EP4078057B1 - Pompe à chaleur avec circuit frigorifique optimisé - Google Patents

Pompe à chaleur avec circuit frigorifique optimisé Download PDF

Info

Publication number
EP4078057B1
EP4078057B1 EP20824194.3A EP20824194A EP4078057B1 EP 4078057 B1 EP4078057 B1 EP 4078057B1 EP 20824194 A EP20824194 A EP 20824194A EP 4078057 B1 EP4078057 B1 EP 4078057B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
refrigerant
heat pump
evaporator
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20824194.3A
Other languages
German (de)
English (en)
Other versions
EP4078057A1 (fr
Inventor
Nikolas SCHRÖDER
Christian Penner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stiebel Eltron GmbH and Co KG
Original Assignee
Stiebel Eltron GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stiebel Eltron GmbH and Co KG filed Critical Stiebel Eltron GmbH and Co KG
Publication of EP4078057A1 publication Critical patent/EP4078057A1/fr
Application granted granted Critical
Publication of EP4078057B1 publication Critical patent/EP4078057B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Definitions

  • the present invention relates to a heat pump with a refrigerant circuit with a compressor, an expansion element, a condenser and an evaporator, which are connected to refrigerant lines, and a refrigerant contained in the refrigerant circuit, which can be circulated in the refrigerant circuit by means of the compressor.
  • Flammable refrigerants are often used in heat pump refrigerant circuits because they are considered to be more environmentally friendly than previously used refrigerants.
  • newer, especially flammable, refrigerants increased safety requirements often have to be observed and corresponding measures must be met, such as special requirements for the installation location, which make the production and operation of these heat pumps more expensive. This becomes more noticeable the more refrigerant is used.
  • EP 1 762 796 A1 describes an air conditioner equipped with a heat source refrigerant circuit and use refrigerant circuits connected to the heat source refrigerant circuit to expand the control range when the condensation capability of a heat source heat exchanger is controlled by a heat source expansion valve.
  • An air conditioner is equipped with a heat source refrigerant circuit, use refrigerant circuits, a pressurization circuit and a chiller.
  • the heat source refrigerant cycle is configured by interconnecting a compression mechanism, a heat source heat exchanger, and a heat source expansion valve that reduces the pressure of the refrigerant condensed in the heat source heat exchanger.
  • the pressurization circuit is in the heat source refrigerant circuit arranged and causes the high pressure refrigerant gas compressed in the compression mechanism to fuse with the refrigerant, the pressure of which is reduced in the heat source expansion valve and which is sent to the use refrigerant circuits.
  • the chiller cools the refrigerant whose pressure has been reduced in the heat source expansion valve and which is sent to the useful refrigerant circuits. Further revealed EP 1 762 796 A1 a heat pump according to the preamble of claim 1.
  • EP 1 091 185 A2 describes a plate heat exchanger with heat transfer plates arranged one above the other and having structures, between which primary-side flow channels for a first heat exchange medium, in particular a medium to be evaporated, and secondary-side flow channels for a second heat exchange medium, in particular a heat transfer medium, are formed, the primary-side and / or the secondary-side flow channels are each formed between two adjacent heat transfer plates, the structures of which at least partially interlock while maintaining a minimum distance.
  • US 2010/251 760 A1 describes a system for refrigeration, heating or air conditioning, in particular a refrigeration system, with a working fluid circuit that has a compressor, a condenser, an expansion valve and an evaporator, which are connected in series in the direction of flow. A particularly stable operating behavior of the system is achieved by providing means which thermally couple the liquid working medium flowing to the expansion valve with the working medium flowing from the expansion valve to the evaporator in order to keep the temperature of the liquid working medium constant.
  • EP 3 165 852 A1 describes an anti-freeze heat pump capable of preventing icing of an evaporator during a subcooling process by using the heat released in the subcooling process in subcooling means.
  • the heat pump includes a refrigerant cycle having an evaporator, a condenser, a subcooling device arranged to perform a subcooling process for cooling a refrigerant flowing from the condenser, and a heat transfer device arranged to carry out the refrigerant in the subcooling process heat released during the subcooling process is transferred from the subcooling device to the evaporator.
