EP4090531A1 - Spandrel - Google Patents

Spandrel

Info

Publication number
EP4090531A1
EP4090531A1 EP21700524.8A EP21700524A EP4090531A1 EP 4090531 A1 EP4090531 A1 EP 4090531A1 EP 21700524 A EP21700524 A EP 21700524A EP 4090531 A1 EP4090531 A1 EP 4090531A1
Authority
EP
European Patent Office
Prior art keywords
substrate
spandrel
dielectric layer
equal
upper dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21700524.8A
Other languages
German (de)
French (fr)
Inventor
Julie Hubert
Stijn Mahieu
Daphné STASSEN
Xavier Sahyoun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Glass Europe SA
AGC Vidros do Brasil Ltda
AGC Inc
AGC Flat Glass North America Inc
Original Assignee
AGC Glass Europe SA
AGC Vidros do Brasil Ltda
Asahi Glass Co Ltd
AGC Flat Glass North America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGC Glass Europe SA, AGC Vidros do Brasil Ltda, Asahi Glass Co Ltd, AGC Flat Glass North America Inc filed Critical AGC Glass Europe SA
Publication of EP4090531A1 publication Critical patent/EP4090531A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10082Properties of the bulk of a glass sheet
    • B32B17/10091Properties of the bulk of a glass sheet thermally hardened
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/10201Dielectric coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10339Specific parts of the laminated safety glass or glazing being colored or tinted
    • B32B17/10357Specific parts of the laminated safety glass or glazing being colored or tinted comprising a tinted intermediate film
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/1077Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/225Nitrides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • C03C17/2453Coating containing SnO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • C03C17/2456Coating containing TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/34Inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/41Opaque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/16Tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/20Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/12Polyvinylhalogenides containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • C03C2217/944Layers comprising zinc oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to spandrels, incorporating at least one glazed panel and intended to be placed in areas of a facade which do not transmit light. Their role is therefore to conceal certain parts of this facade between the parts occupied by the windows. More particularly, this invention discloses spandrels which harmonize with adjacent transparent glazing, providing very good aesthetics.
  • the spandrels of the invention are an assembly of at least two substrates, one of which is transparent and the other is opaque. The outer substrate (relative to the building) allows good light transmission, which makes the sill of the invention well suited for inserting photovoltaic cells.
  • Such spandrels are therefore intended to be used on the facade to constitute what is called BIPV (Building Integrated Photovoltaics).
  • glazed walls have transparent areas and non-transparent areas.
  • the windows themselves can be more or less transparent, more or less reflective depending on the nature of the coverings carried by the glass.
  • These coatings which are almost essential, confer advantageous thermal properties on the glazing, such as, for example, solar control and low-emissivity properties.
  • the choice of materials and / or their thickness makes it possible to give a coloring which is pleasant in reflection and / or in transmission, for example a blue, green, bronze or neutral tint, which is generally preferred.
  • Other properties to be given to the glazing are, for example, a self-cleaning character, an anti-fog character, or any other property requested by the customer or required by the circumstances.
  • the glazing intended for these buildings must be heat treated in particular for safety, which implies that they must be subjected to temperatures exceeding 500 ° C, or even exceeding 600 ° C during several minutes and according to a method well known to those skilled in the art.
  • the spandrels are inherently opaque or are made opaque by different covering or coating systems. However, even if the sills are opaque to visible light, they must be in harmony with the reflective tint of adjacent windows. The entire glazed facade must be optically uniform in external vision whatever the viewing angle, both for the reflection of the light and for its color nuances.
  • W02004092522A1 suggests making spandrels in the form of double glazing, the interior glass of which (building side) has a very low light transmission (less than 15%) to prevent vision and the exterior glass of which is coated with a stack of solar control. Such a construction is expensive and does not completely meet the aesthetic requirements of modern glass facades.
  • EP2517877 discloses a laminated glass, the outer substrate of which is made opaque by means of an absorbent stack which contacts the PVB used as adhesive between the two substrates.
  • the essential characteristic of this invention is that the glass coated with the opacifying stack is an extra clear glass, containing little iron and therefore being very little absorbent itself. This characteristic has, according to the inventor, the advantage of being able to avoid severe heat treatment.
  • the patent is silent on the aspect of harmonization of tints with the windows and moreover, this kind of solution inevitably leads to storage cost problems.
  • enamels and paints are limited and expensive solutions (additional heating step) and do not always meet aesthetic requirements.
  • the visual rendering of a panel simply colored with enamel or paint does not meet current requirements.
  • Not all of the solutions of the prior art allow the glass panel to be subjected to a heat treatment. Sometimes the solution is not acceptable for a stock management issue. Often the color matching requirements are not met.
  • a spandrel can be advantageously formed by laminating a first substrate and a second substrate by means of an intermediate sheet of polymeric material for adhesion.
  • the first substrate is the one that is furthest from the building and therefore the most exterior.
  • the first substrate is covered with an upper dielectric layer characterized on the one hand by a sufficiently high refractive index and on the other hand by a sufficiently low absorption coefficient. These characteristics allow exterior reflection in a pleasant shade and good light transmission.
  • the adjustment of the tint in exterior reflection is obtained by adequately choosing the thickness of the layer and / or its nature. The choice of the nature of the materials makes it possible to meet the requirements of resistance to heat treatments as well as the requirements of durability.
  • the first substrate is assembled with a second substrate by means of an intermediate polymeric material to form a laminate (or laminate).
  • the upper dielectric layer is deposited on the face of the first substrate which is oriented towards the side of the intermediate polymeric material (in position P2).
  • the upper dielectric layer is in direct contact with the first substrate.
  • the first substrate of the invention is covered with a sublayer disposed between the first substrate and the upper dielectric layer.
  • the undercoat is a barrier layer whose role is to protect the layer of the invention when its nature does not provide sufficient resistance to heat treatments.
  • the second substrate is opaque.
  • the upper dielectric layer and the sublayer are the only layers deposited on the first substrate.
  • photovoltaic cells are arranged between the two substrates of the laminate according to one or the other of the above embodiments.
  • FIG. 1 Section through a first substrate for the first embodiment.
  • Fig. 2 Section through a first substrate for the second embodiment.
  • Fig. 3 Section of a laminate according to the first embodiment of the invention.
  • Fig. 4 Section of a laminate according to the second embodiment of the invention.
  • FIG. 5 Section through a particular embodiment of the invention with photovoltaic cells according to the first embodiment.
  • FIG. 6 Section through a particular embodiment of the invention with photovoltaic cells according to the second embodiment.
  • FIG. 7 Section of a laminate according to an alternative embodiment of the invention in which the second substrate is a normal glass made opaque by a black film of PET Fig.8. Section of a particular embodiment of the invention with photovoltaic cells according to the alternative mode shown in Figure 7
  • the invention relates to a laminate assembly comprising a first substrate and a second substrate held together by means of an intermediate sheet of polymeric material which extends over at least one surface of each of the two substrates.
  • the first substrate is the outer substrate, that is to say the furthest from the building.
  • it is a glass substrate.
  • glass it should be understood a transparent mineral glass consisting mainly of silica including in particular ordinary soda lime float glass whose thickness is between 0.5 and 20 mm, preferably 1, 5 and 10 mm and more preferably between 2 and 6 mm.
  • this first substrate can be a lighter, or even extra clear, soda-lime glass, which means that it is characterized by a lower total iron content expressed in Fe2C> 3, in particular which is a maximum of 0.015% by weight in the case of extra clear glass and maximum 0.1% by weight in clear glass.
  • the consequence of such a low iron content is that the energy transmission of the glass is much better, in particular beyond 90% for an extraclear glass against 82% for a normal float glass whose thickness is 5 mm.
  • the advantage of improved energy transmission is to obtain better efficiency when photovoltaic cells are placed behind such a glass.
  • the light reflection and transmission are given in accordance with standard EN 410 (2011). They are measured with a source conforming to the standard illuminant D65, according to the International Commission on Illumination (CIE) at a solid angle of 2 °.
  • CIE International Commission on Illumination
  • R g for a monolithic glass, that is to say non-laminated, and by R ex t in the case of the laminate .
  • the colorimetric parameters are obtained from the coordinates of the CIELAB system.
  • a * Rg or b * Rg is meant the colorimetric parameters a * and b * measured in exterior reflection (glass side without coating) on a monolithic substrate.
  • Y Rg and LR 9 * respectively mean the reflectance expressed in percent and the luminous intensity expressed in percent (clarity) measured on the side of the uncoated glass.
  • Rext, a * ext and b * ext denotes the corresponding colorimetric parameters measured on the laminate on the exterior side, that is to say on the uncoated side of the first substrate.
  • the reflection of the coating side for a monolithic glass is represented by R c .
  • the corresponding colorimetric parameters are obtained from the coordinates of the CIELAB system.
  • a * R C or b * RC is meant the colorimetric parameters a * and b * measured in reflection on the side of the coating on a substrate monolithic.
  • YR C and LR c * respectively mean the reflectance expressed in percent and the luminous intensity expressed in percent (clarity) measured on the side of the coated glass.
  • the light transmission in the visible spectrum complies with standard EN410 (2011). It is represented by Tv and the corresponding colorimetric parameters are given by a * Tv and b * Tv.
  • Energy transmission is the transmission of a larger portion of the sun's spectrum compared to the transmission of visible light. This information is particularly important when one is interested in the energetic part of the transmitted light likely to interact with photovoltaic cells.
  • the energy transmission is measured in accordance with standard EN410 (2011) for light with a wavelength between 300 and 2500 nm. The energy transmission simulations were carried out for a wavelength of light between 390 and 2500 nm.
  • the composition of the mixed oxides or nitrides is indicated by ratios which represent the weight percentages of the two constituents of the dielectric, the first number relating to the first element entered.
  • TZO 65/35 means a mixed titanium zirconium oxide composed of 65% by weight of titanium oxide and 35% by weight of zirconium oxide.
  • SiZrN 60/40 signifies a mixed nitride composed of 60% by weight of silicon nitride and of 40% by weight of zirconium nitride.
  • ZS05 52/48 corresponds to a mixed oxide of zinc and tin composed of 52% by weight of zinc oxide and 48% by weight of tin oxide, that is to say that ZS05 is the zinc stannate (Z ⁇ SnC).
  • the upper dielectric layer is characterized by a refractive index which is high and an absorption coefficient which is low.
  • the refractive index of the upper dielectric layer is at least 2.0, preferably at least 2.1.
  • the absorption coefficient of the dielectric layer is at most 0.1. and preferably at most 0.05.
  • the refractive index im pacts the aesthetic appearance (color in reflection) while the low absorption coefficient allows higher energy transmission.
  • the upper dielectric layer is chosen from mixed oxides, nitrides or oxynitrides, that is to say they comprise at least two different oxides, at least two different nitrides, at least two different oxynitrides or at least one oxide and one nitride of two different elements. In the case of nitrides, it is in particular possible that partial oxidation leads to the formation of a mixed oxy nitride.
  • the oxides or nitrides making up the dielectric layer of the invention are chosen from oxides, nitrides or oxynitrides of elements chosen from silicon, titanium, zinc, tin, zirconium, aluminum and niobium, such as, for example, mixed oxide of titanium and zirconium (TZO) or mixed nitride of silicon and zirconium (SiZrN).
  • TZO mixed oxide of titanium and zirconium
  • SiZrN mixed nitride of silicon and zirconium
  • each oxide, nitride or oxynitride entering into the composition of the upper layer is present in a proportion which is not less than 20% by weight, preferably not less than 25% by weight and even more so more preferred not less than 30% by weight. More particularly, when the dielectric layer is titanium zirconium oxide, the weight percentage of the titanium oxide is between 62 and 68% by weight.
