve de distribution de produit fluide.
EP0821775B1 (fr) Ensemble de clapet d'admission
FR2990421A1 (fr) Valve de distribution de produit fluide.
EP1919799A2 (fr) Valve de distribution de produit fluide
FR2738557A1 (fr) Dispositif de montage d'un organe de distribution sur le col d'un recipient
EP4222074A1 (fr) Valve doseuse
FR3131738A1 (fr) Valve doseuse avec chambre de dosage améliorée
EP1050480B1 (fr) Pompe à membrane comportant, sur au moins un secteur de sa périphérie, une zone de déformation préférentielle et récipient ainsi équipé
EP4255824A1 (fr) Dispositif de distribution de produit fluide comportant une valve doseuse
FR3049275B1 (fr) Valve doseuse et dispositif de distribution de produit fluide comportant une telle valve
EP2906483A1 (fr) Valve doseuse de distribution d'un aérosol
EP4399153A1 (fr) Tete de remplissage d'un dispositif de distribution de produit fluide comportant une valve
EP1497038B1 (fr) Pompe de distribution de produit fluide
WO2020229758A1 (fr) Pompe a precompression haute pression
FR3116010A1 (fr) Dispositif de distribution de produit fluide

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220908

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20240708