EP4088030B1 - Compresseur à spirales - Google Patents

Compresseur à spirales Download PDF

Info

Publication number
EP4088030B1
EP4088030B1 EP20700566.1A EP20700566A EP4088030B1 EP 4088030 B1 EP4088030 B1 EP 4088030B1 EP 20700566 A EP20700566 A EP 20700566A EP 4088030 B1 EP4088030 B1 EP 4088030B1
Authority
EP
European Patent Office
Prior art keywords
pressure chamber
channel
scroll
oil return
gas connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20700566.1A
Other languages
German (de)
English (en)
Other versions
EP4088030A1 (fr
Inventor
Lukas LÖHMER
Phillip BARTH
Jan BERWANGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pierburg GmbH
Original Assignee
Pierburg GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pierburg GmbH filed Critical Pierburg GmbH
Publication of EP4088030A1 publication Critical patent/EP4088030A1/fr
Application granted granted Critical
Publication of EP4088030B1 publication Critical patent/EP4088030B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0253Details concerning the base
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow

Definitions

  • the invention relates to a scroll compressor with a compressor housing, a high-pressure chamber, a low-pressure chamber, which is fluidly connected to the high-pressure chamber via an oil return channel, an oil return throttle being provided in the oil return channel, an orbiting displacement spiral arranged on a driven eccentric unit, which in a fixed spiral intervenes, a sliding disk being arranged between the orbiting displacement spiral and the compressor housing, and a counter-pressure chamber adjacent to the displacement spiral, which is fluidly connected to the high-pressure chamber via a gas connection channel, a gas connection throttle being provided in the gas connection channel.
  • Such scroll compressors are from the prior art, for example from EP 3 404 264 A1 , well known and include a high pressure chamber, a low pressure chamber, an orbiting displacement spiral and a fixed spiral interacting with the displacement spiral.
  • a sliding disk is arranged between the orbiting displacement spiral and a compressor housing.
  • the orbiting displacement spiral engages with the fixed spiral in such a way that compression chambers are formed between the displacement spiral and the fixed spiral, which accommodate a working fluid.
  • a counter-pressure chamber is provided between the compressor housing and the displacement spiral. The pressure prevailing in the counter-pressure chamber and acting on the displacement spiral causes a resultant force in the axial direction, causing the displacement spiral is pressed against the fixed spiral and thus the spirals are sealed to one another.
  • the pressure prevailing in the counter-pressure chamber is built up by a fluidic connection between the counter-pressure chamber and the high-pressure chamber, with the high-pressure fluid flowing into the counter-pressure chamber via a gas connection channel connecting the high-pressure chamber with the counter-pressure chamber.
  • a gas connection throttle is arranged in the gas connection channel, which controls the mass flow of the fluid flowing into the counter-pressure chamber.
  • the scroll compressor includes an oil return channel, which fluidly connects the high-pressure chamber with the low-pressure chamber.
  • An oil intended for lubricating the components in the scroll compressor is separated from the compressed fluid via a separator arranged in the high-pressure chamber and returned to the low-pressure chamber via the oil return channel, so that the returned oil can be used again to lubricate the components.
  • an oil return throttle is arranged in the oil return channel.
  • the oil return throttle is formed by a separate component, which is manufactured through an additional manufacturing process and must be mounted in the oil return channel during assembly, which increases the manufacturing and assembly costs of the scroll compressor.
  • the task is therefore to provide a scroll compressor which has reduced manufacturing and assembly costs.
  • the sliding disk having the oil return throttle and/or the gas connection throttle, the manufacture and assembly of the scroll compressor is simplified and thereby the manufacturing and assembly costs are reduced.
  • the sliding disk takes over the throttling function in the oil return channel and/or in the gas connection channel, with the oil return throttle or the gas connection throttle being implemented through a simple and inexpensively manufactured opening in the sliding disk and no additional components for executing the oil return throttle and/or the Gas connection throttle is required.