  • a method of defrosting includes a subcooling step for performing a subcooling process for cooling a refrigerant flowing from the condenser, and a heat transfer step for transferring heat released from the refrigerant in the subcooling process of the subcooling step to the evaporator during the subcooling process.
  • EP 3 543 626 A1 describes a water-lithium bromide absorption refrigeration system with a high-pressure container, with a generator that expels the refrigerant from the solvent while adding heat and a condenser that condenses the expelled refrigerant, and a low-pressure container with an evaporator that evaporates the refrigerant with heat removal, and an absorber for absorbing the im Evaporator evaporates refrigerant vapor in the solvent.
  • the water-lithium bromide absorption refrigeration system is characterized, among other things, in particular by the fact that all heat exchangers, i.e.
  • the heat exchanger of the generator, the heat exchanger of the condenser, the heat exchanger of the evaporator and also the heat exchanger of the absorber are designed as open asymmetrical plate heat exchangers and that preferably in a square one Base frame of the high-pressure container, the low-pressure container as well as all connecting lines with the components arranged in or between them, such as throttles or pumps, are arranged.
  • the object on which the present invention is based is to provide a heat pump with a refrigerant circuit which overcomes the disadvantages described and enables a reduction in the amount of refrigerant while still maintaining acceptable performance figures, whereby refrigerant costs can be reduced and the requirements for the necessary safety concepts can be lowered.
  • a heat pump according to claim 1 is proposed.
  • the asymmetrical design of the heat exchanger according to the invention leads to a noticeable reduction in the amount of refrigerant required and a reduction in the requirements for safety-related measures with acceptable performance figures.
  • Heat pumps can, for example, be designed as brine-water heat pumps, water-water heat pumps or air-water heat pumps.
  • brine-water heat pumps and water-water heat pumps the heat exchanger of the evaporator is often designed as a plate heat exchanger, whereas in air-water heat pumps it is usually a finned tube heat exchanger.
  • the plates of the heat exchanger of the condenser and/or the evaporator have an arrow embossing, with a sweep angle of at least 45° ("high" embossing).
  • a high sweep angle or embossing angle causes a strong deflection of the fluid, which can possibly lead to a higher coefficient of performance and results in a greater pressure loss.
  • the heat exchanger of the evaporator is a finned tube heat exchanger
  • the invention provides that the inside diameter of the tubes of the finned tube heat exchanger is 3 to 7 mm and their outside diameter is 3.5 to 7.5 mm, whereby a reduction in the amount of refrigerant is also achieved here.
  • the inside of the tubes of the finned tube heat exchanger is provided with fins.
  • the heat pump according to the invention can comprise an internal heat exchanger, which is designed as a plate heat exchanger.
  • the inner heat exchanger has plates which have an arrow embossing with a sweep angle or embossing angle of less than 45°.
  • the inner heat exchanger can advantageously be designed with a dimple embossing instead of an arrow embossing.
  • a dimple embossing enables a reduction in pressure losses on the media side of the heat exchanger as well as a reduction in the amount of refrigerant.
  • the internal heat exchanger is designed asymmetrically in such a way that a volume of the liquid side is reduced compared to the volume of the gas side. This results in a further reduction in the amount of refrigerant.
  • a further reduction in the amount of refrigerant can be achieved by making the inner diameter of the liquid lines, in particular the refrigerant lines, as small as possible.
  • the minimum flow velocity is preferably not less than 0.05 m/s, 0.3 m/s or a value between 0.05 m/s and 0.3 m/s.
  • a heat pump according to the invention comprises a controller which is connected to an inverter which controls the compressor and which is connected to the expansion element.
  • This controller is designed to control the compressor and the expansion element in such a way that the flow velocity in the liquid lines, in particular in the refrigerant lines, is a maximum of 3.5 m/s.
  • the refrigeration circuit 100 comprises at least one compressor 10, an expansion element 20, a condenser 30, an evaporator 40, and, depending on the version, an internal heat exchanger 50 and a 4-way changeover valve 60.
  • the gaseous refrigerant is compressed by the compressor 10 and fed to the heat exchanger 32 of the condenser 30, where it is cooled and liquefied.
