EP4090932A1 - Single-sheath microfluidic chip - Google Patents

Single-sheath microfluidic chip

Info

Publication number
EP4090932A1
EP4090932A1 EP20913158.0A EP20913158A EP4090932A1 EP 4090932 A1 EP4090932 A1 EP 4090932A1 EP 20913158 A EP20913158 A EP 20913158A EP 4090932 A1 EP4090932 A1 EP 4090932A1
Authority
EP
European Patent Office
Prior art keywords
micro
channel
region
fluid
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20913158.0A
Other languages
German (de)
French (fr)
Other versions
EP4090932A4 (en
Inventor
Zheng Xia
Gopakumar KAMALAKSHAKURUP
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABS Global Inc
Original Assignee
ABS Global Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABS Global Inc filed Critical ABS Global Inc
Publication of EP4090932A1 publication Critical patent/EP4090932A1/en
Publication of EP4090932A4 publication Critical patent/EP4090932A4/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502776Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for focusing or laminating flows
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0081Purging biological preparations of unwanted cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1404Handling flow, e.g. hydrodynamic focusing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1484Optical investigation techniques, e.g. flow cytometry microstructural devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0652Sorting or classification of particles or molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/06Bioreactors or fermenters specially adapted for specific uses for in vitro fertilization
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/01Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/149Optical investigation techniques, e.g. flow cytometry specially adapted for sorting particles, e.g. by their size or optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1404Handling flow, e.g. hydrodynamic focusing
    • G01N2015/1413Hydrodynamic focussing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1493Particle size
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1497Particle shape

