EP4073434A1 - Cheminée, agencement pour cheminée et procédé pour l'alimentation en air secondaire d'une cheminée - Google Patents

Cheminée, agencement pour cheminée et procédé pour l'alimentation en air secondaire d'une cheminée

Info

Publication number
EP4073434A1
EP4073434A1 EP20848842.9A EP20848842A EP4073434A1 EP 4073434 A1 EP4073434 A1 EP 4073434A1 EP 20848842 A EP20848842 A EP 20848842A EP 4073434 A1 EP4073434 A1 EP 4073434A1
Authority
EP
European Patent Office
Prior art keywords
secondary air
fireplace
grate
firebox
limiter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20848842.9A
Other languages
German (de)
English (en)
Other versions
EP4073434B1 (fr
EP4073434C0 (fr
Inventor
Pertti Harjaluoma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harvia Finland Oy
Original Assignee
Harvia Finland Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harvia Finland Oy filed Critical Harvia Finland Oy
Publication of EP4073434A1 publication Critical patent/EP4073434A1/fr
Application granted granted Critical
Publication of EP4073434B1 publication Critical patent/EP4073434B1/fr
Publication of EP4073434C0 publication Critical patent/EP4073434C0/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • F23N3/007Regulating air supply or draught using mechanical means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H33/00Bathing devices for special therapeutic or hygienic purposes
    • A61H33/06Artificial hot-air or cold-air baths; Steam or gas baths or douches, e.g. sauna or Finnish baths
    • A61H33/063Heaters specifically designed therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L13/00Construction of valves or dampers for controlling air supply or draught
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • F23L9/02Passages or apertures for delivering secondary air for completing combustion of fuel  by discharging the air above the fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24BDOMESTIC STOVES OR RANGES FOR SOLID FUELS; IMPLEMENTS FOR USE IN CONNECTION WITH STOVES OR RANGES
    • F24B1/00Stoves or ranges
    • F24B1/02Closed stoves
    • F24B1/028Closed stoves with means for regulating combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24BDOMESTIC STOVES OR RANGES FOR SOLID FUELS; IMPLEMENTS FOR USE IN CONNECTION WITH STOVES OR RANGES
    • F24B1/00Stoves or ranges
    • F24B1/18Stoves with open fires, e.g. fireplaces
    • F24B1/185Stoves with open fires, e.g. fireplaces with air-handling means, heat exchange means, or additional provisions for convection heating ; Controlling combustion
    • F24B1/189Stoves with open fires, e.g. fireplaces with air-handling means, heat exchange means, or additional provisions for convection heating ; Controlling combustion characterised by air-handling means, i.e. of combustion-air, heated-air, or flue-gases, e.g. draught control dampers 
    • F24B1/19Supplying combustion-air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24BDOMESTIC STOVES OR RANGES FOR SOLID FUELS; IMPLEMENTS FOR USE IN CONNECTION WITH STOVES OR RANGES
    • F24B5/00Combustion-air or flue-gas circulation in or around stoves or ranges
    • F24B5/02Combustion-air or flue-gas circulation in or around stoves or ranges in or around stoves
    • F24B5/021Combustion-air or flue-gas circulation in or around stoves or ranges in or around stoves combustion-air circulation
    • F24B5/025Supply of secondary air for completing combustion of fuel