  • This choice for mixed oxides, nitrides or oxynitrides makes it possible to advantageously combine the optical properties of one of the oxides, nitrides or oxynitrides of the mixture with the durability properties of another oxide, nitride or oxynitride of the mixture.
  • the optical thickness of the upper dielectric layer and its composition is chosen according to the tint in reflection that is desired. This thickness is preferably at least 40 nm, preferably at least 50 nm.
  • this optical thickness is at most 110 nm, preferably at most 80 nm and even more preferably at most 70 nm.
  • the coating is located on the inner part of the outer substrate, that is to say on the side of the sheet of polymeric material. It is customary for those skilled in the art to call this face position 2, the faces of the sheets of glass constituting glazing placed on a building being numbered from the outside to the inside.
  • a sublayer is deposited on the first substrate between said substrate and the dielectric layer superior.
  • the role of the sublayer is to protect the upper dielectric layer and can be any oxide, nitride or oxynitride known for this role.
  • the nature and the thickness of this barrier layer are chosen so as not to modify the optical characteristics conferred on the first substrate by the upper dielectric layer. More particularly, a layer of mixed oxide of zinc and tin (ZSO), and more particularly zinc stannate, is well suited to fulfill this role of barrier layer.
  • the geometric thickness of the sublayer is at least equal to 5 nm, preferably at least equal to 10 nm and less than or equal to 25 nm, preferably less than or equal to 20 nm.
  • the sublayer and the upper dielectric layer can be applied by a cathode sputtering technique ("sputtering", PVD) under usual conditions and well known to those skilled in the art for this type. of technique. From metallic targets, nitrides are deposited in a reactive atmosphere of nitrogen and argon and oxides are deposited in a reactive atmosphere of oxygen and argon.
  • the dielectric layers are applied by the well-known technique called PECVD ("Plasma-Enhanced Chemical Vapor Deposition”) or plasma-assisted chemical vapor deposition.
  • the first coated substrate has a light reflection on the glass side (R g ) as well as a tint in reflection on the glass side which are characterized by the values given in Table 1.
  • the values in Table 1 are given for a glass monolithic after quenching.
  • This first coated and tempered substrate is characterized by a sufficiently high energy transmission.
  • the energy transmission of light with a wavelength between 300 and 2500 nm is greater than 0.68, preferably greater than 0.70 and even more preferably greater than 0.72 and even more preferred greater than 0.74.
  • the heat treatment that is advantageously subjected to the first substrate consists of heating to temperatures above 500 °, or even above 600 ° for a period of more than 4 minutes, in a manner well known to those skilled in the art.
  • the first substrate is laminated with a second substrate by means of at least one intermediate film of polymeric material inserted between the two substrates.
  • a second substrate is opaque. It can be organic or inorganic in nature, or even both in a composite.
  • the second substrate of the laminate of the invention is an opaque polymer, such as, for example, a polyvinyl fluoride, in particular sold by DuPont under the name "Tedlar”.
  • the second substrate is a glass substrate made opaque, for example by a black paint, giving an assembly sold by the company AGC Glass Europe under the name “Lacobel black classic”.
  • the second substrate can also be composed of several elements (organic and inorganic) which are successively deposited on the intermediate film of polymeric material.
  • an opaque polymeric film for example a black polyethylene terephthalate (PET), a layer of ethylene-vinyl acetate (EVA) and finally a float glass beforehand has thus been deposited successively. quenched, so that a laminate is obtained which can be schematized as follows (and shown in Figures 7 and 8):
  • the intermediate film of polymeric material is advantageously chosen from polyvinyl butyral (PVB), ethylene vinyl acetate (EVA), polyvinyl chloride (PVC), polyurethane (PU), ionomers or any other polymer exhibiting the required properties, such as, for example, the thermoplastic poyolefins from Dow.
  • the intermediate film of polymeric material has a thickness of between 0.3 and 2 mm. This intermediate film can be a superposition of several sheets of the same material or of different materials.
  • the assembly of the two substrates is carried out according to a method well known to those skilled in the art, for example described in WO2003084744A1 or BE876681A.
  • the first substrate is covered by the polymeric sheet from a roll, which sheet is then adjusted to the dimensions of the first substrate before the second substrate is laid on it.
  • the assembly thus formed is calendered and autoclaved, after degassing. This method of assembly is given by way of illustration, but any other method of assembling a laminate can be used for the invention.
  • the laminate obtained in accordance with any embodiment of the invention is characterized by the desired optical properties as indicated in Table 2.
  • the target values are mainly linked to the aesthetic rendering in reflection on the exterior side. (exterior reflection and colorimetric parameters in exterior reflection).
  • the first substrate has a high energy transmission
  • the photovoltaic cells are placed on this film, the electrical connections to the cells are made and a second film of polymeric material covers the assembly.
  • the second substrate is placed on the second film of polymeric material and the assembly thus formed is laminated according to a method well known to those skilled in the art and already informed.
  • the second substrate can be mineral (glass), organic (such as Tedlar) or composite (opaque film and glass).
  • the laminated assembly can be represented as follows:
  • the invention provides spandrels with a particularly interesting aesthetic and provided with photovoltaic cells which are almost invisible.
  • Such spandrels used on the facade thus constitute the elements of what is called the BIPV and offer the advantage of aesthetics at the same time as the benefit of the recovery of solar energy.
  • each polymeric intermediate film is between 0.3 and 2 mm because the photovoltaic cells have a thickness between 0.1 and 1.0 mm.
  • spandrel is meant here an opaque panel intended for use on the facade of a building in areas between the windows.
  • opaque substrate it is meant that the light transmission through the substrate is at most 4%, preferably at most 1% and even more preferably at most 0.5%.
  • optical thickness is meant the product of the geometric thickness by the refractive index of the material. By default and without precision, it is a question of geometric thickness.
  • the refractive index and the extinction coefficient are concepts well known to those skilled in the art. In the present description and unless otherwise indicated, the values of refractive index, extinction coefficient and optical thickness are given for a wavelength of 589 nm and are estimated using the CODE- optical simulation software. Theiss.
  • Table 3 provides information on the refractive index and extinction coefficient values for some dielectric materials. Unless specified, the values entered are simulated values, as indicated above. A value of zero for the extinction coefficient means that the simulated value is less than 0.0001.
  • the added ratios mean the corresponding weight percentages of the components.
  • TZO 65/35 means a mixed oxide consisting of 65% by weight of titanium oxide and 35% by weight of zirconium oxide.
  • Figure 1 illustrates in section the first substrate (S1) of the laminate of the invention for the first embodiment.
  • the first substrate has two main faces (1) and (2).
  • An upper dielectric layer L is deposited on the face (2) by PVD or PECVD.
  • Figure 2 illustrates in section the first substrate (S1) of the laminate of the invention for the second embodiment.
  • the first substrate has two main faces (1) and (2).
  • a first sublayer B is deposited on the face (2) and then an upper dielectric layer L, according to the invention, is deposited on the sublayer B.
  • the two layers are deposited by PVD or PECVD.
  • Figure 3 illustrates in section the laminate according to the first embodiment of the invention.
  • the first substrate shown in Figure 1 is laminated with the second substrate (S2) by means of an intermediate sheet of polymeric material (P1) deposited on the side of the face (2) of the first substrate, which is the face coated with the upper dielectric layer (L).
  • P1 polymeric material
  • Figure 4 illustrates in section the laminate according to the second embodiment of the invention.
  • the first substrate shown in Figure 2 is laminated with the second substrate (S2) by means of an intermediate sheet of polymeric material (P1) deposited on the side of the face (2) of the first substrate, which is the coated face of the sublayer (B) and of the upper dielectric layer (L).
  • P1 polymeric material
  • Figure 5 illustrates in section the particular embodiment of the invention in which the laminate illustrated in Figure 3, is added a second intermediate sheet of polymeric material (P2) and between the two intermediate sheets (P1) and (P2), we have photovoltaic cells (PV).
  • P2 second intermediate sheet of polymeric material
  • PV photovoltaic cells
  • Figure 6 illustrates in section the particular embodiment of the invention in which the laminate illustrated in Figure 4, is added a second intermediate sheet of polymeric material (P2) and between the two intermediate sheets (P1) and (P2), we have photovoltaic cells (PV).
  • P2 second intermediate sheet of polymeric material
  • PV photovoltaic cells
  • FIG. 7 illustrates in section the alternative mode where the second substrate is an ordinary glass made opaque by a black polymeric PET film, the adhesion of which to the glass is ensured by an EVA film.
  • the alternative mode presented in FIG. 7 illustrates the second embodiment in which a sublayer (B) is arranged below the upper dielectric layer (L).
  • Figure 8 illustrates in section the particular embodiment of the invention in which the laminate illustrated in Figure 7, is added a second intermediate sheet of polymeric material (P2) and between the two intermediate sheets (P1) and (P2), we have photovoltaic cells (PV).
  • P2 second intermediate sheet of polymeric material
  • PV photovoltaic cells
  • an upper dielectric layer of the invention is deposited on the first substrate.
  • Table 4 indicates the optical parameters obtained by a simulation carried out by means of the CODE Theiss system for different types of materials used for the upper dielectric layer.
  • the dielectric materials have a geometric thickness of 27 nm and are deposited on a clear glass of 3.85 mm, marketed by AGC under the name Clearlite.
  • the simulated values are given for a monolithic substrate.
  • the energy transmission is simulated on the basis of a calculation in accordance with standard EN410 (2011) for a wavelength range between 390 and 2500 nm.
  • glazing is simulated by choosing TZO 65/35 as the dielectric layer which is deposited on the first substrate (3.85 mm float glass).
  • Table 5 provides information on the optical parameters obtained for different thicknesses of TZO 65/35. The thicknesses are geometric thicknesses and are given in nm. The values are obtained through a simulation carried out using the CODE Theiss system. The simulated values are given for a monolithic substrate. The energy transmission is simulated on the basis of a calculation in accordance with standard EN 410 (2011) for a wavelength range between 390 and 2500 nm. Table 5
  • a 4 mm thick extra clear glass panel is introduced into a vacuum chamber of a magnetron-assisted sputtering installation.
  • the vacuum chamber is equipped with a titanium-zirconium oxide ceramic cathode (65/35).
  • a layer of TZO 65/35 is deposited on the glass substrate in an atmosphere of oxygen and argon. The conditions were set so as to obtain the 4 coated examples described in Table 6, examples which differ in the thickness of the deposited layer.
  • the optical parameters of the laminate assembly were measured by means of an Ultrascan spectrophotometer and are given in Table 7.
  • the colorimetric parameters are given for the reflection on the exterior side, that is to say on the uncoated side of the substrate. laminate glassmaker.
  • a barrier layer is deposited on the first substrate before depositing the dielectric layer of the invention.
  • a 4 mm thick extra clear glass panel is introduced into a first vacuum chamber of a magnetron coating installation.
  • the vacuum chamber is equipped with a zinc-tin alloy cathode (52% Zn).
  • a layer of ZS05 is deposited on the glass substrate in an atmosphere of oxygen and argon.
  • the substrate is then led to a second vacuum chamber equipped with a titanium-zirconium oxide cathode (65/35).
  • a layer of TZO 65/35 is deposited on the first barrier layer in an atmosphere of oxygen and argon.
  • the samples obtained are heat treated (maintained at 670 ° C. for 4 minutes).
  • Table 8 provides information on the optical parameters measured on the first substrate coated according to the second mode of the invention.
  • the optical parameters are entered for the external reflection, that is to say the reflection on the glass side of the first monolithic substrate after tempering.
  • Energy transmission is measured according to standard EN 410 (2011) for a wavelength range between 290 and 2500 nm.
  • Table 8 Tedlar substrate using EVA. Photovoltaic cells are inserted at the level of the EVA. Certain optical parameters of the laminate assembly are then measured using an Ultrascan spectrophotometer. The measured values relate to the external reflection, that is to say the reflection on the glass side of the first substrate and are given in table 9.
  • the efficiency is reduced by a maximum of 20%, preferably by a maximum of 15% and even more preferably by a maximum of 10% compared to the measurement made through uncoated glass.
  • the efficiency is calculated by measuring the kilowatt-peak of the cell (wattpeak), well known to those skilled in the art, which makes it possible to evaluate the performance of photovoltaic panels in order to predict the quantity of electricity that they can produce in optimal conditions.