  • the sliding disk thus reduces the sliding friction between the orbiting displacement spiral and the compressor housing as well as throttling the fluid flowing into the counter-pressure chamber and/or the oil flowing back into the low-pressure chamber.
  • the oil return throttle or the gas connection throttle is an opening provided on the sliding disk, the opening having a smaller diameter than the oil return channel or the gas connection channel.
  • the sliding disk can be equipped with the oil return throttle and/or the gas connection throttle in a simple and cost-effective manner, such a throttle being able to be produced by a simple and cost-effective manufacturing process, for example using a laser. This creates a throttle for the oil return channel and/or for the gas connection channel, with no additional components that would increase the manufacturing and assembly costs being required.
  • the oil return channel and/or the gas connection channel extends at least in sections through the fixed spiral.
  • the gas connection channel extends from the high-pressure chamber via a gas channel in the fixed spiral, through the sliding disk and via a gas channel in the compressor housing to the counter-pressure chamber.
  • the oil return channel extends from the high-pressure chamber via an oil channel in the fixed spiral, through the sliding disk and via an oil channel in the compressor housing to the low-pressure chamber.
  • the oil return channel and/or the gas connection channel can be guided directly from the high-pressure chamber to the counter-pressure chamber or the low-pressure chamber.
  • the high-pressure chamber preferably has an oil separation chamber in which an oil separator is arranged, with an inlet of the oil return channel being arranged at the lowest point of the oil separation chamber.
  • the oil separator separates the oil dissolved in the gas, with the oil-free gas rising and flowing through an outlet into a cooling circuit.
  • the separated oil sinks to the bottom of the oil separation chamber and flows back into the low-pressure chamber via the oil return channel.
  • the oil can be used to lubricate the components of the scroll compressor.
  • an inlet of the gas connection channel is arranged in front of the oil separator in the flow direction of the gas-oil mixture.
  • the gas with oil dissolved in it is conveyed into the counter-pressure chamber, whereby the components adjacent to the counter-pressure chamber, in particular bearing elements, are transported through the oil be lubricated.
  • the inlet of the gas connection channel can be arranged downstream of the oil separator in the flow direction of the gas-oil mixture.
  • a filter is provided in the oil return channel and/or gas connection channel.
  • the returning oil and/or the gas flowing into the counter-pressure chamber may contain particles which arise, for example, from wear of the components moving relative to one another.
  • the particles can lead to clogging of the oil return throttle or the gas connection throttle or to abrasive wear of the components moving relative to one another.
  • the filter can be used to filter out the particles from the oil or gas and prevent clogging of the oil return channel or the gas connection channel as well as abrasive wear on the components moving relative to one another.
  • the displacement spiral preferably has a circumferential groove on the side facing the sliding disk, in which a sliding ring is arranged, the sliding ring resting on the sliding disk. This allows the friction between the sliding disk and the displacement spiral to be reduced during the orbiting movement of the displacement spiral.
  • the sliding disk is positively connected to the drive housing perpendicular to a longitudinal axis.
  • the compressor housing has at least one fixing bolt and the sliding disk has a fixing opening corresponding to the fixing bolt.
  • the fixing bolt can reliably prevent twisting and radial displacement of the sliding disk.
  • the fixing bolt can be a separate component pressed into an opening in the compressor housing or can be made in one piece with the compressor housing.
  • the sliding disk has at least one guide opening through which a guide pin attached to the compressor housing and guiding the orbiting displacement spiral extends.