Definitions

  • the invention relates to a fireplace, which includes a firebox for a fuel charge, an intake air duct for leading intake air to the firebox, a grate for supporting the fuel charge.
  • the grate includes intake air openings for leading primary air from the intake air duct to the firebox.
  • the fireplace includes a secondary air duct for leading secondary air to the firebox from a second end to a first end of the secondary air duct, and a secondary air limiter arranged to form a regulating element in the firebox for regulating the flow of secondary air that leaves the secondary air duct.
  • the invention also relates to an arrangement for a fireplace and a method for the secondary air supply of a fireplace.
  • Air supply of a charge-heated fireplace is a compromise between different factors, such as, for example, easy ignitability, efficiency of combustion and emissions produced from combustion.
  • primary intake air is led to the firebox through a grate.
  • Secondary air is often fed through openings in the door of the firebox.
  • secondary air supply should be markedly limited and air should only be fed via the primary duct through the ember bed in order that pieces of charcoal would quickly burn out and the total emissions would remain as small as possible.
  • reducing the ember combustion phase standardises the efficiency of the fireplace.
  • both primary and secondary air supplies can be regulated manually, but such a method is awkward to use and requires continuous monitoring. To be workable, regulation of supply air must be automatic.
  • Patent publication FI119077 discloses a fireplace, wherein primary and secondary air supplies to the firebox are controlled in a self-sustained manner with a solution based on thermal expansion of the fireplace frame.
  • a solution based on thermal expansion cannot influence the combustion of successive fuel charges because the temperature differences are not sufficiently big in the fireplace during the charge combustion.
  • a hot frame remains thermally expanded between different charges.
  • the air supply is mainly regulated during the combustion of the first charge and while the fireplace cools down at the end of the heating cycle.
  • control of the combustion event is far from optimal, for example, in a situation where, between the additions of fuel charges, the combustion event proceeds to the ember combustion phase once or several times.
  • This solution is also mechanically very complex and thus difficult to utilise commercially.
  • the object of the invention is to provide an improved fireplace, which is equipped with an automatic regulation mechanism for intake air supply, the purpose of which is to control the combustion event for each fuel charge and reduce total emissions of the fireplace as well as improve the total efficiency ratio of the fireplace by equalising variations of charge combustion.
  • the characteristic features of this invention are set forth in the accompanying Claim 1.
  • Another object of the invention is to provide an improved arrangement for a fireplace including an automatic regulation mechanism for intake air supply, the purpose of which is to control the combustion event for each fuel charge and reduce total emissions of the fireplace as well as improve the total efficiency ratio of the fireplace by equalising variations of charge combustion.
  • the characteristic features of this invention are set forth in the accompanying Claim 16.
  • Still another object of the invention is to provide an improved method for the secondary air supply of a fireplace, the purpose of which is to control the combustion event for each fuel charge and reduce total emissions of the fireplace as well as improve the total efficiency ratio of the fireplace by equalising variations of charge combustion.
  • the fireplace according to the invention includes a firebox for a fuel charge, an intake air duct for leading intake air to the firebox, a grate for supporting the fuel charge.
  • the grate includes intake air openings for leading primary air from the intake air duct to the firebox.
  • the fireplace includes a secondary air duct for leading secondary air to the firebox from a second end to a first end of the secondary air duct, and a secondary air limiter arranged to form a regulating element in the firebox for regulating the flow of secondary air that leaves the secondary air duct.
  • the secondary air limiter is arranged to be mobile as a result of the effect of the mass of a fuel charge placed on the grate and arranged to use the regulating element in such a way that when the mass of the fuel charge placed on the grate is reduced, the secondary air limiter closes limiting the flow of secondary air to the firebox.
  • the secondary air duct opens thanks to the mass of the fuel charge, thus permitting intake air to be led along the secondary air duct beyond the charge even upper in the firebox for combustion.
  • the charge burns calmly and cleanly as oxygen is carried along with intake air above the fire.
  • the secondary air duct closes resulting in that the flow of intake air is led through the grate and the ember bed covering it, accelerating burning of the ember. Rapid combustion in the ember phase is desirable and it influences the emissions of charge combustion and the efficiency ratio.
  • the efficiency of combustion can be kept more uniform, which remarkably improves the efficiency ratio of the fireplace.
  • a five minutes' reduction in the ember combustion phase improves the efficiency ratio by one percentage point and the computational efficiency increases by about 9%.
