EP4081492A1 - Procede de traitement de sols pollues par des sulfates - Google Patents

Procede de traitement de sols pollues par des sulfates

Info

Publication number
EP4081492A1
EP4081492A1 EP20839098.9A EP20839098A EP4081492A1 EP 4081492 A1 EP4081492 A1 EP 4081492A1 EP 20839098 A EP20839098 A EP 20839098A EP 4081492 A1 EP4081492 A1 EP 4081492A1
Authority
EP
European Patent Office
Prior art keywords
soil
lime
weight
weight relative
clinker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20839098.9A
Other languages
German (de)
English (en)
Inventor
Blandine ALBERT
Véronique BROYER
Ivan SERCLERAT
Vincent Meyer
Mickaël RUIZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Holcim Technology Ltd
Original Assignee
Holcim Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Holcim Technology Ltd filed Critical Holcim Technology Ltd
Publication of EP4081492A1 publication Critical patent/EP4081492A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • C04B28/065Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/32Aluminous cements
    • C04B7/323Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C2101/00In situ
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00767Uses not provided for elsewhere in C04B2111/00 for waste stabilisation purposes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/10Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
    • C04B2111/1075Chromium-free or very low chromium-content materials
    • C04B2111/1081Chromium VI, e.g. for avoiding chromium eczema
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a process for treating soil polluted, in particular with anions such as sulfate ions and with heavy metal cations, characterized in that it comprises at least the treatment of the soil with a first mineral binder of sulfoaluminous clinker type, lime and an additional component chosen from a second inorganic binder different from the first inorganic binder, an alkanolamine, a reducing agent of a hexavalent chromium salt and their combination (s).
  • a subject of the present invention is also the product capable of being obtained by said process as well as a composition for treating polluted soil comprising a first inorganic binder of sulfoaluminous clinker type, lime, and an additional component chosen from a second binder.
  • mineral different from the first inorganic binder an alkanolamine, a reducing agent of a hexavalent chromium salt and their combination (s), and the use of said composition for the treatment of a polluted soil.
  • Soil decontamination is a growing demand and comes with major challenges in terms of public health and environmental protection.
  • the builder is required to treat the excavated soil before putting it in landfill.
  • the landfill of contaminated soils first requires lowering the dangerousness class of these soils, which amounts to lowering the level of leachable pollutants in the water.
  • the present invention relates to a composition for the treatment of polluted soils and to a process for the treatment of polluted soils using such a composition making it possible to obtain both short-term efficiency, with trapping of sulphates from 1 day. , and durability over time of this trap, including more than 2 months after treatment.
  • the release of chromate ions in the short term and in the long term (2 months or 6 months) is also controlled and improved within the framework of the invention.
  • the primary compounds are represented by C for CaO, S for S1O 2 , A for AI 2 O 3 , $ for SO 3 , F for Fe 2 C> 3 , T for T1O 2 , which will be used in the throughout this text, unless otherwise indicated.
  • clinker is meant according to the invention the product obtained after cooking (clinkerization) of a mixture (raw) composed, inter alia, for example of limestone and for example of clay for Portland clinker.
  • the sulfoaluminate phase optionally doped with iron, has the formula C4AxFy $ z with x varying from 2 to 3, y varying from 0 to 0.5 and z varying from 0.8 to 1, 2.
  • the yeelimite or ye'elimite is a sulfoaluminate phase. It is a calcium sulfoaluminate of formula Ca 4 (AI0 2 ) 6 SC> 3 (hereinafter referred to as “C4A3 $”).
  • Belite is a dicalcium silicate of formula Ca2SiC> 4 (hereinafter referred to as “C2S”). Belite exhibits different varieties of polymorphisms: C2S (a ’), orthorombic crystal, C2S (a), hexagonal crystal, 028 (b), monoclinic crystal, C2S (y), orthorombic crystal.
  • C2S dicalcium silicate of formula Ca2SiC> 4
  • Belite refers to any crystalline form of belite.
  • Ferrites are phases comprising iron oxide.
  • the ferrites are a calcium aluminoferrite phase corresponding to the general formula C2Ax'F (1-x '), with x' ranging from 0.2 to 0.8.
  • the ferrites preferably comprise a brownmillerite phase.
  • the brownmillerite is a ferro-aluminate tetracalcium of formula Ca 4 Al 2 Fe 2 0io (hereinafter referred to as "C 4 AF”)
  • C 4 AF ferro-aluminate tetracalcium of formula Ca 4 Al 2 Fe 2 0io
  • the ferrites may also comprise a so-called ferroperovskite phase.
  • Ferroperovskite is a perovskite phase integrating iron, which gives a compound of variable composition, in particular of formula C3FT.
  • Mayenite is an anhydrous calcium aluminate of formula 12Ca0.7Al 2 C> 3 (hereinafter referred to as "C12A7") and exhibits a crystal structure composed of three-dimensionally bonded voids (cages) comprising "free oxygen ions". These free oxygen ions can be substituted by anions at room temperature.
  • the C12A7 phase encompasses any isotype structure of C12A7, such as for example C11A7.CaF2 (F here denotes fluorine) whose structure results from a substitution of O 2 - ions by F - ions. .
  • C11A7.CaF2 F here denotes fluorine
  • Quicklime is the direct product of the thermolysis or calcination of limestone. It mainly contains calcium oxide (CaO).
  • Slaked lime is obtained after hydration of quicklime. It includes calcium hydroxide Ca (OH) 2.
  • a mineral binder is a mineral material having the property of solidifying and then of hardening while acquiring mechanical characteristics.
  • a mineral binder can be a hydraulic binder and / or a latent hydraulic binder and / or a binder having pozzolanic properties.
  • a hydraulic binder is a material having the property of hydrating in the presence of water and the hydration of which makes it possible to obtain a solid with mechanical characteristics.
  • a latent hydraulic binder and a pozzolanic binder have the property of hydrating in the joint presence of water and lime.
  • long term corresponds to “at least 2 months”, advantageously “at least 6 months”.
  • short term corresponds to “from 1 to 7 days”.
  • the subject of the invention is a method for treating polluted soil comprising at least treating the soil with, by weight relative to the weight of said dry soil:
  • a second mineral binder different from the first mineral binder preferably chosen from a cement of calcium aluminates, a blast furnace slag or their combination, in a content ranging from 1.5% to 5.0% by weight relative to the weight of said dry soil,
  • a belitic sulfoaluminous clinker is a clinker comprising at least one sulfoaluminate phase, in particular C4A3 $ yeelimite, and a C2S belite phase in proportions in these two phases of more than 60% by weight relative to the total weight of said belitic sulfoaluminous clinker.
  • the belitic sulfoaluminous clinker preferably comprises at least 30% by weight relative to the total weight of said sulfoaluminate phase clinker, in particular yeelimite, more preferably at least 35%. It comprises in particular at least 15% by weight relative to the total weight of said belite phase clinker, more particularly at least 20% by weight.
  • the belitic sulfoaluminous clinker comprises less than 65%, preferably less than 60%, more preferably less than 50%, by weight relative to the total weight of said clinker of sulfoaluminate phase, advantageously yeelimite. More particularly, the belitic sulfoaluminous clinker comprises between 30 and 65%, preferably between 30% and 60%, more preferably between 35% and 50%, by weight relative to the total weight of said sulfoaluminate phase clinker, such as yeelimite.
  • the belitic sulfoaluminous clinker also comprises more than 15% by weight relative to the total weight of said belite phase clinker.
  • the belitic sulfoaluminous clinker comprises at least 2% by weight relative to the total weight of said belite phase clinker in alpha ’form.
  • the belitic sulfoaluminous clinker comprises at least 2% by weight relative to the total weight of said belite phase clinker in alpha ’form and the belite phase complement in another form.
  • the belitic sulfoaluminous clinker comprises between 15 and 35%, preferably between 20% and 35%, by weight relative to the total weight of said belite phase clinker, including in particular at least 2% by weight relative to the total weight of said belite phase clinker in alpha 'form.
  • the belitic sulfoaluminous clinker further comprises more than 12% by weight, more preferably more than 15% by weight, more preferably more than 20% by weight relative to the total weight of the ferrite clinker, more preferably between 20% and 40%. %.
  • the belitic sulfoaluminous clinker comprises, by weight relative to the total weight of said clinker:
  • the belitic sulfoaluminous clinker comprises, by weight relative to the total weight of said clinker:
  • the belitic sulfoaluminous clinker comprises less than 5% by weight relative to the total weight of said mayenite clinker.
  • the belitic sulfoaluminous clinker does not include a mayenite phase detectable by Rietveld analysis of the X-ray diffraction spectrum of the clinker.
  • the belitic sulfoaluminous clinker comprises at least 80% by weight relative to the total weight of said clinker of sulfoaluminate phases, preferably yeelimite C4A3 $, belite C2S and ferrites, preferably at least 90%, more preferably at least 95%.
  • this type of clinker has on the one hand the advantage of having lower chromium contents (because their manufacture requires less bauxite, which is the raw material which provides the most chromium in the clinker) and on the other hand to have sufficient reactive constituents in the short term (yeelimite) and long term (belite and ferrite).