  • the refrigerant is then passed through the heat exchanger 42 of the evaporator 40, where it is evaporated and superheated in order to then be fed back to the compressor 10 ( Figures 1b and 1c ).
  • the refrigeration circuit 100 has according to Figures 1c and 1d
  • the 4-way switching valve 60 continues to open.
  • An internal heat exchanger 50 is integrated into the refrigerant circuit 100, as shown in FIG Figures 1a and 1d is shown.
  • the 4-way switching valve 60 can also be used to deice the heat exchanger 42 of the evaporator 40.
  • the 4-way switching valve 60 is switched so that it creates a direct connection running in the flow direction of the refrigerant between the compressor 10 and the heat exchanger 42 of the evaporator 40 as well as a further connection between the heat exchanger 32 of the condenser 30 and the internal heat exchanger 50 .
  • the flow direction of the refrigerant through the compressor 10 is reversed.
  • FIG. 2a shows a schematic enlarged sectional view of a symmetrical plate heat exchanger.
  • a plate heat exchanger consists of a number of plates P n which have such an embossing that channels with volumes V M , V K of identical size are created between adjacent plates, through which a fluid can flow.
  • the channels created on both sides of a single plate P n can have the same or different volumes V M , V K.
  • V M , V K are the channels, as in Figure 2a To see, of identical size, it is a symmetrical plate heat exchanger. Ie, the volume V K of the refrigerant contained in the plate heat exchanger and the volume V M of the medium, i.e. the fluid that absorbs heat from or gives off heat to the refrigerant, are the same size, as in Figure 2a shown.
  • embossings of two adjacent plates P n of the in Figure 2b Asymmetrical plate heat exchanger shown is different in such a way that the channels created on both sides of a single plate have different volumes V K and V M , the volume Vm of the medium being larger than the volume V K of the refrigerant.
  • the refrigerant circuit 100 of the heat pump according to the present invention comprises a condenser 30 and an evaporator 40, each of which contains a heat exchanger 32, 42, wherein at least the heat exchanger 32 of the condenser 30 can be designed in the form of an asymmetrical plate heat exchanger (cf. Fig. 1 ).
  • the asymmetry is at least 10%, that is, the volume V K of the refrigerant is at least 10% smaller than the volume V M of the medium.
  • the Figures 2c and 2d show plates Pn.
  • embossing examples are those in the Figures 3a and 3b arrow embossing shown or a dimple embossing as in Figure 4 to see the application.
  • the arrow or embossing angle ⁇ determines the amount of pressure loss between the inlet and outlet sides of the plate heat exchanger.
  • a dimple embossing, as in Figure 4 can be seen, in addition to a low pressure loss in the heat exchanger, it also enables a reduction in the amount of refrigerant.
  • a plurality of capillary tubes 49 preferably with an inner diameter of preferably 0.5 to 3 mm, go to the evaporator tubes 44, as in Figure 6 shown.
  • the inside diameter of the tubes 44 of the finned tube heat exchanger 42 is 3 to 7 mm and their outside diameter is 3.5 to 7.5 mm.
  • finning can be arranged on the inside of the tubes 44 of the finned tube heat exchanger 42 in order to further improve the heat transfer between the refrigerant and the fluid.
  • the components of the refrigerant circuit are connected to each other by appropriate lines. To further reduce the amount of refrigerant, these should be designed with the smallest possible inner diameter.
  • the flow velocity in the refrigerant lines should not exceed a value of 3.5 m/s and, in order to reduce refrigerant, should not fall below a value of 0.5 m/s at a maximum output of the heat pump or a maximum speed of the compressor .
  • the following formula applies to the design of the inner diameter of the pipes: 4 ⁇ m ⁇ KM , Max ⁇ KM ⁇ 3.5 m s ⁇ ⁇ ⁇ d Pipe , Inside ⁇ 4 ⁇ m ⁇ KM , Max ⁇ KM ⁇ 0.5 m s ⁇ ⁇
  • the heat exchanger 32 of the condenser 30 of the refrigeration circuit 100 after a Figures 1a, 1b , 1c or 1d is as an asymmetrical plate heat exchanger, as in connection with Figure 2b described, carried out, especially in the case of brine-water heat pumps, water-water heat pumps or air-water heat pumps.
  • the heat exchanger 42 of the evaporator 40 is a finned tube heat exchanger, as in Figure 5 described.
  • the heat exchanger 42 of the evaporator 40 can also be used as an asymmetrical plate heat exchanger ( Figure 2b ) be designed, especially in the case of brine-water heat pumps or water-water heat pumps.
  • the inner heat exchanger 50 is also designed as a plate heat exchanger and has a dimple embossing Figure 4 on. However, it is also possible for this to be embossed with an arrow.
  • the plate heat exchanger 50 can be a symmetrical or an asymmetrical plate heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Claims (10)