  • a ten minutes' reduction in the ember combustion phase improves the efficiency ratio by 1.8 percentage points and the computational efficiency increases by about 20%.
  • the grate means the part comprising intake air openings that separates the intake air duct and the firebox.
  • the grate supports the fuel charge, and in this context, the grate is also used to refer to other structures for supporting fuel.
  • the grate is preferably a slotted grate.
  • the substance to be combusted is more tightly packed on the grate, compared to a wave-shaped grate, for example, and thus the fuel charge regulates the flow of primary air from the intake air duct to the firebox.
  • the surface area of the grate openings can be 10 - 60%, preferably 20 - 40% of the entire surface area of the grate.
  • the grate and the secondary air limiter can be formed as an integrated whole, for example, from an individual cast iron component, ceramics or other fire-resistant substance.
  • the grate can also be assembled using several parts connected to each other.
  • the fireplace includes only one intake air duct, via which primary air is arranged to flow to the firebox through the grate and via which secondary air is arranged to flow to the firebox beyond the grate. In this way, the total air supply of the fireplace can be regulated by regulating the flow of one intake air duct.
  • secondary air is arranged to flow to the firebox via separate intake air ducts, which can be located on the sides of the fireplace, for example. In this way, it is possible to regulate the flows of primary air and secondary air independently of each other.
  • the secondary air limiter is arranged as an extension of the grate to limit a secondary air duct from the firebox for leading secondary air from the intake air duct to the firebox, and the regulating element is included in the first end included in the secondary air duct. In this way, the supply of secondary air to the firebox can be automatically regulated for each fuel charge.
  • the fireplace includes a support joint arranged at the edge included in the secondary air limiter, between the grate and the secondary air limiter, for supporting the grate to the firebox, permitting at least the secondary air limiter to turn around the support joint for moving the regulating element relative to the firebox for automatically regulating the amount of secondary air in each combustion situation according to the combined mass of the fuel charge on the grate and the grate.
  • a secondary air opening is formed in the second end included in the secondary air duct, between the support joint and the firebox, for leading secondary air from the intake air duct to the secondary air duct. In this way, the supply of secondary air to the firebox can be automatically regulated for each fuel charge.
  • the secondary air limiter and the support joint are fixedly connected to the grate forming a secondary air regulation mechanism.
  • the regulation mechanism can be manufactured, for example, as an individual component from cast iron or ceramics, which are known as materials with a good thermal resistance.
  • the fireplace according to the first embodiment preferably includes two secondary air regulation mechanisms, each of which has a grate, a secondary air limiter and a support joint.
  • regulation of secondary air operates mechanically well and regulation mechanisms can be easily fitted through the fireplace door and installed in a typical existing fireplace.
  • a two-piece embodiment leads secondary air more uniformly from both sides of the firebox.
  • the grate has a first level and the secondary air limiter has a second level and the first level and the second level are divergent, the secondary air limiter forming an inclined surface relative to the horizontal plane in the position of use for guiding the fuel charge onto the grate.
  • the regulating element preferably forms a structure that tapers downwards enabling the fuel charge to be guided onto the grate.
  • the fuel charge on the intake air openings of the grate partly also limits the flow of primary air making it possible to regulate the total air supply to the firebox.
  • the width of the grate between the grate edge and the support point can be 25 - 100%, preferably 30 - 70% of the width of the secondary air limiter between the edge of the secondary air limiter and the support point.
  • the regulation mechanism suits well as a whole to typical fireplaces and secondary air can be guided preferably sufficiently high.
  • the mass and length of the grate relative to the mass and length of the secondary air limiter can be such that the moment generated by the secondary air limiter relative to the support joint is equal to the moment generated jointly by the grate and the fuel amount, the mass of which is 5 - 30%, preferably 8 -
  • the secondary air duct preferably closes at the right time as the combustion event proceeds to the ember combustion phase.
  • the secondary air regulation mechanisms can be identical with each other. This simplifies the structure of the regulation mechanism and decreases manufacturing costs.
  • the support joint is formed of two separate support joints placed at a distance from each other, between which there is the secondary air opening of the second end and between which the axis of rotation of each secondary air regulation mechanism is formed.
  • the regulation mechanism is provided with a robust structure and a large surface area is achieved for the intake opening of the secondary air duct.