  • bauxite which is the raw material which provides the most chromium in the clinker
  • clinkers B1, B2 and B3 having the following mineralogy:
  • the Blaine specific surface area of the belitic sulfoaluminous clinker according to the invention is between 2500 cm 2 / g and 6000 cm 2 / g.
  • Belitic sulfoaluminous clinker is mixed with the polluted soil in proportions varying from 1.5 to 5% by weight relative to the weight of the dry soil, preferably from 1.5 to 4%, more preferably from 1.5 to 3%.
  • the lime can be free lime (CaO), slaked lime (Ca (OH) 2), or a mixture of free lime and slaked lime in any proportion.
  • the lime is slaked lime.
  • the lime is mixed with the polluted soil in proportions varying from 2.0 to 5.0% by weight relative to the weight of the dry soil, preferably from 3 to 5%.
  • Lime is added in proportions greater than 30% by weight relative to the total weight of the first inorganic binder, lime, and optionally of the second inorganic binder, preferably greater than 50%, and more preferably up to 80 %.
  • the durability of the treatment is less because it must be taken into account that part of the lime will interact with the soil (cationic exchanges between Ca 2+ which comes from the lime and the ions present in the interfoliar space of clay minerals present in the soil). Part of the lime will therefore not be available to react with the clinkers and sulphates.
  • the additional component is chosen from a second inorganic binder different from the first inorganic binder, an alkanolamine, a reducing agent of a hexavalent chromium salt, and their combination (s).
  • the additional component can be an inorganic binder different from the first inorganic binder.
  • the second inorganic binder different from the first inorganic binder, is preferably a hydraulic binder and / or a latent hydraulic binder and / or a binder having pozzolanic activity. It can be a calcium aluminate cement or a mineral addition chosen from a blast furnace slag, fly ash, calcined clays and their combinations, or the combination of a calcium aluminate cement and said mineral addition. . More particularly, the second inorganic binder is calcium aluminate cement or blast furnace slag or a combination thereof.
  • the second inorganic binder is mixed with the polluted soil in proportions varying from 1.5 to 5% by weight relative to the weight of the dry soil, preferably from 1.5 to 4%, more preferably from 1.5 to 3%.
  • the mass proportion between first and second mineral binder mixed with the polluted soil is between 30/70 and 70/30, more particularly 40/60 and 60/40, preferably 50/50.
  • the second inorganic binder is a calcium aluminate cement.
  • a calcium aluminate cement is a cement comprising at least one phase chosen from C3A, CA, C12A7, C11A7CaF2, C4A3 $ (yeelemite), C2A (1-x) Fx (with x belongs to] 0, 1]), hydraulic amorphous phases having a C / A molar ratio of between 0.3 and 15 and such that the cumulative Al 2 O 3 contents of these phases are between 3 and 70% by total weight of the calcium aluminate cement, preferably between 7 and 50% by weight and better still between 20 and 30% by weight.
  • the calcium aluminate cement comprises more than 60%, preferably more than 80%, by mass of Mayenite C12A7 phase or of a Mayenite isotype.
  • the calcium aluminate cement of the invention comprises, as the sole aluminate phase, the Mayenite C12A7 phase.
  • the calcium aluminate cement advantageously comprises more than 85% by mass of Mayenite phase, more advantageously more than 90% by mass of Mayenite phase, even more advantageously more than 95% by mass of Mayenite phase.
  • the calcium aluminate cement can comprise up to 99% by mass of Mayenite phase, or even 100% by mass. Clinkers richer in C12A7 allow more ettringite to be formed.
  • the calcium aluminate cement of the invention is advantageously obtained by melting or sintering between 1250 and 1300 ° C approximately of a mixture of white bauxite and limestone.
  • Low levels of silica and iron in the raw materials guarantee an optimal level of C12A7.
  • the cumulative content of iron and silica is less than 30%, even more advantageously less than 20%, by weight relative to the total weight of the raw materials.
  • the second mineral binder is a mineral addition chosen from a blast furnace slag, fly ash, calcined clay, and their combinations, in particular a blast furnace slag.
  • a blast furnace slag is a by-product of smelting resulting from the reduction of iron ores by coke. It is a mixture composed essentially of silicates, aluminates and lime, with various metal oxides, with the exception of iron oxides. It is as defined in the “Cement” standard NF EN 197-1 paragraph 5.2.2 of April 2012.
  • the blast furnace slag is ground with a particle size of between 3 and 50 pm.
  • Fly ash is siliceous or calcic in nature. They are obtained by precipitation of pulverulent particles in the flue gases of the boilers supplied with pulverized coal. They are as defined in the “Cement” standard NF EN 197-1 paragraph 5.2.4 of April 2012.
  • Calcined clay is produced in a kiln at a temperature of around 800 ° C. It is as defined in the “Cement” standard NF EN 197-1 of April 2012.
  • the additional component can also be an alkanolamine.
  • An alkanolamine is an alkane comprising at least one amine function and at least one alcohol function.
  • the alkane is a C2-C6 alkane, preferably a C3-C5 alkane.
  • the alkanolamine is selected from the group comprising N, N bis- (2-hydroxyethyl) -2-propanolamine) (DIEPA), N, N bis- (2-hydroxypropyl) -N- (hydroxyethyl) amine (EDIPA), diethanolamine (DEA), triethanolamine (TEA), triisopropanolamine (TIPA), N- (hydroxyethyl) diethylenetriamine (HEDETA), aminoethylethanolamine (AEEA) and their combination (s).
  • DIEPA N, N bis- (2-hydroxyethyl) -2-propanolamine)
  • EDIPA N, N bis- (2-hydroxypropyl) -N- (hydroxyethyl) amine
  • DEA diethanolamine
  • TIPA triethanolamine
  • TIPA triisopropanolamine
  • HEDETA hydroxyethyl) diethylenetriamine
  • AEEA aminoethylethanolamine
  • the alkanolamine is a tri (hydroxyalkyl) amine, more particularly, a tri (hydroxyalkyl) amine having at least one hydroxyalkyl group comprising 3 to 5 carbon atoms.
  • the alkanolamine is chosen from triethanolamine, triisopropanolamine and their combination.
  • the possible presence in the binder of such a component makes it possible to increase the effectiveness of the treatment in the medium and long term by optimizing the reactivity of the aluminate phases.
  • the alkanolamine is preferably mixed with the polluted soil at a dosage by weight relative to the weight of said dry soil of between 0.001 and 0.050%.
  • the additional component may also be a reducing agent for a hexavalent chromium salt, in particular calcium nitrite, or a reducing agent for a hexavalent chromium salt based on antimony.
  • the reducing agent for a hexavalent chromium salt is calcium nitrite.
  • the reducing agent for a hexavalent chromium salt is a reducing agent for an antimony-based hexavalent chromium salt.
  • the reducing agent of a hexavalent chromium salt is mixed with the polluted soil at a dosage of between 0.01% and 3.0% by weight relative to the weight of said dry soil.
  • a dosage of between 0.01% and 3.0% by weight relative to the weight of said dry soil in the presence of belitic sulfoaluminous clinker, it is not easy to control the release of chromate ions. It is therefore possible to use components which make it possible to reduce the part of chromium VI in chromium III which is stable and non- toxic.
  • Sulphate-based reducing agents such as FeSCL and SnSCL are not recommended, so as not to provide additional sulphates.
  • Other chlorine-based reducing agents should be avoided because they interfere with the action of the sulfoaluminous belitic clinker and greatly reduce the effectiveness of the treatment.
  • Antimony-based reducing agents perform well in this regard.
  • the additional component can be a combination of an inorganic binder other than the first binder, an alkanolamine and / or a reducing agent of a hexavalent chromium salt.
  • the additional component can be a combination of an inorganic binder different from the first binder and of an alkanolamine.
  • the additional component can also be a combination of an inorganic binder different from the first binder and a reducing agent of a hexavalent chromium salt.
  • the effectiveness of the treatment can be significantly improved in the short and long term by adding water during the treatment.
  • the binder is evenly distributed and the amount of water in the soil to be treated is sufficient to optimize the formation of ettringite.
  • a water content which can be between 5% and 40% by weight, more advantageously 15% and 40%, relative to the weight of the dry soil, depending on its nature. If necessary, water can be added to the soil. The amounts of water are sufficient to allow the hydration reaction, and can easily be determined by one skilled in the art.
  • the soil to be treated is non-inert and naturally or artificially contains leachable sulphates (from 1000 to 15000 ppm). It is taken as is, and usually has a humidity of 10 to 40%.
  • the constituents of the treatment namely the first mineral binder, lime and the additional component chosen from a second mineral binder different from the first mineral binder, an alkanolamine, a reducing agent of a hexavalent chromium salt and their combination (s) ( s) can be added simultaneously, consecutively or sequentially and separately to the polluted soil to be treated.
  • a composition comprising the first inorganic binder, the additional component chosen from a second inorganic binder different from the first inorganic binder, an alkanolamine, a reducing agent of a hexavalent chromium salt and their combination (s) ) and optionally the lime can be prepared beforehand and then added to the polluted soil to be treated.
  • the composition can be prepared by separate grinding of each of its constituents and then mixing all the constituents or by mixing the constituents and then co-grinding all the constituents.
  • the hydraulic binder can be ground and / or separated from the lime in order to obtain a binder having a Blaine specific surface area of between 2500 cm 2 / g and 6000 cm 2 / g.