  • the guide pin engages eccentrically in an opening of the displacement spiral, whereby the displacement spiral is guided by the guide pin during the orbiting movement, with a rotational movement of the displacement spiral being prevented by the guide pin.
  • the oil return throttle and/or the gas connection throttle has a diameter that is many times smaller than the diameter of the fixing bolt or the guide pin.
  • the oil or gas mass flow can be controlled by the size of the diameter of the oil return throttle and/or the gas connection throttle.
  • the orbiting displacement spiral is connected via the eccentric unit to a rotor shaft of a rotor of an electric motor, the electric motor being arranged in the low-pressure chamber.
  • the electric motor is cooled, thereby increasing the service life of the scroll compressor.
  • a scroll compressor for an air conditioning system of a motor vehicle which has a gas connection channel extending from the high-pressure chamber to the counter-pressure chamber and/or an oil return channel extending from the high-pressure chamber to the low-pressure chamber, with a gas connection arranged in the gas connection channel and/or an oil return channel arranged in the oil return channel.
  • Throttle is provided in a simple and cost-effective manner by the sliding disk, thereby reducing the assembly and manufacturing costs of the scroll compressor.
  • the scroll compressor 2 comprises a multi-part compressor housing 10 with a first compressor housing part 12, a second compressor housing part 14 which adjoins the first compressor housing part 12 axially and a third compressor housing part 16 which adjoins the second compressor housing part 14.
  • the first compressor housing part 12, the second compressor housing part 14 and the Third compressor housing part 16 delimits an engine compartment 18.
  • the second compressor housing part 14 and the third compressor housing part 16 delimit a compressor compartment 20.
  • An electric motor 22 with a stator 24 and a rotor 26 is arranged in the engine compartment 18.
  • the rotor 26 is attached to a rotor shaft 28.
  • the rotor shaft 28 extends from the engine compartment 18 through a central opening 29 of the second compressor housing part 14 into the compressor compartment 20.
  • the rotor shaft 28 is rotatably mounted in two shaft bearings 40, 42 via two end-side shaft bearing sections 30, 34 about a rotor shaft rotation axis.
  • the first shaft bearing 40 is arranged in the engine compartment 18 and supports the first shaft bearing section 30.
  • the second shaft bearing 42 is arranged in the compressor compartment 20 and supports the second shaft bearing section 34.
  • a shaft sealing ring 43 is provided on the side of the second shaft bearing 42 facing the engine compartment 18 , which rests on the radial inside of the rotor shaft 28 and is supported on the radial outside by the second compressor housing part 14.
  • the shaft sealing ring 43 fluidly seals the engine compartment 18 from a counter-pressure chamber 82 of the compressor compartment 20.
  • a compressor unit 58 is arranged in the compressor chamber 20 and has an orbiting displacement spiral 60 and a fixed spiral 62.
  • the orbiting displacement spiral 60 is arranged via an eccentric shaft bearing 64 on an eccentric unit 50 attached to the rotor shaft 28 and rests via a sliding disk 70 on a surface of the second compressor housing part 14 facing the compressor chamber 20, the displacement spiral 60 being on the side facing the sliding disk 70 has a sliding ring 142 arranged in a circumferential groove 140.
  • the fixed scroll 62 is fixedly disposed in the compressor housing 10, with the fixed scroll 62 being axially supported by the second compressor housing part 14 and the third compressor housing part 16.
  • a refrigerant is introduced through a compressor inlet 85 into the engine compartment 18 of the scroll compressor 2, with the refrigerant flowing through the engine compartment 18 into the compressor compartment 20.
  • the orbiting displacement spiral 60 and the fixed spiral 62 are designed such that they delimit a compression chamber 63 and, through the orbiting movement of the displacement spiral 60, a refrigerant is conveyed from a radially outer inlet 66 of the compression chamber 63 to a radially inner outlet 68 of the compression chamber 63 and thereby is compacted.
  • the compressor chamber 20 has a high-pressure chamber 80 and a counter-pressure chamber 82.