Abstract

The invention relates to a spandrel comprising a first substrate, an intermediate film made of polymer material, and a second, opaque substrate, characterized in that the first substrate is coated with at most two layers which are deposited on the surface located on the side facing the intermediate film made of polymer material and which include at least one upper dielectric layer.

Description

Allège Lightens
Description Description
Domaine technique Technical area
[0001] La présente invention concerne des allèges, incorporant au moins un panneau vitré et destinées à être mises en place dans des zones d’une façade qui ne transmettent pas la lumière. Leur rôle est donc d’occulter certaines parties de cette façade entre les parties occupées par les fenêtres. Plus particulièrement, cette invention divulgue des allèges qui s’harmonisent avec les vitrages transparents adjacents, offrant une très bonne esthétique. Les allèges de l’invention sont un assemblage d’au moins deux substrats dont l’un est transparent et l’autre est opaque. Le substrat extérieur (par rapport au bâtiment) permet une bonne transmission lumineuse, ce qui fait que l’allège de l’invention convient bien pour y insérer des cellules photovoltaïques. De telles allèges sont dès lors destinées à être utilisées en façade pour constituer ce que l’on appelle BIPV (Building Integrated Photovoltaïcs). The present invention relates to spandrels, incorporating at least one glazed panel and intended to be placed in areas of a facade which do not transmit light. Their role is therefore to conceal certain parts of this facade between the parts occupied by the windows. More particularly, this invention discloses spandrels which harmonize with adjacent transparent glazing, providing very good aesthetics. The spandrels of the invention are an assembly of at least two substrates, one of which is transparent and the other is opaque. The outer substrate (relative to the building) allows good light transmission, which makes the sill of the invention well suited for inserting photovoltaic cells. Such spandrels are therefore intended to be used on the facade to constitute what is called BIPV (Building Integrated Photovoltaics).
Solutions de l’art antérieur Prior art solutions
[0002] Dans de nombreuses constructions modernes, les murs vitrés comportent des zones transparentes et des zones non-transparentes. Les fenêtres elles-mêmes peuvent être plus ou moins transparentes, plus ou moins réfléchissantes selon la nature des revêtements portés par le verre. Ces revêtements, quasi indispensables, confèrent des propriétés thermiques avantageuses au vitrage, comme par exemple des propriétés de contrôle solaire, de basse-émissivité. Le choix des matériaux et/ou leur épaisseur permet de donner une coloration agréable en réflexion et/ou en transmission, comme par exemple une teinte bleue, verte, bronze ou neutre, généralement préférées. D’autres propriétés à donner au vitrage sont par exemple un caractère autonettoyant, un caractère antibuée, ou tout autre propriété demandée par le client ou requise par les circonstances. [0003] Dans un autre aspect et pour diverses raisons, les vitrages destinés à ces bâtiments doivent être traités thermiquement notamment pour la sécurité, ce qui implique qu’ils doivent être soumis à des températures dépassant 500°C, voire dépassant 600°C pendant plusieurs minutes et selon un procédé bien connu de l’homme du métier. Cela implique que le revêtement porté par le verre doit être capable de supporter ce traitement sans être altéré, c’est-à-dire que ses propriétés optiques et énergétiques ne sont pas ou sont peu modifiées par le traitement thermique. [0002] In many modern constructions, glazed walls have transparent areas and non-transparent areas. The windows themselves can be more or less transparent, more or less reflective depending on the nature of the coverings carried by the glass. These coatings, which are almost essential, confer advantageous thermal properties on the glazing, such as, for example, solar control and low-emissivity properties. The choice of materials and / or their thickness makes it possible to give a coloring which is pleasant in reflection and / or in transmission, for example a blue, green, bronze or neutral tint, which is generally preferred. Other properties to be given to the glazing are, for example, a self-cleaning character, an anti-fog character, or any other property requested by the customer or required by the circumstances. In another aspect and for various reasons, the glazing intended for these buildings must be heat treated in particular for safety, which implies that they must be subjected to temperatures exceeding 500 ° C, or even exceeding 600 ° C during several minutes and according to a method well known to those skilled in the art. This implies that the coating carried by the glass must be able to withstand this treatment without being altered, that is to say that its optical and energy properties are not or are only slightly modified by the heat treatment.
[0004] Les allèges sont intrinsèquement opaques ou sont rendues opaques par différents systèmes de couverture ou revêtement. Cependant, même si les allèges sont opaques à la lumière visible, elles doivent être en harmonie avec la teinte en réflexion des fenêtres adjacentes. L’ensemble de la façade vitrée doit être optiquement uniforme en vision extérieure quel que soit l’angle de vision et ce, aussi bien pour la réflexion de la lumière que pour ses nuances de teinte. The spandrels are inherently opaque or are made opaque by different covering or coating systems. However, even if the sills are opaque to visible light, they must be in harmony with the reflective tint of adjacent windows. The entire glazed facade must be optically uniform in external vision whatever the viewing angle, both for the reflection of the light and for its color nuances.
[0005] Plusieurs approches sont connues de l’art antérieur pour fournir une allège adaptée. Opacifier un substrat verrier avec un émail coloré est connu de longue date. Notamment US3951525 suggère de déposer un émail opaque sur un oxyde métallique réfléchissant, l’oxyde métallique étant le même que celui qui est utilisé pour les fenêtres de la façade. Le problème dont souffre cette solution est que l’harmonisation n’est pas optimale et que de plus, elle n’est pas stable dans le temps. [0005] Several approaches are known from the prior art to provide a suitable spandrel. Opacifying a glass substrate with colored enamel has long been known. In particular, US3951525 suggests depositing an opaque enamel on a reflective metal oxide, the metal oxide being the same as that used for the windows of the facade. The problem with this solution is that the harmonization is not optimal and, moreover, it is not stable over time.
[0006] W02004092522A1 suggère de faire des allèges sous forme de vitrage double dont le verre intérieur (côté bâtiment) a une transmission lumineuse très faible (inférieure à 15%) pour empêcher la vision et dont le verre extérieur est revêtu d’un empilement de contrôle solaire. Une telle construction est coûteuse et ne répond pas complètement aux exigences esthétiques des façades vitrées modernes. [0006] W02004092522A1 suggests making spandrels in the form of double glazing, the interior glass of which (building side) has a very low light transmission (less than 15%) to prevent vision and the exterior glass of which is coated with a stack of solar control. Such a construction is expensive and does not completely meet the aesthetic requirements of modern glass facades.
[0007] Des couches métalliques opacifiantes ont également été suggérées comme par exemple dans EP0441011 ou EP3172175. Ces couches métalliques sont généralement incluses dans des empilements plus complexes. Les deux documents suggèrent notamment des relations particulières entre les indices de réfraction et les coefficients d’absorption. L’empilement requiert aussi la présence de diélectriques pour ajuster les propriétés optiques. [0008] EP2517877 divulgue un verre feuilleté dont le substrat extérieur est rendu opaque au moyen d’un empilement absorbant qui contacte le PVB utilisé comme adhésif entre les deux substrats. La caractéristique essentielle de cette invention est que le verre revêtu de l’empilement opacifiant est un verre extra clair, contenant peu de fer et étant donc très peu absorbant lui-même. Cette caractéristique a, selon l’inventeur, l’avantage de pouvoir éviter un traitement thermique sévère. Cependant, le brevet est muet quant aux aspect d’harmonisation des teintes avec les fenêtres et de plus, ce genre de solution amène inévitablement des problèmes de coût de stockage. [0007] Opacifying metal layers have also been suggested, for example in EP0441011 or EP3172175. These metallic layers are generally included in more complex stacks. The two documents suggest in particular particular relationships between the refractive indices and the absorption coefficients. Stacking also requires the presence of dielectrics to adjust the optical properties. [0008] EP2517877 discloses a laminated glass, the outer substrate of which is made opaque by means of an absorbent stack which contacts the PVB used as adhesive between the two substrates. The essential characteristic of this invention is that the glass coated with the opacifying stack is an extra clear glass, containing little iron and therefore being very little absorbent itself. This characteristic has, according to the inventor, the advantage of being able to avoid severe heat treatment. However, the patent is silent on the aspect of harmonization of tints with the windows and moreover, this kind of solution inevitably leads to storage cost problems.
[0009] En conclusion, les émaux et peintures sont des solutions limitées et coûteuses (étape de chauffe supplémentaire) et ne répondent pas toujours aux exigences d’esthétique. Le rendu visuel d’un panneau simplement coloré par un émail ou une peinture ne répond pas aux exigences actuelles. Toutes les solutions de l’art antérieur ne permettent pas de faire subir un traitement thermique au panneau de verre. Parfois la solution n’est pas acceptable pour une question de gestion de stock. Souvent les exigences d’harmonisation des teintes ne sont pas remplies. [0009] In conclusion, enamels and paints are limited and expensive solutions (additional heating step) and do not always meet aesthetic requirements. The visual rendering of a panel simply colored with enamel or paint does not meet current requirements. Not all of the solutions of the prior art allow the glass panel to be subjected to a heat treatment. Sometimes the solution is not acceptable for a stock management issue. Often the color matching requirements are not met.
[0010] En plus, outre ces questions d’esthétique, de coût et de durabilité, au regard des problèmes environnementaux actuels, de nouveaux défis apparaissent. Les bâtiments sont de plus en plus équipés de cellules photovoltaïques pour récupérer l’énergie du soleil et la convertir en électricité. Si les premières installations ont principalement concerné les toits, il y a désormais une demande croissante pour trouver des solutions afin de les installer sur les façades. Une première solution consiste à installer les cellules photovoltaïques dans les fenêtres en trouvant des astuces pour les camoufler ou les rendre acceptables sur le plan esthétique. Une autre possibilité est de les cacher dans des allèges mais cela exige bien évidemment de permettre à la lumière de pouvoir atteindre les cellules photovoltaïques sans trop perdre de rendement, tout en maintenant l’esthétique de l’ensemble. [0010] In addition, in addition to these aesthetic, cost and durability issues, in view of current environmental problems, new challenges are appearing. Buildings are increasingly equipped with photovoltaic cells to capture energy from the sun and convert it into electricity. If the first installations mainly concerned roofs, there is now a growing demand to find solutions to install them on facades. A first solution consists in installing the photovoltaic cells in the windows by finding ways to camouflage them or make them aesthetically acceptable. Another possibility is to hide them in sills, but this obviously requires allowing light to reach the photovoltaic cells without losing too much performance, while maintaining the overall aesthetics.
[0011] Les architectes d’aujourd’hui veulent une solution globale qui inclut l’esthétique (couleur, réflexion, harmonie) et les performances thermiques. Aucune solution de l’art antérieur n’apporte une solution globale permettant de fournir une allège dont le coût de fabrication soit acceptable, les exigences esthétiques satisfaites et qui en plus offre la possibilité d’incorporer des cellules photovoltaïques. C’est précisément ce que la présente invention propose avec en plus une bonne résistance chimique et mécanique. Today's architects want a global solution that includes aesthetics (color, reflection, harmony) and thermal performance. No solution of the prior art provides a global solution making it possible to provide a lighter whose manufacturing cost is acceptable, the aesthetic requirements satisfied and which in addition offers the possibility of incorporating photovoltaic cells. It is precisely this that the present invention provides with, in addition, good chemical and mechanical resistance.