  • the secondary air limiter together with the secondary air opening, is arranged to form the secondary air duct leading from the intake air duct to the firebox. With such a construction, it is not necessary to build a separate secondary air duct in the fireplace and the fireplace can have a simple construction.
  • the fireplace can be a sauna stove.
  • Sauna stoves are very commonly used fireplaces, with which achievement of the maximum heating efficiency is particularly aimed at.
  • the invention can have a remarkable influence on emissions and the efficiency ratio of sauna stoves.
  • a sauna stove means a furnace-like heater of a sauna, in the upper part of which there is a stone arrangement capable of storing heat and onto the heated stones of which it is possible to throw water during use to provide water steam in the room functioning as the sauna.
  • the fuel charge can be wood.
  • the invention can remarkably accelerate combustion of an ember and thus reduce generation of carbon monoxide.
  • the secondary air limiter and the support joint compose a secondary air regulation mechanism, separate from the grate, which further includes an arm, upon which the grate is arranged, on the other side of the support joint as an extension of the secondary air limiter.
  • the secondary air regulation mechanism according to the invention can also be applied in existing fireplaces and grates.
  • the minimum cross-sectional area of a completely open secondary air duct relative to the cross-sectional area of the primary air duct can be 40 - 100%, preferably 50 - 80%.
  • secondary air can be fed to the firebox with an optimal ratio relative to primary air.
  • the grate and the regulating element are supported by a spring or a counterweight or a combination of these.
  • a force contrary to the force of gravity exerted on the grate and the fuel charge is provided enabling regulation of the secondary air supply.
  • the grate and regulating element supported by a spring or a counterforce or a combination of these can move in its entirety in an elevator-type manner or the grate can be hinged or articulated in such a way that the grate inclines as the fuel mass changes, the secondary air regulator thus being arranged to regulate the supply of secondary air when the grate inclines.
  • the fireplace also includes equipment for regulating primary air for keeping the total air amount constant.
  • both the primary air supply and the secondary air supply of the fireplace can be regulated to enable better control of the combustion event and to keep the efficiency of combustion constant.
  • For regulating primary air it is possible to use, for example, the fuel charge on the intake air openings of the grate.
  • the fuel power of the fireplace can be 5 - 80 kW.
  • sauna stoves and other fireplaces of a similar size operate in this efficiency range.
  • the invention also relates to an arrangement for a fireplace.
  • the fireplace subject of the arrangement includes a firebox for a fuel charge and an intake air duct for leading intake air to the firebox.
  • the arrangement includes a grate, which includes intake air openings for leading primary air from the intake air duct to the firebox, for supporting a fuel charge, and a secondary air limiter arranged to form a regulating element for regulating secondary air that enters the firebox.
  • the secondary air limiter is arranged to be mobile as a result of the effect of the mass of the fuel charge placed on the grate and arranged to use the regulating element in such a way that when the mass of the fuel charge placed on the grate is reduced, the secondary air limiter closes limiting the flow of the secondary air to the firebox.
  • the regulation mechanism can be fitted in existing fireplaces.
  • a conventional grate can be replaced with the arrangement, the benefits of which correspond to the benefits of the fireplace described above.
  • the invention also relates to a method for secondary air supply of a fireplace.
  • the method for supplying secondary air to a fireplace with a fuel power of 5 to 80 kW, in which fireplace solid fuel is burnt on the grate in the firebox and primary air is led to the firebox through the grate and secondary air is led to the firebox above the grate, the flow of secondary air is regulated based on the force of gravity exerted on the fuel charge placed on the grate in such a way that when the mass of the fuel charge placed on the grate is reduced, the secondary air limiter included in the fireplace closes limiting the flow of secondary air to the firebox.
  • the secondary air supply of a fireplace can be regulated during the combustion event as the mass of the fuel charge changes, which can reduce emissions of the fireplace and improve the efficiency ratio of the fireplace.
  • Wood is preferably burnt in the fireplace. In the final phase of wood burning, there is a large ember in the firebox. The invention can remarkably accelerate combustion of an ember and thus reduce generation of carbon monoxide.
  • the flow of secondary air is only regulated by the effect of the mass that changes during the combustion process of the fuel charge. In this way, regulation of the flow of secondary air takes place automatically independently of the user.
  • the regulation of the flow of secondary air operates in the same way for each fuel charge.
  • primary air and secondary air are led to the firebox from a common intake air duct. In this way, the total air supply of the fireplace can be regulated by regulating the flow of one intake air duct.
  • the flow of secondary air to the firebox is limited when the mass of the fuel charge has been reduced to 5 - 30 percent, preferably to 8 - 20 percent of the mass of the fuel charge placed in the firebox.
  • the flow of intake air can be regulated in a desired way in the ember combustion phase.
  • Figure la is a front view of a fireplace according to the invention without a front panel in a situation, in which the moment generated by the fuel charge relative to the support joint has opened the secondary air duct,
  • Figure lb is a front view of a fireplace according to the invention without a front panel in a situation, in which the mass of charcoals on the grate is so small that the secondary air duct is closed,
  • Figure 2a is a right diagonal front view and a top view of a fireplace according to the invention without a front panel with the secondary air duct open,
  • Figure 2b is a right diagonal front view and a top view of a fireplace according to the invention without a front panel with the secondary air duct closed,
  • Figure 3a is a right diagonal front view and a bottom view of a fireplace according to the invention without a front panel with the secondary air duct open,
  • Figure 3b is a right diagonal front view and a bottom view of a fireplace according to the invention without a front panel with the secondary air duct closed
  • Figure 4a is a basic view of a second fireplace according to the invention in a situation, in which the secondary air duct is open
  • Figure 4b is a basic view of a second fireplace according to the invention in a situation, in which the secondary air duct is closed
  • Figure 5a depicts a third fireplace according to the invention without a front panel in a situation, in which the secondary air duct is open, and
  • Figure 5b depicts a third fireplace according to the invention without a front panel in a situation, in which the secondary air duct is closed.
  • Figures la - 3b depict the first embodiment of a fireplace 10 according to the invention, in this case a sauna stove.
  • the firebox 12 of a sauna stove is limited by the sides 141, the rear panel 142 and the front panel (not shown in figures) of the frame 14 of the fireplace 10.
  • a grate 20 comprising intake air openings 21 ( Figure 2a) for leading primary air from the intake air duct 17 to the firebox 12.
  • the grate 20 extends from the rear panel 142 of the fireplace 10 to the front panel of the fireplace 10 in the depth direction of the fireplace 10, which is illustrated in Figures 2a and 2b.
  • the upper part of the firebox 12 is limited by a panel component 49, by going around of which combustion gases can enter the side ducts 50, wherein combustion gases indirectly heat stones in a stone space 180.
  • the stone space 180 shown in Figures la - 2a is also equipped with sweeping openings covered with lids 191 as well as a connection to a chimney 192.
  • a secondary air limiter 22 which functions as a regulating element 18 for regulating secondary air that enters the firebox 12 from the intake air duct 17.
  • the entity formed by the grate 20, the secondary air limiter 22 and the support joint 26 between these is formed as a continuous integral part, of which there are two identical items, each of which forms a regulation mechanism 19.
  • the regulation mechanisms 19 are arranged relative to each other as mirror images relative to the vertical centre line of the fireplace 10.
  • the secondary air duct 30 shown in Figures 3a and 3b, formed between the secondary air limiter 22 and the side 141 of the fireplace 10 is limited to a so-called first end 31, which is located between the edge of the secondary air limiter 22 and the side 141 of the fireplace 10 ( Figures 3a and 3b), and to a second end 32, which is located between the support joint 26 and the side 141 of the frame 14 of the fireplace 10.
  • Identical secondary air ducts 30 are formed on both sides of the fireplace 10.
  • Both primary air and secondary air flow to the firebox 12 and to the burning substance via the intake air duct 17 formed by the ash space 16 below the grate 20.
  • the user can regulate the flow of both primary air and secondary air.
  • a fuel charge the mass of which can be about 3 kg, for example, has been loaded to the firebox 12 on the grate 20.
  • Secondary air limiters 22 form a surface that is inclined relative to the horizontal plane in the position of use, a second level 202, which guides the fuel charge 60 onto the grate 20 to the first level 201, the fuel charge 60 thus at least partly blocking the intake air openings 21 of the grate 20 limiting the supply of primary air.
  • the force of gravity exerted on the fuel charge 60 and the grate 20 causes the turning of the regulation mechanism 19 around the support joint 26 in such a way that the secondary air limiter 22 moves towards the centre of the firebox 12.
  • the first end 31 of the secondary air duct 30 opens thus permitting air coming from the second end 32 of the secondary air duct 30 to flow to the firebox 12 between the secondary air limiter 22 and the secondary air deflector 24.
  • the grate 20 can lean on the support component 144 of the frame 14 of the fireplace 10 by its bottom surface.
  • the secondary air limiter 22 can lean on the support component 241 of the secondary air deflector 24.
  • the purpose of the secondary air deflector 24 is to lead air coming from the secondary air duct 30 towards the combustion event.
  • Figures 2a and 3a illustrate an opening 242 that remains between the support parts 241 of the secondary air deflector 24, via which secondary air is fed to the firebox 12 when the secondary air duct 30 is open.
  • air is fed to the firebox 12 both from the primary duct through the intake air openings 21 of the grate 20 below the burning substance and through the secondary air ducts 30 on the sides of the firebox 12 above the burning substance.