  • the high-pressure chamber 80 is delimited by the third compressor housing part 16 and by the fixed spiral 62 and is fluidly arranged between the outlet 68 and a compressor outlet 84, with the refrigerant flowing from the outlet 68 via the high-pressure chamber 80 to the compressor outlet 84.
  • the refrigerant flows into a coolant circuit of a motor vehicle.
  • the high-pressure chamber 80 has an oil separation chamber 86, which is fluidly arranged immediately in front of the compressor outlet 84 and has an oil separator 88.
  • the oil separator 88 is designed as a cyclone separator, with the refrigerant flowing through the oil separator 88 to the compressor outlet 84 and the oil released from the refrigerant settling at the bottom of the oil separation chamber 86, i.e. at the lowest point of the oil separation chamber 86.
  • an inlet 89 of an oil return channel 90 is provided at the bottom of the oil separation chamber 86, which fluidly connects the oil separation chamber 86 and thus the high-pressure chamber 80 with a low-pressure chamber 87, the engine compartment 18 forming the low-pressure chamber 87.
  • the oil return channel 90 extends through the third compressor housing part 16, the fixed spiral 62 and through the second compressor housing part 14, with a filter 130 being arranged in the oil return channel 90.
  • the counter-pressure chamber 82 is delimited by the second compressor housing part 14 and the orbiting displacement spiral 60, the pressure prevailing in the counter-pressure chamber 82 acting on the axially displaceable, orbiting displacement spiral 60, resulting in an axial load on the displacement spiral.
  • This axial load leads to an improved seal between the end faces of the orbiting displacement spiral 60 and the fixed spiral 62.
  • the counter-pressure chamber 82 is connected to the gas connection channel 100 via a gas connection channel 100 High pressure chamber 80 fluidly connected.
  • the gas connection channel 100 runs from the high-pressure chamber 80 through the fixed spiral 62 and through the second compressor housing part 14.
  • a gas connection throttle is arranged in the gas connection channel 100, which controls the mass flow of the gas flowing into the counter-pressure chamber 82.
  • the oil return channel 90 and the gas connection channel 100 run through the sliding disk 70 arranged between the second compressor housing part 14 and the fixed spiral 62, the sliding disk 70, which in Figure 2 is shown, an oil return throttle 92 and a gas connection throttle 96.
  • the sliding disk 70 has a first bore 94 in its radially outer region and a second bore 98 spaced apart from the first bore 94 in the circumferential direction.
  • the first bore 94 has a smaller diameter than the rest of the oil return line 90, so that the first bore 94 forms the oil return throttle 92.
  • the second bore 98 has a smaller diameter than the rest of the gas connection line 100, so that the second bore 98 forms the gas connection throttle 96.
  • the oil mass flow through the oil return channel 90 is thus controlled by the oil return throttle 92 and the gas mass flow into the counter-pressure chamber 82 is controlled by the gas connection throttle 96.
  • the sliding disk 70 has two fixing openings 102, 104 in the radially outer region and six guide openings 110, 112, 114, 116, 118, 120 in the radially inner region, the fixing openings 102, 104 and the guide openings 110, 112, 114, 116, 118, 120 have a significantly larger diameter than the bores 94, 98.
  • a fixing bolt 103 attached to the second compressor housing part 14 engages in each of the two fixing openings 102, 104 a, whereby the sliding disk 70 is fixed perpendicular to a longitudinal axis 106 of the scroll compressor 2.
  • the six guide openings 110, 112, 114, 116, 118, 120 are each penetrated by a guide pin 122 attached to the second compressor housing part 14, the guide pins 122 engaging eccentrically in guide holes 124 provided on the displacement spiral 60.
  • the guide bores 124 have a larger diameter than the guide pins 122, with the guide pins 122 sliding on the respective inner peripheral surface of the guide bore 124 during the orbiting movement of the displacement spiral 60.
  • a plain bearing sleeve 126 is arranged in the guide bores 124.
  • a scroll compressor 2 is thus created, which can be produced with reduced manufacturing and assembly effort, the oil return throttle 92 and the gas connection throttle 96 being provided in a simple and cost-effective manner by the sliding disk 70 and no additional components and associated manufacturing and assembly steps are required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Claims (14)