  • Water can be added to the soil or be introduced at the same time or after addition of the constituents of the treatment.
  • the soil is also mixed with water at a dosage of between 1% and 15% by weight based on the weight of the dry soil.
  • the soil is mixed with each of the constituents of the treatment.
  • the method of treating polluted soil comprising at least one step of mixing the soil with, by weight relative to the weight of said dry soil:
  • the soil is mixed with the constituents of the treatment for a sufficient time in any suitable container.
  • the mixing can be carried out continuously or discontinuously, in particular the mixing is carried out continuously.
  • Mixing can be carried out with an open or closed type mixer.
  • the terms “mixed” and “mixed” are used interchangeably.
  • the present invention also relates to the use of the process according to the invention for the stabilization in situ or before storage of soil polluted in particular by sulphate anions and / or heavy metal cations, in particular in the long term, more particularly in the long term. short and long term.
  • composition for the treatment of polluted soil Composition for the treatment of polluted soil
  • the present invention also relates to a composition for the treatment of polluted soil, comprising, in percentage by mass:
  • the composition for the treatment of polluted soil comprising, in percentage by mass:
  • the belitic sulfoaluminous clinker comprises more than 12% by weight relative to the total weight of the ferrite clinker, preferably more than 15%, preferably more than 20%, more advantageously between 20% and 40%.
  • the belitic sulfoaluminous clinker comprises at most 5% by weight relative to the total weight of the Mayenite clinker.
  • the belitic sulfoaluminous clinker does not include a Mayenite phase detectable by Rietveld analysis of the X-ray diffraction spectrum of the clinker.
  • the second inorganic binder is a calcium aluminate cement or a mineral addition chosen from a blast furnace slag, fly ash, calcined clays and their combinations, or the combination of a calcium aluminate cement. and said mineral addition. More particularly, the second inorganic binder is calcium aluminate cement or blast furnace slag or a combination thereof.
  • the second inorganic binder is a calcium aluminate cement, preferably comprising more than 60%, preferably more than 80%, by mass of Mayenite C12A7 phase or of a Mayenite isotype.
  • the second mineral binder is a mineral addition chosen from a blast furnace slag, fly ash, calcined clays and their combinations, in particular a blast furnace slag.
  • the alkanolamine is a tri (hydroxyalkyl) amine, more advantageously chosen from triethanolamine, triisopropanolamine and their combinations.
  • the reducing agent for a hexavalent chromium salt is selected from calcium nitrite, a reducing agent for a hexavalent chromium salt based on antimony, and combinations thereof.
  • Lime is present in the composition in proportions greater than 30% by weight relative to the total weight of the first inorganic binder, lime, and optionally of the second inorganic binder, preferably greater than 50%, and more preferably up to 'to 80%.
  • lime is slaked lime, or a mixture of free lime and slaked lime in any proportion.
  • the lime is slaked lime.
  • compositions as defined above for the treatment of soils polluted with anions, in particular sulphates, and with heavy metal cations, in particular hexavalent chromium salts, and their mixture.
  • the quantitative mineralogical analysis of a clinker is carried out by Rietveld analysis of the X-ray diffraction spectrum of this clinker.
  • the clinker sample to be analyzed is finely ground to provide a sample in which all the particles pass through a sieve with a mesh size of 63 ⁇ m.
  • the reference X-ray diffraction spectra of the crystal phases present in the sample to be analyzed are obtained from pure samples of these phases.
  • the tests are carried out on a material in which at least 95% of the particles (by mass) have a size of less than 4 mm.
  • the mass of dry matter (DM) of the sample is determined after passing in an oven at 105 ° C ⁇ 5 ° C until constant weight in accordance with ISO 11465, August 1994.
  • the difference between the masses of the sample before and after the passage in the oven corresponds to the moisture content of the soil or water content, which is expressed in relation to the mass of dry soil, as defined in standard NF EN 12457-2: 2002.
  • test portion of a total wet mass containing exactly 0.090 kg ⁇ 0.005 kg (measured with an accuracy of 0.1 g) of dry matter is prepared.
  • the leaching test is carried out at room temperature, i.e. 20 ° C ⁇ 5 ° C.
  • the wet test portion with a total mass corresponding to 0.090 kg ⁇ 0.005 kg of dry matter is placed in a flask, then a quantity of lixiviant is added (distilled water, demineralized water, deionized water or water of equivalent purity having a pH between 5 and 7.5, conductivity less than 0.5 mS / m) allowing a liquid-solid ratio of 10 L / kg ⁇ 2% to be obtained.
  • the stoppered vial is placed in a stirring device (as defined in the standard) is stirred at about 10 rpm for 24 hours ⁇ 0.5 h. To achieve a good chemical balance between the solid and the solution, during the extraction it is important to avoid the settling of the solids.
  • the suspended solids are decanted for 15 minutes ⁇ 5 min, then vacuum filtered through a 0.45 ⁇ m membrane filter.
  • the eluate can be centrifuged at 2000g for 30 minutes to prevent clogging of the 0.45 ⁇ m filter.
  • the conditions are specified in standard NF EN-12457-2, December 2002.
  • the eluate is then divided into an appropriate number of sub-samples for the various chemical analyzes and stored according to standard EN ISO 5667-3.
  • Analysis of the eluate produced by the leaching test provides the concentration of the constituents in the eluates expressed in mg / L. The final results are expressed as the quantity of constituent leached relative to the total mass of the sample, in mg / kg of dry matter.
  • the amount of a constituent leached from the material is calculated using the following formula:
  • C is the concentration of a particular constituent in the eluate (expressed in milligrams per liter);
  • L is the volume of leachate used (expressed in liters);
  • TH 100 (MH-MS) / MS
  • MS is the mass of the dry test portion expressed in kilograms
  • MH is the mass of the non-dried test portion expressed in kilograms
  • the anion analysis is carried out by ion chromatography eluting with solutions of 1 mM NaHCCh and 3.5 mM Na2CC> 3. Standard solutions for the F, Cl, NO, NO3, Br, PO4 2 , and SO4 2 ions are prepared.
  • the effectiveness in stabilizing sulfates is measured after 1 day of treatment for up to 2 or 6 months.
  • Heavy metal analysis The analysis of the elements (heavy metals) is carried out by ICP-AES analysis (Atomic Emission Spectrometry coupled to an induced plasma).
  • RF power 1.3 kW Plasma flow rate: 15 L / min Auxiliary flow rate: 2.25 L / min Nebulizer flow rate: 0.8 L / min Reading time per replica: 20 s
  • ND Not Detectable, i.e. below the detection threshold of the measurement NM: Not measured
  • the two soils are loamy soils from the Paris region near Guerville, and naturally contain sulphates (between 9000 to 12000 ppm leachable sulphates according to the NF EN 12457-2 leaching test with a liquid / solid ratio (L / S) of 10). Their water content is 20% compared to dry soil. List of constituents
  • ROLAC-OB contains 72% blast furnace slag, 25% Portland clinker and 3% secondary constituents authorized according to standard NF EN 197-1.
  • wet soil equivalent to 600 g of dry soil is introduced into a Perrier type mixer.
  • wet we mean the natural soil moisture possibly adjusted to optimize the hydration of the binder (amount of water extractable by evaporation during baking at 105 ° C to constant weight).
  • the water content can be between 5% and 40% of the weight of the soil, depending on its nature.
  • the formula for the treatment is introduced on the surface and then the whole is mixed, at low speed, for at least 2 minutes until a mixture is obtained which is homogeneous in color and texture.
  • the maturation of the treated soil is carried out over a period of 2 hours, 1 day, 7 days, 1 month, 2 months or 6 months at room temperature.
  • Example 1.1 is a control test.
  • Examples 1.2 and 1.4 are comparative tests.
  • the treatment with the combination of a sulphoaluminous belitic clinker, lime and a calcium aluminate cement improves the long-term performance of the treatment compared to a combination of a belitic sulphoaluminous clinker. and lime (1.2 and 1.4) whether for the release of sulfate ions or the release of chromate ions.
  • Example 2.0 is a control test.
  • Example 2.1 is a comparative test.
  • Examples 2.2 to 2.7 are tests according to the invention.
  • Stabilization of sulfates can be significantly improved with the addition of Tl PA or TEA to the binder. Their presence also has a surprisingly positive impact in limiting the release of chromium.
  • Example 3.0 is a control test.
  • Example 3.1 is a comparative test.
  • Examples 3.2 and 3.3 are tests according to the invention.
  • the treatment with the combination of a sulphoaluminous belitic clinker, lime and a reducing agent of a hexavalent chromium salt makes it possible to reduce the release of sulphate ions and chromate ions at 1 month and 2 month.
  • Example 4.0 is a control test.
  • Examples 4.1, 4.5 and 4.6 are comparative tests.
  • Examples 4.2, 4.3, 4.4, 4.7 and 4.8 are tests according to the invention.
  • the performance of the treatment is significantly improved with the addition of blast furnace slag with 2.5% B3 clinker mixed with 3.33% slaked lime (4.2 vs 4.1), or 3% B3 clinker. mixed with 4% slaked lime (4.7 vs 4.6).
  • the stabilization of sulphates is improved, and the amounts of chromium released are much less than 0.5 ppm up to 2 months.
  • the slag is effective whether it is added as it is or in a road binder (4.4).
  • the addition of water during the treatment makes it possible to further improve the efficiency of the treatment (4.3 and 4.8).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