  • the secondary air limiter 22 leans on the side 141 of the frame 14 of the fireplace 10, thus the first end 31 of the secondary air duct 30 being closed.
  • the closing of the first end 31 of the secondary air duct 30 does not mean complete air-tightness but a notable restriction of secondary air supply (more than 95%). It is advantageous that there remains a small clearance between the secondary air limiter 22 and the side 141 of the frame 14 of the fireplace 10 even when the secondary air duct 30 is closed for guaranteeing the reliability of operation of the regulation mechanism 19.
  • a clearance remains on the sides of the grate 20, which extends from the rear panel 142 of the frame 14 of the fireplace 10 to the front wall of the frame 14 of the fireplace 10 in the depth direction of the fireplace 10, in order that the operation of the regulation mechanism 19 is not disturbed due to, for example, thermal expansion and/or charcoals or ash entering between the grate 20 and the support component 144 of the frame 14 of the fireplace 10.
  • Air can also be led to the fireplace 12 through the openings in the door of the firebox 12 achieving in this way clean combustion in the immediate vicinity of the door, which reduces soot formation on the transparent glass door.
  • the amount of secondary air obtained through this is small relative to air fed via the secondary air duct 30.
  • the fireplace has a fuel power ranging between 20 and 30 kW.
  • the length of the grate 20 in the depth direction of the fireplace 10 can be, for example, 20 - 40 cm, preferably 25 - 35 cm, and the width between the edge of the grate 20 and the support joint 26 can be 5 - 20 cm, preferably 8 - 15 cm.
  • the width of the secondary air limiter 22 between the secondary air limiter 22 and the support joint 26 can be, for example, 10 - 30 cm, preferably 15 - 25 cm.
  • the distance of the connection point between the secondary air limiter 22 and the grate 20 from the side 141 of the frame 14 of the fireplace 10 can be, for example, 1 - 5 cm, preferably 2 - 4 cm.
  • the length of the firebox 12 in the depth direction can be, for example, 20 - 50 cm, preferably 30 - 45 cm, the width can be, for example, 20 - 50 cm, preferably 25 - 40 cm, and the height can be, for example, 20 - 80 cm, preferably 30 - 70 cm.
  • FIGS 4a - 4b illustrate a basic view of a second embodiment of the fireplace 10 according to the invention, comprising a one-part grate 20.
  • the grate 20 rests on the support part 148 of the frame 14 of the fireplace 10 and, by its first end, on the arm 29 of the regulation mechanism 19.
  • the regulation mechanism 19 turns relative to the support joint 26 in such a way that the secondary air limiter 22 moves away from the side 141 of the frame 14 of the fireplace 10 opening the secondary air duct 30 ( Figure 4a).
  • the moment exerted by the secondary air limiter 22 on the system relative to the support joint 26 exceeds the moment generated jointly by the grate 20 and the ember 60'.
  • the regulation mechanism 19 turns around the support joint 26 in such a way that the secondary air limiter 22 moves towards the side 141 of the fireplace 10 and limits access of secondary air to the firebox 12 by closing the secondary air duct 30.
  • air thus flows mainly via the intake air duct formed by the intake air openings 21 of the grate 20 through the ember bed 60' ( Figure 4b).
  • Figures 5a - 5b illustrate a basic view of a third embodiment of the fireplace 10 according to the invention, comprising a grate 20 supported by springs 200 and a regulation mechanism 19 formed by a regulating element 18.
  • a fuel charge 60 is loaded on the grate 20
  • the force of gravity exerted on the grate 20 and the fuel charge 60 compresses the springs 200 resulting in a downward movement of the grate 20 and the secondary air deflector 22.
  • the secondary air ducts 30 on the sides 141 of the frame 14 of the fireplace 10 open and the fuel charge 60 on the grate 20 simultaneously limits the supply of primary air (Figure 5a).
  • a counterweight or a combination of springs 200 and a counterweight can be used, producing a force contrary to the force of gravity exerted on the grate 20 and the regulating element 18, where the regulation mechanism 19 operates otherwise in the same way as in the embodiment illustrated in Figures 5a - 5b.
  • the grate can also be hinged or articulated in such a way that the grate inclines as the fuel mass changes, where the regulation mechanism 19 operates in a corresponding way.
  • the grate is fixedly arranged to the fireplace and the secondary air limiter has pins coming through the intake air openings of the grate connected thereto, the mass of the fuel charge placed on top of these pins moving the secondary air limiter via the pins. More precisely, the force of gravity exerted on the fuel charge placed on the pins generates a moment in the regulation mechanism relative to the support joint, which moves the pins downwards resulting in the movement of the secondary air limiter arranged in the pins and the opening of the secondary air duct.
  • the regulation mechanism turns around the support joint in such a way that the pins are lifted up and the secondary air limiter closes the secondary air duct limiting access of secondary air to the firebox.
  • the fireplace can also be, for example, a furnace, stove, hearth, baking oven, or other similar fireplace suitable for the purpose of use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Solid-Fuel Combustion (AREA)
  • Furnace Details (AREA)

Abstract

L'invention concerne une cheminée (10) qui comprend un foyer (12) pour une charge de combustible (60), un conduit d'air d'admission (17) destiné à conduire l'air primaire vers le foyer (12), une grille (20) permettant de supporter la charge de combustible (60), la grille (20) comprenant des ouvertures d'air d'admission (21) pour conduire l'air primaire du conduit d'air d'admission (17) au foyer (12), un conduit d'air secondaire (30) destiné à conduire l'air secondaire vers le foyer (12) d'une seconde extrémité (32) à une première extrémité (31) du conduit d'air secondaire (30), et un limiteur d'air secondaire (22) agencé pour former un élément de régulation (18) dans le foyer (12) pour réguler l'écoulement d'air secondaire qui quitte le conduit d'air secondaire (30). De plus, le limiteur d'air secondaire (22) est conçu pour être mobile suite à l'effet de la masse de la charge de combustible (60) placée sur la grille (20) et conçu pour utiliser l'élément de régulation (18) de telle sorte que, lorsque la masse de la charge de combustible (60) placée sur la grille (20) est réduite, le limiteur d'air secondaire (22) interrompt la limitation de l'écoulement d'air secondaire vers le foyer (12). L'invention concerne également un agencement pour une cheminée et un procédé pour l'alimentation en air secondaire d'une cheminée.
EP20848842.9A 2019-12-13 2020-12-14 Cheminée et procédé pour l'alimentation en air secondaire d'une cheminée Active EP4073434B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20196083A FI130332B (fi) 2019-12-13 2019-12-13 Tulisija ja menetelmä tulisijan toisioilman syötössä
PCT/FI2020/050838 WO2021116538A1 (fr) 2019-12-13 2020-12-14 Cheminée, agencement pour cheminée et procédé pour l'alimentation en air secondaire d'une cheminée