Definitions

  • the present invention relates to a microfluidic chip design, in particular, to a microfluidic chip for isolating particles or cellular materials using laminar flow from a single sheath and geometric focusing.
  • Microfluidics enables the use of small volumes for preparing and processing samples, such as various particles or cellular materials.
  • samples such as various particles or cellular materials.
  • the process is often a time-consuming task and can have severe volume restrictions.
  • Current separation techniques cannot, for example, produce the desired yield, or process volumes of cellular materials in a timely fashion.
  • existing microfluidic devices do not effectively focus or orient the sperm cells.
  • a microfluidic device and separation process utilizing said device that is continuous, has high throughput, provides time saving, and causes negligible or minimal damage to the various components of the separation.
  • a device and method can have further applicability to biological and medical areas, not just in sperm sorting, but in the separation of blood and other cellular materials, including viral, cell organelle, globular structures, colloidal suspensions, and other biological materials.
  • the present invention features microfluidic devices for use in sperm cell sexing and trait enrichment.
  • the microfluidic device may comprise at least one flow focusing region where the components are focused or re-oriented by the geometry of the region. From an upstream end to a downstream end of the flow focusing region, at least a portion of the flow focusing region has a reduction in height and at least a portion narrows in width, thereby geometrically constricting the flow focusing region.
  • the present invention features a microfluidic chip comprising a micro-channel having a constricting portion that narrows in width, and a flow focusing region downstream of the micro-channel, comprising a positively sloping bottom surface that reduces a height of the flow focusing region and sidewalls that taper to reduce a width of the flow focusing region, thereby geometrically constricting the flow focusing region.
  • the microfluidic chip may comprise a sample micro-channel, two sheath fluid micro-channels intersecting the sample micro-channel to form an intersection region, a downstream micro-channel fluidly connected to the intersection region, and a downstream flow focusing region fluidly connected to the downstream micro-channel.
  • the downstream micro-channel may have a constricting portion that narrows in width.
  • the flow focusing region may comprise a positively sloping bottom surface that reduces a height of the flow focusing region and sidewalls that taper to reduce a width of the flow focusing region, thereby geometrically constricting the flow focusing region.
  • the sample micro-channel is configured to flow a sample fluid mixture
  • the two sheath fluid micro-channels are each configured to flow a sheath fluid into the intersection region to cause laminar flow and to compress the sample fluid mixture flowing from the sample micro-channel at least horizontally from at least two sides such that the sample fluid mixture becomes surrounded by sheath fluid and compressed into a thin stream.
  • the intersection region and the downstream flow focusing region are configured to focus a material in the sample fluid mixture. Compression of the sample fluid mixture centralizes the material within the sample fluid mixture such that the material is focused at or near a center of the downstream micro-channel.
  • the constricting portion of the micro-channel comprises sidewalls that taper.
  • the positively sloping bottom surface and tapering sidewalls occur simultaneously from an upstream end to a downstream end of the flow focusing region.
  • the positively sloping bottom surface and tapering sidewalls may start from a plane that perpendicularly traverses the flow focusing region.
  • the sample micro-channel includes a narrowing region downstream of an inlet of the sample micro-channel.
  • the narrowing region may comprise a positively sloping bottom surface that reduces a height of the narrowing region, and sidewalls that taper to reduce a width of the narrowing region.
  • the positively sloping bottom surface and tapering sidewalls can geometrically constrict the narrowing region.
  • an outlet of the sample micro-channel is positioned at or near mid-height of an outlet of each of the two sheath fluid micro-channels.
  • An inlet of the downstream micro-channel is positioned at or near mid-height of the outlet of each of the two sheath fluid micro-channels.
  • the outlet of the sample micro-channel is positioned at or near mid-height of the intersection region.
  • the inlet of the downstream micro-channel is positioned at or near mid-height of the intersection region.
  • the outlet of the sample micro-channel and the inlet of the downstream micro-channel may be aligned or may not be aligned.
  • the microfluidic chip may further comprise an interrogation region downstream of the flow focusing region.
  • the microfluidic chip may include an expansion region downstream of the interrogation region.
  • the expansion region may comprise a negatively sloping bottom surface that increases a height of the expansion region, and an expansion portion having sidewalls that widen to increase a width of the expansion region.
  • the microfluidic chip may further comprise a plurality of output micro-channels downstream of and fluidly coupled to the expansion region.
  • the present invention provides methods that utilize the microfluidic chip.
  • the present invention features a method of focusing particles in a fluid flow, comprising providing a microfluidic chip, flowing a fluid mixture comprising the particles into the sample micro-channel and into the intersection region, flowing a sheath fluid through the two sheath fluid micro-channels and into the intersection region such that the sheath fluid causes laminar flow and compresses the fluid mixture at least horizontally from at least two sides where the fluid mixture becomes surrounded by sheath fluid and compressed into a thin stream and the particles are constricted into the thin stream surrounded by the sheath fluid, flowing the fluid mixture and sheath fluids into the downstream micro-channel where the constricting portion of the downstream micro-channel horizontally compresses the thin stream of fluid mixture, and flowing the fluid mixture and sheath fluids into the focusing region where the positively sloping bottom surface and tapering sidewalls further constrict the fluid mixture stream and re-orient the particles within the
  • the present invention features a method of producing a fluid with gender- skewed sperm cells.
  • the method may comprise providing a microfluidic chip, flowing a semen fluid comprising sperm cells into the sample micro-channel and into the intersection region, flowing a sheath fluid through the two sheath fluid micro-channels and into the intersection region such that the sheath fluid causes laminar flow and compresses the semen fluid at least horizontally from at least two sides where the semen fluid becomes surrounded by sheath fluid and compressed into a thin stream, flowing the semen fluid and sheath fluids into the downstream micro-channel where the constricting portion horizontally compresses the thin stream of semen fluid, flowing the semen fluid and sheath fluids into the focusing region where the positively sloping bottom surface and tapering sidewalls further constrict the semen fluid stream to focus the sperm cells at or near a center the semen fluid stream, determining a chromosome type of the sperm cells in the semen
  • One of the unique and inventive technical features of the present invention is the physical restriction of the channel geometry at the flow focusing region. Without wishing to limit the invention to any theory or mechanism, it is believed that the technical feature of the present invention advantageously eliminates a second sheath flow structure from the microfluidic device such that the use of a secondary sheath fluid to focus/orient sperm cells becomes unnecessary, thus reducing the volume of sheath fluid used as compared to existing devices that have two focusing regions using sheath fluids for stream compression. This provides an additional benefit of reducing operational costs for equipment and supplies, and further simplifying system complexity. None of the presently known prior references or work has the unique inventive technical feature of the present invention.
  • the inventive technical feature of the present invention surprisingly resulted in equivalent purity, better performance, and improved functionality for Y-skewed sperm cells as compared to the prior devices having two focusing regions using sheath fluids.
  • the microfluidic device of the present invention unexpectedly improved the orientation of the sperm cells, which is believed to have increased the eligibility, i.e. higher number of cells detected, sorted, and ablated.
  • the device of the present invention was able to enhance resolution between the Y-chromosome bearing sperm cells and the X-chromosome bearing sperm cells, which resulted in effective discrimination of Y-chromosome- bearing sperm cells.
  • U.S. Patent No. 7311476 teaches the use of sheath fluids to focus a fluid stream in its disclosure of microfluidic chips that have at least two regions, where each region introduces sheath fluids to focus the sheath fluid around particles, and that the second (downstream) region requires the introduction of additional sheath fluid to achieve the necessary focusing.
  • the microfluidic chip includes a plurality of layers in which are disposed a plurality of channels including: a sample input channel into which a sample fluid mixture of components to be isolated is inputted, and two focusing regions comprising a first focusing region that focuses particles in the sample fluid and a second focusing region that focuses particles in the sample fluid, where one of the focusing regions includes introduction of a sheath fluid via one or more sheath fluid channels, and the other focusing region includes geometric compression without introducing additional sheath fluid.
  • Geometric compression refers to physical restriction due to a narrowing in size of the sample channel in both the vertical and horizontal axes (i.e.
  • the first focusing region may combine geometric with the sheath fluid introduction; however, the second focusing region does not utilize additional sheath fluid for stream focusing or particle orienting.
  • the microfluidic chip can be loaded on a microfluidic chip cassette which is mounted on a microfluidic chip holder.
  • the sample input channel and the one or more sheath channels are disposed in one or more planes of the microfluidic chip.
  • a sheath channel may be disposed in a different plane than a plane in which the sample input channel is disposed.
  • the sample input channel and the sheath channels are disposed in one or more structural layers, or in- between structural layers of the microfluidic chip.
  • the one or more sheath channels may be disposed in a different structural layer than a structural layer in which the sample input channel is disposed.
  • the sample input channel may taper at an entry point into the intersection region with the sheath channel.
  • the sheath channel may taper at entry points into the intersection region with the sample input channel.
  • the microfluidic device may include one or more output channels fluidly coupled to the sample channel. The one or more output channels may each have an output disposed at its end.
  • the microfluidic chip may further include one or more notches disposed at a bottom edge of the microfluidic chip to isolate the outputs of the output channels.
  • the microfluidic chip system includes an interrogation apparatus which interrogates and identifies the components of the sample fluid mixture in the sample input channel, in an interrogation chamber disposed downstream from the flow focusing region.
  • the interrogation apparatus includes a radiation source configured to emit a beam to illuminate and excite the components in said sample fluid mixture. The emitted light induced by the beam is received by an objective lens.
  • the interrogation apparatus may comprise a detector such as a photomultiplier tube (PMT), an avalanche photodiode (APD), or a silicon photomultiplier (SiPM).
  • the microfluidic chip includes a sorting mechanism which sorts said components in said sample fluid mixture downstream from said interrogation chamber, by selectively acting on individual components in said sample fluid mixture.
  • the sorting mechanism may comprise a laser kill/ablation.
  • sorting mechanisms include, but are not limited to, particle deflection/electrostatic manipulation, droplet sorting/deflection, mechanical sorting, fluid switching, piezoelectric actuation, optical manipulation (optical trapping, holographic steering, and photonic/radiation pressure), surface acoustic wave (SAW) deflection, electrophoresis/electrical disruption, micro-cavitation (laser induced, electrically induced).
  • the isolated components are moved into one of the output channels, and unselected components flow out through another output channel.
  • the microfluidic chip may be operatively coupled to a computer which controls the pumping of one of the sample fluid mixture or the sheath fluid into the microfluidic chip.
  • the computer can display the components in a field of view acquired by a CCD camera disposed over the interrogation window in the microfluidic chip.
  • the cells to be isolated may include at least one of viable and motile sperm from non-viable or non-motile sperm; sperm isolated by gender and other sex sorting variations; stem cells isolated from cells in a population; one or more labeled cells isolated from unlabeled cells including sperm cells; cells, including sperm cells, distinguished by desirable or undesirable traits; genes isolated in nuclear DNA according to a specified characteristic; cells isolated based on surface markers; cells isolated based on membrane integrity or viability; cells isolated based on potential or predicted reproductive status; cells isolated based on an ability to survive freezing; cells isolated from contaminants or debris; healthy cells isolated from damaged cells; red blood cells isolated from white blood cells and platelets in a plasma mixture; or any cells isolated from any other cellular components into corresponding fractions.
  • FIG. 1 A shows a bottom view of a top layer of a microfluidic device according to an embodiment of the present invention.
  • FIG. 1 B shows a top view of a bottom layer of the microfluidic device.
  • FIG. 1C is a side view of the top layer stacked on the bottom layer of the microfluidic device.
  • FIG. 2A shows a close-up view and a cross-sectional side view of an intersection region in the top layer shown in FIG. 1A.
  • FIG. 2B shows a close-up view and a cross-sectional side view of the intersection region in the bottom layer shown in FIG. 1 B.
  • FIG. 2C shows a close-up view and a cross-sectional side view of the intersection region in the stacked layers shown in FIG. 1C.
  • FIG. 3A shows a close-up view and a cross-sectional side view of a flow focusing region in the top layer shown in FIG. 1A.
  • FIG. 3B shows a close-up view and a cross-sectional side view of the flow focusing region in the bottom layer shown in FIG. 1 B.
  • FIG. 3C shows a close-up view and a cross-sectional side view of the flow focusing region in the stacked layers shown in FIG. 1C.
  • FIG. 4 shows a close-up view of the flow focusing region shown in FIG. 1 B.
  • FIG. 5 shows a non-limiting embodiment of a top view and a side view of a downstream micro- channel and the flow focusing region. This embodiment shows the constricting portion of the downstream micro-channel and the simultaneous geometric compression by the bottom surface and sidewalls of the flow focusing region.
  • FIG. 6 shows a close-up view and a cross-sectional side view of an output channel region in the bottom layer shown in FIG. 1 B.
  • FIG. 7 is a non-limiting example of a flow diagram for a method of gender-skewing a semen fluid sample.
  • the present disclosure relates to a microfluidic chip design and methods that can isolate particles or cellular materials, such as sperm and other particles or cells, into various components and fractions.