La présente invention concerne un procédé de traitement d'un sol pollué comprenant au moins le traitement du sol avec, en poids par rapport au poids dudit sol sec : - de 1,5% à 5,0% d'un premier liant minéral de type clinker sulfoalumineux bélitique - de 2,0% à 5,0% de chaux, et caractérisé en ce que le sol est également traité avec un composant additionnel choisi parmi : - un deuxième liant minéral différent du premier liant minéral, de préférence choisi parmi un ciment d'aluminates de calcium, un laitier de haut fourneau ou leur combinaison en une teneur allant de 1,5% à 5,0% en poids par rapport au poids dudit sol sec, - une alcanolamine en une teneur allant de 0,001 à 0,050% en poids par rapport au poids dudit sol sec, - un agent réducteur d'un sel de chrome hexavalent en une teneur allant de 0,01 à 3,00% en poids par rapport au poids dudit sol sec, et - leur(s) combinaison(s), et en ce que la chaux est ajoutée au sol pollué dans des proportions supérieures à 30% en poids par rapport au poids total en premier liant minéral, chaux et le cas échéant deuxième liant minéral.

Description

Description
Titre : PROCEDE DE TRAITEMENT DE SOLS POLLUES PAR DES SULFATES
Domaine technique La présente invention concerne un procédé de traitement de sol pollué, notamment par des anions tels que des ions sulfates et par des cations de métaux lourds, caractérisé en ce qu’il comprend au moins le traitement du sol avec un premier liant minéral de type clinker sulfoalumineux, de la chaux et un composant additionnel choisi parmi un second liant minéral différent du premier liant minéral, une alcanolamine, un agent réducteur d’un sel de chrome hexavalent et leur(s) combinaison(s). La présente invention a également pour objet le produit susceptible d’être obtenu par ledit procédé ainsi qu’une composition de traitement de sol pollué comprenant un premier liant minéral de type clinker sulfoalumineux, de la chaux, et un composant additionnel choisi parmi un second liant minéral différent du premier liant minéral, une alcanolamine, un agent réducteur d’un sel de chrome hexavalent et leur(s) combinaison(s), et l’utilisation de ladite composition pour le traitement d’un sol pollué.
La dépollution des sols est une demande croissante et s'accompagne d'enjeux forts en termes de santé publique et de protection de l'environnement.
En particulier, lors de travaux de construction, le constructeur est tenu de traiter les sols excavés avant de les mettre en décharge.
Le relargage des polluants solubles suite à leur contact avec l'eau expose à un risque de pollution potentiel important pour l'environnement lors du stockage court terme ou définitif, ou la réutilisation des sols contaminés.
Pour limiter ce risque, la mise en décharge de sols contaminés nécessite au préalable d'abaisser la classe de dangerosité de ces sols, ce qui revient à abaisser le taux d'agents polluants lixiviables dans l'eau.
Abaisser la classe de dangerosité peut également permettre de réemployer les sols ainsi traités, par exemple dans des sous couches routières ou dans des remblais. Récemment, des solutions à base de ciment sulfoalumineux plus ou moins bélitiques (WO2013/171418 et WO2019/162605) et de ciment alumineux (WO2018/065447) ont été proposées. Les polluants anioniques, tel que les sulfates, ou les métaux lourds, présents dans le sol contaminé, peuvent être piégés durant le processus d'hydratation d'un liant hydraulique mélangé au sol à traiter et à de l'eau. Ces éléments peuvent être piégés dans des hydrates de type C-S-H (silicate de calcium hydraté) ou sulfoalumineux de type ettringite ou monosulfoaluminates de calcium. Certains éléments peuvent aussi être stabilisés sous forme d'hydroxydes.
En particulier, dans la demande de brevet WO 2013/171418, la société Ciments français décrit l’utilisation d’une composition comprenant un clinker sulfoalumineux spécifique et de la chaux pour le traitement de sols pollués aux sulfates.
Dans la demande de brevet WO 2019/162605, la société Vicat décrit l’utilisation d’une composition comprenant un autre type de clinker sulfoalumineux bélitique éventuellement dopé en fer et de la chaux pour le traitement de sols pollués aux sulfates et/ou aux métaux lourds.
Ces solutions présentent l’avantage d’être efficaces rapidement, après seulement quelques jours de traitement. Or, il est indispensable que le sol, une fois traité et classé inerte, le demeure. Les conditions de stockage et d’utilisation de sol inerte étant différentes de celui d’un sol non inerte, des risques importants pour l’environnement sont à craindre en cas d’évolution du sol. Il s’agit donc de stabiliser le relargage des sulfates également à long terme, notamment à 2 mois, avantageusement à 6 mois.
Outre la pérennité questionnable des solutions à base de ciment sulfoalumineux, un inconvénient majeur est le risque de libération de chrome hexavalent, forme mobile et toxique du chrome, qui provient du liant minéral utilisé pour le traitement des sulfates. La présence de chaux dans le liant selon la solution proposée dans WO2019/162605 semble résoudre ce problème. En effet, les valeurs de chromate libérées sont suffisamment faibles pour que le sol soit jugé inerte. Mais la pérennité de cette solution limitant la libération des chromâtes n’est pas assurée. Le sol peut évoluer en sol non- inerte et polluant.
Or, on a constaté que la quantité de sulfate ou de chrome hexavalent libérée augmente dans le temps. Ainsi, la pérennité des solutions proposées dans l’art antérieur n’est pas assurée. D’une manière surprenante, il a été découvert que l’ajout à ces compositions notamment d’un composant additionnel choisi parmi un second liant minéral différent du premier liant minéral, une alcanolamine, un agent réducteur d’un sel de chrome hexavalent et leur(s) combinaison(s) permet de prolonger sur le long terme le piégeage des sulfates et du chrome hexavalent.
La présente invention concerne une composition pour le traitement des sols pollués et un procédé de traitement des sols pollués à l’aide d’une telle composition permettant d’obtenir à la fois une efficacité à court terme, avec un piégeage des sulfates dès 1 jour, et une pérennité dans le temps de ce piège, y compris à plus de 2 mois après traitement. La libération d’ions chromâtes à court terme et à long terme (2 mois ou 6 mois) est également contrôlée et améliorée dans le cadre de l’invention.
Définitions
Dans le langage cimentier, les composés primaires sont représentés par C pour CaO, S pour S1O2, A pour AI2O3, $ pour SO3, F pour Fe2C>3, T pour T1O2, qui seront utilisés dans l'ensemble du présent texte, sauf indication contraire.
Par le terme « clinker », on entend selon l’invention le produit obtenu après cuisson (la clinkérisation) d'un mélange (le cru) composé, entre autres par exemple de calcaire et par exemple d'argile pour le clinker Portland.
La phase sulfoaluminate, éventuellement dopée en fer, a pour formule C4AxFy$z avec x variant de 2 à 3, y variant de 0 à 0,5 et z variant de 0,8 à 1 ,2. En particulier, la yeelimite ou ye’elimite est une phase sulfoaluminate. Il s’agit d’un sulfoaluminate de calcium de formule Ca4(AI02)6SC>3 (ci-après dénommé « C4A3$ »).
La bélite est un silicate de dicalcium de formule Ca2SiC>4 (ci-après dénommé « C2S »). La bélite présente différentes variétés polymorphismes : C2S(a’), cristal orthorombique, C2S(a), cristal hexagonal, 028(b), cristal monoclinique, C2S(y), cristal orthorombique. Au sens de l’invention, sauf indication contraire, le terme « bélite » désigne toute forme cristalline de la bélite.
Les ferrites sont des phases comprenant de l’oxyde de fer. En particulier les ferrites sont une phase aluminoferrite calcique correspondant à la formule générale C2Ax’F(1-x’), avec x’ compris de 0,2 à 0,8. Les ferrites comprennent de préférence une phase brownmillerite. La brownmillerite est un ferro-aluminate tétracalcique de formule Ca4Al2Fe20io (ci-après dénommé « C4AF») Les ferrites peuvent également comprendre une phase dite ferroperovskite. La ferroperovskite est une phase perovskite intégrant du fer, ce qui donne un composé de composition variable, notamment de formule C3FT.
La mayenite est un aluminate de calcium anhydre de formule 12Ca0.7Al2C>3 (ci-après dénommé "C12A7") et présente une structure cristalline composée de vides liés de manière tridimensionnelle (cages) comprenant des « ions oxygène libre ». Ces ions oxygène libre peuvent être substitués par des anions, à température ambiante. Ainsi, au sens de la présente invention, la phase C12A7 englobe toute structure isotype de C12A7, comme par exemple C11A7.CaF2 (F désigne ici le fluor) dont la structure résulte d'une substitution d'ions 02- par des ions F-. Dans la suite de la description, par C12A7, il faut comprendre C12A7 ou toute structure isotype notamment C11A7.CaF2 (F désigne ici le fluor) et C11A7.CaCI2.
La chaux vive est le produit direct de la thermolyse ou calcination du calcaire. Elle comprend principalement de l’oxyde de calcium (CaO).
La chaux éteinte est obtenue après hydratation de la chaux vive. Elle comprend de l'hydroxyde de calcium Ca(OH)2.
Un liant minéral est un matériau minéral ayant la propriété de se solidifier puis de durcir en acquérant des caractéristiques mécaniques. En particulier, selon l’invention, un liant minéral peut être un liant hydraulique et/ou un liant hydraulique latent et/ou un liant ayant des propriétés pouzzolaniques.
Un liant hydraulique est un matériau ayant la propriété de s’hydrater en présence d’eau et dont l’hydratation permet d’obtenir un solide ayant des caractéristiques mécaniques. Un liant hydraulique latent et un liant pouzzolanique présentent la propriété de s’hydrater en présence conjointe d’eau et de chaux.
Selon l’invention, « long terme » correspond à « au moins 2 mois », avantageusement « au moins 6 mois ».
Selon l’invention, « court terme » correspond à « de 1 à 7 jours ».
L’invention a pour objet un procédé de traitement d’un sol pollué comprenant au moins le traitement du sol avec, en poids par rapport au poids dudit sol sec :
- de 1,5% à 5,0% d’un premier liant minéral de type clinker sulfoalumineux bélitique,
- de 2,0% à 5,0% de chaux, et caractérisé en ce que le sol est également traité avec un composant additionnel choisi parmi :
- un deuxième liant minéral différent du premier liant minéral, de préférence choisi parmi un ciment d’aluminates de calcium, un laitier de haut fourneau ou leur combinaison, en une teneur allant de 1 ,5% à 5,0% en poids par rapport au poids dudit sol sec,
- une alcanolamine en une teneur allant de 0,001 à 0,050% en poids par rapport au poids dudit sol sec,
- un agent réducteur d’un sel de chrome hexavalent en une teneur allant de 0,01 à 3,00% en poids par rapport au poids dudit sol sec, et
- leur(s) combinaison(s), et en ce que la chaux est ajoutée au sol pollué dans des proportions supérieures à 30% en poids par rapport au poids total en premier liant minéral, chaux et le cas échéant deuxième liant minéral. Clinker « sulfoalumineux bélitique»
Un clinker sulfoalumineux bélitique est un clinker comprenant au moins une phase sulfoaluminate, en particulier yeelimite C4A3$, et une phase bélite C2S dans des proportions en ces deux phases de plus de 60% en poids par rapport au poids total dudit clinker sulfoalumineux bélitique.
Dans le cadre de l’invention, le clinker sulfoalumineux bélitique comprend de préférence au moins 30% en poids par rapport au poids total dudit clinker de phase sulfoaluminate, en particulier yeelimite, plus préférentiellement au moins 35%. Il comprend en particulier au moins 15% en poids par rapport au poids total dudit clinker de phase bélite, plus particulièrement au moins 20% en poids.
En particulier, le clinker sulfoalumineux bélitique comprend moins de 65%, de préférence moins de 60%, plus préférentiellement moins de 50%, en poids par rapport au poids total dudit clinker de phase sulfoaluminate, avantageusement yeelimite. Plus particulièrement, le clinker sulfoalumineux bélitique comprend entre 30 et 65%, de préférence entre 30% et 60%, plus préférentiellement entre 35% et 50%, en poids par rapport au poids total dudit clinker de phase sulfoaluminate, telle que la yeelimite.
En particulier, le clinker sulfoalumineux bélitique comprend également plus de 15% en poids par rapport au poids total dudit clinker de phase bélite. De préférence, le clinker sulfoalumineux bélitique comprend au moins 2% en poids par rapport au poids total dudit clinker de phase bélite sous forme alpha’. Ainsi, on comprend que le clinker sulfoalumineux bélitique comprend au moins 2% en poids par rapport au poids total dudit clinker de phase bélite sous forme alpha’ et le complément de phase bélite sous une autre forme. Plus particulièrement, le clinker sulfoalumineux bélitique comprend entre 15 et 35%, de préférence entre 20% et 35%, en poids par rapport au poids total dudit clinker de phase bélite, incluant en particulier au moins 2% en poids par rapport au poids total dudit clinker de phase bélite sous forme alpha’.
Avantageusement, le clinker sulfoalumineux bélitique comprend en outre plus de 12% en poids, plus avantageusement plus de 15% en poids, plus avantageusement plus de 20% en poids par rapport au poids total du clinker de ferrites, plus avantageusement entre 20% et 40%.
De préférence, le clinker sulfoalumineux bélitique comprend, en poids par rapport au poids total dudit clinker :
- plus de 60%, de phase sulfoaluminate, de préférence yeelimite (C4A3$), et de phase bélite (C2S), incluant de préférence au moins 2% de phase bélite sous forme alpha’, - Plus de 15% de ferrites. De préférence, le clinker sulfoalumineux bélitique comprend, en poids par rapport au poids total dudit clinker :
- de 30% à moins de 60%, de préférence de 30% à moins de 50%, de phase sulfoaluminate, de préférence yeelimite (C4A3$), - Plus de 15% de phase bélite (C2S), incluant de préférence au moins 2% de phase bélite sous forme alpha’,
- Plus de 20% de ferrites.
D’autres phases minoritaires peuvent être présentes dans le clinker sulfoalumineux bélitique, notamment choisies parmi les sulfates de calcium, la géhlénite ou la mayénite, et leurs combinaisons.
De préférence, le clinker sulfoalumineux bélitique comprend moins de 5% en poids par rapport au poids total dudit clinker de mayenite. En particulier, le clinker sulfoalumineux bélitique ne comprend pas de phase mayenite détectable par analyse Rietveld du spectre de diffraction des rayons X du clinker. En particulier, le clinker sulfoalumineux bélitique comprend au moins 80% en poids par rapport au poids total dudit clinker de phases sulfoaluminate, de préférence yeelimite C4A3$, bélite C2S et ferrites, de préférence au moins 90%, plus préférentiellement au moins 95%.
Par rapport aux clinkers sulfoalumineux à fortes teneurs en phase sulfoaluminate et teneurs limitées en bélite et ferrite, ce type de clinker présente d’une part l’avantage de présenter des teneurs en chrome moins importantes (car leur fabrication nécessite moins de bauxite, qui est la matière première qui apporte le plus de chrome dans le clinker) et d’autre part de disposer de suffisamment de constituants réactifs à court terme (yeelimite) et long termes (bélite et ferrite). A titre d’exemples de clinkers particulièrement adaptés au procédé selon l’invention, on peut notamment décrire les clinkers B1, B2 et B3 ayant la minéralogie suivante :
[Table 1]
ND : non-détecté.
En particulier, la surface spécifique Blaine du clinker sulfoalumineux bélitique selon l’invention est comprise entre 2500 cm2/g et 6000 cm2/g. Le clinker sulfoalumineux bélitique est malaxé au sol pollué dans des proportions variant de 1,5 à 5% en poids par rapport au poids du sol sec, préférentiellement de 1,5 à 4%, plus préférentiellement de 1,5 à 3%.
Ces faibles proportions conduisent à une formulation économique et permettent de limiter l’apport de chromâtes en limitant la quantité de clinker sulfoalumineux bélitique ajoutée au sol.
La chaux
Dans le cadre de l’invention, la chaux peut être de la chaux libre (CaO), de la chaux éteinte (Ca(OH)2), ou un mélange de chaux libre et de chaux éteinte en toute proportions. Dans un mode de réalisation, la chaux est de la chaux éteinte.
L’utilisation de la chaux éteinte permet de limiter la consommation d’eau libre, et de ne pas pénaliser les réactions de clinker avec les sulfates du sol. La présence de chaux est clé.
Elle permet : - de limiter la quantité de chromâtes lessivables lorsque le traitement est fait avec un clinker sulfoalumineux bélitique,
- d’optimiser la quantité de sulfates libres qui réagit avec le clinker sulfoalumineux bélitique et donc d’avoir un liant plus efficace à court-terme,
- de garantir la pérennité du traitement. Dans le cadre de l’invention, la chaux est malaxée au sol pollué dans des proportions variant de 2,0 à 5,0% en poids par rapport au poids du sol sec, préférentiellement de 3 à 5%.
La chaux est ajoutée dans des proportions supérieures à 30% en poids par rapport au poids total du premier liant minéral, de la chaux, et le cas échéant du deuxième liant minéral, de préférence supérieures à 50%, et plus préférentiellement jusqu’à 80%.
En effet, en deçà de 30% en poids, la pérennité du traitement est moindre car il faut tenir compte qu’une partie de la chaux va interagir avec sol (échanges cationiques entre Ca2+ qui provient de la chaux et les ions présents dans l’espace interfoliaire des minéraux argileux présents dans le sol). Une partie de la chaux ne sera donc pas disponible pour réagir avec les clinkers et les sulfates.
Composant additionnel
Le composant additionnel est choisi parmi un deuxième liant minéral différent du premier liant minéral, une alcanolamine, un agent réducteur d’un sel de chrome hexavalent, et leur(s) combinaison(s).
Il permet de stabiliser les sulfates lessivables à long terme, voire en particulier de diminuer le relargage des sulfates à long terme. Il peut également permettre de contrôler la libération d’ions chromâtes à court terme, voire à long terme.
Liant minéral
Le composant additionnel peut être un liant minéral différent du premier liant minéral. Dans le cadre de l’invention, le second liant minéral, différent du premier liant minéral est de préférence un liant hydraulique et/ou un liant hydraulique latent et/ou un liant ayant une activité pouzzolanique. Il peut être un ciment d’aluminates de calcium ou une addition minérale choisie parmi un laitier de haut fourneau, des cendres volantes, des argiles calcinées et leurs combinaisons, ou la combinaison d’un ciment d’aluminates de calcium et de ladite addition minérale. Plus particulièrement, le deuxième liant minéral est un ciment d’aluminates de calcium ou un laitier de haut fourneau ou leur combinaison.
Le second liant minéral est malaxé au sol pollué dans des proportions variant de 1 ,5 à 5% en poids par rapport au poids du sol sec, préférentiellement de 1 ,5 à 4%, plus préférentiellement de 1,5 à 3%.
En particulier, selon l’invention, la proportion massique entre premier et second liant minéral malaxé au sol pollué est comprise entre 30/70 et 70/30, plus particulièrement de 40/60 et 60/40, de préférence 50/50. En particulier, le second liant minéral est un ciment d’aluminates de calcium.
Un ciment d’aluminate de calcium est un ciment comprenant au moins une phase choisie parmi C3A, CA, C12A7, C11A7CaF2, C4A3$ (yeelemite), C2A(1-x)Fx (avec x appartient à ]0, 1 ]), des phases amorphes hydrauliques présentant un ratio molaire C/A compris entre 0,3 et 15 et tel que les teneurs cumulées en AI2O3 de ces phases soient comprises entre 3 et 70% en poids total du ciment d’aluminate de calcium, préférentiellement entre 7 et 50% en poids et mieux entre 20 et 30% en poids. Dans le cadre de l’invention, le ciment d’aluminate de calcium comprend plus de 60%, de préférence plus de 80 %, massique de phase Mayenite C12A7 ou d'un isotype de Mayenite.
Avantageusement, le ciment d’aluminate de calcium de l’invention comprend comme seule phase aluminate la phase Mayenite C12A7.
Le ciment d’aluminate de calcium comprend avantageusement plus de 85 % massique de phase Mayenite, plus avantageusement plus de 90 % massique de phase Mayenite, encore plus avantageusement plus de 95 % massique de phase Mayenite.
Le ciment d’aluminate de calcium peut comprendre jusqu’à 99% massique de phase Mayenite, voire 100% massique. Des clinkers plus riches en C12A7, permettent de former une plus grande quantité d’ettringite.
Le ciment d’aluminate de calcium de l’invention est avantageusement obtenu par fusion ou frittage entre 1250 et 1300°C environ d’un mélange de bauxite blanche et de calcaire. Des taux faibles de silice et de fer des matières premières permettent de garantir un taux optimal de C12A7. Avantageusement, la teneur cumulée en fer et silice est inférieure à 30%, encore plus avantageusement inférieure à 20%, en poids par rapport au poids total des matières premières.
Alternativement, le second liant minéral est une addition minérale choisie parmi un laitier de haut fourneau, des cendres volantes, de l’argile calcinée, et leurs combinaisons en particulier un laitier de haut fourneau.
Un laitier de haut fourneau est un sous-produit de l’élaboration de la fonte résultant de la réduction des minerais de fer par le coke. Il s'agit d'un mélange composé essentiellement de silicates, d'aluminates et de chaux, avec divers oxydes métalliques, à l'exception des oxydes de fer. Il est tel que défini dans la norme « Ciment » NF EN 197-1 paragraphe 5.2.2 d’avril 2012. De préférence, dans le cadre de l’invention, le laitier de haut fourneau est broyé avec une taille de particule comprise entre 3 et 50 pm.
Les cendres volantes sont de nature siliceuse ou calcique. Elles sont obtenues par précipitation de particules pulvérulentes dans les fumées des chaudières alimentées au charbon pulvérisé. Elles sont telles que définies dans la norme “Ciment” NF EN 197-1 paragraphe 5.2.4 d’avril 2012.
L’argile calcinée est produite dans un four à une température d'environ 800°C. Il est tel que défini dans la norme “Ciment” NF EN 197-1 d’avril 2012.
Alcanolamine
Le composant additionnel peut également être une alcanolamine.
Une alcanolamine est un alcane comprenant au moins une fonction amine et au moins une fonction alcool. En particulier, l’alcane est un alcane en C2-C6, avantageusement en C3-C5.
Avantageusement, l’alcanolamine est sélectionnée dans le groupe comprenant la N, N bis-(2-hydroxyethyl)-2-propanolamine) (DIEPA), la N, N bis-(2-hydroxypropyl)-N- (hydroxyethyl) amine (EDIPA), la diethanolamine (DEA), la triethanolamine (TEA), la triisopropanolamine (TIPA), la N-(hydroxyethyl)diethylenetriamine (HEDETA), l’aminoethylethanolamine (AEEA) et leur(s) combinaison(s).
En particulier, l’alcanolamine est une tri(hydroxyalkyl)amine, plus particulièrement, une tri(hydroxyalkyl)amine ayant au moins un groupe hydroxyalkyle comprenant 3 à 5 atomes de carbone.
De préférence, l’alcanolamine est choisie parmi la triethanolamine, la triisopropanolamine et leur combinaison.
La présence éventuelle dans le liant d’un tel composant permet d’augmenter l’efficacité du traitement à moyen et long terme en optimisant la réactivité des phases aluminates. L'alcanolamine est de préférence malaxée avec le sol pollué à un dosage en poids par rapport au poids dudit sol sec compris entre 0.001 et 0.050%.
Agent réducteur d’un sel de chrome hexavalent
Le composant additionnel peut également être un agent réducteur d’un sel de chrome hexavalent, en particulier du nitrite de calcium ou un réducteur d’un sel de chrome hexavalent à base d’antimoine.
Dans un mode de réalisation, l’agent réducteur d’un sel de chrome hexavalent est du nitrite de calcium.
Dans un autre mode de réalisation, l’agent réducteur d’un sel de chrome hexavalent est un agent réducteur d’un sel de chrome hexavalent à base d’antimoine.
L’agent réducteur d’un sel de chrome hexavalent est malaxé avec le sol pollué à un dosage compris entre 0.01% et 3.0% en poids par rapport au poids dudit sol sec. En effet, en présence de clinker sulfoalumineux bélitique, la maîtrise de la libération d’ions chromâtes n’est pas aisée il est donc possible de recourir à des composants permettant de réduire la part de chrome VI en chrome III qui est stable et non-toxique. Les agents réducteurs à base de sulfates comme FeSCL et SnSCL ne sont pas recommandés, pour ne pas apporter de sulfates supplémentaires. D’autres agents de réduction à base de chlore sont à éviter car ils perturbent l’action du clinker sulfoalumineux bélitique et diminuent fortement l’efficacité du traitement. Les agents réducteurs à base d’antimoine sont performants en ce sens.
Le composant additionnel peut être une combinaison de liant minéral différent du premier liant, d’alcanolamine et/ou d’agent réducteur d’un sel de chrome hexavalent.
Ainsi, notamment, le composant additionnel peut être une combinaison de liant minéral différent du premier liant et d’alcanolamine. Le composant additionnel peut également être une combinaison de liant minéral différent du premier liant et d’un agent réducteur d’un sel de chrome hexavalent.
Autres
L’efficacité du traitement peut être améliorée de façon significative à court et long terme en ajoutant de l’eau lors du traitement.
Pour optimiser la formation d’ettringite dans le matériau à traiter, le liant est uniformément réparti et la quantité d’eau dans le sol à traiter est suffisante pour optimiser la formation d’ettringite. Ceci se traduit en pratique par une teneur en eau qui peut être comprise entre 5% et 40% en poids, plus avantageusement 15% et 40%, par rapport au poids du sol sec, en fonction de sa nature. En cas de besoin, de l’eau peut être ajoutée au sol. Les quantités en eau sont suffisantes pour permettre la réaction d’hydratation, et pourront facilement être déterminées par l’homme du métier.
Procédé
Le sol à traiter est non-inerte et contient naturellement ou artificiellement des sulfates lessivables (de 1000 à 15000 ppm). Il est pris tel quel, et présente généralement une humidité de 10 à 40%.
Les constituants du traitement, à savoir le premier liant minéral, la chaux et le composant additionnel choisi parmi un second liant minéral différent du premier liant minéral, une alcanolamine, un agent réducteur d’un sel de chrome hexavalent et leur(s) combinaison(s) peuvent être ajoutés de manière simultanée, consécutive ou séquencée et séparée au sol pollué à traiter. Dans un mode de réalisation, une composition comprenant le premier liant minéral, le composant additionnel choisi parmi un second liant minéral différent du premier liant minéral, une alcanolamine, un agent réducteur d’un sel de chrome hexavalent et leur(s) combinaison(s) et optionnellement la chaux peut être préalablement préparée puis ajoutée au sol pollué à traiter. La composition peut être préparée par broyage séparé de chacun de ses constituants puis mélange de tous les constituants ou par mélange des constituants puis co-broyage de tous les constituants.
Le liant hydraulique peut être broyé et/ou séparé de la chaux afin d’obtenir un liant ayant une surface spécifique Blaine de comprise entre 2500 cm2/g et 6000 cm2/g.
De l’eau peut être ajoutée au sol ou être introduite en même temps ou après ajout des constituants du traitement. En particulier, le sol est également malaxé avec de l’eau à un dosage compris entre 1% et 15% en poids par rapport au poids du sol sec.
Dans un mode de réalisation avantageux, le sol est malaxé avec chacun des constituants du traitement.
Ainsi, le procédé de traitement d’un sol pollué comprenant au moins une étape de malaxage du sol avec, en poids par rapport au poids dudit sol sec :
- de 1,5% à 5,0% d’un premier liant minéral de type clinker sulfoalumineux bélitique,
- de 2,0% à 5,0% de chaux, caractérisé en ce que le sol est également traité avec un composant additionnel choisi parmi :
- un deuxième liant minéral différent du premier liant minéral en une teneur allant de 1 ,5% à 5,0% en poids par rapport au poids dudit sol sec,
- une alcanolamine en une teneur allant de 0,001 à 0,050% en poids par rapport au poids dudit sol sec,
- un agent réducteur d’un sel de chrome hexavalent en une teneur allant de 0,01 à 3,00% en poids par rapport au poids dudit sol sec, et
- leur(s) combinaison(s), et en ce que la chaux est ajoutée au sol pollué dans des proportions supérieures à 30% en poids par rapport au poids total en premier liant minéral, chaux et le cas échéant deuxième liant minéral.
Le sol est mélangé avec les constituants du traitement pendant un temps suffisant dans tout contenant adapté. Le malaxage peut être réalisé de manière continue ou discontinue, en particulier le malaxage est réalisé en continu. Le malaxage peut être réalisé avec un malaxeur de type ouvert ou fermé. Au sens de l’invention, les termes « malaxé » et « mélangé » sont utilisés indifféremment.
Utilisation du procédé
La présente invention concerne également l’utilisation du procédé selon l’invention pour la stabilisation in situ ou avant mise en stockage de sols pollués notamment par des anions sulfate et/ou des cations de métaux lourds, en particulier à long terme, plus particulièrement à court et long terme.
Composition pour le traitement d’un sol pollué
La présente invention concerne également une composition pour le traitement d’un sol pollué, comprend, en pourcentage massique :
- de 7,5 à 70% d’un liant minéral de type clinker sulfoalumineux bélitique,
- de 10 à 70% de chaux,
- un composant additionnel choisi parmi : de 7,5 à 70% d’un deuxième liant minéral différent du premier liant minéral, de préférence choisi parmi un ciment d’aluminates de calcium, un laitier de haut fourneau ou leur combinaison de 0,005 à 0,70% d’une alcanolamine, de 0,05 à 42% d’un agent réducteur d’un sel de chrome hexavalent et leur(s) combinaison(s), et en ce que la chaux est dans des proportions supérieures à 30% en poids par rapport au poids total en premier liant minéral, chaux et le cas échéant deuxième liant minéral. De préférence, la composition pour le traitement d’un sol pollué, comprenant, en pourcentage massique :
- de 10 à 60% d’un liant minéral de type clinker sulfoalumineux bélitique,
- de 10 à 70% de chaux,
- un composant additionnel choisi parmi : de 10 à 60% d’un deuxième liant minéral différent du premier liant minéral, de 0,01 à 0,5% d’une alcanolamine, de 0,1 à 30% d’un agent réducteur d’un sel de chrome hexavalent et leur(s) combinaison(s), et en ce que la chaux est dans des proportions supérieures à 30% en poids par rapport au poids total en premier liant minéral, chaux et le cas échéant deuxième liant minéral. Les composants de cette composition sont tels que décrits précédemment. En particulier le clinker sulfoalumineux bélitique comprend plus de 12% en poids par rapport au poids total du clinker de ferrites, de préférence plus de 15%, de préférence plus de 20%, plus avantageusement entre 20% et 40%.
En particulier, le clinker sulfoalumineux bélitique comprend au plus 5% en poids par rapport au poids total du clinker de Mayenite. En particulier, le clinker sulfoalumineux bélitique ne comprend pas de phase Mayenite détectable par analyse Rietveld du spectre de diffraction des rayons X du clinker
En particulier, le deuxième liant minéral est un ciment d’aluminates de calcium ou une addition minérale choisie parmi un laitier de haut fourneau, des cendres volantes, des argiles calcinés et leurs combinaisons, ou la combinaison d’un ciment d’aluminates de calcium et de ladite addition minérale. Plus particulièrement, le deuxième liant minéral est un ciment d’aluminates de calcium ou un laitier de haut fourneau ou leur combinaison.
Selon une première variante, le deuxième liant minéral est un ciment d’aluminates de calcium, de préférence comprenant plus de 60%, de préférence plus de 80%, massique de phase Mayenite C12A7 ou d’un isotype de Mayenite.
Selon une deuxième variante, le deuxième liant minéral est une addition minérale choisie parmi un laitier de haut fourneau, des cendres volantes, des argiles calcinés et leurs combinaisons, en particulier un laitier de haut fourneau.
Avantageusement, l’alcanolamine est une tri(hydroxyalkyl)amine, plus avantageusement choisie parmi la triéthanolamine, la triisopropanolamine et leurs combinaisons.
De préférence, l’agent réducteur d’un sel de chrome hexavalent est choisi parmi du nitrite de calcium, un réducteur d’un sel de chrome hexavalent à base d’antimoine et leurs combinaisons.
La chaux est présente dans la composition dans des proportions supérieures à 30% en poids par rapport au poids total du premier liant minéral, de la chaux, et le cas échéant du deuxième liant minéral, de préférence supérieures à 50%, et plus préférentiellement jusqu’à 80%.
En particulier la chaux est de la chaux éteinte, ou un mélange de chaux libre et de chaux éteinte en toute proportions. Dans un mode de réalisation, la chaux est de la chaux éteinte.
Utilisation de la composition La présente invention concerne également l’utilisation de la composition telle que définie ci-dessus pour le traitement de sols pollués aux anions, notamment les sulfates, et aux cations de métaux lourds, notamment les sels de chrome hexavalent, et leur mélange.
Exemples
Protocoles expérimentaux
Analyse minéralogique d’un clinker :
L’analyse minéralogique quantitative d’un clinker est réalisée par analyse Rietveld du spectre de diffraction des rayons X de ce clinker. L’échantillon de clinker à analyser est finement broyé pour fournir un échantillon dont toutes les particules passent à travers un tamis dont les mailles font 63 pm. Les spectres de diffraction aux rayons X de référence des phases cristallines présentes dans l’échantillon à analyser (à l’exception de la phase vitreuse qui n’a pas de spectre bien défini) sont obtenus à partir d’échantillons purs de ces phases.
Essais de lixiviation :
Les essais ont tous été conduits selon les recommandations de la norme NF EN-12457- 2, décembre 2002.
Les essais sont effectués sur un matériau dont au moins 95% des particules (en masse) ont une taille inférieure à 4 mm.
Pour les analyses et les tests de lixiviation, la masse de matière sèche (MS) de l’échantillon est déterminée après passage à l’étuve à 105°C ± 5°C jusqu’à poids constant conformément à la norme ISO 11465, août 1994. La différence entre les masses de l’échantillon avant et après le passage à l’étuve correspond au taux d’humidité du sol ou teneur en eau, que l’on exprime par rapport à la masse de sol sec, comme défini dans la norme NF EN 12457-2:2002.
A partir de l’échantillon pour essai, on prépare une prise d’essai d’une masse totale humide contenant exactement 0,090 kg ± 0,005 kg (mesurés avec une précision de 0,1 g) de matière sèche.
L’essai de lixiviation est réalisé à température ambiante soit 20°C ± 5°C.
On place dans un flacon la prise d’essai humide d’une masse totale correspondant à 0,090 kg ± 0,005 kg de matière sèche puis on ajoute une quantité de lixiviant (eau distillée, eau déminéralisée, eau déionisée ou eau de pureté équivalente ayant un pH compris entre 5 et 7,5, de conductivité inférieure à 0,5 mS/m) permettant d’obtenir un rapport liquide-solide de 10 L/kg ± 2%. Le flacon bouché est placé dans un dispositif d’agitation (tel que défini dans la norme) est agité à environ 10 tr/min pendant 24 heures ± 0,5 h. Pour atteindre un bon équilibre chimique entre le solide et la solution, pendant l’extraction il est important d’éviter la décantation des solides.
En plus des échantillons, des « blancs » de lixiviation sont également préparés.
Après arrêt de l’agitation, les solides en suspension sont mis à décanter pendant 15 minutes ± 5 min, puis filtrés sous vide sur un filtre à membrane de 0,45 pm.
Si la filtration est rendue trop difficile, l’éluat peut être centrifugé à 2000g pendant 30 minutes afin d’éviter le colmatage du filtre à 0,45 pm. Les conditions sont précisées dans la norme NF EN-12457-2, décembre 2002.
L'éluat est ensuite divisé en un nombre approprié de sous échantillons pour les différentes analyses chimiques et conservé selon la norme EN ISO 5667-3.
L'analyse de l’éluat produit par l'essai de lixiviation fournit la concentration des constituants dans les éluats exprimée en mg/L. Les résultats finaux sont exprimés en quantité de constituant lixivié rapportée à la masse totale de l'échantillon, en mg/kg de matière sèche.
On calcule la quantité d'un constituant lixivié à partir du matériau, sur la base de la masse sèche du matériau d'origine, à l'aide de la formule suivante :
A = C x [(L / MS) + (TH / 100)] (1) où :
A est le relargage d'un constituant pour L/S = 10 (exprimé en milligrammes par kilogramme de matière sèche) ;
C est la concentration d'un constituant particulier dans l'éluat (exprimée en milligrammes par litre);
L est le volume de lixiviant utilisé (exprimé en litres) ;
TH est le taux d’humidité, exprimé en pourcentage de la masse sèche (4.3.2) et calculé comme suit : TH = 100 (MH-MS)/MS
MS est la masse de la prise d'essai sèche exprimée en kilogrammes MH est la masse de la prise d'essai non séchée exprimée en kilogrammes Analyse des anions
L’analyse des anions est réalisée par chromatographie ionique avec pour éluant des solutions à 1 mM de NaHCCh et 3,5 mM Na2CC>3. Des solutions étalons pour les ions F , Cl , NO , NO3 , Br, PO42 , et SO42 sont préparées.
L’efficacité sur la stabilisation des sulfates est mesurée après 1 jour de traitement jusqu’à 2 ou 6 mois.
Analyse des métaux lourds : L'analyse des éléments (métaux lourds) est réalisée par analyse ICP-AES (Spectrométrie d'émission atomique couplée à un plasma induit).
Puissance RF : 1 ,3 kW Débit plasmagène : 15 L/min Débit auxiliaire : 2,25 L/min Débit du nébuliseur : 0,8 L/min Temps de lecture par réplique : 20 s
Les exemples suivants, non-restrictifs, illustrent des exemples de réalisation de l’invention.
Sauf indication contraire, tous les pourcentages sont des pourcentages massiques. Dans tous les tableaux :
MS = matière sèche
ND : Non Détectable, c’est-à-dire inférieur au seuil de détection de la mesure NM : Non mesuré
L’efficacité du traitement est discutée sur la base des quantités de sulfates stabilisés, et le respect des valeurs limites mentionnées dans le document législatif français (Arrêté du 12/12/2014 relatif aux conditions d’admission des déchets inertes dans les installations relevant des rubriques 2515, 2516, 2517 et dans les installations de stockage de déchets inertes relevant de la rubrique 2760 de la nomenclature des installations classes (version consolidée du 08/11/2018)).
L’efficacité globale du traitement est également discutée sur le respect ou non des valeurs limites mentionnées dans cet arrêté pour les autres substances dont la libération doit être limitée.
Dans l’idéal, on recherche une solution permettant d’avoir une quantité de sulfates lessivées inférieure à 1000 ppm et de chromâtes inférieure à 0.5 ppm (maxi 1.5 ppm), sans libération d’autres composés.
Sauf indication contraire, tous les pourcentages indiqués dans les tableaux ci-dessous sont exprimés en pourcentage massique de sol sec.
Sol non-inertes à traiter
Les deux sols, notés Sol 1 et Sol 2, sont des sols limoneux provenant de la région parisienne près de Guerville, et contiennent naturellement des sulfates (entre 9000 to 12000 ppm de sulfates lessivables selon le test de lixiviation N F EN 12457-2 avec un rapport liquide / solide (L/S) de 10). Leur teneur en eau est de 20% par rapport au sol sec. Liste des constituants
[Table 2]
*ROLAC-OB comprend 72% de laitier de haut fourneau, 25% de clinker Portland et 3% de constituants secondaires autorisés selon la norme NF EN 197-1.
Minéralogie des clinkers testés [Table 3]
Teneurs en chrome total dans les liants
[Table 4] Procédé de traitement
Les échantillons de sol contaminé sont traités par le procédé selon l’invention par les formules notées dans les tableaux ci-dessous selon le protocole suivant :
- Une quantité de sol humide équivalente à 600 g sec de sol est introduit dans un malaxeur de type Perrier. - Nous entendons par humide, l’humidité naturelle du sol éventuellement ajustée pour optimiser l’hydratation du liant (quantité d’eau extractible par évaporation lors d’un étuvage à 105°C jusqu’à poids constant). La teneur en eau peut être comprise entre 5% et 40% du poids du sol, en fonction de sa nature.
- La formule pour le traitement est introduite en surface puis l’ensemble est malaxé, à petite vitesse, pendant au moins 2 minutes jusqu’à l’obtention d’un mélange homogène en teinte et en texture.
- L’ensemble du matériau traité est extrait du bol puis conservé pendant 1 heure dans un sac hermétique.
- Au bout d’une heure, l’ensemble est passé sur un tamis de 4 mm. Le refus est cassé à la main ou à l’aide d’un outil afin de faire passer l’ensemble du matériau traité au tamis de 4 mm.
- L’ensemble de la matière tamisée est replacée dans le sac hermétique afin d’éviter toute dessiccation de la matière.
La maturation du sol traité est réalisée sur une durée de 2 heures, 1 jour, 7 jours, 1 mois, 2 mois ou 6 mois à température ambiante. 1/ Solution à base de clinker sulfoalumineux bélitique, de ciment d’aluminates de calcium et de chaux
[Table 5]
L’exemple 1.1 est un test témoin.
Les exemples 1.2 et 1.4 sont des tests comparatifs.
Les exemples 1.3 et 1.5 sont des tests selon l’invention.
Le traitement avec la combinaison d’un clinker sulfoalumineux bélitique, de chaux et d’un ciment d’aluminates de calcium (1.3 et 1.5) permet d’améliorer la performance à long terme du traitement comparé à une combinaison d’un clinker sulfoalumineux bélitique et de chaux (1.2 et 1.4) que ce soit pour la libération des ions sulfates ou la libération des ions chromâtes.
21 Solution à base de clinker sulfoalumineux bélitique, de chaux et d’alkanolamine (TEA ou Tl PA)
[Table 6]
L’exemple 2.0 est un test témoin. L’exemple 2.1 est un test comparatif.
Les exemples 2.2 à 2.7 sont des tests selon l’invention.
La stabilisation des sulfates peut être améliorée de façon significative avec l’ajout de Tl PA ou de TEA au liant. Leur présence a également un impact étonnamment positif pour limiter la libération de chrome.
3/ Solution à base de clinker sulfoalumineux bélitique, de chaux et des agents réducteurs de sel de chrome hexavalent
[Table 7]
L’exemple 3.0 est un test témoin.
L’exemple 3.1 est un test comparatif.
Les exemples 3.2 et 3.3 sont des tests selon l’invention. Le traitement avec la combinaison d’un clinker sulfoalumineux bélitique, de chaux et d’un agent réducteur d’un sel de chrome hexavalent (3.2 et 3.3) permet de diminuer la libération des ions sulfates et d’ions chromâtes à 1 mois et 2 mois.
4/ Solution à base de clinker sulfoalumineux bélitique, de laitier de haut fourneau et de chaux
[Table 8]
L’exemple 4.0 est un test témoin.
Les exemples 4.1 , 4.5 et 4.6 sont des tests comparatifs.
Les exemples 4.2, 4.3, 4.4, 4.7 et 4.8 sont des tests selon l’invention. La performance du traitement est améliorée de façon significative avec l’ajout de laitier de haut-fourneau à 2,5% de clinker B3 mélangé à 3,33% de chaux éteinte (4.2 vs 4.1), ou bien à 3% de clinker B3 mélangé à 4% de chaux éteinte (4.7 vs 4.6). La stabilisation des sulfates est améliorée, et les quantités de chrome libérées sont bien inférieures à 0.5 ppm jusqu’à 2 mois. Le laitier est efficace qu’il soit ajouté tel quel ou bien dans un liant routier (4.4). L’ajout d’eau lors du traitement permet d’améliorer encore plus l’efficacité du traitement (4.3 et 4.8).

Claims

Revendications
1. Procédé de traitement d’un sol pollué comprenant au moins le traitement du sol avec, en poids par rapport au poids dudit sol sec :
- de 1 ,5% à 5,0% d’un premier liant minéral de type clinker sulfoalumineux bélitique
- de 2,0% à 5,0% de chaux, et caractérisé en ce que le sol est également traité avec un composant additionnel choisi parmi : un deuxième liant minéral différent du premier liant minéral choisi parmi un ciment d’aluminates de calcium, un laitier de haut fourneau ou leur combinaison en une teneur allant de 1,5% à 5,0% en poids par rapport au poids dudit sol sec, une alcanolamine en une teneur allant de 0,001 à 0,050% en poids par rapport au poids dudit sol sec, un agent réducteur d’un sel de chrome hexavalent en une teneur allant de 0,01 à 3,00% en poids par rapport au poids dudit sol sec, et leur(s) combinaison(s), et en ce que la chaux est ajoutée au sol pollué dans des proportions supérieures à 30% en poids par rapport au poids total en premier liant minéral, chaux et le cas échéant deuxième liant minéral.
2. Procédé selon la revendication 1, caractérisé en ce que le sol est pollué par des anions, tels que des ions sulfates ou des cations de métaux lourds, tels qu’un sel de chrome hexavalent, ou un mélange des deux.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le clinker sulfoalumineux bélitique comprend en poids par rapport au poids total dudit clinker :
- de 30% à moins de 60% de phase sulfoaluminate C4AxFy$z avec x variant de 2 à 3, y variant de 0 à 0,5 et z variant de 0,8 à 1 ,2, - plus de 15% de phase bélite C2S incluant au moins 2% de phase bélite sous forme alpha’, plus de 20% de ferrites.
4. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que la chaux est de la chaux vive ou de la chaux éteinte, ou un mélange des deux, de préférence de la chaux éteinte.
5. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que la chaux est ajoutée au sol pollué dans des proportions supérieures à 50% en poids par rapport au poids total en premier liant minéral, chaux et le cas échéant deuxième liant minéral.
6. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que le deuxième liant minéral est un ciment d’aluminates de calcium, de préférence comprenant plus de 60% massique de phase Mayenite C12A7 ou d’un isotype de Mayenite.
7. Procédé selon l’une quelconque des revendications 1 à 5, caractérisé en ce que le deuxième liant minéral est un laitier de haut fourneau.
8. Procédé selon l’une quelconque des revendications 1 à 7, caractérisé en ce que l’alcanolamine est choisie parmi de la triéthanolamine, de la triisopropanolamine et leur combinaison.
9. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que l’agent réducteur d’un sel de chrome hexavalent est choisi parmi du nitrite de sodium, un réducteur d’un sel de chrome hexavalent à base d’antimoine et leur combinaison.
10. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que de l’eau est également ajoutée au sol lors du traitement à un dosage compris entre 1% et 15% en poids par rapport au poids du sol sec.
11. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que le traitement comprend le malaxage, avantageusement en continu, du sol avec le premier liant minéral, la chaux et le composant additionnel.
12. Composition pour le traitement d’un sol pollué, comprenant, en pourcentage massique :
- de 7,5 à 70% d’un liant minéral de type clinker sulfoalumineux bélitique,
- de 10 à 70% de chaux, un composant additionnel choisi parmi : de 7,5 à 70% d’un deuxième liant minéral différent du premier liant minéral choisi parmi un ciment d’aluminates de calcium, un laitier de haut fourneau ou leur combinaison, de 0,005 à 0,70% d’une alcanolamine, de 0,05 à 42% d’un agent réducteur d’un sel de chrome hexavalent et leur(s) combinaison(s), et en ce que la chaux est dans des proportions supérieures à 30% en poids par rapport au poids total en premier liant minéral, chaux et le cas échéant deuxième liant minéral.
13. Composition pour le traitement d’un sol selon la revendication précédente, caractérisé en ce que le clinker sulfoalumineux bélitique comprend plus de 12% en poids par rapport au poids total du clinker de ferrites, de préférence plus de 15%, de préférence plus de 20%, plus avantageusement entre 20% et 40%.
14. Utilisation de la composition telle que définie dans la revendication 12 ou 13 pour le traitement de sols pollués aux anions, notamment les sulfates, et aux cations de métaux lourds, notamment les sels de chrome hexavalent, et leur mélange.
15. Utilisation du procédé selon l’une quelconque des revendications 1 à 11 pour la stabilisation in situ ou avant mise en stockage de sols pollués notamment par des anions sulfate et/ou des cations de métaux lourds.
EP20839098.9A 2019-12-23 2020-12-23 Procede de traitement de sols pollues par des sulfates Pending EP4081492A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1915469A FR3105032B1 (fr) 2019-12-23 2019-12-23 Procede de traitement de sols pollues par des sulfates
PCT/EP2020/087789 WO2021130327A1 (fr) 2019-12-23 2020-12-23 Procede de traitement de sols pollues par des sulfates

Publications (1)

Publication Number Publication Date
EP4081492A1 true EP4081492A1 (fr) 2022-11-02

Family

ID=70804665

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20839098.9A Pending EP4081492A1 (fr) 2019-12-23 2020-12-23 Procede de traitement de sols pollues par des sulfates

Country Status (3)

Country Link
EP (1) EP4081492A1 (fr)
FR (1) FR3105032B1 (fr)
WO (1) WO2021130327A1 (fr)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086322A (ja) * 1998-09-17 2000-03-28 Taiheiyo Cement Corp 水硬性物質用6価クロム溶出低減剤、及び6価クロム溶出低減方法
JP2001342625A (ja) * 2000-03-30 2001-12-14 Maeda Seikan Kk クロムの溶出を防止したプレボーリング工法
EP1923370A1 (fr) * 2006-11-02 2008-05-21 Mapei S.p.A. Additifs et procédés pour la réduction de chrome hexavalent dans le ciment et dans les matériaux à base de ciment
EP2105419A1 (fr) * 2008-03-28 2009-09-30 Lafarge Additifs pour ciment
FR2949112B1 (fr) * 2009-08-17 2012-10-26 Lafarge Sa Additifs pour liant hydraulique a base de clinker belite - calcium - sulphoalumineux - ferrite (bcsaf)
WO2013071418A1 (fr) 2011-11-17 2013-05-23 Phenomenome Discoveries Inc. Procédés pour la synthèse de plasmalogènes et de dérivés de plasmalogènes, et utilisations thérapeutiques de ceux-ci
FR2990363B1 (fr) 2012-05-14 2014-06-06 Francais Ciments Procede de traitement de sols pollues, au moyen d'un liant hydraulique a base de clinker sulfo-alumineux et son utilisation pour la stabilisation de sols pollues
FR2990431B1 (fr) * 2012-05-14 2014-10-24 Francais Ciments Nouveau liant hydraulique a base de clinker sulfo-alumineux et son utilisation dans un procede de traitement de sols pollues
FR3056930B1 (fr) * 2016-10-04 2020-09-25 Holcim Technology Ltd Procede de traitement de sol pollue par un liant hydraulique a phase mayenite
JP6498716B2 (ja) * 2017-04-07 2019-04-10 花王株式会社 地盤の改良工法
FR3077998B1 (fr) 2018-02-20 2022-05-27 Vicat Utilisation d’une composition a base de liant hydraulique dans le cadre d’un procede d’inertage de sol pollue

Also Published As

Publication number Publication date
FR3105032B1 (fr) 2022-01-07
WO2021130327A1 (fr) 2021-07-01
FR3105032A1 (fr) 2021-06-25

Similar Documents

Publication Publication Date Title
JP7390271B2 (ja) フライアッシュとレメディエーション剤とを含有するセメント系材料用ポゾラン組成物
Viet et al. The use of fly ashes from waste-to-energy processes as mineral CO2 sequesters and supplementary cementitious materials
JP2002362949A (ja) かき貝殻を利用した固化材の製造方法
Chen et al. CO2 mineralization and utilization using various calcium-containing wastewater and refining slag via a high-gravity carbonation process
US20120215048A1 (en) Metals solubility reduction optimization method
JP2005146275A (ja) 土壌、土質改良及び固化安定剤
Gołek Glass powder and high-calcium fly ash based binders–Long term examinations
Goyal et al. Reutilization of textile sludge stabilized with low grade-MgO as a replacement of cement in mortars
Giergiczny The hydraulic activity of high calcium fly ash
EP0853602B1 (fr) Traitement de matieres dangereuses
Luz et al. Valorization of galvanic sludge in sulfoaluminate cement
DK2850042T3 (en) Method for the treatment of contaminated soil by means of a hydraulic binder based on sulfur aluminum klinker and use thereof for the stabilization of contaminated soil
EP3523059B1 (fr) Procédé de traitement de sol pollué par un liant hydraulique à phase mayenite
Li et al. Unveiling the impact of carbonation treatment on BOF slag hydration activity: Formation and development of the barrier layer
EP4081492A1 (fr) Procede de traitement de sols pollues par des sulfates
Khanna Characterization and utilization of cement kiln dusts (CKDs) as partial replacements of Portland cement
WO2018198392A1 (fr) Ciment mixte
Caprai et al. Evaluation of municipal solid waste incineration filter cake as supplementary cementitious material
EP3755475A1 (fr) Utilisation d'une composition à base de liant hydraulique dans le cadre d'un procédé d'inertage de sol pollué
Teune et al. Triethanolamine-promoted separation of calcium from recycled concrete fines during aqueous carbonation
EP4119517A1 (fr) Adjuvant de ciment et composition de ciment
KR101833493B1 (ko) 탄산칼슘 막 합성을 통한 슬래그 내 칼슘 추출률 향상방법 및 이를 이용한 광물탄산화 방법
US20150203403A1 (en) Method of producing hydration-accelerating seeds to be used as an additive for cement and/or concrete
JP2019026536A (ja) セメント添加剤及びセメント組成物
Caselles Stabilization of sulfates and molybdenum by using alternative binders

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220701

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAV Requested validation state of the european patent: fee paid

Extension state: MA

Effective date: 20220701

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230503