Publications (3)

Publication Number Publication Date
EP4073434A1 true EP4073434A1 (fr) 2022-10-19
EP4073434B1 EP4073434B1 (fr) 2023-09-27
EP4073434C0 EP4073434C0 (fr) 2023-09-27

Family

ID=74494935

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20848842.9A Active EP4073434B1 (fr) 2019-12-13 2020-12-14 Cheminée et procédé pour l'alimentation en air secondaire d'une cheminée

Country Status (3)

Country Link
EP (1) EP4073434B1 (fr)
FI (1) FI130332B (fr)
WO (1) WO2021116538A1 (fr)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4101631A1 (de) * 1991-01-21 1992-07-23 Everken Olsberger Huette Kg Mit festen brennstoffen betriebener heizofen
CH698018B1 (de) * 2005-01-19 2009-04-30 Gaan Gmbh Holzofen mit Zuluftsteuerung.
FI119077B (fi) * 2007-01-09 2008-07-15 Harvia Oy Tulisija

Also Published As

Publication number Publication date
FI20196083A1 (fi) 2021-06-14
EP4073434B1 (fr) 2023-09-27
EP4073434C0 (fr) 2023-09-27
FI130332B (fi) 2023-06-21
WO2021116538A1 (fr) 2021-06-17

Similar Documents

Publication Publication Date Title
US4127100A (en) Wood burning stove
RU2365824C1 (ru) Отопительно-варочный камин
US20100229768A1 (en) Method for regulating the output of a solid-fuel furnace and furnace with a corresponding output regulator
US4712491A (en) Process and apparatus for the controlled burning of a vertical stack of solid fuel
FI118823B (fi) Polttomenetelmä ja polttolaite
US20080035137A1 (en) Combustion apparatus
US6488024B2 (en) Wood heater
CA1136940A (fr) Appareil de chauffage, avec regulateurs d'admission de l'air primaire et de l'air secondaire, pour combustibles solides
EP4073434B1 (fr) Cheminée et procédé pour l'alimentation en air secondaire d'une cheminée
US6216684B1 (en) Wood heater
DK166637B1 (da) Braendeovn
EP1008808B1 (fr) Méthode de régulation de l'air de combustion et arrangement de régulation correspondant
US91857A (en) Oscar f
FI119077B (fi) Tulisija
US4445496A (en) Wood burning heater providing improved uniform temperature output
RU2794577C2 (ru) Способ сжигания твердого топлива в бытовом твердотопливном отопительном устройстве с помощью колосникового устройства и колосниковое устройство для осуществления этого способа
PT2775201E (pt) Método operacional para um aquecedor
RU2828798C1 (ru) Устройство ресурсосберегающего рычага терморегулятора
JP3907591B2 (ja) 陶芸用窯
KR101644235B1 (ko) 무동력 이동식 펠렛난로
GB2481026A (en) Space heater with selective flow to divided cavity
FI129332B (fi) Palamisilmakasetti, tulisija palamisilmakasetilla, menetelmä palamisilman syöttämiseksi ja palamisilmakasetin jälkiasennussarja
RU2792953C2 (ru) Способ сжигания твердого топлива в бытовом твердотопливном отопительном устройстве с помощью колосниковой решетки и колосниковая решетка для осуществления этого способа
US64465A (en) Marshall
US647427A (en) Cooking and heating stove.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220621

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F23L 13/00 20060101ALI20230323BHEP

Ipc: A61H 33/06 20060101ALI20230323BHEP

Ipc: F23N 3/00 20060101ALI20230323BHEP

Ipc: F24B 1/02 20060101ALI20230323BHEP

Ipc: F24B 5/02 20060101AFI20230323BHEP

INTG Intention to grant announced

Effective date: 20230421

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020018436

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

U01 Request for unitary effect filed

Effective date: 20231023

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20231030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231227

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231228

U20 Renewal fee paid [unitary effect]

Year of fee payment: 4

Effective date: 20240123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240127

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602020018436

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

26N No opposition filed

Effective date: 20240628

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231231