  • the various embodiments of the present invention provide for isolating components in a mixture, such as isolating viable and motile sperm from non-viable or non-motile sperm; isolating sperm by gender, and other sex sorting variations; isolating stems cells from cells in a population; isolating one or more labeled cells from un-labeled cells distinguishing desirable/undesirable traits; isolating genes in nuclear DNA according to a specified characteristic; isolating cells based on surface markers; isolating cells based on membrane integrity (viability), potential or predicted reproductive status (fertility), ability to survive freezing, etc.; isolating cells from contaminants or debris; isolating healthy cells from damaged cells (i.e., cancerous cells) (as in bone
  • the various embodiments of the present invention provide systems and methods particularly suited for sorting sperm cells to produce a sexed semen product in which live, progressively motile sperm cells are predominantly Y-chromosome bearing sperm cells.
  • the systems and methods of the present invention can produce a sex-sorted or gender skewed semen product comprising at least 55% of Y-chromosome bearing sperm cells.
  • the systems and methods can produce a sexed semen product comprising about 55% to about 90% of Y- chromosome bearing sperm cells.
  • the systems and methods can produce a sexed semen product comprising at least 90%, or at least 95%, or at least 99% of Y-chromosome bearing sperm cells.
  • the present invention may be extended to other types of particulate, biological or cellular matter, which are capable of being interrogated by fluorescence techniques within a fluid flow, or which are capable of being manipulated between different fluid flows into different outputs.
  • the various embodiments of the microfluidics chip utilize one or more flow channels having substantially laminar flow, and a flow focusing region for focusing and/or orienting one or more components in the fluid, allowing the one or more components to be interrogated for identification and to be isolated into flows that exit into one or more outputs.
  • the various components in the mixture may be subjected to one or more sorting processes on-chip using various sorting techniques, such as, for example, particle deflection/electrostatic manipulation; droplet sorting/ deflection; mechanical sorting; fluid switching; piezoelectric actuation; optical manipulation (optical trapping, holographic steering, and photonic/radiation pressure); laser kill/ablation; surface acoustic wave (SAW) deflection; electrophoresis/electrical disruption; micro-cavitation (laser induced, electrically induced); or by magnetics (i.e., using magnetic beads).
  • SAW surface acoustic wave
  • the present invention features a microfluidic chip (100).
  • a non-limiting embodiment of the microfluidic chip (100) comprises a sample micro-channel (110), two sheath fluid micro-channels (140) intersecting the sample micro-channel (110) to form an intersection region (145), a downstream micro-channel (120) fluidly connected to the intersection region (145), the downstream micro- channel (120) having a constricting portion (122) that narrows in width, and a downstream flow focusing region (130) fluidly connected to the downstream micro-channel (120).
  • the flow focusing region (130) may comprise a positively sloping bottom surface (132) that reduces a height of the flow focusing region and sidewalls (135) that taper to reduce a width of the flow focusing region, thereby geometrically constricting the flow focusing region (130).
  • the sample micro- channel (110) is configured to flow a sample fluid mixture
  • the two sheath fluid micro-channels (140) are each configured to flow a sheath fluid into the intersection region (145).
  • the flow of sheath fluid causes laminar flow and compression of the sample fluid mixture flowing from the sample micro-channel (110) at least horizontally from at least two sides such that the sample fluid mixture becomes surrounded by sheath fluid and compressed into a thin stream.
  • additional sheath flows may be incorporated to focus and/or adjust the location of the sample stream within the microchannel.
  • Such sheath flows may be introduced from one or more directions (i.e. top, bottom, and/or sides), and may be introduced simultaneously or in succession.
  • the constricting portion (122) of the micro-channel comprises sidewalls (125) that taper.
  • the sidewalls (125) may taper such that the width of the micro-channel is reduced from 150 urn to 125 urn.
  • the positively sloping bottom surface (132) and tapering sidewalls (135) occur simultaneously from an upstream end (137) to a downstream end (138) of the flow focusing region.
  • the positively sloping bottom surface (132) and tapering sidewalls (135) have the same starting point.
  • the positively sloping bottom surface (132) and tapering sidewalls (135) each begin from a same plane that perpendicularly traverses the flow focusing region (130).
  • the sample micro-channel (110) includes a narrowing region (112) downstream of an inlet (111) of the sample micro-channel.
  • the narrowing region (112) may comprise a positively sloping bottom surface (114) that reduces a height of the narrowing region, and sidewalls (115) that taper to reduce a width of the narrowing region.
  • the positively sloping bottom surface (114) and tapering sidewalls (115) can geometrically constrict the narrowing region (112).
  • an outlet (113) of the sample micro-channel may be positioned at or near mid-height of an outlet (143) of each of the two sheath fluid micro-channels.
  • An inlet (124) of the downstream micro-channel may be positioned at or near mid-height of the outlet (143) of each of the two sheath fluid micro-channels.
  • the outlet (113) of the sample micro-channel and the inlet (124) of the downstream micro-channel may be aligned.
  • the outlet (113) of the sample micro- channel may be positioned at or near mid-height of the intersection region and the inlet (124) of the downstream micro-channel may be positioned at or near mid-height of the intersection region.
  • intersection region (145) and the downstream flow focusing region (130) are configured to focus a material in the sample fluid mixture.
  • compression of the sample fluid mixture centralizes the material within the sample fluid mixture such that the material is focused at or near a center of the downstream micro-channel.
  • the microfluidic chip (100) may further comprise a plurality of output microchannels (170) downstream of and fluidly coupled to the expansion region (160).
  • the output microchannels (170) are configured to output fluids, which may have components such as particles or cellular material.
  • the output channels may each have an output disposed at its end.
  • the microfluidic chip may further include one or more notches disposed at a bottom edge of the microfluidic chip to separate the outputs and to provide attachments for external tubing etc.
  • a non-limiting embodiment of the chip may comprise three output channels, which include two side output channels and a center output channel disposed between said side channels.
  • the micro-channels and various regions of the microfluidic chip may be dimensioned so as to achieve a desired flow rate(s) that meets the objective of the present invention.
  • the micro-channels may have substantially the same dimensions, however, one of ordinary skill in the art would know that the size of any or all of the channels in the microfluidic chip may vary in dimension (i.e. , between 50 and 500 microns), as long as the desired flow rate(s) is achieved.
  • the microfluidic chip (100) may further comprise an interrogation region (150) downstream of the flow focusing region (130).
  • the microfluidic chip (100) may include an expansion region (160) downstream of the interrogation region (150).
  • the expansion region (160) may comprise a negatively sloping bottom surface (162) that increases a height of the expansion region, and an expansion portion having sidewalls (165) that widen to increase a width of the expansion region.
  • the interrogation apparatus includes a chamber with an opening or window cut into the microfluidic chip. The opening or window can receive a covering to enclose the interrogation chamber.
  • the covering may be made of any material with the desired transmission requirements, such as plastic, glass, or may even be a lens.
  • the window and covering allow the components of the fluid mixture flowing through the interrogation chamber to be viewed, and acted upon by a suitable radiation source configured to emit a high intensity beam with any wavelength that matches the excitation of the components.
  • a laser may be used, it is understood that other suitable radiation sources may be used, such as a light emitting diode (LED), arc lamp, etc. to emit a beam which excites the components.
  • the light beam can be delivered to the components by an optical fiber that is embedded in the microfluidic chip at the opening.
  • a high intensity laser beam from a suitable laser of a preselected wavelength- such as a 355 nm continuous wave (CW) (or quasi-CW) laser - is required to excite the components in the fluid mixture (i.e. , sperm cells).
  • the laser emits a laser beam through the window so as to illuminate the components flowing through the interrogation region of the chip. Since the laser beam can vary in intensity widthwise along the micro-channel, with the highest intensity generally at the center of the micro-channel (e.g., midsection of the channel width) and decreasing therefrom, it is imperative that the flow focusing region focuses the sperm cells at or near the center of the fluid stream where optimal illumination occurs at or near the center of the illumination laser spot. Without wishing to be bound to a particular belief, this can improve accuracy of the interrogation and identification process
  • the high intensity beam interacts with the components such that the emitted light, which is induced by the beam, is received by an objective lens.
  • the objective lens may be disposed in any suitable position with respect to the microfluidic chip.
  • the emitted light received by the objective lens is converted into an electronic signal by an optical sensor, such as a photomultiplier tube (PMT) or photodiode, etc.
  • the electronic signal can be digitized by an analog-to-digital converter (ADC) and sent to a digital signal processor (DSP) based controller.
  • ADC analog-to-digital converter
  • DSP digital signal processor
  • the DSP based controller monitors the electronic signal and may then trigger a sorting mechanism.
  • the interrogation apparatus may comprise a detector such as a photomultiplier tube (PMT), an avalanche photodiode (APD), or a silicon photomultiplier (SiPM).
  • a detector such as a photomultiplier tube (PMT), an avalanche photodiode (APD), or a silicon photomultiplier (SiPM).
  • the optical sensor of the interrogation apparatus may be APD, which is a photodiode with substantial internal signal amplification through an avalanche process.
  • a piezoelectric actuator assembly may be used to sort the desired components in the fluid mixture as the components leave the interrogation area after interrogation.
  • a trigger signal sent to the piezoelectric actuator is determined by the sensor raw signal to activate a particular piezoelectric actuator assembly when the selected component is detected.
  • a flexible diaphragm made from a suitable material, such as one of stainless steel, brass, titanium, nickel alloy, polymer, or other suitable material with desired elastic response, is used in conjunction with an actuator to push target components in the micro-channel into an output channel (170) to isolate the target components from the fluid mixture.
  • the actuator may be a piezoelectric, magnetic, electrostatic, hydraulic, or pneumatic type actuator.
  • a piezoelectric actuator assembly or a suitable pumping system may be used to pump the sample fluid into the micro-channel (110) toward the intersection region (145).
  • the sample piezoelectric actuator assembly may be disposed at sample inlet (111).
  • sorting or separating mechanisms include, but are not limited to, droplet sorters, mechanical separation, fluid switching, acoustic focusing, holographic trapping/steering, and photonic pressure/steering.
  • the sorting mechanism for sex-sorting of sperm cells comprises laser kill/ablation of selected X-chromosome-bearing sperm cells.
  • the laser is activated when an X-chromosome-bearing sperm cell is detected during interrogation.
  • the laser emits a high intensity beam directed at the X-chromosome-bearing sperm cell centered within the fluid stream.
  • the high intensity beam is configured to cause DNA and/or membrane damage to the cell, thereby causing infertility or killing the X-chromosome-bearing sperm cell.
  • the final product is comprised predominantly of viable Y-chromosome-bearing sperm cells.
  • the reduction in the cross-sectional area of the flow focusing region geometrically compresses the fluid that carries sperm cells.
  • the geometric compression of the fluid centralizes the sperm cells within the fluid such that the sperm cells are focused at or near a center of the micro-channel. Since the laser beam varies in intensity widthwise along the micro-channel, with the highest intensity generally at the center of micro-channel and decreasing therefrom, it is imperative that the flow focusing region focuses the sperm cells at or near the center of the fluid stream where the laser beam has the highest intensity to impart maximum damage to the selected sperm cells.
  • the components that are to be isolated include, for example: isolating viable and motile sperm from non- viable or non-motile sperm; isolating sperm by gender, and other sex sorting variations; isolating stems cells from cells in a population; isolating one or more labeled cells from un-labeled cells distinguishing desirable/undesirable traits; sperm cells with different desirable characteristics; isolating genes in nuclear DNA according to a specified characteristic; isolating cells based on surface markers; isolating cells based on membrane integrity (viability), potential or predicted reproductive status (fertility), ability to survive freezing, etc.; isolating cells from contaminants or debris; isolating healthy cells from damaged cells (i.e.
  • the components may be cells or beads treated or coated with, linker molecules, or embedded with a fluorescent or luminescent label molecule(s).
  • the components may have a variety of physical or chemical attributes, such as size, shape, materials, texture, etc.
  • a heterogeneous population of components may be measured simultaneously, with each component being examined for different quantities or regimes in similar quantities (e.g., multiplexed measurements), or the components may be examined and distinguished based on a label (e.g., fluorescent), image (due to size, shape, different absorption, scattering, fluorescence, luminescence characteristics, fluorescence or luminescence emission profiles, fluorescent or luminescent decay lifetime), and/or particle position etc.
  • a label e.g., fluorescent
  • image due to size, shape, different absorption, scattering, fluorescence, luminescence characteristics, fluorescence or luminescence emission profiles, fluorescent or luminescent decay lifetime
  • a focusing method may be used in order to position the components for interrogation in the interrogation chamber.
  • a first constricting step of the present invention is accomplished by inputting a fluid sample containing components, such as sperm cells etc., through sample input (111), and inputting sheath or buffer fluids through the sheath or buffer micro-channels (140).
  • the components are pre-stained with dye (e.g., Hoechst dye), in order to allow fluorescence, and for imaging to be detected. Initially, the components in the sample fluid mixture flow through micro-channel (110) and have random orientation and position.
  • the sample mixture flowing in the micro-channel (110) is compressed by the sheath or buffer fluids flowing from the sheath or buffer micro-channels (140) at least horizontally on at least both sides of the flow, if not all sides.