  1. Compresseur à spirales avec
    un boîtier de compresseur (10),
    une chambre haute pression (80),
    une chambre basse pression (87), qui est reliée fluidiquement à la chambre haute pression (80) par un canal de retour d'huile (90), un restricteur de retour d'huile (92) étant prévu dans le canal de retour d'huile (90),
    une spirale de déplacement orbitante (60) disposée sur une unité d'excentrique entraînée (50), qui s'engage dans une spirale fixe (62), un disque de glissement (70) étant disposé entre la spirale de déplacement orbitante (60) et le boîtier de compresseur (10), et
    une chambre de contre-pression (82) adjacente à la spirale de déplacement (60), qui est reliée fluidiquement à la chambre haute pression (80) par un canal de connexion de gaz (100), un restricteur de connexion de gaz (96) étant prévu dans le canal de connexion de gaz (100),
    caractérisé en ce que
    le canal de retour d'huile (90) et/ou le canal de connexion de gaz (100) s'étend à travers le disque de glissement (70), le disque de glissement (70) comprenant le restricteur de retour d'huile (92) et/ou le restricteur de connexion de gaz (96).
  2. Compresseur à spirales selon la revendication 1,
    caractérisé en ce que
    le restricteur de retour d'huile (92) ou le restricteur de connexion de gaz (96) est un orifice (94, 98) prévu sur le disque de glissement (70), ledit orifice (94, 98) comprenant un diamètre inférieur à celui du canal de retour d'huile (90) ou du canal de connexion de gaz (100).
  3. Compresseur à spirales selon la revendication 1 ou 2,
    caractérisé en ce que
    le canal de retour d'huile (90) et/ou le canal de connexion de gaz (100) s'étend au moins en partie à travers la spirale fixe (92).
  4. Compresseur à spirales selon la revendication 3,
    caractérisé en ce que
    le canal de connexion de gaz (100) s'étend depuis la chambre haute pression (80) jusqu'à la chambre de contre-pression (82) via un canal de gaz dans la spirale fixe (62), à travers le disque de glissement (70) et via un canal de gaz dans le boîtier de compresseur (10).
  5. Compresseur à spirales selon la revendication 3,
    caractérisé en ce que
    le canal de retour d'huile (90) s'étend depuis la chambre haute pression (80) jusqu'à la chambre basse pression (87) via un canal d'huile dans la spirale fixe (62), à travers le disque de glissement (70) et via un canal d'huile dans le boîtier de compresseur (10).
  6. Compresseur à spirales selon l'une des revendications précédentes,
    caractérisé en ce que
    la chambre haute pression (80) comprend une chambre de séparation d'huile (86) dans laquelle est disposé un séparateur d'huile (88), une entrée (89) du canal de retour d'huile (90) étant disposée au point le plus bas de la chambre de séparation d'huile (86).
  7. Compresseur à spirales selon l'une des revendications précédentes,
    caractérisé en ce que
    une entrée (101) du canal de connexion de gaz (100) est située en amont du séparateur d'huile (88) dans le sens d'écoulement du gaz.
  8. Compresseur à spirales selon l'une des revendications précédentes,
    caractérisé en ce que
    un filtre (130) est prévu dans le canal de retour d'huile (90) et/ou dans le canal de connexion de gaz (100).
  9. Compresseur à spirales selon l'une des revendications précédentes,
    caractérisé en ce que
    la spirale de déplacement (60) comprend, du côté tourné vers le disque de glissement (70), une rainure périphérique (140) dans laquelle est disposée une bague de glissement (142), la bague de glissement (142) étant en contact avec le disque de glissement (70).
  10. Compresseur à spirales selon l'une des revendications précédentes,
    caractérisé en ce que
    le disque de glissement (70) est relié par complémentarité de forme au boîtier de compresseur (10), perpendiculairement à un axe longitudinal (106).
  11. Compresseur à spirales selon la revendication 10,
    caractérisé en ce que
    le boîtier de compresseur (10) comprend au moins un boulon de fixation (103) et le disque de glissement (70) comprend une ouverture de fixation (102, 104) correspondant au boulon de fixation (103).
  12. Compresseur à spirales selon l'une des revendications précédentes,
    caractérisé en ce que
    le disque de glissement (70) comprend au moins une ouverture de guidage (110, 112, 114, 116, 118, 120) à travers laquelle s'étend une tige de guidage (122) fixée au boîtier de compresseur (10) et guidant la spirale de déplacement (60) en orbite.
  13. Compresseur à spirales selon la revendication 11 ou 12,
    caractérisé en ce que
    le restricteur de retour d'huile (92) et/ou le restricteur de connexion de gaz (94) comprend un diamètre qui est plusieurs fois plus petit que le diamètre du boulon de fixation (103) ou de la tige de guidage (122).
  14. Compresseur à spirales selon l'une des revendications précédentes,
    caractérisé en ce que
    la spirale de déplacement orbitale (60) est reliée à un arbre de rotor (28) d'un rotor (26) d'un moteur électrique (22) par l'intermédiaire de l'unité d'excentration (50), le moteur électrique (22) étant disposé dans la chambre basse pression (87).
EP20700566.1A 2020-01-09 2020-01-09 Compresseur à spirales Active EP4088030B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2020/050435 WO2021139890A1 (fr) 2020-01-09 2020-01-09 Compresseur à spirale