  1. Pompe à chaleur pourvue d'un circuit frigorifique (100) comportant un compresseur (10), un élément d'expansion (20), un condenseur (30) et un évaporateur (40), qui sont reliés à des conduites de fluide frigorigène, et pourvue d'un fluide frigorigène contenu dans le circuit frigorifique (100) et qui peut être mis en circulation dans le circuit frigorifique (100) au moyen du compresseur (10) et le condenseur (30) et l'évaporateur (40) comprenant des échangeurs de chaleur (32, 42) avec un côté fluide frigorigène et un côté fluide ambiant, l'échangeur de chaleur (32) du condenseur (30) étant un échangeur de chaleur à plaques et l'échangeur de chaleur (42) de l'évaporateur (40) étant un échangeur de chaleur à plaques ou un échangeur de chaleur à ailettes et à tubes, comprenant un régulateur qui est relié au compresseur (10) et à l'élément d'expansion (20),
    caractérisée en ce que les échangeurs de chaleur (32, 42) du condenseur (30) et/ou de l'évaporateur (40) sont conçus de façon asymétrique entre le côté fluide frigorigène et le côté fluide ambiant de telle manière que le volume du côté fluide frigorigène est réduit d'au moins 10 % par rapport au volume du côté fluide ambiant, le régulateur étant réalisé de façon à commander le compresseur (10) et l'élément d'expansion (20) de telle manière que la vitesse d'écoulement dans les conduites de fluide frigorigène est d'au moins 0,05 m/s, mais au maximum de 3,5 m/s en au moins un point de fonctionnement.
  2. Pompe à chaleur selon la revendication 1,
    dans laquelle les plaques de l'échangeur de chaleur (32, 42) du condenseur (30) et/ou de l'évaporateur (40) présentent un estampage en forme de flèche avec un angle de flèche d'au moins 45°.
  3. Pompe à chaleur selon la revendication 1 ou 2, comportant un échangeur de chaleur à ailettes et à tubes en guise d'échangeur de chaleur (42) de l'évaporateur (40),
    le diamètre intérieur des tubes de l'échangeur de chaleur à ailettes et à tubes étant de 3 à 7 mm et leur diamètre extérieur de 3,5 à 7,5 mm.
  4. Pompe à chaleur selon la revendication 3,
    dans laquelle le côté intérieur des tubes de l'échangeur de chaleur à ailettes et à tubes est pourvu d'un nervurage.
  5. Pompe à chaleur selon l'une des revendications précédentes,
    comprenant en outre un échangeur de chaleur interne (50) qui est réalisé sous la forme d'un échangeur de chaleur à plaques.
  6. Pompe à chaleur selon la revendication 5,
    dans laquelle des plaques de l'échangeur de chaleur interne (50) présentent un estampage en forme de flèche avec un angle de flèche inférieur à 45°.
  7. Pompe à chaleur selon la revendication 5,
    dans laquelle les plaques de l'échangeur de chaleur interne (50) présentent un estampage bosselé.
  8. Pompe à chaleur selon la revendication 5, 6 ou 7,
    dans laquelle l'échangeur de chaleur interne (50) est réalisé asymétrique.
  9. Pompe à chaleur selon l'une des revendications précédentes,
    caractérisée en ce que le diamètre intérieur des conduites de liquide, en particulier des conduites de fluide frigorigène est exécuté le plus faible possible.
  10. Pompe à chaleur selon la revendication 9, dans laquelle, pour respecter des exigences acoustiques et réduire la quantité de remplissage de fluide frigorigène de la pompe à chaleur en un point de fonctionnement, le diamètre intérieur des conduites de liquide, en particulier les conduites de fluide frigorigène, sont dimensionnés selon la formule 4 m ˙ KM , max ρ KM 3,5 m s π d d i a m è tre i n t é rieur des tuyaux 4 m ˙ KM , max ρ KM 0,5 m s π
    Figure imgb0006
EP20824194.3A 2019-12-20 2020-12-09 Pompe à chaleur avec circuit frigorifique optimisé Active EP4078057B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019008914.6A DE102019008914A1 (de) 2019-12-20 2019-12-20 Wärmepumpe mit optimiertem Kältemittelkreislauf
PCT/EP2020/085309 WO2021122231A1 (fr) 2019-12-20 2020-12-09 Pompe à chaleur dotée d'un circuit de réfrigérant optimisé