  • the components are focused and compressed into a thin stream and the components (e.g., sperm cells) move toward a center of the channel width.
  • This step is advantageous in that the less sheath fluid is used since sheath fluid in only introduced at one location in the chip.
  • the present invention includes a second constricting step where the sample mixture containing the components is further compressed, at least horizontally, by the constricting region (122) of the downstream micro-channel.
  • This step utilizes physical or geometric compression instead of another intersection of sheath fluids.
  • the sample stream is focused at the center of the channel, and the components flow along the center of the channel.
  • the components are flowing in approximately single file formation.
  • the physical/geometric compression has the advantage of reducing the volume of sheath fluid since a second intersection of sheath fluids is eliminated.
  • the present invention includes a focusing step where the sample mixture containing the components is further compressed in the flow focusing region (130) using physical or geometric compression, instead of another intersection of sheath fluids.
  • the sample mixture is also positioned closer to a top surface of the focusing region (130) by the upward sloping bottom surface.
  • the focusing step of the present invention the sample stream is focused at the center of the channel, and the components flow along the center of the channel in approximately a single file formation.
  • the physical/geometric compression has the advantage of reducing the volume of sheath fluid since the second intersection of sheath fluids is eliminated.
  • the microfluidic devices described herein may be used in the focusing method described above.
  • the present invention provides a method of focusing particles in a fluid flow.
  • the method may comprise providing any one of the microfluidic devices described herein, flowing a fluid mixture comprising the particles into the sample micro-channel (110) and into the intersection region (145), flowing a sheath fluid through the two sheath fluid micro-channels (140) and into the intersection region (145) such that the sheath fluid causes laminar flow and compresses the fluid mixture at least horizontally from at least two sides, wherein the fluid mixture becomes surrounded by sheath fluid and compressed into a thin stream and the particles are constricted into the thin stream surrounded by the sheath fluid, flowing the fluid mixture and sheath fluids into the downstream micro- channel (120), wherein the constricting portion (122) of the downstream micro-channel (120) horizontally compresses the thin stream of fluid mixture, and flowing the fluid mixture and sheath fluids into the focusing region (
  • Compression of the fluid mixture, by the introduction of sheath fluid and/or the physical structures at the constricting and focusing regions constricts the particles of the fluid mixture into a relatively smaller, narrower stream bounded by the sheath fluids.
  • sheath fluid introduced into the sample micro-channel (110) by two sheath fluid channels (130) can compress the fluid mixture stream from two sides into a relatively smaller, narrower stream while maintaining laminar flow.
  • Flow of the fluid mixture and sheath fluids in the focusing region causes further constriction of the fluid mixture stream and reorienting of the particles within the stream, which is caused by the physical structures such as the rising bottom surface (132) and the tapering portions of the sidewalls (135) of the focusing region, thus focusing the particles.
  • the components of the sample are sperm cells, and because of their pancake-type or flattened teardrop shaped head, the sperm cells can re-orient themselves in a predetermined direction as they undergo the focusing step - i.e. , with their flat surfaces perpendicular to the direction of a light beam.
  • the sperm cells develop a preference on their body orientation while passing through the two-step focusing process.
  • the sperm cells tend to be more stable with their flat bodies perpendicular to the direction of the compression.
  • the sperm cells which start with random orientation can achieve uniform orientation.
  • the sperm cells not only make a single file formation at the center of the channel, but they also achieve a uniform orientation.
  • the components introduced into sample input which may be other types of cells or other materials as previously described, undergo the focusing steps, which allow the components to move in a single file formation, and in a more uniform orientation (depending on the type of components), which allows for easier interrogation of the components.
  • the present invention also provides a method of producing a fluid with gender-skewed sperm cells.
  • the method may comprise providing any one of the microfluidic devices described herein, flowing a semen fluid comprising sperm cells into the sample micro-channel (110) and into the intersection region (145), flowing a sheath fluid through the two sheath fluid micro-channels (140) and into the intersection region (145) such that the sheath fluid causes laminar flow and compresses the semen fluid at least horizontally from at least two sides, wherein the semen fluid becomes surrounded by sheath fluid and compressed into a thin stream, flowing the semen fluid and sheath fluids into the downstream micro-channel (120), wherein the constricting portion (122) of the downstream micro-channel (120) horizontally compresses the thin stream of semen fluid, flowing the semen fluid and sheath fluids into the focusing region (130), wherein the positively sloping bottom surface (132) and tape
  • the chromosome type of the sperm cells may be determined using any one of the interrogation apparatus described herein.
  • the microfluidic chip (100) may further comprise an interrogation region (150) downstream of the flow focusing region (130).
  • An interrogation apparatus may be coupled to the interrogation region (150) and used to determine the chromosome type of the sperm cells and sort said sperm cells based on chromosome type.
  • the interrogation apparatus may comprise a radiation source that illuminates and excites the sperm cells, and a response of the sperm cell is indicative of the chromosome type in the sperm cell.
  • the response of the sperm cell may be detected by an optical sensor.
  • the interrogation apparatus may further comprise a laser source.
  • the Y-chromosome-bearing sperm cells are sorted from the X- chromosome-bearing sperm cells by laser ablation, which exposes the cells to the high intensity laser source that damages or kills cells that are determined to bear an X-chromosome.
  • the gender-skewed sperm cells are comprised of at least 55% of Y-chromosome-bearing sperm cells.
  • the gender-skewed sperm cells are comprised of about 55%-99% of Y- chromosome-bearing sperm cells.
  • the gender-skewed sperm cells are comprised of at least 99% of Y-chromosome-bearing sperm cells.
  • the components are detected in the interrogation chamber using a radiation source.
  • the radiation source emits a light beam (which may be via an optical fiber) which is focused at the center of the channel widthwise.
  • the components such as sperm cells, are oriented by the focusing region such that the flat surfaces of the components are facing toward the beam.
  • all components are preferably aligned in a single file formation by focusing as they pass under a radiation source. As the components pass under the radiation source and are acted upon by a light beam, the components emit the fluorescence which indicates the desired components.
  • X chromosome cells fluoresce at a different intensity from Y chromosome cells; or cells carrying one trait may fluoresce in a different intensity or wavelength from cells carrying a different set of traits.
  • the components can be viewed for shape, size, or any other distinguishing indicators.
  • interrogation of the sample containing components is accomplished by other methods.
  • methods for interrogation may include direct visual imaging, such as with a camera, and may utilize direct bright-light imaging or fluorescent imaging; or, more sophisticated techniques may be used such as spectroscopy, transmission spectroscopy, spectral imaging, or scattering such as dynamic light scattering or diffusive wave spectroscopy.
  • the optical interrogation region may be used in conjunction with additives, such as chemicals which bind to or affect components of the sample mixture or beads which are functionalized to bind and/or fluoresce in the presence of certain materials or diseases. These techniques may be used to measure cell concentrations, to detect disease, or to detect other parameters which characterize the components.
  • polarized light back scattering methods may also be used.
  • the components are interrogated and the spectrum of those components which had positive results and fluoresced (i.e., those components which reacted with a label) are identified for separation.
  • the components may be identified based on the reaction or binding of the components with additives or sheath or buffer fluids, or by using the natural fluorescence of the components, or the fluorescence of a substance associated with the component, as an identity tag or background tag, or met a selected size, dimension, or surface feature, etc., are selected for separation.
  • selection may be made, via computer and/or operator, of which components to discard and which to collect.
  • the emitted light beam is then collected by the objective lens, and subsequently converted to an electronic signal by the optical sensor.
  • the electronic signal is then digitized by an analog-digital converter (ADC) and sent to an electronic controller for signal processing.
  • ADC analog-digital converter
  • the electronic controller can be any electronic processer with adequate processing power, such as a DSP, a Micro Controller Unit (MCU), a Field Programmable Gate Array (FPGA), or even a Central Processing Unit (CPU).
  • the DSP-based controller monitors the electronic signal and may then trigger a sorting mechanism when a desired component is detected.
  • the FPGA-based controller monitors the electronic signal and then either communicates with the DSP controller or acts independently to trigger a sorting mechanism when a desired component is detected.
  • the optical sensor may be a photomultiplier tube (PMT), an avalanche photodiode (APD), or a silicon photomultiplier (SiPM).
  • the optical sensor may be an APD that detects the response of the sperm cell to interrogation.
  • the selected or desired components in the interrogation chamber are isolated into a desired output channel using a piezoelectric actuator.
  • the electronic signal activates the driver to trigger the actuator at the moment when the target or selected component arrives at a cross-section point of jet channels and the micro- channel. This causes the actuator to contact a diaphragm and push it, compressing a jet chamber, and squeezing a strong jet of buffer or sheath fluids into the micro-channel, which pushes the selected or desired component into a desired output channel.
  • the isolated components are collected from their respective output channel (170) for storing, further separation, or processing, such as cryopreservation.
  • the outputted components may be characterized electronically, to detect concentrations of components, pH measuring, cell counts, electrolyte concentration, etc.
  • the microfluidic chip may be loaded on a chip cassette, which is mounted on chip holder.
  • the chip holder is mounted to a translation stage to allow fine positioning of the holder.
  • the microfluidic chip holder is configured to hold the microfluidic chip in a pre-determined position such that the interrogating light beam intercepts the fluid components.
  • the microfluidic chip holder is made of a suitable material, such as aluminum alloy, or other suitable metallic/polymer material.
  • a main body of the holder may be any suitable shape, but its configuration depends on the layout of the chip.
  • the main body of the holder is configured to receive and engage with external tubing for communicating fluids/samples to the microfluidic chip.
  • a gasket of any desired shape, or O-rings, may be provided to maintain a tight seal between the microfluidic chip and the microfluidic chip holder.
  • the gasket may be a single sheet or a plurality of components, in any configuration, or material (i.e., rubber, silicone, etc.) as desired.
  • the gasket interfaces, or is bonded (using an epoxy) with a layer of the microfluidic chip.
  • the gasket is configured to assist in sealing, as well as stabilizing or balancing the microfluidic chip in the microfluidic chip holder.
  • a pumping mechanism includes a system having a pressurized gas which provides pressure for pumping sample fluid mixture from reservoir (i.e., sample tube) into sample input of the chip.
  • a collapsible container having sheath or buffer fluid therein is disposed in a pressurized vessel, and the pressurized gas pushes fluid such that fluid is delivered via tubing to the sheath or buffer input of the chip.
  • a pressure regulator regulates the pressure of gas within the reservoir, and another pressure regulator regulates the pressure of gas within the vessel.
  • a mass flow regulator controls the fluid pumped via tubing, respectively, into the sheath or buffer input.
  • tubing is used in the initial loading of the fluids into the chip, and may be used throughout the chip to load a sample fluid into sample input.
  • any of the operations, steps, control options, etc. may be implemented by instructions that are stored on a computer-readable medium such as a memory, database, etc.
  • a computer-readable medium such as a memory, database, etc.
  • the instructions can cause the computing device or processor to perform any of the operations, steps, control options, etc. described herein.
  • the operations described in this specification may be implemented as operations performed by a data processing apparatus or processing circuit on data stored on one or more computer-readable storage devices or received from other sources.
  • a computer program (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, declarative or procedural languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, object, or other unit suitable for use in a computing environment.
  • a program can be stored in a portion of a file that holds other programs or data, in a single file dedicated to the program in question, or in multiple coordinated files.
  • a program can be deployed to be executed on one computer or on multiple computers interconnected by a communication network.
  • Processing circuits suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer.
  • a user interface of the computer system includes a computer screen which displays the components in a field of view acquired by a CCD camera over the microfluidic chip.
  • the computer controls any external devices such as pumps, if used, to pump any sample fluids, sheath or buffer fluids into the microfluidic chip, and also controls any heating devices which set the temperature of the fluids being inputted into the microfluidic chip.
  • descriptions of the inventions described herein using the phrase “comprising” includes embodiments that could be described as “consisting essentially of or “consisting of, and as such the written description requirement for claiming one or more embodiments of the present invention using the phrase “consisting essentially of or “consisting of is met.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Fluid Mechanics (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Microfluidic devices and methods for focusing components in a fluid sample are described herein. The microfluidic devices feature a microfluidic chip having a micro-channel having a constricting portion that narrows in width, and a flow focusing region downstream of the micro-channel. The flow focusing region includes a positively sloping bottom surface that reduces a height of the flow focusing region and sidewalls that taper to reduce a width of the flow focusing region, thereby geometrically constricting the flow focusing region. The devices and methods can be utilized in sex-sorting of sperm cells to improve performance and increase eligibility.