Publications (2)

Publication Number Publication Date
EP4088030A1 EP4088030A1 (fr) 2022-11-16
EP4088030B1 true EP4088030B1 (fr) 2024-03-06

Family

ID=69159774

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20700566.1A Active EP4088030B1 (fr) 2020-01-09 2020-01-09 Compresseur à spirales

Country Status (3)

Country Link
US (1) US11965506B2 (fr)
EP (1) EP4088030B1 (fr)
WO (1) WO2021139890A1 (fr)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1464841B1 (fr) 2003-03-31 2012-12-05 Kabushiki Kaisha Toyota Jidoshokki Compresseur hermétique
JP5637151B2 (ja) * 2012-01-20 2014-12-10 株式会社豊田自動織機 差圧弁及び差圧弁を備える電動圧縮機
JP6135126B2 (ja) 2012-12-26 2017-05-31 株式会社豊田自動織機 スクロール型圧縮機
KR101642178B1 (ko) * 2013-07-02 2016-07-25 한온시스템 주식회사 스크롤 압축기
DE102017105175B3 (de) * 2017-03-10 2018-08-23 OET GmbH Verdrängermaschine nach dem Spiralprinzip, Verfahren zum Betreiben einer Verdrängermaschine, Verdrängerspirale, Fahrzeugklimaanlage und Fahrzeug
DE102017110913B3 (de) 2017-05-19 2018-08-23 OET GmbH Verdrängermaschine nach dem Spiralprinzip, Verfahren zum Betreiben einer Verdrängermaschine, Fahrzeugklimaanlage und Fahrzeug

Also Published As

Publication number Publication date
WO2021139890A1 (fr) 2021-07-15
US20230349379A1 (en) 2023-11-02
EP4088030A1 (fr) 2022-11-16
US11965506B2 (en) 2024-04-23

Similar Documents

Publication Publication Date Title
DE69725522T2 (de) Spiralverdichter
DE102011084811B3 (de) Gaseinlassventil für einen Kompressor, Kompressor mit einem derartigen Gaseinlassventil sowie Verfahren zum Betreiben eines Kompressors mit einem derartigen Gaseinlassventil
DE102012104045A1 (de) Kältemittelscrollverdichter für Kraftfahrzeugklimaanlagen
WO2018197458A1 (fr) Compresseur
EP4088030B1 (fr) Compresseur à spirales
EP3667086B1 (fr) Machine volumétrique selon le principe de la spirale, en particulier compresseur à spirale pour une installation de climatisation de véhicule
DE102019208680A1 (de) Verdrängermaschine nach dem Spiralprinzip, insbesondere Scrollverdichter für eine Fahrzeugklimaanlage
EP0711384B1 (fr) Pompe a vide a palette a deux etages
EP4062067B1 (fr) Compresseur à spirales
DE102020210453B4 (de) Scrollverdichter eines elektrischen Kältemittelantriebs
DE102008025058B4 (de) Axiallagerdichtung für einen Abgasturbolader
DE102020200256B4 (de) Scrollverdichter
DE102008008860A1 (de) Verdichter
DE102011056903B4 (de) Hubkolbenverdichter und Verfahren zum Abscheiden von Flüssigkeiten, insbesondere Öl
DE102018217911A1 (de) Verdichtermodul sowie elektromotorischer Kältemittelverdichter
DE102023102908A1 (de) Vorrichtung zum Verdichten eines gasförmigen Fluids und Verfahren zum Betreiben der Vorrichtung
DE102019200507A1 (de) Scrollverdichter für eine Fahrzeugklimaanlage
DE102012025755B3 (de) Kältemittelscrollverdichter für Kraftfahrzeugklimaanlagen
DE10150303A1 (de) Vorrichtung zur Erzeugung von Vakuum für Verbraucher in einem Kraftfahrzeug
WO2022136157A1 (fr) Compresseur à spirale pour la production d'air comprimé sans huile
EP4336043A2 (fr) Machine à spirales et système frigorifique
EP4226044A1 (fr) Unité de filtre et d'étranglement pour un compresseur à spirale, et compresseur à spirale pour un circuit frigorifique
DE102023112736A1 (de) Vorrichtungen zum Verdichten eines gasförmigen Fluids und Verfahren zum Betreiben einer Vorrichtung zum Verdichten eines gasförmigen Fluids
DE102021210653A1 (de) Scrollmaschine
WO2022058304A1 (fr) Compresseur à spirale pour fluide de refroidissement pour système de climatisation de véhicule

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220805

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230925

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020007238

Country of ref document: DE