Objectifs de l’invention [0012] Les inventeurs ont découvert qu’une allège peut être avantageusement constituée en laminant un premier substrat et un second substrat au moyen d’une feuille intermédiaire en matériau polymérique pour l’adhésion. Pour l’ensemble de ce texte, le premier substrat est celui qui est le plus éloigné du bâtiment et qui est donc le plus extérieur. [0013] Le premier substrat est recouvert d’une couche diélectrique supérieure caractérisée d’une part par un indice de réfraction suffisamment haut et d’autre part par un coefficient d’absorption suffisamment bas. Ces caractéristiques permettent une réflexion extérieure dans une teinte agréable et une bonne transmission lumineuse. L’ajustement de la teinte en réflexion extérieure est obtenue en choisissant de façon adéquate l’épaisseur de la couche et / ou sa nature. Le choix de la nature des matériaux permet de répondre aux exigences de résistance aux traitements thermiques ainsi qu’aux exigences de durabilité. Objects of the Invention [0012] The inventors have discovered that a spandrel can be advantageously formed by laminating a first substrate and a second substrate by means of an intermediate sheet of polymeric material for adhesion. For all of this text, the first substrate is the one that is furthest from the building and therefore the most exterior. The first substrate is covered with an upper dielectric layer characterized on the one hand by a sufficiently high refractive index and on the other hand by a sufficiently low absorption coefficient. These characteristics allow exterior reflection in a pleasant shade and good light transmission. The adjustment of the tint in exterior reflection is obtained by adequately choosing the thickness of the layer and / or its nature. The choice of the nature of the materials makes it possible to meet the requirements of resistance to heat treatments as well as the requirements of durability.
[0014] Le premier substrat est assemblé avec un second substrat au moyen d’un matériau polymérique intermédiaire pour former un feuilleté (ou laminé). La couche diélectrique supérieure est déposée sur la face du premier substrat qui est orientée du côté du matériau polymérique intermédiaire (en position P2). The first substrate is assembled with a second substrate by means of an intermediate polymeric material to form a laminate (or laminate). The upper dielectric layer is deposited on the face of the first substrate which is oriented towards the side of the intermediate polymeric material (in position P2).
[0015] Selon un premier mode de réalisation, la couche diélectrique supérieure est en contact direct avec le premier substrat. According to a first embodiment, the upper dielectric layer is in direct contact with the first substrate.
[0016] Selon un second mode de réalisation, le premier substrat de l’invention est recouvert d’une sous couche disposée entre le premier substrat et la couche diélectrique supérieure. La sous couche est une couche barrière dont le rôle est de protéger la couche de l’invention lorsque sa nature n’offre pas la résistance suffisante aux traitements thermiques. [0016] According to a second embodiment, the first substrate of the invention is covered with a sublayer disposed between the first substrate and the upper dielectric layer. The undercoat is a barrier layer whose role is to protect the layer of the invention when its nature does not provide sufficient resistance to heat treatments.
[0017] Selon tous les modes de réalisation, le second substrat est opaque. [0018] De préférence, la couche diélectrique supérieure et la sous couche sont les seules couches déposées sur le premier substrat. According to all the embodiments, the second substrate is opaque. Preferably, the upper dielectric layer and the sublayer are the only layers deposited on the first substrate.
[0019] Dans un mode de réalisation particulier de l’invention des cellules photovoltaïques sont disposées entre les deux substrats du feuilleté selon l’un ou l’autre des modes de réalisation ci-dessus. [0019] In a particular embodiment of the invention, photovoltaic cells are arranged between the two substrates of the laminate according to one or the other of the above embodiments.
Brève description des dessins Brief description of the drawings
[0020] Pour en faciliter la compréhension, les figures présentées ci-après ne sont pas à l’échelle. Fig.1. Coupe d’un premier substrat destiné au premier mode de réalisation. To facilitate understanding, the figures presented below are not to scale. Fig. 1. Section through a first substrate for the first embodiment.
Fig.2. Coupe d’un premier substrat destiné au second mode de réalisation. Fig. 2. Section through a first substrate for the second embodiment.
Fig.3. Coupe d’un laminé selon le premier mode de réalisation de l’invention. Fig. 3. Section of a laminate according to the first embodiment of the invention.
Fig.4. Coupe d’un laminé selon le second mode de réalisation de l’invention. Fig. 4. Section of a laminate according to the second embodiment of the invention.
Fig.5. Coupe d’un mode particulier de réalisation de l’invention avec des cellules photovoltaïques selon le premier mode. Fig. 5. Section through a particular embodiment of the invention with photovoltaic cells according to the first embodiment.
Fig.6. Coupe d’un mode particulier de réalisation de l’invention avec des cellules photovoltaïques selon le second mode. Fig. 6. Section through a particular embodiment of the invention with photovoltaic cells according to the second embodiment.
Fig.7. Coupe d’un laminé selon un mode alternatif de réalisation de l’invention dans lequel le deuxième substrat est un verre normal rendu opaque par un film noir de PET Fig.8. Coupe d’un mode particulier de réalisation de l’invention avec des cellules photovoltaïques selon le mode alternatif présenté à la figure 7 Fig. 7. Section of a laminate according to an alternative embodiment of the invention in which the second substrate is a normal glass made opaque by a black film of PET Fig.8. Section of a particular embodiment of the invention with photovoltaic cells according to the alternative mode shown in Figure 7
Description de l’invention Description of the invention
[0021] L’invention concerne un ensemble laminé comportant un premier substrat et un second substrat maintenus ensemble au moyen d’une feuille intermédiaire en matériau polymérique qui s’étend sur au moins une surface de chacun des deux substrats. [0022] Le premier substrat est le substrat extérieur, c’est-à-dire le plus éloigné du bâtiment. De préférence, c’est un substrat en verre. Par verre, il faut comprendre un verre minéral transparent constitué principalement de silice dont notamment du verre flotté sodocalcique ordinaire dont l’épaisseur est comprise entre 0,5 et 20 mm, de préférence 1 ,5 et 10 mm et de manière plus préférée entre 2 et 6 mm. Avantageusement ce premier substrat peut être un verre sodocalcique plus clair, voire extra clair, ce qui signifie qu’il est caractérisé par une teneur totale en fer exprimé en Fe2C>3 inférieure, notamment qui est de maximum 0,015% en poids dans le cas du verre extra clair et de maximum 0,1 % en poids dans le verre clair. La conséquence d’une teneur en fer aussi faible est que la transmission énergétique du verre est bien meilleure, notamment au-delà de 90% pour un verre extraclair contre 82% pour un verre flotté normal dont l’épaisseur est de 5 mm. L’avantage d’une transmission énergétique améliorée est d’obtenir un meilleur rendement lorsque des cellules photovoltaïques sont disposées derrière un tel verre. [0023] La réflexion et la transmission lumineuses sont données conformément à la norme EN 410 (2011). Elles sont mesurées avec une source conforme à l’illuminant normalisé D65, conformément à la Commission Internationale de l’Eclairage (CIE) à un angle solide de 2°. The invention relates to a laminate assembly comprising a first substrate and a second substrate held together by means of an intermediate sheet of polymeric material which extends over at least one surface of each of the two substrates. The first substrate is the outer substrate, that is to say the furthest from the building. Preferably, it is a glass substrate. By glass, it should be understood a transparent mineral glass consisting mainly of silica including in particular ordinary soda lime float glass whose thickness is between 0.5 and 20 mm, preferably 1, 5 and 10 mm and more preferably between 2 and 6 mm. Advantageously, this first substrate can be a lighter, or even extra clear, soda-lime glass, which means that it is characterized by a lower total iron content expressed in Fe2C> 3, in particular which is a maximum of 0.015% by weight in the case of extra clear glass and maximum 0.1% by weight in clear glass. The consequence of such a low iron content is that the energy transmission of the glass is much better, in particular beyond 90% for an extraclear glass against 82% for a normal float glass whose thickness is 5 mm. The advantage of improved energy transmission is to obtain better efficiency when photovoltaic cells are placed behind such a glass. The light reflection and transmission are given in accordance with standard EN 410 (2011). They are measured with a source conforming to the standard illuminant D65, according to the International Commission on Illumination (CIE) at a solid angle of 2 °.
[0024] La réflexion extérieure, et donc du côté de la face non revêtue du verre, est représentée par Rg pour un verre monolithique, c’est-à-dire non-feuilleté, et par Rext dans le cas du laminé. The external reflection, and therefore on the side of the uncoated face of the glass, is represented by R g for a monolithic glass, that is to say non-laminated, and by R ex t in the case of the laminate .
[0025] Les paramètres colorimétriques sont obtenus à partir des coordonnées du système CIELAB. Par a*Rg ou b*Rg, on entend les paramètres colorimétriques a* et b* mesurés en réflexion extérieur (côté verre sans revêtement) sur un substrat monolithique. Y Rg et LR9* signifie respectivement la réflectance exprimée en pourcent et l’intensité lumineuse exprimée en pourcent (clarté) mesurées du côté du verre non revêtu. Par Rext, a*ext et b*ext, on désigne les paramètres colorimétriques correspondants mesurés sur le laminé du côté extérieur, c’est-à-dire du côté non revêtu du premier substrat. The colorimetric parameters are obtained from the coordinates of the CIELAB system. By a * Rg or b * Rg , is meant the colorimetric parameters a * and b * measured in exterior reflection (glass side without coating) on a monolithic substrate. Y Rg and LR 9 * respectively mean the reflectance expressed in percent and the luminous intensity expressed in percent (clarity) measured on the side of the uncoated glass. The term Rext, a * ext and b * ext denotes the corresponding colorimetric parameters measured on the laminate on the exterior side, that is to say on the uncoated side of the first substrate.
[0026] La réflexion du côté du revêtement pour un verre monolithique est représentée par Rc. Les paramètres colorimétriques correspondants sont obtenus à partir des coordonnées du système CIELAB. Par a*RC ou b*RC, on entend les paramètres colorimétrique a* et b* mesurés en réflexion du côté du revêtement sur un substrat monolithique. YRC et LRc* signifie respectivement la réflectance exprimée en pourcent et l’intensité lumineuse exprimée en pourcent (clarté) mesurées du côté du verre revêtu.The reflection of the coating side for a monolithic glass is represented by R c . The corresponding colorimetric parameters are obtained from the coordinates of the CIELAB system. By a * R C or b * RC is meant the colorimetric parameters a * and b * measured in reflection on the side of the coating on a substrate monolithic. YR C and LR c * respectively mean the reflectance expressed in percent and the luminous intensity expressed in percent (clarity) measured on the side of the coated glass.
La transmission lumineuse dans le spectre du visible est conforme à la norme EN410 (2011). Elle est représentée par Tv et les paramètres colorimétriques correspondants sont donnés par a*Tv et b*Tv. The light transmission in the visible spectrum complies with standard EN410 (2011). It is represented by Tv and the corresponding colorimetric parameters are given by a * Tv and b * Tv.
[0027] La transmission énergétique (TE) correspond à la transmission d’une plus grande partie du spectre du soleil en comparaison à la transmission de la lumière visible. Cette information est particulièrement importante lorsque l’on s’intéresse à la partie énergétique de la lumière transmise susceptible d’interagir avec des cellules photovoltaïques. Dans la présente description, la transmission énergétique est mesurée conformément à la norme EN410 (2011) pour une lumière dont la longueur d’onde est comprise entre 300 et 2500 nm. Les simulations de la transmission énergétique ont quant à elles été effectuées pour une longueur d’onde de la lumière comprise entre 390 et 2500 nm. [0027] Energy transmission (TE) is the transmission of a larger portion of the sun's spectrum compared to the transmission of visible light. This information is particularly important when one is interested in the energetic part of the transmitted light likely to interact with photovoltaic cells. In this description, the energy transmission is measured in accordance with standard EN410 (2011) for light with a wavelength between 300 and 2500 nm. The energy transmission simulations were carried out for a wavelength of light between 390 and 2500 nm.
[0028] La composition des oxydes ou des nitrures mixtes est indiquée par des rapports qui représentent les pourcentages poids des deux constituants du diélectrique, le premier nombre se rapportant au premier élément renseigné. Ainsi, TZO 65/35 signifie un oxyde mixte de titane zirconium composé de 65 % poids d’oxyde de titane et de 35 % poids d’oxyde de zirconium. De la même façon, SiZrN 60/40 signifie un nitrure mixte composé de 60% poids de nitrure de silicium et de 40% poids de nitrure de zirconium. Le ZS05 52/48 correspond à un oxyde mixte de zinc et d’étain composé de 52% poids d’oxyde de zinc et de 48% poids d’oxyde d’étain, c’est-à-dire que le ZS05 est le stannate de zinc (Z^SnC ). The composition of the mixed oxides or nitrides is indicated by ratios which represent the weight percentages of the two constituents of the dielectric, the first number relating to the first element entered. Thus, TZO 65/35 means a mixed titanium zirconium oxide composed of 65% by weight of titanium oxide and 35% by weight of zirconium oxide. Likewise, SiZrN 60/40 signifies a mixed nitride composed of 60% by weight of silicon nitride and of 40% by weight of zirconium nitride. ZS05 52/48 corresponds to a mixed oxide of zinc and tin composed of 52% by weight of zinc oxide and 48% by weight of tin oxide, that is to say that ZS05 is the zinc stannate (Z ^ SnC).
[0029] La couche diélectrique supérieure est caractérisée par un indice de réfraction qui est élevé et un coefficient d’absorption qui est faible. De préférence, l’indice de réfraction de la couche diélectrique supérieure est d’au moins 2,0, de préférence d’au moins 2, 1. Avantageusement le coefficient d’absorption de la couche diélectrique est d’au plus 0, 1 et de préférence d’au plus 0,05. L’indice de réfraction im pacte l’aspect esthétique (couleur en réflexion) alors que le coefficient d’absorption faible permet une transmission énergétique plus élevée. [0030] Avantageusement, la couche diélectrique supérieure est choisie parmi les oxydes, les nitrures ou les oxynitrures mixtes, c’est-à-dire qu’ils comprennent au moins deux oxydes différents, au moins deux nitrures différents, au moins deux oxynitrures différents ou au moins un oxyde et un nitrure de deux éléments différents. Dans le cas des nitrures il est notamment possible qu’une oxydation partielle mène à la formation d’un oxy nitrure mixte. The upper dielectric layer is characterized by a refractive index which is high and an absorption coefficient which is low. Preferably, the refractive index of the upper dielectric layer is at least 2.0, preferably at least 2.1. Advantageously, the absorption coefficient of the dielectric layer is at most 0.1. and preferably at most 0.05. The refractive index im pacts the aesthetic appearance (color in reflection) while the low absorption coefficient allows higher energy transmission. Advantageously, the upper dielectric layer is chosen from mixed oxides, nitrides or oxynitrides, that is to say they comprise at least two different oxides, at least two different nitrides, at least two different oxynitrides or at least one oxide and one nitride of two different elements. In the case of nitrides, it is in particular possible that partial oxidation leads to the formation of a mixed oxy nitride.
[0031] De préférence, les oxydes ou les nitrures composant la couche diélectrique de l’invention sont choisis parmi les oxydes, les nitrures ou les oxynitrures des éléments choisis parmi le silicium, le titane, le zinc, l’étain, le zirconium, l’aluminium et le niobium, comme par exemple l’oxyde mixte de titane et de zirconium (TZO) ou le nitrure mixte de silicium et de zirconium (SiZrN). Preferably, the oxides or nitrides making up the dielectric layer of the invention are chosen from oxides, nitrides or oxynitrides of elements chosen from silicon, titanium, zinc, tin, zirconium, aluminum and niobium, such as, for example, mixed oxide of titanium and zirconium (TZO) or mixed nitride of silicon and zirconium (SiZrN).
[0032] Dans tous les cas, chaque oxyde, nitrure ou oxynitrure entrant dans la composition de la couche supérieure est présent dans une proportion qui n’est pas inférieure à 20% poids, de préférence pas inférieure à 25% poids et de façon encore plus préférée pas inférieure à 30% poids. Plus particulièrement, lorsque la couche diélectrique est de l’oxyde de titane zirconium, le pourcentage poids de l’oxyde de titane est compris entre 62 et 68% poids. Ce choix pour des oxydes, des nitrures ou des oxynitrures mixtes permet de combiner avantageusement les propriétés optiques d’un des oxydes, nitrures ou oxynitrures du mélange avec les propriétés de durabilité d’un autre oxyde, nitrure ou oxynitrure du mélange. In all cases, each oxide, nitride or oxynitride entering into the composition of the upper layer is present in a proportion which is not less than 20% by weight, preferably not less than 25% by weight and even more so more preferred not less than 30% by weight. More particularly, when the dielectric layer is titanium zirconium oxide, the weight percentage of the titanium oxide is between 62 and 68% by weight. This choice for mixed oxides, nitrides or oxynitrides makes it possible to advantageously combine the optical properties of one of the oxides, nitrides or oxynitrides of the mixture with the durability properties of another oxide, nitride or oxynitride of the mixture.
[0033] L’épaisseur optique de la couche diélectrique supérieure et sa composition est choisie en fonction de la teinte en réflexion que l’on souhaite. Cette épaisseur est avantageusement d’au moins 40 nm, préférablement d’au moins 50 nm. [0033] The optical thickness of the upper dielectric layer and its composition is chosen according to the tint in reflection that is desired. This thickness is preferably at least 40 nm, preferably at least 50 nm.
[0034] Avantageusement, cette épaisseur optique est d’au plus 110 nm, de préférence d’au plus 80 nm et de manière encore plus préférée d’au plus 70 nm. Advantageously, this optical thickness is at most 110 nm, preferably at most 80 nm and even more preferably at most 70 nm.
[0035] Dans le feuilleté, le revêtement est situé sur la partie intérieure du substrat extérieur, c’est-à-dire du côté de la feuille en matériau polymérique. L’homme du métier a coutume d’appeler cette face la position 2, les faces des feuilles de verre constituant un vitrage placé sur un bâtiment étant numérotées de l’extérieur vers l’intérieur. In the laminate, the coating is located on the inner part of the outer substrate, that is to say on the side of the sheet of polymeric material. It is customary for those skilled in the art to call this face position 2, the faces of the sheets of glass constituting glazing placed on a building being numbered from the outside to the inside.
[0036] Conformément au second mode de réalisation de l’invention, une sous couche est déposée sur le premier substrat entre ledit substrat et la couche diélectrique supérieure. Le rôle de la sous couche est de protéger la couche diélectrique supérieure et peut être n’importe quel oxyde, nitrure ou oxynitrure connu pour ce rôle. A titre d’exemple, on peut citer les oxydes d’un ou plusieurs éléments choisi(s) parmi le silicium, l’étain, le zinc, le titane, l’aluminium, le niobium, le zirconium. Avantageusement la nature et l’épaisseur de cette couche barrière sont choisies de manière à ne pas modifier les caractéristiques optiques conférées au premier substrat par la couche diélectrique supérieure. Plus particulièrement, une couche d’oxyde mixte de zinc et d’étain (ZSO), et plus particulièrement le stannate de zinc convient bien pour remplir ce rôle de couche barrière. Avantageusement, l’épaisseur géométrique de la sous couche est au moins égale à 5 nm, de préférence au moins égale à 10 nm et inférieure ou égale à 25 nm, de préférence inférieure ou égale à 20 nm. According to the second embodiment of the invention, a sublayer is deposited on the first substrate between said substrate and the dielectric layer superior. The role of the sublayer is to protect the upper dielectric layer and can be any oxide, nitride or oxynitride known for this role. By way of example, mention may be made of the oxides of one or more elements chosen from silicon, tin, zinc, titanium, aluminum, niobium and zirconium. Advantageously, the nature and the thickness of this barrier layer are chosen so as not to modify the optical characteristics conferred on the first substrate by the upper dielectric layer. More particularly, a layer of mixed oxide of zinc and tin (ZSO), and more particularly zinc stannate, is well suited to fulfill this role of barrier layer. Advantageously, the geometric thickness of the sublayer is at least equal to 5 nm, preferably at least equal to 10 nm and less than or equal to 25 nm, preferably less than or equal to 20 nm.
[0037] Pour tous les modes de réalisation, la sous couche et la couche diélectrique supérieure peuvent être appliquées par une technique de pulvérisation cathodique ("sputtering", PVD) dans des conditions usuelles et bien connues de l’homme du métier pour ce type de technique. A partir de cibles métalliques, les nitrures sont déposés en atmosphère réactive d’azote et d’argon et les oxydes sont déposés en atmosphère réactive d’oxygène et d’argon. En variante, les couches diélectriques sont appliquées par la technique bien connue appelée PECVD (« Plasma-Enhanced Chemical Vapor Déposition ») ou dépôt chimique en phase vapeur assisté par plasma. For all the embodiments, the sublayer and the upper dielectric layer can be applied by a cathode sputtering technique ("sputtering", PVD) under usual conditions and well known to those skilled in the art for this type. of technique. From metallic targets, nitrides are deposited in a reactive atmosphere of nitrogen and argon and oxides are deposited in a reactive atmosphere of oxygen and argon. As a variant, the dielectric layers are applied by the well-known technique called PECVD ("Plasma-Enhanced Chemical Vapor Deposition") or plasma-assisted chemical vapor deposition.
[0038] Avantageusement, le premier substrat revêtu a une réflexion lumineuse côté verre (Rg) ainsi qu’une teinte en réflexion côté verre qui sont caractérisées par les valeurs renseignées dans le tableau 1. Les valeurs du tableau 1 sont données pour un verre monolithique après trempe. Advantageously, the first coated substrate has a light reflection on the glass side (R g ) as well as a tint in reflection on the glass side which are characterized by the values given in Table 1. The values in Table 1 are given for a glass monolithic after quenching.
Tableau 1 [0039] Ce premier substrat revêtu et trempé est caractérisé par une transmission énergétique suffisamment élevée. Dans tous les cas, la transmission énergétique de la lumière de longueur d’onde comprise entre 300 et 2500 nm est supérieure à 0,68, de préférence supérieure à 0,70 et de manière encore plus préférée supérieure à 0,72 et de manière encore plus préférée supérieure à 0,74. Table 1 This first coated and tempered substrate is characterized by a sufficiently high energy transmission. In all cases, the energy transmission of light with a wavelength between 300 and 2500 nm is greater than 0.68, preferably greater than 0.70 and even more preferably greater than 0.72 and even more preferred greater than 0.74.
Le traitement thermique que l’on fait avantageusement subir au premier substrat consiste en un chauffage à des températures supérieures à 500°, voire supérieure à 600° pendant une durée supérieure à 4 minutes, de façon bien connue de l’homme du métier. The heat treatment that is advantageously subjected to the first substrate consists of heating to temperatures above 500 °, or even above 600 ° for a period of more than 4 minutes, in a manner well known to those skilled in the art.
[0040] Selon les deux modes de réalisation de l’invention, le premier substrat est laminé avec un second substrat au moyen d’au moins un film intermédiaire en matériau polymérique inséré entre les deux substrats. Un des objectifs de l’invention est que l’allège ainsi formée réponde à certains critères esthétiques (voir le tableau 2 ci-après). Le second substrat de l’ensemble laminé de l’invention est opaque. Il peut être de nature organique ou minérale, voire les deux dans un composite. Avantageusement le second substrat du laminé de l’invention est un polymère opaque, comme par exemple un polyfluorure de vinyle, notamment vendu par DuPont sous le nom de « Tedlar ». Dans un autre mode de réalisation, le second substrat est un substrat verrier rendu opaque, par exemple par une peinture noire, donnant un ensemble vendu par la société AGC Glass Europe sous le nom de « Lacobel black classic ». Dans un mode alternatif, le second substrat peut aussi être composé de plusieurs éléments (organique et minéraux) qui sont déposés successivement sur le film intermédiaire en matériau polymérique. A titre d’illustration, selon un mode alternatif, on a ainsi déposé successivement un film polymérique opaque (par exemple un polyéthylène téréphthalate (PET) noir), une couche d’éthylène-acétate de vinyle (EVA) et enfin un verre flotté préalablement trempé, de telle sorte que l’on obtient un laminé qui peut être schématisé de la manière suivante (et représenté aux figures 7 et 8) : [0040] According to the two embodiments of the invention, the first substrate is laminated with a second substrate by means of at least one intermediate film of polymeric material inserted between the two substrates. One of the objectives of the invention is that the sill thus formed meets certain aesthetic criteria (see Table 2 below). The second substrate of the laminate assembly of the invention is opaque. It can be organic or inorganic in nature, or even both in a composite. Advantageously, the second substrate of the laminate of the invention is an opaque polymer, such as, for example, a polyvinyl fluoride, in particular sold by DuPont under the name "Tedlar". In another embodiment, the second substrate is a glass substrate made opaque, for example by a black paint, giving an assembly sold by the company AGC Glass Europe under the name “Lacobel black classic”. In an alternative mode, the second substrate can also be composed of several elements (organic and inorganic) which are successively deposited on the intermediate film of polymeric material. By way of illustration, according to an alternative mode, an opaque polymeric film (for example a black polyethylene terephthalate (PET), a layer of ethylene-vinyl acetate (EVA) and finally a float glass beforehand has thus been deposited successively. quenched, so that a laminate is obtained which can be schematized as follows (and shown in Figures 7 and 8):
Premier substrat revêtu / film intermédiaire / PET noir / EVA / verre ordinaireFirst coated substrate / interlayer film / black PET / EVA / ordinary glass
[0041] Pour l’ensemble des modes de réalisation, le film intermédiaire en matériau polymérique est avantageusement choisi parmi le polybutyrale de vinyle (PVB), l’ethylène acétate de vinyle (EVA), le polychlorure de vinyle (PVC), le polyuréthane (PU), les ionomères ou tout autre polymère présentant les propriétés requises, comme par exemples les poyoléfines thermoplastiques de Dow. Le film intermédiaire en matériau polymérique a une épaisseur comprise entre 0,3 et 2 mm. Ce film intermédiaire peut être une superposition de plusieurs feuilles d’un même matériau ou de matériaux différents. L’assemblage des deux substrats est réalisé selon un procédé bien connu de l’homme du métier par exemple décrit dans W02003084744A1 ou BE876681A. Le premier substrat est couvert par la feuille polymérique depuis un rouleau, feuille qui est ensuite ajustée aux dimensions du premier substrat avant que le second substrat ne soit posé dessus. L’ensemble ainsi formé est calandré et autoclavé, après dégazage. Ce mode d’assemblage est donné à titre d’illustration, mais tout autre mode d’assemblage d’un laminé peut être utilisé pour l’invention. For all of the embodiments, the intermediate film of polymeric material is advantageously chosen from polyvinyl butyral (PVB), ethylene vinyl acetate (EVA), polyvinyl chloride (PVC), polyurethane (PU), ionomers or any other polymer exhibiting the required properties, such as, for example, the thermoplastic poyolefins from Dow. The intermediate film of polymeric material has a thickness of between 0.3 and 2 mm. This intermediate film can be a superposition of several sheets of the same material or of different materials. The assembly of the two substrates is carried out according to a method well known to those skilled in the art, for example described in WO2003084744A1 or BE876681A. The first substrate is covered by the polymeric sheet from a roll, which sheet is then adjusted to the dimensions of the first substrate before the second substrate is laid on it. The assembly thus formed is calendered and autoclaved, after degassing. This method of assembly is given by way of illustration, but any other method of assembling a laminate can be used for the invention.
[0042] Le laminé obtenu conformément à n’importe quel mode de l’invention est caractérisé par les propriétés optiques recherchées telles qu’elles sont renseignées dans le tableau 2. Ainsi, les valeurs visées sont principalement liées au rendu esthétique en réflexion côté extérieur (réflexion extérieure et paramètres colorimétriques en réflexion extérieure). The laminate obtained in accordance with any embodiment of the invention is characterized by the desired optical properties as indicated in Table 2. Thus, the target values are mainly linked to the aesthetic rendering in reflection on the exterior side. (exterior reflection and colorimetric parameters in exterior reflection).
Tableau 2 Table 2
[0043] Avantageusement, comme le premier substrat possède une transmission énergétique élevée, il est possible d’ajouter des cellules photovoltaïques entre le premier et le second substrat du laminé, profitant de la feuille intermédiaire en matériau polymérique pour les fixer. Dans ce cas, après avoir couvert le premier substrat avec un premier film intermédiaire en matériau polymérique, on dispose les cellules photovoltaïques sur ce film, on réalise les connexions électriques aux cellules et un second film en matériau polymérique recouvre l’ensemble. Enfin, le second substrat est disposé sur le second film en matériau polymérique et l’ensemble ainsi constitué est laminé selon un procédé bien connu de l’homme du métier et déjà renseigné. Le second substrat peut être de nature minérale (verre), organique (comme du Tedlar) ou composite (film opaque et verre). Advantageously, as the first substrate has a high energy transmission, it is possible to add photovoltaic cells between the first and the second substrate of the laminate, taking advantage of the intermediate sheet of polymeric material to fix them. In this case, after having covered the first substrate with a first intermediate film of polymeric material, the photovoltaic cells are placed on this film, the electrical connections to the cells are made and a second film of polymeric material covers the assembly. Finally, the second substrate is placed on the second film of polymeric material and the assembly thus formed is laminated according to a method well known to those skilled in the art and already informed. The second substrate can be mineral (glass), organic (such as Tedlar) or composite (opaque film and glass).
[0044] Dans le cas du mode alternatif dans lequel le second substrat est un verre clair, l’ensemble feuilleté peut être représenté de la manière suivante : In the case of the alternative mode in which the second substrate is a clear glass, the laminated assembly can be represented as follows:
Substrat 1 revêtu / film polymérique / cellules photovoltaïque / film polymérique / PET noir / EVA / Substrat 2 Coated Substrate 1 / Polymeric Film / Photovoltaic Cells / Polymeric Film / Black PET / EVA / Substrate 2
[0045] Ainsi dans ce mode de réalisation particulier, l’invention propose des allèges avec une esthétique particulièrement intéressante et munie de cellules photovoltaïques qui sont quasi invisibles. De telles allèges utilisées en façade constituent ainsi les éléments de ce que l’on appelle le BIPV et offrent l’avantage de l’esthétique en même temps que l’intérêt de la récupération de l’énergie solaire. [0045] Thus in this particular embodiment, the invention provides spandrels with a particularly interesting aesthetic and provided with photovoltaic cells which are almost invisible. Such spandrels used on the facade thus constitute the elements of what is called the BIPV and offer the advantage of aesthetics at the same time as the benefit of the recovery of solar energy.
[0046] Avantageusement l’épaisseur de chaque film intermédiaire polymérique est comprise entre 0,3 et 2 mm parce que les cellules photovoltaïques ont une épaisseur comprise entre 0,1 et 1 ,0 mm. Advantageously, the thickness of each polymeric intermediate film is between 0.3 and 2 mm because the photovoltaic cells have a thickness between 0.1 and 1.0 mm.
[0047] Pour des raisons esthétiques, il est connu de masquer les bords des cellules ou au minimum de masquer les connexions électriques ainsi que toute partie susceptible de montrer une discontinuité dans l’apparence du produit fini. Un des très gros avantages de l’invention est que, grâce au second substrat opaque, la plupart des parties des cellules restent invisibles pour un regard extérieur et seules quelques connexions particulièrement fort réfléchissantes doivent être cachées, en utilisant par exemple un fluorure de polyvinyle noir ou une peinture. La boîte de jonction, dont le rôle est de récupérer l’électricité produite par le panneau peut avantageusement être située à l’arrière ou sur le côté de l’allège. Description détaillée de l’invention For aesthetic reasons, it is known to hide the edges of the cells or at least to hide the electrical connections as well as any part likely to show a discontinuity in the appearance of the finished product. One of the very big advantages of the invention is that, thanks to the second opaque substrate, most of the parts of the cells remain invisible to an outside view and only a few particularly strong reflective connections have to be hidden, for example by using a black polyvinyl fluoride. or a painting. The junction box, whose role is to recover the electricity produced by the panel can advantageously be located at the rear or on the side of the spandrel. Detailed description of the invention
[0048] L’invention va maintenant être décrite au moyen de figures et d’exemples. Il est cependant clair que les exemples sont donnés à titre indicatif et ne sont en aucun cas limitatifs de l’invention. The invention will now be described by means of figures and examples. However, it is clear that the examples are given by way of indication and are in no way limiting of the invention.
Définitions Definitions
[0049] Par allège, on entend ici un panneau opaque destiné à être utilisé en façade d’un bâtiment dans des zones entre les fenêtres. By spandrel is meant here an opaque panel intended for use on the facade of a building in areas between the windows.
Par substrat opaque, on veut signifier que la transmission lumineuse au travers du substrat est d’au plus 4%, de préférence d’au plus 1 % et de manière encore plus préférée d’au plus 0,5%. By opaque substrate it is meant that the light transmission through the substrate is at most 4%, preferably at most 1% and even more preferably at most 0.5%.
[0050] Par épaisseur optique on entend le produit de l’épaisseur géométrique par l’indice de réfraction du matériau. Par défaut et sans précision, il est question d’épaisseur géométrique. By optical thickness is meant the product of the geometric thickness by the refractive index of the material. By default and without precision, it is a question of geometric thickness.
[0051] L’indice de réfraction et le coefficient d’extinction sont des notions bien connues de l’homme du métier. Dans la présente description et sauf indication contraire, les valeurs d’indice de réfraction, de coefficient d’extinction et d’épaisseur optique sont données pour une longueur d’onde de 589 nm et sont estimées au moyen du logiciel de simulation optique CODE-Theiss. The refractive index and the extinction coefficient are concepts well known to those skilled in the art. In the present description and unless otherwise indicated, the values of refractive index, extinction coefficient and optical thickness are given for a wavelength of 589 nm and are estimated using the CODE- optical simulation software. Theiss.
[0052] A titre indicatif, le tableau 3 renseigne les valeurs d’indice de réfraction et de coefficient d’extinction pour quelques matériaux diélectriques. Sauf précision, les valeurs renseignées sont des valeurs simulées, comme indiqué plus haut. Une valeur de zéro pour le coefficient d’extinction signifie que la valeur simulée est inférieure à 0,0001. Pour les oxydes ou les nitrures mixtes renseignés dans le tableau, les rapports ajoutés signifient les pourcentages poids correspondants des composants. Par exemple, TZO 65/35 signifie un oxyde mixte constitué de 65% poids d’oxyde de titane et de 35% poids d’oxyde de zirconium. Ces valeurs seront utilisées pour les matériaux impliqués dans la suite de ce texte. Tableau 3 As an indication, Table 3 provides information on the refractive index and extinction coefficient values for some dielectric materials. Unless specified, the values entered are simulated values, as indicated above. A value of zero for the extinction coefficient means that the simulated value is less than 0.0001. For the mixed oxides or nitrides given in the table, the added ratios mean the corresponding weight percentages of the components. For example, TZO 65/35 means a mixed oxide consisting of 65% by weight of titanium oxide and 35% by weight of zirconium oxide. These values will be used for the materials involved in the rest of this text. Table 3
*Wood and Nassau, Applied Optics, vol.21 , Issue 16, pp. 2978-2981 (1982)* Wood and Nassau, Applied Optics, vol.21, Issue 16, pp. 2978-2981 (1982)
Figures Figures
[0053] La figure 1 illustre en coupe le premier substrat (S1) du laminé de l’invention destiné au premier mode de réalisation. Le premier substrat possède deux faces principales (1) et (2). Une couche diélectrique supérieure L, conforme à l’invention, est déposée sur la face (2) par PVD ou PECVD. [0053] Figure 1 illustrates in section the first substrate (S1) of the laminate of the invention for the first embodiment. The first substrate has two main faces (1) and (2). An upper dielectric layer L, according to the invention, is deposited on the face (2) by PVD or PECVD.
[0054] La figure 2 illustre en coupe le premier substrat (S1) du laminé de l’invention destiné au second mode de réalisation. Le premier substrat possède deux faces principales (1) et (2). Une première sous couche B est déposée sur la face (2) et ensuite une couche diélectrique supérieure L, conforme à l’invention, est déposée sur la sous couche B. Les deux couches sont déposées par PVD ou PECVD. [0054] Figure 2 illustrates in section the first substrate (S1) of the laminate of the invention for the second embodiment. The first substrate has two main faces (1) and (2). A first sublayer B is deposited on the face (2) and then an upper dielectric layer L, according to the invention, is deposited on the sublayer B. The two layers are deposited by PVD or PECVD.
[0055] La figure 3 illustre en coupe le laminé conforme au premier mode de réalisation de l’invention. Le premier substrat (représenté à la figure 1) est laminé avec le second substrat (S2) au moyen d’une feuille intermédiaire en matériau polymérique (P1) déposée du côté de la face (2) du premier substrat, qui est la face revêtue de la couche diélectrique supérieure (L). Figure 3 illustrates in section the laminate according to the first embodiment of the invention. The first substrate (shown in Figure 1) is laminated with the second substrate (S2) by means of an intermediate sheet of polymeric material (P1) deposited on the side of the face (2) of the first substrate, which is the face coated with the upper dielectric layer (L).
[0056] La figure 4 illustre en coupe le laminé conforme au second mode de réalisation de l’invention. Le premier substrat (représenté à la figure 2) est laminé avec le second substrat (S2) au moyen d’une feuille intermédiaire en matériau polymérique (P1) déposée du côté de la face (2) du premier substrat, qui est la face revêtue de la sous couche (B) et de la couche diélectrique supérieure (L). [0056] Figure 4 illustrates in section the laminate according to the second embodiment of the invention. The first substrate (shown in Figure 2) is laminated with the second substrate (S2) by means of an intermediate sheet of polymeric material (P1) deposited on the side of the face (2) of the first substrate, which is the coated face of the sublayer (B) and of the upper dielectric layer (L).
[0057] La figure 5 illustre en coupe le mode particulier de réalisation de l’invention dans lequel au laminé illustré à la figure 3, on ajoute une seconde feuille intermédiaire en matériau polymérique (P2) et entre les deux feuilles intermédiaires (P1) et (P2), on dispose des cellules photovoltaïques (PV). Figure 5 illustrates in section the particular embodiment of the invention in which the laminate illustrated in Figure 3, is added a second intermediate sheet of polymeric material (P2) and between the two intermediate sheets (P1) and (P2), we have photovoltaic cells (PV).
[0058] La figure 6 illustre en coupe le mode particulier de réalisation de l’invention dans lequel au laminé illustré à la figure 4, on ajoute une seconde feuille intermédiaire en matériau polymérique (P2) et entre les deux feuilles intermédiaires (P1) et (P2), on dispose des cellules photovoltaïques (PV). Figure 6 illustrates in section the particular embodiment of the invention in which the laminate illustrated in Figure 4, is added a second intermediate sheet of polymeric material (P2) and between the two intermediate sheets (P1) and (P2), we have photovoltaic cells (PV).
[0059] La figure 7 illustre en coupe le mode alternatif où le second substrat est un verre ordinaire rendu opaque par un film polymérique noir en PET dont l’adhérence au verre est assurée par un film en EVA. Le mode alternatif présenté à la figure 7 illustre le second mode de réalisation dans lequel une sous couche (B) est disposée en dessous de la couche diélectrique supérieure (L). [0059] FIG. 7 illustrates in section the alternative mode where the second substrate is an ordinary glass made opaque by a black polymeric PET film, the adhesion of which to the glass is ensured by an EVA film. The alternative mode presented in FIG. 7 illustrates the second embodiment in which a sublayer (B) is arranged below the upper dielectric layer (L).
[0060] La figure 8 illustre en coupe le mode particulier de réalisation de l’invention dans lequel au laminé illustré à la figure 7, on ajoute une seconde feuille intermédiaire en matériau polymérique (P2) et entre les deux feuilles intermédiaires (P1) et (P2), on dispose des cellules photovoltaïques (PV). Figure 8 illustrates in section the particular embodiment of the invention in which the laminate illustrated in Figure 7, is added a second intermediate sheet of polymeric material (P2) and between the two intermediate sheets (P1) and (P2), we have photovoltaic cells (PV).
Exemples Examples
[0061] Conformément au premier mode de réalisation, une couche diélectrique supérieure de l’invention est déposée sur le premier substrat. Le tableau 4 indique les paramètres optiques obtenus grâce à une simulation effectuée au moyen du système CODE Theiss pour différents types de matériaux utilisés pour la couche diélectrique supérieure. Dans ces exemples, les matériaux diélectriques ont une épaisseur géométrique de 27 nm et sont déposés sur un verre clair de 3,85 mm, commercialisé par AGC sous le nom de Clearlite. Les valeurs simulées sont données pour un substrat monolithique. La transmission énergétique est simulée sur la base d’un calcul conforme à la norme EN410 (2011 ) pour une gamme de longueur d’onde comprises entre 390 et 2500 nm. According to the first embodiment, an upper dielectric layer of the invention is deposited on the first substrate. Table 4 indicates the optical parameters obtained by a simulation carried out by means of the CODE Theiss system for different types of materials used for the upper dielectric layer. In these examples, the dielectric materials have a geometric thickness of 27 nm and are deposited on a clear glass of 3.85 mm, marketed by AGC under the name Clearlite. The simulated values are given for a monolithic substrate. The energy transmission is simulated on the basis of a calculation in accordance with standard EN410 (2011) for a wavelength range between 390 and 2500 nm.
Tableau 4 Table 4
[0062] Toujours selon le premier mode de réalisation, des vitrages sont simulés en choisissant le TZO 65/35 comme couche diélectrique qui est déposée sur le premier substrat (verre flotté de 3,85 mm). Le tableau 5 renseigne les paramètres optiques obtenus pour différentes épaisseurs de TZO 65/35. Les épaisseurs sont des épaisseurs géométriques et sont données en nm. Les valeurs sont obtenues grâce à une simulation effectuée au moyen du système CODE Theiss. Les valeurs simulées sont données pour un substrat monolithique. La transmission énergétique est simulée sur la base d’un calcul conforme à la norme EN 410 (2011) pour une gamme de longueur d’onde comprise entre 390 et 2500 nm. Tableau 5 Still according to the first embodiment, glazing is simulated by choosing TZO 65/35 as the dielectric layer which is deposited on the first substrate (3.85 mm float glass). Table 5 provides information on the optical parameters obtained for different thicknesses of TZO 65/35. The thicknesses are geometric thicknesses and are given in nm. The values are obtained through a simulation carried out using the CODE Theiss system. The simulated values are given for a monolithic substrate. The energy transmission is simulated on the basis of a calculation in accordance with standard EN 410 (2011) for a wavelength range between 390 and 2500 nm. Table 5
Exemples 1 à 4 de réalisation de l’invention selon le premier mode Examples 1 to 4 of embodiment of the invention according to the first mode
[0063] Un panneau de verre extra clair de 4 mm d’épaisseur est introduit dans une chambre sous vide d’une installation de pulvérisation cathodique assistée par magnétron. La chambre sous vide est équipée d’une cathode céramique en oxyde de titane-zirconium (65/35). Par un procédé bien connu de l’homme du métier, une couche de TZO 65/35 est déposée sur le substrat verrier dans une atmosphère d’oxygène et d’argon. Les conditions ont été réglées de manière à obtenir les 4 exemples revêtus décrit dans le tableau 6, exemples qui se différencient par l’épaisseur de la couche déposée. A 4 mm thick extra clear glass panel is introduced into a vacuum chamber of a magnetron-assisted sputtering installation. The vacuum chamber is equipped with a titanium-zirconium oxide ceramic cathode (65/35). By a method well known to those skilled in the art, a layer of TZO 65/35 is deposited on the glass substrate in an atmosphere of oxygen and argon. The conditions were set so as to obtain the 4 coated examples described in Table 6, examples which differ in the thickness of the deposited layer.
Tableau 6 Table 6
[0064] Les échantillons ont été traités thermiquement (maintenu à 670°C pendant 4 minutes). Dans tous les cas, n’importe lequel des paramètres optiques (Y, L*, a*, b*) en réflexion ou en transmission, mesuré avant et après traitement thermique s’est avéré stable. [0065] Plusieurs échantillons ont été laminés avec un substrat en Tedlar au moyen d’un film polymère en EVA et en incorporant des cellules photovoltaïques. Les paramètres optiques de l’ensemble laminé ont été mesurés au moyen d’un spectrophotomètre Ultrascan et sont renseignés dans le tableau 7. Les paramètres colorimétriques sont donnés pour la réflexion côté extérieur, c’est-à-dire du côté non revêtu du substrat verrier du laminé. The samples were heat treated (maintained at 670 ° C for 4 minutes). In all cases, any of the optical parameters (Y, L *, a *, b *) in reflection or transmission, measured before and after heat treatment, have been shown to be stable. [0065] Several samples were laminated with a Tedlar substrate using an EVA polymer film and incorporating photovoltaic cells. The optical parameters of the laminate assembly were measured by means of an Ultrascan spectrophotometer and are given in Table 7. The colorimetric parameters are given for the reflection on the exterior side, that is to say on the uncoated side of the substrate. laminate glassmaker.
Tableau 7 [0066] La présence du second substrat opaque et la réflexion intéressante obtenue sont responsables de la disparition optique de tout ce qui se trouve derrière le premier substrat. Il est donc possible d’utiliser le laminé comme allège grâce à son rendu esthétique particulièrement intéressant. Table 7 The presence of the second opaque substrate and the interesting reflection obtained are responsible for the optical disappearance of everything behind the first substrate. It is therefore possible to use the laminate as a lighter thanks to its particularly interesting aesthetic rendering.
Exemples 8 à 9 de réalisation de l’invention selon le second mode Examples 8 to 9 of embodiment of the invention according to the second mode
[0067] Dans le second mode de réalisation de l’invention, une couche barrière est déposée sur le premier substrat avant de déposer la couche diélectrique de l’invention. Un panneau de verre extra clair de 4 mm d’épaisseur est introduit dans une première chambre sous vide d’une installation de coating magnetron. La chambre sous vide est équipée d’une cathode en alliage Zinc-étain (52% de Zn). Par un procédé bien connu de l’homme du métier, une couche de ZS05 est déposée sur le substrat en verre dans une atmosphère d’oxygène et d’argon. Le substrat est ensuite conduit vers une seconde chambre sous vide équipée d’une cathode en oxyde de titane-zirconium (65/35). Par un procédé bien connu de l’homme du métier, une couche de TZO 65/35 est déposée sur la première couche barrière dans une atmosphère d’oxygène et d’argon. Les échantillons obtenus sont traités thermiquement (maintenu à 670°C pendant 4 minutes). In the second embodiment of the invention, a barrier layer is deposited on the first substrate before depositing the dielectric layer of the invention. A 4 mm thick extra clear glass panel is introduced into a first vacuum chamber of a magnetron coating installation. The vacuum chamber is equipped with a zinc-tin alloy cathode (52% Zn). By a method well known to those skilled in the art, a layer of ZS05 is deposited on the glass substrate in an atmosphere of oxygen and argon. The substrate is then led to a second vacuum chamber equipped with a titanium-zirconium oxide cathode (65/35). By a method well known to those skilled in the art, a layer of TZO 65/35 is deposited on the first barrier layer in an atmosphere of oxygen and argon. The samples obtained are heat treated (maintained at 670 ° C. for 4 minutes).
Le tableau 8 renseignent les paramètres optiques mesurés sur le premier substrat revêtu selon le second mode de l’invention. Les paramètres optiques sont renseignés pour la réflexion extérieure, c’est-à-dire la réflexion côté verre du premier substrat monolithique après trempe. La transmission énergétique est mesurée selon la norme EN 410 (2011) pour une gamme de longueur d’onde comprises entre 290 et 2500 nm. Table 8 provides information on the optical parameters measured on the first substrate coated according to the second mode of the invention. The optical parameters are entered for the external reflection, that is to say the reflection on the glass side of the first monolithic substrate after tempering. Energy transmission is measured according to standard EN 410 (2011) for a wavelength range between 290 and 2500 nm.
Tableau 8 substrat en Tedlar au moyen d’EVA. Des cellules photovoltaïques sont insérées au niveau de l’EVA. Certains paramètres optiques de l’ensemble laminé sont ensuite mesurés au moyen d’un spectrophotomètre Ultrascan. Les valeurs mesurées concernent la réflexion extérieure, c’est-à-dire la réflexion côté verre du premier substrat et sont renseignées dans le tableau 9. Table 8 Tedlar substrate using EVA. Photovoltaic cells are inserted at the level of the EVA. Certain optical parameters of the laminate assembly are then measured using an Ultrascan spectrophotometer. The measured values relate to the external reflection, that is to say the reflection on the glass side of the first substrate and are given in table 9.
Tableau 9 Insertion de cellules photovoltaïques dans le laminé de invention Table 9 Insertion of photovoltaic cells in the laminate of the invention
[0069] Dans un mode de réalisation avantageux, après avoir déposé de l’EVA sur le premier substrat (verre revêtu correspondant à la référence 5), des cellules photovoltaïques sont disposées, un second film d’EVA est déposé et enfin le second substrat opaque est positionné. L’efficacité de ce laminé ainsi constitué et équipé de cellules photovoltaïques est évaluée conformément au standard de test (STC) qui implique que la cellule maintenue à une température de 25°C soit irradiée à une puissance de 1000 Watts par mètre carré en incorporant un coefficient de 1 ,5 pour la masse d’air (norme EN 50380, 2003). Il a ainsi été montré que lorsque la cellule photovoltaïque reçoit la lumière au travers du premier substrat portant ses couches, le rendement est diminué de maximum 20%, de préférence de maximum 15 % et de manière encore plus préférée de maximum 10% par rapport à la mesure effectuée au travers d’un verre non revêtu. Le rendement est calculé en mesurant le kilowatt-crête de la cellule (wattpeak), bien connu de l’homme du métier, qui permet d’évaluer les performances de panneaux photovoltaïques pour prévoir la quantité d’électricité qu’ils peuvent produire dans des conditions optimales. In an advantageous embodiment, after having deposited EVA on the first substrate (coated glass corresponding to reference 5), photovoltaic cells are placed, a second EVA film is deposited and finally the second substrate opaque is positioned. The efficiency of this laminate thus constituted and equipped with photovoltaic cells is evaluated according to the test standard (STC) which implies that the cell maintained at a temperature of 25 ° C is irradiated at a power of 1000 Watts per square meter by incorporating a coefficient of 1.5 for the air mass (standard EN 50380, 2003). It has thus been shown that when the photovoltaic cell receives light through the first substrate carrying its layers, the efficiency is reduced by a maximum of 20%, preferably by a maximum of 15% and even more preferably by a maximum of 10% compared to the measurement made through uncoated glass. The efficiency is calculated by measuring the kilowatt-peak of the cell (wattpeak), well known to those skilled in the art, which makes it possible to evaluate the performance of photovoltaic panels in order to predict the quantity of electricity that they can produce in optimal conditions.

Claims

Revendications Claims
1. Allège comprenant un premier substrat, un film intermédiaire en matériau polymérique et un second substrat opaque, caractérisée en ce que le premier substrat est revêtu d’au plus deux couches déposées sur la surface située du côté du film intermédiaire en matériau polymérique et comprenant au moins une couche diélectrique supérieure. 1. Spandrel comprising a first substrate, an intermediate film of polymeric material and a second opaque substrate, characterized in that the first substrate is coated with at most two layers deposited on the surface located on the side of the intermediate film of polymeric material and comprising at least one upper dielectric layer.
2. Allège de la revendication précédente caractérisée en ce que la couche diélectrique supérieure est caractérisée par un indice de réfraction au moins égal à 2,0, de préférence au moins égal à 2,1 et par un coefficient d’absorption plus petit que 0,1 , de préférence plus petit que 0,05. 2. Spandrel of the preceding claim characterized in that the upper dielectric layer is characterized by a refractive index at least equal to 2.0, preferably at least equal to 2.1 and by an absorption coefficient smaller than 0 , 1, preferably less than 0.05.
3. Allège d’une des revendications précédentes caractérisée en ce que la couche diélectrique supérieure est une couche d’oxyde, une couche de nitrure ou une couche d’oxynitrure, comprenant au moins deux éléments différents choisis parmi le silicium, le titane, le zinc, l’étain, le zirconium, l’aluminium et le niobium. 3. Spandrel of one of the preceding claims characterized in that the upper dielectric layer is an oxide layer, a nitride layer or an oxynitride layer, comprising at least two different elements selected from silicon, titanium, zinc, tin, zirconium, aluminum and niobium.
4. Allège d’une des revendications précédentes caractérisée en ce que la couche diélectrique supérieure est l’oxyde mixte de titane et de zirconium ou le nitrure mixte de silicium et de zirconium. 4. Spandrel of one of the preceding claims characterized in that the upper dielectric layer is the mixed oxide of titanium and zirconium or the mixed nitride of silicon and zirconium.
5. Allège d’une des revendications précédentes dont la couche diélectrique supérieure a une épaisseur optique au moins égale à 40 nm, de préférence au moins égale à 50 nm et est d’au plus 110 nm, de préférence d’au plus 80 nm. 5. Spandrel of one of the preceding claims, the upper dielectric layer of which has an optical thickness at least equal to 40 nm, preferably at least equal to 50 nm and is at most 110 nm, preferably at most 80 nm. .
6. Allège d’une des revendications précédentes caractérisée en ce qu’une sous couche est déposée sur le premier substrat entre ledit substrat et la couche diélectrique supérieure. 6. Spandrel of one of the preceding claims characterized in that a sublayer is deposited on the first substrate between said substrate and the upper dielectric layer.
7. Allège d’une des revendications précédentes caractérisée en ce que la sous couche est une couche d’oxyde, de nitrure ou d’oxynitrure comprenant au moins deux éléments différents choisis parmi le silicium, le titane, le zinc, l’étain, le zirconium, l’aluminium et le niobium. 7. Spandrel of one of the preceding claims characterized in that the sublayer is an oxide, nitride or oxynitride layer comprising at least two different elements chosen from silicon, titanium, zinc, tin, zirconium, aluminum and niobium.
8. Allège d’une des revendications précédentes caractérisée en ce que la sous couche est un oxyde mixte de zinc et d’étain. 8. Lightweight from one of the preceding claims, characterized in that the underlayer is a mixed oxide of zinc and tin.
9. Allège d’une des revendications précédentes caractérisée en ce que l’épaisseur géométrique de la sous couche est au moins égale à 5 nm, de préférence au moins égale à 6 nm et inférieure ou égale à 30 nm, de préférence inférieure ou égale à 25 nm. 9. Spandrel of one of the preceding claims characterized in that the geometric thickness of the sublayer is at least equal to 5 nm, preferably at least equal to 6 nm and less than or equal to 30 nm, preferably less than or equal at 25 nm.
10. Allège d’une des revendications précédentes dont le premier substrat est caractérisé par une transmission énergétique de la lumière de longueur d’onde comprise entre 300 et 2500 nm qui est supérieure à 0,68, de préférence supérieure à 0,70, de manière plus préférée supérieure à 0,72 et de manière encore plus préférée supérieure à 0,74. 10. Spandrel of one of the preceding claims, the first substrate is characterized by an energy transmission of light with a wavelength of between 300 and 2500 nm which is greater than 0.68, preferably greater than 0.70, of more preferably greater than 0.72 and even more preferably greater than 0.74.
11. Allège d’une des revendications précédentes caractérisée par une réflectance mesurée du côté extérieur comprise entre 10 et 20%, de préférence entre 12 et 18%. 11. Spandrel of one of the preceding claims characterized by a reflectance measured on the outside of between 10 and 20%, preferably between 12 and 18%.
12. Allège d’une des revendications précédentes caractérisée par une couleur en réflexion extérieure dont le paramètre a* est compris entre -4 et 0, de préférence entre -2 et -1 et le paramètre b* est compris entre -13 et -6 et de préférence entre -12. Spandrel of one of the preceding claims characterized by a color in exterior reflection whose parameter a * is between -4 and 0, preferably between -2 and -1 and the parameter b * is between -13 and -6 and preferably between -
12 et -7. 12 and -7.
13. Allège d’une des revendications précédentes dont le second substrat est un verre ordinaire rendu opaque au moyen d’un film polymérique ou un substrat synthétique opaque. 13. Spandrel of one of the preceding claims, the second substrate of which is ordinary glass rendered opaque by means of a polymeric film or an opaque synthetic substrate.
14. Allège d’une des revendications précédentes dans lequel le film intermédiaire en matériau polymérique a une épaisseur comprise entre 0.3 et 2 mm et est choisi parmi le polybutyrale de vinyle (PVB), l’ethylène acétate de vinyle (EVA), le polychlorure de vinyle (PVC), le polyuréthane (PU) ou les ionomères. 14. Spandrel of one of the preceding claims wherein the intermediate film of polymeric material has a thickness of between 0.3 and 2 mm and is chosen from polyvinylbutyral (PVB), ethylene vinyl acetate (EVA), polychloride. vinyl (PVC), polyurethane (PU) or ionomers.
15. Allège d’une des revendications précédentes dans lequel des cellules photovoltaïques sont insérées entre le premier et le second substrat. 15. Spandrel of one of the preceding claims in which photovoltaic cells are inserted between the first and the second substrate.
16. Allège de la revendication précédente dont le rendement photovoltaïque est diminué de maximum 20%, de préférence de maximum 15 % et de manière encore plus préférée de maximum 10% par rapport à un verre clair dans les conditions de tests standards STC. 16. Spandrel of the preceding claim, the photovoltaic efficiency of which is reduced by a maximum of 20%, preferably by a maximum of 15% and even more preferably by a maximum of 10% compared to a clear glass under the standard test conditions STC.
EP21700524.8A 2020-01-16 2021-01-11 Spandrel Pending EP4090531A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE202000008 2020-01-16
PCT/EP2021/050349 WO2021144213A1 (en) 2020-01-16 2021-01-11 Spandrel

Publications (1)

Publication Number Publication Date
EP4090531A1 true EP4090531A1 (en) 2022-11-23

Family

ID=69375207

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21700524.8A Pending EP4090531A1 (en) 2020-01-16 2021-01-11 Spandrel

Country Status (5)

Country Link
US (1) US20230056622A1 (en)
EP (1) EP4090531A1 (en)
JP (1) JP2023512466A (en)
CN (1) CN115243885B (en)
WO (1) WO2021144213A1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3869198A (en) 1972-09-22 1975-03-04 Ppg Industries Inc Heat and light reflecting spandrel
BE876681A (en) 1978-06-14 1979-11-30 Bfg Glassgroup PROCESS FOR MANUFACTURING A PANEL INCLUDING AT LEAST ONE PHOTOVOLTAIC CELL AND PANEL INCLUDING AT LEAST ONE SUCH CELL
DE4003851C1 (en) 1990-02-06 1991-07-04 Flachglas Ag, 8510 Fuerth, De
GB2311791A (en) * 1996-04-02 1997-10-08 Glaverbel Gold-tinted glazing panels
US6514621B1 (en) * 1997-12-24 2003-02-04 Ppg Industries Ohio, Inc. Patterned coated articles and methods for producing the same
BE1014750A3 (en) 2002-04-09 2004-03-02 Glaverbel Laminated glazing assembly.
US20040202803A1 (en) 2003-04-14 2004-10-14 Pilkington North America, Inc. Spandrel panel with low visible light transmittance pane
US8287701B2 (en) * 2005-07-12 2012-10-16 Verre et la Ceramique S.A. (C.R.V.C.) Spandrel coating and method
GB201105946D0 (en) * 2011-04-08 2011-05-18 Pilkington Deutschland Ag Spandrel panel
EP3172175B1 (en) 2014-07-25 2023-01-11 AGC Glass Europe Decorative glass panel
FR3087383B1 (en) * 2018-10-18 2022-09-09 Saint Gobain GLAZING COMPRISING A FUNCTIONAL COATING AND A COLORIMETRIC ADJUSTMENT COATING

Also Published As

Publication number Publication date
CN115243885A (en) 2022-10-25
JP2023512466A (en) 2023-03-27
CN115243885B (en) 2023-11-10
WO2021144213A1 (en) 2021-07-22
US20230056622A1 (en) 2023-02-23

Similar Documents

Publication Publication Date Title
EP0648196B1 (en) Glazing with functional conductive and/or low emissive layer
CA2132254C (en) Transparent substrate with superimposed thin layers reflecting solar and/or infra-red radiations
EP0844219B1 (en) Glazing comprising a substrate with a stack of thin layers for solar protection and/or thermal insulation
CA2384970C (en) Glazing provided with a stack of thin layers acting on solar radiation
WO2009112759A2 (en) Solar-protection glazing having an improved light transmission coefficient
EP0638528A1 (en) Transparent substrates with a thin film stack, use in glazing for thermal insulation and/or solar protection
EP1919838A1 (en) Glazing provided with a stack of thin films acting on the sunlight
EP1200256A1 (en) Glazing in particular for motor vehicle roof panel
WO2005105687A2 (en) Glazing comprising a stack of thin layers which act on solar radiation
EP3319917A1 (en) Substrate provided with a stack having thermal properties
EP3152174A1 (en) Glazing for solar protection provided with thin-film coatings
EP3645478B1 (en) Glazing with solar protection properties comprising a titanium oxynitride layer
WO2020079373A1 (en) Glazing comprising a functional coating and a color adjustment coating
BE1009463A3 (en) Substrate coating on the high light transmission solar factor and low having a reflection in neutral appearance.
WO2021144213A1 (en) Spandrel
FR3068031B1 (en) GLAZING WITH ANTISOLAR PROPERTIES COMPRISING A TITANIUM OXYNITRIDE LAYER
EP3807225B1 (en) Material comprising a stack with thermal and aesthetic properties
FR3111631A1 (en) SOLAR CONTROL GLASS CONSISTING OF A TITANIUM NITRIDE BASED LAYER AND AN ITO BASED LAYER
EP3807226B1 (en) Material comprising a stack with thermal and aesthetic properties
WO2023144223A1 (en) Transparent substrate provided with a functional stack of thin layers
WO2021004873A1 (en) Glazing unit with a double layer of tin for solar control
EP3319920B1 (en) Material comprising a stack of thin layers
FR2708926A1 (en) Transparent substrates provided with a stack of thin layers, application to glazing with thermal insulation and/or sun protection
WO2023203192A1 (en) Solar control glazing panel comprising a single functional titanium nitride layer
FR3091701A1 (en) SUBSTRATE HAVING A STACK OF THERMAL PROPERTIES AND AN ABSORBENT LAYER

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220816

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAV Requested validation state of the european patent: fee paid

Extension state: TN

Effective date: 20220816

Extension state: MA

Effective date: 20220816