Description

SINGLE-SHEATH MICROFLUIDIC CHIP
BACKGROUND OF THE INVENTION
Field of the Invention
[0001] The present invention relates to a microfluidic chip design, in particular, to a microfluidic chip for isolating particles or cellular materials using laminar flow from a single sheath and geometric focusing.
Background Art
[0002] Microfluidics enables the use of small volumes for preparing and processing samples, such as various particles or cellular materials. When separating a sample, such as the separation of sperm into viable and motile sperm from non-viable or non-motile sperm, or separation by gender, the process is often a time-consuming task and can have severe volume restrictions. Current separation techniques cannot, for example, produce the desired yield, or process volumes of cellular materials in a timely fashion. Furthermore, existing microfluidic devices do not effectively focus or orient the sperm cells.
[0003] Hence, there is need for a microfluidic device and separation process utilizing said device that is continuous, has high throughput, provides time saving, and causes negligible or minimal damage to the various components of the separation. In addition, such a device and method can have further applicability to biological and medical areas, not just in sperm sorting, but in the separation of blood and other cellular materials, including viral, cell organelle, globular structures, colloidal suspensions, and other biological materials.
BRIEF SUMMARY OF THE INVENTION
[0004] It is an objective of the present invention to provide microfluidic devices and methods that allow for focusing and orienting particles or cellular materials, as specified in the independent claims. Embodiments of the invention are given in the dependent claims. Embodiments of the present invention can be freely combined with each other if they are not mutually exclusive.
[0005] In some aspects, the present invention features microfluidic devices for use in sperm cell sexing and trait enrichment. The microfluidic device may comprise at least one flow focusing region where the components are focused or re-oriented by the geometry of the region. From an upstream end to a downstream end of the flow focusing region, at least a portion of the flow focusing region has a reduction in height and at least a portion narrows in width, thereby geometrically constricting the flow focusing region.
[0006] According to some embodiments, the present invention features a microfluidic chip comprising a micro-channel having a constricting portion that narrows in width, and a flow focusing region downstream of the micro-channel, comprising a positively sloping bottom surface that reduces a height of the flow focusing region and sidewalls that taper to reduce a width of the flow focusing region, thereby geometrically constricting the flow focusing region.
[0007] In another embodiment, the microfluidic chip may comprise a sample micro-channel, two sheath fluid micro-channels intersecting the sample micro-channel to form an intersection region, a downstream micro-channel fluidly connected to the intersection region, and a downstream flow focusing region fluidly connected to the downstream micro-channel. The downstream micro-channel may have a constricting portion that narrows in width. The flow focusing region may comprise a positively sloping bottom surface that reduces a height of the flow focusing region and sidewalls that taper to reduce a width of the flow focusing region, thereby geometrically constricting the flow focusing region. The sample micro-channel is configured to flow a sample fluid mixture, and the two sheath fluid micro-channels are each configured to flow a sheath fluid into the intersection region to cause laminar flow and to compress the sample fluid mixture flowing from the sample micro-channel at least horizontally from at least two sides such that the sample fluid mixture becomes surrounded by sheath fluid and compressed into a thin stream. The intersection region and the downstream flow focusing region are configured to focus a material in the sample fluid mixture. Compression of the sample fluid mixture centralizes the material within the sample fluid mixture such that the material is focused at or near a center of the downstream micro-channel.
[0008] In some embodiments, the constricting portion of the micro-channel comprises sidewalls that taper. In other embodiments, the positively sloping bottom surface and tapering sidewalls occur simultaneously from an upstream end to a downstream end of the flow focusing region. The positively sloping bottom surface and tapering sidewalls may start from a plane that perpendicularly traverses the flow focusing region. In some other embodiments, the sample micro-channel includes a narrowing region downstream of an inlet of the sample micro-channel. The narrowing region may comprise a positively sloping bottom surface that reduces a height of the narrowing region, and sidewalls that taper to reduce a width of the narrowing region. The positively sloping bottom surface and tapering sidewalls can geometrically constrict the narrowing region.
[0009] In one embodiment, an outlet of the sample micro-channel is positioned at or near mid-height of an outlet of each of the two sheath fluid micro-channels. An inlet of the downstream micro-channel is positioned at or near mid-height of the outlet of each of the two sheath fluid micro-channels. In another embodiment, the outlet of the sample micro-channel is positioned at or near mid-height of the intersection region. The inlet of the downstream micro-channel is positioned at or near mid-height of the intersection region. In yet another embodiment, the outlet of the sample micro-channel and the inlet of the downstream micro-channel may be aligned or may not be aligned.
[0010] In some embodiments, the microfluidic chip may further comprise an interrogation region downstream of the flow focusing region. The microfluidic chip may include an expansion region downstream of the interrogation region. The expansion region may comprise a negatively sloping bottom surface that increases a height of the expansion region, and an expansion portion having sidewalls that widen to increase a width of the expansion region. In other embodiments, the microfluidic chip may further comprise a plurality of output micro-channels downstream of and fluidly coupled to the expansion region.
[0011] According to other embodiments, the present invention provides methods that utilize the microfluidic chip. In some embodiments, the present invention features a method of focusing particles in a fluid flow, comprising providing a microfluidic chip, flowing a fluid mixture comprising the particles into the sample micro-channel and into the intersection region, flowing a sheath fluid through the two sheath fluid micro-channels and into the intersection region such that the sheath fluid causes laminar flow and compresses the fluid mixture at least horizontally from at least two sides where the fluid mixture becomes surrounded by sheath fluid and compressed into a thin stream and the particles are constricted into the thin stream surrounded by the sheath fluid, flowing the fluid mixture and sheath fluids into the downstream micro-channel where the constricting portion of the downstream micro-channel horizontally compresses the thin stream of fluid mixture, and flowing the fluid mixture and sheath fluids into the focusing region where the positively sloping bottom surface and tapering sidewalls further constrict the fluid mixture stream and re-orient the particles within the stream, thereby focusing the particles.
[0012] In other embodiments, the present invention features a method of producing a fluid with gender- skewed sperm cells. The method may comprise providing a microfluidic chip, flowing a semen fluid comprising sperm cells into the sample micro-channel and into the intersection region, flowing a sheath fluid through the two sheath fluid micro-channels and into the intersection region such that the sheath fluid causes laminar flow and compresses the semen fluid at least horizontally from at least two sides where the semen fluid becomes surrounded by sheath fluid and compressed into a thin stream, flowing the semen fluid and sheath fluids into the downstream micro-channel where the constricting portion horizontally compresses the thin stream of semen fluid, flowing the semen fluid and sheath fluids into the focusing region where the positively sloping bottom surface and tapering sidewalls further constrict the semen fluid stream to focus the sperm cells at or near a center the semen fluid stream, determining a chromosome type of the sperm cells in the semen fluid stream, where each sperm cell is either a Y- chromosome-bearing sperm cell or an X-chromosome-bearing sperm cell, and sorting Y-chromosome- bearing sperm cells from X-chromosome-bearing sperm cells, thereby producing the fluid comprising gender-skewed sperm cells that are predominantly Y-chromosome-bearing sperm cells.
[0013] One of the unique and inventive technical features of the present invention is the physical restriction of the channel geometry at the flow focusing region. Without wishing to limit the invention to any theory or mechanism, it is believed that the technical feature of the present invention advantageously eliminates a second sheath flow structure from the microfluidic device such that the use of a secondary sheath fluid to focus/orient sperm cells becomes unnecessary, thus reducing the volume of sheath fluid used as compared to existing devices that have two focusing regions using sheath fluids for stream compression. This provides an additional benefit of reducing operational costs for equipment and supplies, and further simplifying system complexity. None of the presently known prior references or work has the unique inventive technical feature of the present invention.
[0014] The inventive technical feature of the present invention surprisingly resulted in equivalent purity, better performance, and improved functionality for Y-skewed sperm cells as compared to the prior devices having two focusing regions using sheath fluids. For instance, the microfluidic device of the present invention unexpectedly improved the orientation of the sperm cells, which is believed to have increased the eligibility, i.e. higher number of cells detected, sorted, and ablated. In addition, the device of the present invention was able to enhance resolution between the Y-chromosome bearing sperm cells and the X-chromosome bearing sperm cells, which resulted in effective discrimination of Y-chromosome- bearing sperm cells.
[0015] Further still, the prior references teach away from the present invention. For example, contrary to the present invention, U.S. Patent No. 7311476 teaches the use of sheath fluids to focus a fluid stream in its disclosure of microfluidic chips that have at least two regions, where each region introduces sheath fluids to focus the sheath fluid around particles, and that the second (downstream) region requires the introduction of additional sheath fluid to achieve the necessary focusing.
[0016] In some embodiments, the microfluidic chip includes a plurality of layers in which are disposed a plurality of channels including: a sample input channel into which a sample fluid mixture of components to be isolated is inputted, and two focusing regions comprising a first focusing region that focuses particles in the sample fluid and a second focusing region that focuses particles in the sample fluid, where one of the focusing regions includes introduction of a sheath fluid via one or more sheath fluid channels, and the other focusing region includes geometric compression without introducing additional sheath fluid. Geometric compression refers to physical restriction due to a narrowing in size of the sample channel in both the vertical and horizontal axes (i.e. from above and below and from both the left and right sides, relative to the direction of travel along the sample channel). In some aspects, the first focusing region may combine geometric with the sheath fluid introduction; however, the second focusing region does not utilize additional sheath fluid for stream focusing or particle orienting. In other aspects, the microfluidic chip can be loaded on a microfluidic chip cassette which is mounted on a microfluidic chip holder.
[0017] In some embodiments, the sample input channel and the one or more sheath channels are disposed in one or more planes of the microfluidic chip. For instance, a sheath channel may be disposed in a different plane than a plane in which the sample input channel is disposed. In other embodiments, the sample input channel and the sheath channels are disposed in one or more structural layers, or in- between structural layers of the microfluidic chip. As an example, the one or more sheath channels may be disposed in a different structural layer than a structural layer in which the sample input channel is disposed.
[0018] In one embodiment, the sample input channel may taper at an entry point into the intersection region with the sheath channel. In another embodiment, the sheath channel may taper at entry points into the intersection region with the sample input channel. In some embodiments, the microfluidic device may include one or more output channels fluidly coupled to the sample channel. The one or more output channels may each have an output disposed at its end. In other embodiments, the microfluidic chip may further include one or more notches disposed at a bottom edge of the microfluidic chip to isolate the outputs of the output channels.
[0019] In some embodiments, the microfluidic chip system includes an interrogation apparatus which interrogates and identifies the components of the sample fluid mixture in the sample input channel, in an interrogation chamber disposed downstream from the flow focusing region. In one embodiment, the interrogation apparatus includes a radiation source configured to emit a beam to illuminate and excite the components in said sample fluid mixture. The emitted light induced by the beam is received by an objective lens. In another embodiment, the interrogation apparatus may comprise a detector such as a photomultiplier tube (PMT), an avalanche photodiode (APD), or a silicon photomultiplier (SiPM).
[0020] In some embodiments, the microfluidic chip includes a sorting mechanism which sorts said components in said sample fluid mixture downstream from said interrogation chamber, by selectively acting on individual components in said sample fluid mixture. In one embodiment, the sorting mechanism may comprise a laser kill/ablation. Other examples of sorting mechanisms that may be used in accordance with the present invention include, but are not limited to, particle deflection/electrostatic manipulation, droplet sorting/deflection, mechanical sorting, fluid switching, piezoelectric actuation, optical manipulation (optical trapping, holographic steering, and photonic/radiation pressure), surface acoustic wave (SAW) deflection, electrophoresis/electrical disruption, micro-cavitation (laser induced, electrically induced). In some embodiments, the isolated components are moved into one of the output channels, and unselected components flow out through another output channel.
[0021] In further embodiments, the microfluidic chip may be operatively coupled to a computer which controls the pumping of one of the sample fluid mixture or the sheath fluid into the microfluidic chip. In another embodiment, the computer can display the components in a field of view acquired by a CCD camera disposed over the interrogation window in the microfluidic chip.
[0022] In some embodiments, the cells to be isolated may include at least one of viable and motile sperm from non-viable or non-motile sperm; sperm isolated by gender and other sex sorting variations; stem cells isolated from cells in a population; one or more labeled cells isolated from unlabeled cells including sperm cells; cells, including sperm cells, distinguished by desirable or undesirable traits; genes isolated in nuclear DNA according to a specified characteristic; cells isolated based on surface markers; cells isolated based on membrane integrity or viability; cells isolated based on potential or predicted reproductive status; cells isolated based on an ability to survive freezing; cells isolated from contaminants or debris; healthy cells isolated from damaged cells; red blood cells isolated from white blood cells and platelets in a plasma mixture; or any cells isolated from any other cellular components into corresponding fractions.
[0023] Any feature or combination of features described herein are included within the scope of the present invention provided that the features included in any such combination are not mutually inconsistent as will be apparent from the context, this specification, and the knowledge of one of ordinary skill in the art. Additional advantages and aspects of the present invention are apparent in the following detailed description and claims.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)
[0024] The features and advantages of the present invention will become apparent from a consideration of the following detailed description presented in connection with the accompanying drawings in which:
[0025] FIG. 1 A shows a bottom view of a top layer of a microfluidic device according to an embodiment of the present invention.
[0026] FIG. 1 B shows a top view of a bottom layer of the microfluidic device.
[0027] FIG. 1C is a side view of the top layer stacked on the bottom layer of the microfluidic device.
[0028] FIG. 2A shows a close-up view and a cross-sectional side view of an intersection region in the top layer shown in FIG. 1A.
[0029] FIG. 2B shows a close-up view and a cross-sectional side view of the intersection region in the bottom layer shown in FIG. 1 B.
[0030] FIG. 2C shows a close-up view and a cross-sectional side view of the intersection region in the stacked layers shown in FIG. 1C.
[0031] FIG. 3A shows a close-up view and a cross-sectional side view of a flow focusing region in the top layer shown in FIG. 1A.
[0032] FIG. 3B shows a close-up view and a cross-sectional side view of the flow focusing region in the bottom layer shown in FIG. 1 B.
[0033] FIG. 3C shows a close-up view and a cross-sectional side view of the flow focusing region in the stacked layers shown in FIG. 1C.
[0034] FIG. 4 shows a close-up view of the flow focusing region shown in FIG. 1 B.
[0035] FIG. 5 shows a non-limiting embodiment of a top view and a side view of a downstream micro- channel and the flow focusing region. This embodiment shows the constricting portion of the downstream micro-channel and the simultaneous geometric compression by the bottom surface and sidewalls of the flow focusing region.
[0036] FIG. 6 shows a close-up view and a cross-sectional side view of an output channel region in the bottom layer shown in FIG. 1 B.
[0037] FIG. 7 is a non-limiting example of a flow diagram for a method of gender-skewing a semen fluid sample.
DETAILED DESCRIPTION OF THE INVENTION
[0038] Before turning to the figures, which illustrate the illustrative embodiments in detail, it should be understood that the present disclosure is not limited to the details or methodology set forth in the description or illustrated in the figures. It should also be understood that the terminology is for the purpose of description only and should not be regarded as limiting. An effort has been made to use the same or like reference numbers throughout the drawings to refer to the same or like parts.
[0039] Following is a list of elements corresponding to a particular element referred to herein:
[0040] 100 microfluidic chip
[0041] 110 sample micro-channel
[0042] 111 inlet of sample micro-channel
[0043] 112 narrowing region
[0044] 113 outlet of sample micro-channel
[0045] 114 bottom surface of narrowing region
[0046] 115 sidewalls of narrowing region
[0047] 120 downstream micro-channel
[0048] 122 constricting portion
[0049] 124 inlet of downstream micro-channel
[0050] 125 sidewalls of constricting portion
[0051] 130 flow focusing region [0052] 132 bottom surface of flow focusing region [0053] 135 sidewalls of flow focusing region [0054] 137 upstream end of flow focusing region [0055] 138 downstream end of flow focusing region [0056] 140 sheath fluid micro-channels [0057] 143 outlet of sheath fluid micro-channel [0058] 145 intersection region [0059] 150 interrogation region [0060] 160 expansion region [0061] 162 bottom surface of expansion region [0062] 165 sidewalls of expansion region [0063] 170 output micro-channel
[0064] In one aspect, the present disclosure relates to a microfluidic chip design and methods that can isolate particles or cellular materials, such as sperm and other particles or cells, into various components and fractions. For example, the various embodiments of the present invention provide for isolating components in a mixture, such as isolating viable and motile sperm from non-viable or non-motile sperm; isolating sperm by gender, and other sex sorting variations; isolating stems cells from cells in a population; isolating one or more labeled cells from un-labeled cells distinguishing desirable/undesirable traits; isolating genes in nuclear DNA according to a specified characteristic; isolating cells based on surface markers; isolating cells based on membrane integrity (viability), potential or predicted reproductive status (fertility), ability to survive freezing, etc.; isolating cells from contaminants or debris; isolating healthy cells from damaged cells (i.e., cancerous cells) (as in bone marrow extractions); red blood cells from white blood cells and platelets in a plasma mixture; and isolating any cells from any other cellular components, into corresponding fractions.
[0065] In other aspects, the various embodiments of the present invention provide systems and methods particularly suited for sorting sperm cells to produce a sexed semen product in which live, progressively motile sperm cells are predominantly Y-chromosome bearing sperm cells. In some embodiments, the systems and methods of the present invention can produce a sex-sorted or gender skewed semen product comprising at least 55% of Y-chromosome bearing sperm cells. In other embodiments, the systems and methods can produce a sexed semen product comprising about 55% to about 90% of Y- chromosome bearing sperm cells. In yet other embodiments, the systems and methods can produce a sexed semen product comprising at least 90%, or at least 95%, or at least 99% of Y-chromosome bearing sperm cells.
[0066] While the description below focuses on the separation of sperm into viable and motile sperm from non-viable or non-motile sperm, or isolating sperm by gender and other sex sorting variations, or isolating one or more labeled cells from unlabeled cells distinguishing desirable/undesirable traits, etc., the present invention may be extended to other types of particulate, biological or cellular matter, which are capable of being interrogated by fluorescence techniques within a fluid flow, or which are capable of being manipulated between different fluid flows into different outputs. [0067] The various embodiments of the microfluidics chip utilize one or more flow channels having substantially laminar flow, and a flow focusing region for focusing and/or orienting one or more components in the fluid, allowing the one or more components to be interrogated for identification and to be isolated into flows that exit into one or more outputs. In addition, the various components in the mixture may be subjected to one or more sorting processes on-chip using various sorting techniques, such as, for example, particle deflection/electrostatic manipulation; droplet sorting/ deflection; mechanical sorting; fluid switching; piezoelectric actuation; optical manipulation (optical trapping, holographic steering, and photonic/radiation pressure); laser kill/ablation; surface acoustic wave (SAW) deflection; electrophoresis/electrical disruption; micro-cavitation (laser induced, electrically induced); or by magnetics (i.e., using magnetic beads). The various embodiments of the present invention thereby provide focusing and separation of components on a continuous basis without the potential damage and contamination of prior art methods, particularly as provided in sperm separation. The continuous process of the invention also provides significant time savings in isolating the fluid components.
[0068] Microfluidic Chip Assembly
[0069] Referring to FIGs. 1A-6, the present invention features a microfluidic chip (100). A non-limiting embodiment of the microfluidic chip (100) comprises a sample micro-channel (110), two sheath fluid micro-channels (140) intersecting the sample micro-channel (110) to form an intersection region (145), a downstream micro-channel (120) fluidly connected to the intersection region (145), the downstream micro- channel (120) having a constricting portion (122) that narrows in width, and a downstream flow focusing region (130) fluidly connected to the downstream micro-channel (120). The flow focusing region (130) may comprise a positively sloping bottom surface (132) that reduces a height of the flow focusing region and sidewalls (135) that taper to reduce a width of the flow focusing region, thereby geometrically constricting the flow focusing region (130).
[0070] Without wishing to limit the invention to a particular theory or mechanism, the sample micro- channel (110) is configured to flow a sample fluid mixture, and the two sheath fluid micro-channels (140) are each configured to flow a sheath fluid into the intersection region (145). The flow of sheath fluid causes laminar flow and compression of the sample fluid mixture flowing from the sample micro-channel (110) at least horizontally from at least two sides such that the sample fluid mixture becomes surrounded by sheath fluid and compressed into a thin stream. In further iterations, additional sheath flows may be incorporated to focus and/or adjust the location of the sample stream within the microchannel. Such sheath flows may be introduced from one or more directions (i.e. top, bottom, and/or sides), and may be introduced simultaneously or in succession.
[0071] In some embodiments, the constricting portion (122) of the micro-channel comprises sidewalls (125) that taper. For example, the sidewalls (125) may taper such that the width of the micro-channel is reduced from 150 urn to 125 urn.
[0072] In some embodiments, the positively sloping bottom surface (132) and tapering sidewalls (135) occur simultaneously from an upstream end (137) to a downstream end (138) of the flow focusing region. Thus, the positively sloping bottom surface (132) and tapering sidewalls (135) have the same starting point. For example, the positively sloping bottom surface (132) and tapering sidewalls (135) each begin from a same plane that perpendicularly traverses the flow focusing region (130).
[0073] In other embodiments, the sample micro-channel (110) includes a narrowing region (112) downstream of an inlet (111) of the sample micro-channel. The narrowing region (112) may comprise a positively sloping bottom surface (114) that reduces a height of the narrowing region, and sidewalls (115) that taper to reduce a width of the narrowing region. The positively sloping bottom surface (114) and tapering sidewalls (115) can geometrically constrict the narrowing region (112).
[0074] In some embodiments, an outlet (113) of the sample micro-channel may be positioned at or near mid-height of an outlet (143) of each of the two sheath fluid micro-channels. An inlet (124) of the downstream micro-channel may be positioned at or near mid-height of the outlet (143) of each of the two sheath fluid micro-channels. The outlet (113) of the sample micro-channel and the inlet (124) of the downstream micro-channel may be aligned. In other embodiments, the outlet (113) of the sample micro- channel may be positioned at or near mid-height of the intersection region and the inlet (124) of the downstream micro-channel may be positioned at or near mid-height of the intersection region.
[0075] Without wishing to limit the invention to a particular theory or mechanism, the intersection region (145) and the downstream flow focusing region (130) are configured to focus a material in the sample fluid mixture. For example, compression of the sample fluid mixture centralizes the material within the sample fluid mixture such that the material is focused at or near a center of the downstream micro-channel.
[0076] In some embodiments, the microfluidic chip (100) may further comprise a plurality of output microchannels (170) downstream of and fluidly coupled to the expansion region (160). The output microchannels (170) are configured to output fluids, which may have components such as particles or cellular material. The output channels may each have an output disposed at its end. In other embodiments, the microfluidic chip may further include one or more notches disposed at a bottom edge of the microfluidic chip to separate the outputs and to provide attachments for external tubing etc. A non-limiting embodiment of the chip may comprise three output channels, which include two side output channels and a center output channel disposed between said side channels.
[0077] In some embodiments, the micro-channels and various regions of the microfluidic chip may be dimensioned so as to achieve a desired flow rate(s) that meets the objective of the present invention. In one embodiment, the micro-channels may have substantially the same dimensions, however, one of ordinary skill in the art would know that the size of any or all of the channels in the microfluidic chip may vary in dimension (i.e. , between 50 and 500 microns), as long as the desired flow rate(s) is achieved.
[0078] In some other embodiments, the microfluidic chip (100) may further comprise an interrogation region (150) downstream of the flow focusing region (130). In yet other embodiments, the microfluidic chip (100) may include an expansion region (160) downstream of the interrogation region (150). The expansion region (160) may comprise a negatively sloping bottom surface (162) that increases a height of the expansion region, and an expansion portion having sidewalls (165) that widen to increase a width of the expansion region. [0079] In one embodiment, the interrogation apparatus includes a chamber with an opening or window cut into the microfluidic chip. The opening or window can receive a covering to enclose the interrogation chamber. The covering may be made of any material with the desired transmission requirements, such as plastic, glass, or may even be a lens. In one embodiment, the window and covering allow the components of the fluid mixture flowing through the interrogation chamber to be viewed, and acted upon by a suitable radiation source configured to emit a high intensity beam with any wavelength that matches the excitation of the components.
[0080] Although a laser may be used, it is understood that other suitable radiation sources may be used, such as a light emitting diode (LED), arc lamp, etc. to emit a beam which excites the components. In another embodiment, the light beam can be delivered to the components by an optical fiber that is embedded in the microfluidic chip at the opening.
[0081] In some embodiments, a high intensity laser beam from a suitable laser of a preselected wavelength- such as a 355 nm continuous wave (CW) (or quasi-CW) laser - is required to excite the components in the fluid mixture (i.e. , sperm cells). The laser emits a laser beam through the window so as to illuminate the components flowing through the interrogation region of the chip. Since the laser beam can vary in intensity widthwise along the micro-channel, with the highest intensity generally at the center of the micro-channel (e.g., midsection of the channel width) and decreasing therefrom, it is imperative that the flow focusing region focuses the sperm cells at or near the center of the fluid stream where optimal illumination occurs at or near the center of the illumination laser spot. Without wishing to be bound to a particular belief, this can improve accuracy of the interrogation and identification process
[0082] In some embodiments, the high intensity beam interacts with the components such that the emitted light, which is induced by the beam, is received by an objective lens. The objective lens may be disposed in any suitable position with respect to the microfluidic chip. In one embodiment, the emitted light received by the objective lens is converted into an electronic signal by an optical sensor, such as a photomultiplier tube (PMT) or photodiode, etc. The electronic signal can be digitized by an analog-to-digital converter (ADC) and sent to a digital signal processor (DSP) based controller. The DSP based controller monitors the electronic signal and may then trigger a sorting mechanism.
[0083] In other embodiments, the interrogation apparatus may comprise a detector such as a photomultiplier tube (PMT), an avalanche photodiode (APD), or a silicon photomultiplier (SiPM). For example, the optical sensor of the interrogation apparatus may be APD, which is a photodiode with substantial internal signal amplification through an avalanche process.
[0084] In some embodiments, a piezoelectric actuator assembly may be used to sort the desired components in the fluid mixture as the components leave the interrogation area after interrogation. A trigger signal sent to the piezoelectric actuator is determined by the sensor raw signal to activate a particular piezoelectric actuator assembly when the selected component is detected. In some embodiments, a flexible diaphragm made from a suitable material, such as one of stainless steel, brass, titanium, nickel alloy, polymer, or other suitable material with desired elastic response, is used in conjunction with an actuator to push target components in the micro-channel into an output channel (170) to isolate the target components from the fluid mixture. The actuator may be a piezoelectric, magnetic, electrostatic, hydraulic, or pneumatic type actuator.
[0085] In alternative embodiments, a piezoelectric actuator assembly or a suitable pumping system may be used to pump the sample fluid into the micro-channel (110) toward the intersection region (145). The sample piezoelectric actuator assembly may be disposed at sample inlet (111). By pumping the sample fluid mixture into the main micro-channel, a measure of control can be made over the spacing of the components therein, such that a more controlled relationship may be made between the components as they enter the micro-channel (110).
[0086] Other embodiments of sorting or separating mechanisms that may be used in accordance with the present invention include, but are not limited to, droplet sorters, mechanical separation, fluid switching, acoustic focusing, holographic trapping/steering, and photonic pressure/steering. In a preferred embodiment, the sorting mechanism for sex-sorting of sperm cells comprises laser kill/ablation of selected X-chromosome-bearing sperm cells.
[0087] In laser ablation, the laser is activated when an X-chromosome-bearing sperm cell is detected during interrogation. The laser emits a high intensity beam directed at the X-chromosome-bearing sperm cell centered within the fluid stream. The high intensity beam is configured to cause DNA and/or membrane damage to the cell, thereby causing infertility or killing the X-chromosome-bearing sperm cell. As a result, the final product is comprised predominantly of viable Y-chromosome-bearing sperm cells. In preferred embodiments, the reduction in the cross-sectional area of the flow focusing region geometrically compresses the fluid that carries sperm cells. The geometric compression of the fluid centralizes the sperm cells within the fluid such that the sperm cells are focused at or near a center of the micro-channel. Since the laser beam varies in intensity widthwise along the micro-channel, with the highest intensity generally at the center of micro-channel and decreasing therefrom, it is imperative that the flow focusing region focuses the sperm cells at or near the center of the fluid stream where the laser beam has the highest intensity to impart maximum damage to the selected sperm cells.
[0088] Chip Operation
[0089] In one embodiment, as previously stated, the components that are to be isolated include, for example: isolating viable and motile sperm from non- viable or non-motile sperm; isolating sperm by gender, and other sex sorting variations; isolating stems cells from cells in a population; isolating one or more labeled cells from un-labeled cells distinguishing desirable/undesirable traits; sperm cells with different desirable characteristics; isolating genes in nuclear DNA according to a specified characteristic; isolating cells based on surface markers; isolating cells based on membrane integrity (viability), potential or predicted reproductive status (fertility), ability to survive freezing, etc.; isolating cells from contaminants or debris; isolating healthy cells from damaged cells (i.e. , cancerous cells) (as in bone marrow extractions); red blood cells from white blood cells and platelets in a plasma mixture; and isolating any cells from any other cellular components, into corresponding fractions; damaged cells, or contaminants or debris, or any other biological materials that are desired to isolated. The components may be cells or beads treated or coated with, linker molecules, or embedded with a fluorescent or luminescent label molecule(s). The components may have a variety of physical or chemical attributes, such as size, shape, materials, texture, etc.
[0090] In one embodiment, a heterogeneous population of components may be measured simultaneously, with each component being examined for different quantities or regimes in similar quantities (e.g., multiplexed measurements), or the components may be examined and distinguished based on a label (e.g., fluorescent), image (due to size, shape, different absorption, scattering, fluorescence, luminescence characteristics, fluorescence or luminescence emission profiles, fluorescent or luminescent decay lifetime), and/or particle position etc.
[0091] In one embodiment, a focusing method may be used in order to position the components for interrogation in the interrogation chamber. A first constricting step of the present invention is accomplished by inputting a fluid sample containing components, such as sperm cells etc., through sample input (111), and inputting sheath or buffer fluids through the sheath or buffer micro-channels (140). In some embodiments, the components are pre-stained with dye (e.g., Hoechst dye), in order to allow fluorescence, and for imaging to be detected. Initially, the components in the sample fluid mixture flow through micro-channel (110) and have random orientation and position. At the intersection region (145), the sample mixture flowing in the micro-channel (110) is compressed by the sheath or buffer fluids flowing from the sheath or buffer micro-channels (140) at least horizontally on at least both sides of the flow, if not all sides. As a result, the components are focused and compressed into a thin stream and the components (e.g., sperm cells) move toward a center of the channel width. This step is advantageous in that the less sheath fluid is used since sheath fluid in only introduced at one location in the chip.
[0092] In another embodiment, the present invention includes a second constricting step where the sample mixture containing the components is further compressed, at least horizontally, by the constricting region (122) of the downstream micro-channel. This step utilizes physical or geometric compression instead of another intersection of sheath fluids. Thus, with the second constricting step of the present invention, the sample stream is focused at the center of the channel, and the components flow along the center of the channel. In preferred embodiments, the components are flowing in approximately single file formation. Without wishing to be bound to a particular theory or mechanism, the physical/geometric compression has the advantage of reducing the volume of sheath fluid since a second intersection of sheath fluids is eliminated.
[0093] In preferred embodiments, the present invention includes a focusing step where the sample mixture containing the components is further compressed in the flow focusing region (130) using physical or geometric compression, instead of another intersection of sheath fluids. The sample mixture is also positioned closer to a top surface of the focusing region (130) by the upward sloping bottom surface. Thus, with the focusing step of the present invention, the sample stream is focused at the center of the channel, and the components flow along the center of the channel in approximately a single file formation. Without wishing to be bound to a particular theory or mechanism, the physical/geometric compression has the advantage of reducing the volume of sheath fluid since the second intersection of sheath fluids is eliminated.
[0094] Accordingly, the microfluidic devices described herein may be used in the focusing method described above. In one embodiment, the present invention provides a method of focusing particles in a fluid flow. The method may comprise providing any one of the microfluidic devices described herein, flowing a fluid mixture comprising the particles into the sample micro-channel (110) and into the intersection region (145), flowing a sheath fluid through the two sheath fluid micro-channels (140) and into the intersection region (145) such that the sheath fluid causes laminar flow and compresses the fluid mixture at least horizontally from at least two sides, wherein the fluid mixture becomes surrounded by sheath fluid and compressed into a thin stream and the particles are constricted into the thin stream surrounded by the sheath fluid, flowing the fluid mixture and sheath fluids into the downstream micro- channel (120), wherein the constricting portion (122) of the downstream micro-channel (120) horizontally compresses the thin stream of fluid mixture, and flowing the fluid mixture and sheath fluids into the focusing region (130), wherein the positively sloping bottom surface (132) and tapering sidewalls (135) of the focusing region further constrict the fluid mixture stream and re-orient the particles within the stream, thereby focusing the particles.
[0095] Compression of the fluid mixture, by the introduction of sheath fluid and/or the physical structures at the constricting and focusing regions constricts the particles of the fluid mixture into a relatively smaller, narrower stream bounded by the sheath fluids. For example, sheath fluid introduced into the sample micro-channel (110) by two sheath fluid channels (130) can compress the fluid mixture stream from two sides into a relatively smaller, narrower stream while maintaining laminar flow. Flow of the fluid mixture and sheath fluids in the focusing region causes further constriction of the fluid mixture stream and reorienting of the particles within the stream, which is caused by the physical structures such as the rising bottom surface (132) and the tapering portions of the sidewalls (135) of the focusing region, thus focusing the particles.
[0096] In some embodiments, the components of the sample are sperm cells, and because of their pancake-type or flattened teardrop shaped head, the sperm cells can re-orient themselves in a predetermined direction as they undergo the focusing step - i.e. , with their flat surfaces perpendicular to the direction of a light beam. Thus, the sperm cells develop a preference on their body orientation while passing through the two-step focusing process. Specifically, the sperm cells tend to be more stable with their flat bodies perpendicular to the direction of the compression. By controlling the sheath or buffer fluids, the sperm cells which start with random orientation, can achieve uniform orientation. The sperm cells not only make a single file formation at the center of the channel, but they also achieve a uniform orientation. Thus, the components introduced into sample input, which may be other types of cells or other materials as previously described, undergo the focusing steps, which allow the components to move in a single file formation, and in a more uniform orientation (depending on the type of components), which allows for easier interrogation of the components.
[0097] In conjunction with the preceding embodiments, the present invention also provides a method of producing a fluid with gender-skewed sperm cells. Referring to FIG. 6, the method may comprise providing any one of the microfluidic devices described herein, flowing a semen fluid comprising sperm cells into the sample micro-channel (110) and into the intersection region (145), flowing a sheath fluid through the two sheath fluid micro-channels (140) and into the intersection region (145) such that the sheath fluid causes laminar flow and compresses the semen fluid at least horizontally from at least two sides, wherein the semen fluid becomes surrounded by sheath fluid and compressed into a thin stream, flowing the semen fluid and sheath fluids into the downstream micro-channel (120), wherein the constricting portion (122) of the downstream micro-channel (120) horizontally compresses the thin stream of semen fluid, flowing the semen fluid and sheath fluids into the focusing region (130), wherein the positively sloping bottom surface (132) and tapering sidewalls (135) further constrict the semen fluid stream to focus the sperm cells at or near a center the semen fluid stream, determining a chromosome type of the sperm cells in the semen fluid stream, wherein each sperm cell is either a Y-chromosome- bearing sperm cell or an X-chromosome-bearing sperm cell, and sorting Y-chromosome-bearing sperm cells from X-chromosome-bearing sperm cells, thereby producing the fluid comprising gender-skewed sperm cells that are predominantly Y-chromosome-bearing sperm cells.
[0098] In some embodiments, the chromosome type of the sperm cells may be determined using any one of the interrogation apparatus described herein. In one embodiment, the microfluidic chip (100) may further comprise an interrogation region (150) downstream of the flow focusing region (130). An interrogation apparatus may be coupled to the interrogation region (150) and used to determine the chromosome type of the sperm cells and sort said sperm cells based on chromosome type. The interrogation apparatus may comprise a radiation source that illuminates and excites the sperm cells, and a response of the sperm cell is indicative of the chromosome type in the sperm cell. The response of the sperm cell may be detected by an optical sensor. In other embodiments, the interrogation apparatus may further comprise a laser source. The Y-chromosome-bearing sperm cells are sorted from the X- chromosome-bearing sperm cells by laser ablation, which exposes the cells to the high intensity laser source that damages or kills cells that are determined to bear an X-chromosome. In one embodiment, the gender-skewed sperm cells are comprised of at least 55% of Y-chromosome-bearing sperm cells. In another embodiment, the gender-skewed sperm cells are comprised of about 55%-99% of Y- chromosome-bearing sperm cells. In yet another embodiment, the gender-skewed sperm cells are comprised of at least 99% of Y-chromosome-bearing sperm cells.
[0099] In one embodiment, the components are detected in the interrogation chamber using a radiation source. The radiation source emits a light beam (which may be via an optical fiber) which is focused at the center of the channel widthwise. In one embodiment, the components, such as sperm cells, are oriented by the focusing region such that the flat surfaces of the components are facing toward the beam. In addition, all components are preferably aligned in a single file formation by focusing as they pass under a radiation source. As the components pass under the radiation source and are acted upon by a light beam, the components emit the fluorescence which indicates the desired components. For example, with respect to sperm cells, X chromosome cells fluoresce at a different intensity from Y chromosome cells; or cells carrying one trait may fluoresce in a different intensity or wavelength from cells carrying a different set of traits. In addition, the components can be viewed for shape, size, or any other distinguishing indicators.
[00100] In one embodiment, interrogation of the sample containing components (i.e. , biological material), is accomplished by other methods. Overall, methods for interrogation may include direct visual imaging, such as with a camera, and may utilize direct bright-light imaging or fluorescent imaging; or, more sophisticated techniques may be used such as spectroscopy, transmission spectroscopy, spectral imaging, or scattering such as dynamic light scattering or diffusive wave spectroscopy. In some cases, the optical interrogation region may be used in conjunction with additives, such as chemicals which bind to or affect components of the sample mixture or beads which are functionalized to bind and/or fluoresce in the presence of certain materials or diseases. These techniques may be used to measure cell concentrations, to detect disease, or to detect other parameters which characterize the components.
[00101] However, in another embodiment, if fluorescence is not used, then polarized light back scattering methods may also be used. Using spectroscopic methods, the components are interrogated and the spectrum of those components which had positive results and fluoresced (i.e., those components which reacted with a label) are identified for separation. In some embodiments, the components may be identified based on the reaction or binding of the components with additives or sheath or buffer fluids, or by using the natural fluorescence of the components, or the fluorescence of a substance associated with the component, as an identity tag or background tag, or met a selected size, dimension, or surface feature, etc., are selected for separation. In one embodiment, upon completion of an assay, selection may be made, via computer and/or operator, of which components to discard and which to collect.
[00102] Continuing with the embodiment of beam-induced fluorescence, the emitted light beam is then collected by the objective lens, and subsequently converted to an electronic signal by the optical sensor. The electronic signal is then digitized by an analog-digital converter (ADC) and sent to an electronic controller for signal processing. The electronic controller can be any electronic processer with adequate processing power, such as a DSP, a Micro Controller Unit (MCU), a Field Programmable Gate Array (FPGA), or even a Central Processing Unit (CPU). In one embodiment, the DSP-based controller monitors the electronic signal and may then trigger a sorting mechanism when a desired component is detected. In another embodiment, the FPGA-based controller monitors the electronic signal and then either communicates with the DSP controller or acts independently to trigger a sorting mechanism when a desired component is detected. In some other embodiments, the optical sensor may be a photomultiplier tube (PMT), an avalanche photodiode (APD), or a silicon photomultiplier (SiPM). In a preferred embodiment, the optical sensor may be an APD that detects the response of the sperm cell to interrogation.
[00103] In one embodiment of the sorting mechanism, the selected or desired components in the interrogation chamber are isolated into a desired output channel using a piezoelectric actuator. In an exemplary embodiment, the electronic signal activates the driver to trigger the actuator at the moment when the target or selected component arrives at a cross-section point of jet channels and the micro- channel. This causes the actuator to contact a diaphragm and push it, compressing a jet chamber, and squeezing a strong jet of buffer or sheath fluids into the micro-channel, which pushes the selected or desired component into a desired output channel.
[00104] In some embodiments, the isolated components are collected from their respective output channel (170) for storing, further separation, or processing, such as cryopreservation. In some embodiments, the outputted components may be characterized electronically, to detect concentrations of components, pH measuring, cell counts, electrolyte concentration, etc. Chip Cassette and Holder
[00105] In some embodiments, the microfluidic chip may be loaded on a chip cassette, which is mounted on chip holder. The chip holder is mounted to a translation stage to allow fine positioning of the holder. For instance, the microfluidic chip holder is configured to hold the microfluidic chip in a pre-determined position such that the interrogating light beam intercepts the fluid components. In one embodiment, the microfluidic chip holder is made of a suitable material, such as aluminum alloy, or other suitable metallic/polymer material. A main body of the holder may be any suitable shape, but its configuration depends on the layout of the chip. In further embodiments, the main body of the holder is configured to receive and engage with external tubing for communicating fluids/samples to the microfluidic chip. A gasket of any desired shape, or O-rings, may be provided to maintain a tight seal between the microfluidic chip and the microfluidic chip holder. The gasket may be a single sheet or a plurality of components, in any configuration, or material (i.e., rubber, silicone, etc.) as desired. In one embodiment, the gasket interfaces, or is bonded (using an epoxy) with a layer of the microfluidic chip. The gasket is configured to assist in sealing, as well as stabilizing or balancing the microfluidic chip in the microfluidic chip holder. The details of the cassette and holder and the mechanisms for attachment of the chip to the cassette and holder, are not described in any detail, as one of ordinary skill in the art would know that these devices are well-known and may be of any configuration to accommodate the microfluidic chip, as long as the objectives of the present invention are met.
[00106] In some embodiments, a pumping mechanism includes a system having a pressurized gas which provides pressure for pumping sample fluid mixture from reservoir (i.e., sample tube) into sample input of the chip. In other embodiments, a collapsible container having sheath or buffer fluid therein, is disposed in a pressurized vessel, and the pressurized gas pushes fluid such that fluid is delivered via tubing to the sheath or buffer input of the chip.
[00107] In one embodiment, a pressure regulator regulates the pressure of gas within the reservoir, and another pressure regulator regulates the pressure of gas within the vessel. A mass flow regulator controls the fluid pumped via tubing, respectively, into the sheath or buffer input. Thus, tubing is used in the initial loading of the fluids into the chip, and may be used throughout the chip to load a sample fluid into sample input.
[00108] In accordance with the present invention, any of the operations, steps, control options, etc. may be implemented by instructions that are stored on a computer-readable medium such as a memory, database, etc. Upon execution of the instructions stored on the computer-readable medium, for example, by a computing device or processor, the instructions can cause the computing device or processor to perform any of the operations, steps, control options, etc. described herein. In some embodiments the operations described in this specification may be implemented as operations performed by a data processing apparatus or processing circuit on data stored on one or more computer-readable storage devices or received from other sources. A computer program (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, declarative or procedural languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, object, or other unit suitable for use in a computing environment. A program can be stored in a portion of a file that holds other programs or data, in a single file dedicated to the program in question, or in multiple coordinated files. A program can be deployed to be executed on one computer or on multiple computers interconnected by a communication network. Processing circuits suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer.
[00109] In one embodiment, a user interface of the computer system includes a computer screen which displays the components in a field of view acquired by a CCD camera over the microfluidic chip. In another embodiment, the computer controls any external devices such as pumps, if used, to pump any sample fluids, sheath or buffer fluids into the microfluidic chip, and also controls any heating devices which set the temperature of the fluids being inputted into the microfluidic chip.
[00110] It should be noted that the orientation of various elements may differ according to other illustrative embodiments, and that such variations are intended to be encompassed by the present disclosure. The construction and arrangements of the microfluidic chip, as shown in the various illustrative embodiments, are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter described herein. Some elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied. The order or sequence of any process, logical algorithm, or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes and omissions may also be made in the design, operating conditions and arrangement of the various illustrative embodiments without departing from the scope of the present disclosure.
[00111] As used herein, the term “about” refers to plus or minus 10% of the referenced number.
[00112] Although there has been shown and described the preferred embodiment of the present invention, it will be readily apparent to those skilled in the art that modifications may be made thereto which do not exceed the scope of the appended claims. Therefore, the scope of the invention is only to be limited by the following claims. Reference numbers recited in the below claims are exemplary and solely for ease of examination of this patent application, and are not intended in any way to limit the scope of the claims to the particular features having the corresponding reference numbers in the drawings. In some embodiments, the figures presented in this patent application are drawn to scale, including the angles, ratios of dimensions, etc. In some embodiments, the figures are representative only and the claims are not limited by the dimensions of the figures. In some embodiments, descriptions of the inventions described herein using the phrase “comprising” includes embodiments that could be described as “consisting essentially of or “consisting of, and as such the written description requirement for claiming one or more embodiments of the present invention using the phrase “consisting essentially of or “consisting of is met.

Claims

WHAT IS CLAIMED IS:
1 . A microfluidic chip (100) comprising: a. a micro-channel (120) having a constricting portion (122) that narrows in width; and b. a flow focusing region (130) downstream of the micro-channel (120), comprising a positively sloping bottom surface (132) that reduces a height of the flow focusing region and sidewalls (135) that taper to reduce a width of the flow focusing region, thereby geometrically constricting the flow focusing region (130).
2. The microfluidic chip (100) of claim 1 , wherein the constricting portion (122) of the micro-channel comprises sidewalls (125) that taper.
3. The microfluidic chip (100) of claim 1 , wherein the positively sloping bottom surface (132) and tapering sidewalls (135) occur simultaneously from an upstream end (137) to a downstream end (138) of the flow focusing region.
4. The microfluidic chip (100) of claim 1 , wherein the positively sloping bottom surface (132) and tapering sidewalls (135) begin from a plane that perpendicularly traverses the flow focusing region (130).
5. A microfluidic chip (100) comprising: a. a sample micro-channel (110); b. two sheath fluid micro-channels (140) intersecting the sample micro-channel (110) to form an intersection region (145); c. a downstream micro-channel (120) fluidly connected to the intersection region (145), the downstream micro-channel (120) having a constricting portion (122) that narrows in width; and d. a downstream flow focusing region (130) fluidly connected to the downstream micro- channel (120), comprising a positively sloping bottom surface (132) that reduces a height of the flow focusing region and sidewalls (135) that taper to reduce a width of the flow focusing region, thereby geometrically constricting the flow focusing region (130); wherein the sample micro-channel (110) is configured to flow a sample fluid mixture, wherein the two sheath fluid micro-channels (140) are each configured to flow a sheath fluid into the intersection region (145) to cause laminar flow and to compress the sample fluid mixture flowing from the sample micro-channel (110) at least horizontally from at least two sides such that the sample fluid mixture becomes surrounded by sheath fluid and compressed into a thin stream.
6. The microfluidic chip (100) of claim 5, wherein the sample micro-channel (110) includes a narrowing region (112) downstream of an inlet (111) of the sample micro-channel, wherein the narrowing region (112) comprises: a. a positively sloping bottom surface (114) that reduces a height of the narrowing region; and b. sidewalls (115) that taper to reduce a width of the narrowing region, wherein the positively sloping bottom surface (114) and tapering sidewalls (115) geometrically constrict the narrowing region (112).
7. The microfluidic chip (100) of claim 5, wherein an outlet (113) of the sample micro-channel is positioned at or near mid-height of an outlet (143) of each of the two sheath fluid micro-channels, wherein an inlet (124) of the downstream micro-channel is positioned at or near mid-height of the outlet (143) of each of the two sheath fluid micro-channels.
8. The microfluidic chip (100) of claim 7, wherein the outlet (113) of the sample micro-channel and the inlet (124) of the downstream micro-channel are aligned.
9. The microfluidic chip (100) of claim 5, wherein an outlet (113) of the sample micro-channel is positioned at or near mid-height of the intersection region.
10. The microfluidic chip (100) of claim 5, wherein an inlet (124) of the downstream micro-channel is positioned at or near mid-height of the intersection region.
11. The microfluidic chip (100) of claim 5, wherein the intersection region (145) and the downstream flow focusing region (130) are configured to focus a material in the sample fluid mixture.
12. The microfluidic chip (100) of claim 5, wherein compression of the sample fluid mixture centralizes the material within the sample fluid mixture such that the material is focused at or near a center of the downstream micro-channel.
13. The microfluidic chip (100) of claim 5 further comprising an interrogation region (150) downstream of the flow focusing region (130).
14. The microfluidic chip (100) of claim 13 further comprising an expansion region (160) downstream of the interrogation region (150), comprising: a. a negatively sloping bottom surface (162) that increases a height of the expansion region; and b. an expansion portion having sidewalls (165) that widen to increase a width of the expansion region.
15. The microfluidic chip (100) of claim 14 further comprising a plurality of output micro-channels (170) downstream of and fluidly coupled to the expansion region (160).
16. A method of focusing particles in a fluid flow, comprising: a) providing a microfluidic chip (100) comprising: i. a sample micro-channel (110); ii. two sheath fluid micro-channels (140) intersecting the sample micro-channel (110) to form an intersection region (145); iii. a downstream micro-channel (120) fluidly connected to the intersection region (135), the downstream micro-channel (120) having a constricting portion (122) that narrows in width; and iv. a downstream flow focusing region (130) fluidly connected to the downstream micro-channel (120), comprising a positively sloping bottom surface (132) that reduces a height of the flow focusing region and sidewalls (135) that taper to reduce a width of the flow focusing region, thereby geometrically constricting the flow focusing region (130); b) flowing a fluid mixture comprising the particles into the sample micro-channel (110) and into the intersection region (145); c) flowing a sheath fluid through the two sheath fluid micro-channels (140) and into the intersection region (145) such that the sheath fluid causes laminar flow and compresses the fluid mixture at least horizontally from at least two sides, wherein the fluid mixture becomes surrounded by sheath fluid and compressed into a thin stream, wherein the particles are constricted into the thin stream surrounded by the sheath fluid; d) flowing the fluid mixture and sheath fluids into the downstream micro-channel (120), wherein the constricting portion (122) of the downstream micro-channel (120) horizontally compresses the thin stream of fluid mixture; and e) flowing the fluid mixture and sheath fluids into the focusing region (130), wherein the positively sloping bottom surface (132) and tapering sidewalls (135) further constrict the fluid mixture stream and re-orient the particles within the stream, thereby focusing the particles.
17. A method of producing a fluid with gender-skewed sperm cells, said method comprising: a) providing a microfluidic chip (100) comprising: i. a sample micro-channel (110); ii. two sheath fluid micro-channels (140) intersecting the sample micro-channel (110) to form an intersection region (145); iii. a downstream micro-channel (120) fluidly connected to the intersection region (135), the downstream micro-channel (120) having a constricting portion (122) that narrows in width; and iv. a downstream flow focusing region (130) fluidly connected to the downstream micro-channel (120), comprising a positively sloping bottom surface (132) that reduces a height of the flow focusing region and sidewalls (135) that taper to reduce a width of the flow focusing region, thereby geometrically constricting the flow focusing region (130); b) flowing a semen fluid comprising sperm cells into the sample micro-channel (110) and into the intersection region (145); c) flowing a sheath fluid through the two sheath fluid micro-channels (140) and into the intersection region (145) such that the sheath fluid causes laminar flow and compresses the semen fluid at least horizontally from at least two sides, wherein the semen fluid becomes surrounded by sheath fluid and compressed into a thin stream; d) flowing the semen fluid and sheath fluids into the downstream micro-channel (120), wherein the constricting portion (122) of the downstream micro-channel (120) horizontally compresses the thin stream of semen fluid; e) flowing the semen fluid and sheath fluids into the focusing region (130), wherein the positively sloping bottom surface (132) and tapering sidewalls (135) further constrict the semen fluid stream to focus the sperm cells at or near a center the semen fluid stream; f) determining a chromosome type of the sperm cells in the semen fluid stream, wherein each sperm cell is either a Y-chromosome-bearing sperm cell or an X-chromosome- bearing sperm cell; and g) sorting Y-chromosome-bearing sperm cells from X-chromosome-bearing sperm cells, thereby producing the fluid comprising gender-skewed sperm cells that are predominantly Y-chromosome-bearing sperm cells.
18. The method of claim 17, wherein the microfluidic chip (100) further comprises an interrogation region (150) downstream of the flow focusing region (130), wherein an interrogation apparatus, coupled to the interrogation region (150), is used to determine the chromosome type of the sperm cells and sort said sperm cells based on chromosome type.
19. The method of claim 18, wherein the interrogation apparatus comprises a radiation source that illuminates and excites the sperm cells, wherein a response of the sperm cell is indicative of the chromosome type in the sperm cell, wherein the response of the sperm cell is detected by an optical sensor.
20. The method of claim 19, wherein the interrogation apparatus further comprises a laser source, wherein Y-chromosome-bearing sperm cells are sorted from the X-chromosome-bearing sperm cells by laser ablation, wherein the X-chromosome-bearing sperm cells are exposed to the laser source that damages or kills said cells.
EP20913158.0A 2020-01-13 2020-01-13 Single-sheath microfluidic chip Pending EP4090932A4 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2020/013392 WO2021145854A1 (en) 2020-01-13 2020-01-13 Single-sheath microfluidic chip

Publications (2)

Publication Number Publication Date
EP4090932A1 true EP4090932A1 (en) 2022-11-23
EP4090932A4 EP4090932A4 (en) 2023-10-18

Family

ID=76864024

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20913158.0A Pending EP4090932A4 (en) 2020-01-13 2020-01-13 Single-sheath microfluidic chip

Country Status (5)

Country Link
EP (1) EP4090932A4 (en)
JP (1) JP2023514941A (en)
CN (1) CN115023599A (en)
BR (1) BR112022012881A2 (en)
WO (1) WO2021145854A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114778421A (en) * 2022-04-14 2022-07-22 南通大学 Microfluidic structure integrating detection, sorting and capture of cell electric signals and microfluidic method
WO2024102007A1 (en) * 2022-11-11 2024-05-16 Engender Technologies Limited Particle classification and sorting systems and methods
WO2024102006A1 (en) * 2022-11-11 2024-05-16 Engender Technologies Limited Flow control apparatus, parts and methods therefore

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9952126B2 (en) * 2012-02-29 2018-04-24 Fluidigm Corporation Methods for multiple single-cell capturing and processing using micro fluidics
MX2015012550A (en) * 2013-03-14 2016-02-10 Inguran Llc Apparatus and methods for high throughput sperm sorting.
US9757726B2 (en) * 2013-03-14 2017-09-12 Inguran, Llc System for high throughput sperm sorting
CN105283753B (en) * 2013-03-14 2020-07-10 塞通诺米/St有限责任公司 Hydrodynamic focusing apparatus and method
JP6205055B2 (en) * 2013-07-16 2017-09-27 プレミアム ジェネティクス (ユーケー) リミテッド Microfluidic chip
WO2015063552A2 (en) * 2013-10-30 2015-05-07 Premium Genetics (Uk) Ltd. Microfluidic system and method with focused energy apparatus
US11796449B2 (en) * 2013-10-30 2023-10-24 Abs Global, Inc. Microfluidic system and method with focused energy apparatus
BR112018006145B1 (en) * 2015-09-30 2021-04-13 Semen Refinement B.V. SYSTEM FOR PERFORMING ANALYSIS AND SELECTION OF SPERM AND METHOD FOR CLASSIFICATION OF SPERM CELLS

Also Published As

Publication number Publication date
BR112022012881A2 (en) 2022-09-06
WO2021145854A1 (en) 2021-07-22
CN115023599A (en) 2022-09-06
EP4090932A4 (en) 2023-10-18
JP2023514941A (en) 2023-04-12

Similar Documents

Publication Publication Date Title
US11187224B2 (en) Microfluidic chip
US10532357B1 (en) Single-sheath microfluidic chip
EP3022544A1 (en) Microfluidic chip
US11878302B2 (en) System for detection of spaced droplets
US11480516B2 (en) Method and system for microfluidic particle sorting
EP4090932A1 (en) Single-sheath microfluidic chip
US9057676B2 (en) Multiple flow channel particle analysis system
US20170167966A1 (en) Microfluidic system and method with focused energy apparatus
JP6526758B2 (en) Microfluidic chip
US20230256446A1 (en) Single-sheath microfluidic chip
KR20090027643A (en) Chip-based flow cytometer type systems for analyzing fluorescently tagged particles
EP1849522A1 (en) An inspection chip for biological material
US10670509B2 (en) Control apparatus, control system, analysis apparatus, particle separation/collection apparatus, control method, and laminar flow control program
WO2022187608A1 (en) Systems and methods for concentrating sorted cell populations
WO2024020264A2 (en) Systems, methods, and apparatus for a microfluidic chip having a microchannel design which asymmetrically focuses particles
JP2019179033A (en) Micro fluid chip system, and method of making clear a plurality of components in fluid mixture

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220706

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20230920

RIC1 Information provided on ipc code assigned before grant

Ipc: G01N 15/10 20060101ALI20230914BHEP

Ipc: G01N 15/00 20060101ALI20230914BHEP

Ipc: C12N 5/00 20060101ALI20230914BHEP

Ipc: C12M 3/00 20060101ALI20230914BHEP

Ipc: B01L 3/00 20060101ALI20230914BHEP

Ipc: A61K 35/52 20150101ALI20230914BHEP

Ipc: A61D 19/02 20060101ALI20230914BHEP

Ipc: C12M 1/00 20060101ALI20230914BHEP

Ipc: G01N 21/64 20060101ALI20230914BHEP

Ipc: G01N 15/06 20060101ALI20230914BHEP

Ipc: G01N 15/14 20060101ALI20230914BHEP

Ipc: G01N 1/20 20060101AFI20230914BHEP