Publications (2)

Publication Number Publication Date
EP4078057A1 EP4078057A1 (fr) 2022-10-26
EP4078057B1 true EP4078057B1 (fr) 2024-02-07

Family

ID=73834514

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20824194.3A Active EP4078057B1 (fr) 2019-12-20 2020-12-09 Pompe à chaleur avec circuit frigorifique optimisé

Country Status (4)

Country Link
EP (1) EP4078057B1 (fr)
CN (1) CN114902010A (fr)
DE (1) DE102019008914A1 (fr)
WO (1) WO2021122231A1 (fr)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193390A (ja) * 1998-12-25 2000-07-14 Daikin Ind Ltd プレ―ト式熱交換器
DE19948222C2 (de) * 1999-10-07 2002-11-07 Xcellsis Gmbh Plattenwärmetauscher
JP3781046B2 (ja) * 2004-07-01 2006-05-31 ダイキン工業株式会社 空気調和装置
PL1630510T5 (pl) * 2004-08-28 2014-07-31 Swep Int Ab Płytowy wymiennik ciepła
WO2009065233A1 (fr) * 2007-11-21 2009-05-28 Remo Meister Installation pour le refroidissement, le chauffage ou la climatisation, en particulier installations frigorifiques
FR2948990A1 (fr) * 2009-08-04 2011-02-11 Mobile Comfort Holding Dispositif thermodynamique multi-energie modulaire
SE534918C2 (sv) * 2010-06-24 2012-02-14 Alfa Laval Corp Ab Värmeväxlarplatta och plattvärmeväxlare
DE202011110052U1 (de) * 2011-12-23 2013-03-25 Robert Bosch Gmbh Plattenwärmetauscher
DE102012105144B4 (de) * 2012-06-14 2021-12-02 Gea Wtt Gmbh Plattenwärmetauscher in asymmetrischer Ausführung
EP3165852B1 (fr) * 2015-11-09 2021-06-09 Mitsubishi Electric Corporation Pompe à chaleur antigivre
DE102016102690A1 (de) * 2016-02-16 2017-08-17 Miele & Cie. Kg Wärmeübertrager für einen Kältemittelkreis einer Wärmepumpe für ein Haushaltsgerät und Wärmepumpe für ein Haushaltsgerät
SI3306253T1 (sl) * 2016-10-07 2019-08-30 Alfa Laval Corporate Ab Plošča toplotnega izmenjevalnika in toplotni izmenjevalnik
DE102018002201B4 (de) * 2018-03-19 2021-03-18 EAW Energieanlagenbau GmbH Westenfeld Wasser-Lithiumbromid-Absorptionskälteanlage

Also Published As

Publication number Publication date
DE102019008914A1 (de) 2021-06-24
CN114902010A (zh) 2022-08-12
WO2021122231A1 (fr) 2021-06-24
EP4078057A1 (fr) 2022-10-26

Similar Documents

Publication Publication Date Title
DE102010048015B4 (de) Anlage mit einem Wärmeübertrager
DE102005052973B4 (de) Doppelwandiges Rohr und Herstellungsverfahren dafür
EP3444542B1 (fr) Système de circulation pour un véhicule et procédé associé
DE102012215411A1 (de) Verdampfer mit Kältespeicherfunktion
DE102012113059A1 (de) Kühlsystem für Fahrzeug
DE102006057312A1 (de) Verbundrohr und Verfahren zu seiner Herstellung
DE102017211256B4 (de) Kälteanlage für ein Fahrzeug mit einem einen Wärmeübertrager aufweisenden Kältemittelkreislauf
DE112005001885T5 (de) Wärmetauscher, Zwischenwärmetauscher und Kältekreislauf
DE102016100192B4 (de) Vorrichtung zur Wärmeübertragung
EP3702181B1 (fr) Pompe à chaleur à régulation partielle de la charge
DE102004036460B4 (de) Innerer Wärmetauscher
DE102018113687B4 (de) Vorrichtung und Verfahren zur Kühlung von Batteriezellenmodulen
EP1882888A1 (fr) Système de pompe à chaleur, notamment pour climatisation d'un bâtiment
DE102013106831A1 (de) Fahrzeugklimaanlage eines Hybrid- oder Elektrofahrzeugs
EP4078057B1 (fr) Pompe à chaleur avec circuit frigorifique optimisé
DE102012212227A1 (de) Kälteanlage und Kraftfahrzeug mit einer Kälteanlage
DE102018215026B4 (de) Kälteanlage für ein Fahrzeug mit einem einen zweiflutigen Wärmeübertrager aufweisenden Kältemittelkreislauf sowie Wärmeübertrager und Verfahren zum Betreiben der Kälteanlage
DE102014205005A1 (de) Verfahren zum Betrieb der Klimaanlage eines Kraftfahrzeugs, Klimaanlage für ein Kraftfahrzeug
DE102005028510A1 (de) Verstellbarer innerer Wärmeübertrager
DE19829335C2 (de) Kälteanlage
EP2606291B1 (fr) Module de condenseur à réfrigérant
DE102016012595A1 (de) Kältemittelkreislauf und Verfahren zum Betreiben des Kältemittelkreislaufs sowie innerer Wärmeübertrager zur Verwendung in dem Kältemittelkreislauf
EP2123998B1 (fr) Dispositif de pompe à chaleur doté d'un caloporteur doté d'une tubulure à lamelles en tant qu'évaporateur
EP2780649B1 (fr) Procédé de minimisation de la consommation d'énergie d'une machine à recirculation de chaleur et machine à recirculation de chaleur
DE102019007978A1 (de) Kraftfahrzeug-Wärmepumpe mit mehreren Fluid-Wasser-Wärmetauschern und einem Fluid-Luft-Wärmetauscher im selben Fluidkreislauf; sowie Verfahren

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230828

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020006961

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN