EP4071408B1 - Procédé et agencement de surveillance des flammes dans une chambre de combustion d'un chauffage pouvant fonctionner sur hydrogène ou sur gaz de combustion contenant de l'hydrogène - Google Patents

Procédé et agencement de surveillance des flammes dans une chambre de combustion d'un chauffage pouvant fonctionner sur hydrogène ou sur gaz de combustion contenant de l'hydrogène Download PDF

Info

Publication number
EP4071408B1
EP4071408B1 EP22162920.7A EP22162920A EP4071408B1 EP 4071408 B1 EP4071408 B1 EP 4071408B1 EP 22162920 A EP22162920 A EP 22162920A EP 4071408 B1 EP4071408 B1 EP 4071408B1
Authority
EP
European Patent Office
Prior art keywords
temperature
combustion chamber
flames
combustion
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP22162920.7A
Other languages
German (de)
English (en)
Other versions
EP4071408A1 (fr
EP4071408C0 (fr
Inventor
Bodo Oerder
Arnold Wohlfeil
Jochen Grabe
Fabian Staab
Matthias Hopf
Michael Schumacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vaillant GmbH
Original Assignee
Vaillant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vaillant GmbH filed Critical Vaillant GmbH
Publication of EP4071408A1 publication Critical patent/EP4071408A1/fr
Application granted granted Critical
Publication of EP4071408B1 publication Critical patent/EP4071408B1/fr
Publication of EP4071408C0 publication Critical patent/EP4071408C0/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/022Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/9901Combustion process using hydrogen, hydrogen peroxide water or brown gas as fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/16Measuring temperature burner temperature

Definitions

  • the invention relates to a method and an arrangement for observing flames in a combustion chamber of a heater that can be operated with hydrogen and/or a hydrogen-containing fuel gas.
  • Hydrogen as a fuel gas or as an admixture to fuel gases is becoming increasingly important, and great efforts are being made to equip new or existing heating devices to operate with it. This is not just about large systems, but also about wall-mounted devices for heating water and generally about heating devices for heating buildings and/or providing warm water.
  • DE 10 2012 220526 B3 describes a method and an arrangement for observing or monitoring flames in a combustion chamber of a heater, wherein a temperature is measured at at least one measuring point in or on the combustion chamber, the temperature at the measuring point also being measured using a mathematical model from others measured at the heater or predetermined physical operating data is calculated, and the measured temperature is compared with the calculated one and, in the event of deviations above a threshold value, it is concluded that the flames have gone out.
  • the combustion of hydrogen differs from previously used fuel gases in several ways.
  • a hydrogen flame is almost invisible to the human eye, radiates less heat than flames generated with carbon-containing fuels, and different measuring systems are required than for heaters for fuels made from hydrocarbons.
  • the present invention is therefore particularly, but not only, suitable for heating devices that are operated with pure hydrogen or with fuel gas that consists of more than 50%, in particular more than 97%, hydrogen.
  • a flame monitor and/or control of combustion in a combustion chamber can therefore in principle also be carried out using temperature measurements. If the presence of a flame in a combustion chamber is monitored by means of at least one temperature sensor, its measured value is continuously or quasi-continuously forwarded to a control and regulation unit, the control and regulation unit monitoring the measured value and its behavior over time and comparing it with predefinable target ranges, and in the event of deviations
  • the fuel gas supply ends from one of the target ranges.
  • calibration data or characteristic maps can be stored or made available in the control and regulation unit, with which measured values and their time derivatives can be compared.
  • the temperature sensor measures an increase in temperature. If the flame goes out, a drop in temperature is measured. If the temperature reduction per unit of time exceeds a previous e.g. B. experimentally determined value, this is interpreted as the flame going out by the evaluation and control unit and the fuel gas valve is closed. When igniting the burner, the procedure is reversed. If there is no rapid increase in temperature at the temperature sensor after ignition, it can be concluded that there is a misfire. If the temperature rises at the expected rate, the ignition process is considered successful. Temperature monitoring can ensure that hydrogen is burned.
  • the combustion air ratio (lambda) relates the air mass actually available to the minimum air mass that is theoretically required for stoichiometrically complete combustion. Temperature monitoring with the function of a flame monitor can ensure that combustion occurs or that a shutdown occurs if the flame goes out.
  • the evaluations described require a certain limitation of the area of application in which the measured values can be reliably interpreted, which can limit the use of this technology in safety-relevant functions. It is not always possible to clearly interpret temperatures and/or their changes, especially when the operating conditions change (modulation of power, consumption of different amounts of heat per unit of time, restart after a shutdown, etc.) of the heater. So can e.g. B. a quick reduction in power or a quick An increase in heat dissipation through a heat exchanger could be incorrectly viewed as an extinguishment of the flames, which would trigger an immediate shutdown.
  • the object of the present invention is to at least partially solve the problems described with reference to the prior art.
  • a method and an arrangement are to be created with which the ignition and/or the extinction of flames in a combustion chamber of a heater can be reliably detected under different or changing operating conditions.
  • a method contributes to this by observing or monitoring flames in a combustion chamber of a heater which is operated with hydrogen or a hydrogen-containing fuel gas, with a temperature being measured at at least one measuring point in or on the combustion chamber, the temperature at the measuring point also being used a mathematical model is calculated from other physical operating data measured or specified on the heater and the measured temperature and / or its temporal behavior is compared with the calculated one and, in the event of deviations above a threshold value, it is concluded that the flames have ignited or gone out.
  • the mathematical model calculates a theoretical temperature and/or a theoretical temperature curve that would have to be measured if all systems are functioning properly. The actual measured data is then compared with these. This allows (if the mathematical model is good enough and has enough information available to it, which is typically the case with modern heaters), among other things, a decision to be made as to whether flames have been ignited or extinguished, under practically all operating conditions and with great reliability. This makes it possible to create a robust flame detector for a wide modulation range of the heater's output and many different operating situations.
  • the model also allows monitoring or plausibility checks of measuring devices and signal paths. This means an additional gain in safety because it can be detected early if individual sensors fail, drift or deliver incorrect measured values. Deviations between the model and actually measured physical quantities that have not previously occurred under similar operating conditions can provide indications of errors.
  • the mathematical model takes into account the physical properties of the combustion chamber and parameters essential for combustion.
  • the combustion chamber more generally referred to as a warm cell, can be easily described with relatively few parameters due to a certain symmetry and homogeneity, which means that the temperature can be mapped as a function of these parameters.
  • the heat capacity of essential components of the combustion chamber (or an integral consideration thereof), the heat conduction and heat transfer coefficients are taken into account materials used and a temperature measurement system used are taken into account as physical properties. If heat is supplied to the combustion chamber through combustion, it heats up, although not only the gaseous contents of the combustion chamber, but also the heat absorption of walls, in particular a heat exchanger integrated there, and other components are taken into account. Their heat capacity and the speed with which heat transfers to these components (depending on heat transfer coefficients) are taken into account by the model.
  • the properties of a temperature sensor itself should also be taken into account, as a temperature sensor can be sluggish and respond to temperature changes with a delay. All properties of the combustion chamber are practically constant, so that the behavior of the combustion chamber when heat is supplied or removed can be described by stored maps (calculated and/or empirical values) or a few parameters.
  • the mathematical model also preferably takes into account the mass flows of air and fuel gas, the amount of energy that can be achieved from these mass flows by combustion per unit of time and the ambient temperature as operating data essential for combustion.
  • a modern heater has a lot of data available that can be used for the model.
  • the model requires information about how much air at what temperature and how much fuel gas at what temperature is supplied to the combustion chamber per unit of time.
  • the speed of a fan and the opening of a fuel gas valve can, for example, be suitable parameters for the respective mass flows.
  • the (heat) energy supplied to the combustion chamber per unit of time can then be calculated from the type of fuel gas and assuming complete combustion.
  • a suitable algorithm can specify the expected temperature (especially at the measuring point) as a function of the parameters supplied.
  • the difference between the measured temperature and the temperature calculated without combustion energy or the difference between their temporal behavior from the start of the heater is preferably formed and when a first threshold value is exceeded, it is concluded that flames have ignited and combustion energy has been released. Since the model could receive the information that an ignition has been triggered, but cannot calculate whether flames are actually formed, the model calculates the temperature when the heater starts without supplying combustion energy. The actual temperature must correspond to this as long as no flames have been ignited. If this is the case for too long, the fuel gas supply is stopped and the starting process may be repeated or an error message is issued.
  • the difference between the measured temperature and the temperature calculated with combustion energy or the difference between their temporal behavior after the heating device is started is formed and, if the temperature falls below a second predeterminable threshold value, it is concluded that the flames have gone out and the loss of combustion energy.
  • An arrangement for observing or monitoring flames in a combustion chamber of a heater which can be operated with hydrogen or a hydrogen-containing fuel gas, also contributes to solving the problem, with at least one Temperature sensor is present on or in the combustion chamber, which is connected to a control and regulation unit, a mathematical model of the combustion chamber with a temperature sensor being modeled in the control and regulation unit, the model containing operating data of the heater and data stored in the control and regulation unit physical variables of the combustion chamber and the temperature sensor can be supplied, the mathematical model taking into account physical properties of the combustion chamber and parameters essential for combustion, namely the heat capacity of essential components of the combustion chamber as well as the heat conduction and heat transfer coefficients of materials used and a temperature sensor used, and an evaluation logic being present is set up to determine from a temperature and/or its temporal behavior calculated by the mathematical model and a temperature measured by the temperature sensor or its temporal behavior whether the flames have been ignited and/or extinguished.
  • the evaluation logic can also take on more complex tasks than simply forming the difference between temperatures, e.g. B. create and compare temporal derivatives of the temperatures or compare characteristic patterns of the temperature progression from calculated and measured temperatures. In any case, the evaluation is more reliable than the evaluation of a merely measured absolute temperature or its behavior over time.
  • At least one fan speed, a mass flow of fuel gas and an ambient temperature can be supplied to the mathematical model as physical operating data essential for combustion.
  • Other measured variables can also be supplied that can provide the same information (mass flows of air and fuel gas, ambient temperature) through conversion.
  • the mathematical model can preferably be supplied with at least the data about a heat capacity of the combustion chamber and about an inertia of the temperature sensor.
  • the model can also work recursively, e.g. B. calculates the temperatures at various points in the combustion chamber and uses these temperatures as the starting value for the next calculation.
  • the measured temperature and the calculated temperature can be fed to the evaluation logic, and the evaluation logic is set up to function as a flame monitor in that if an expected ignition does not occur or the flames go out, a fuel gas valve can be switched off and/or a fault message can be triggered.
  • Another aspect also relates to a computer program product comprising instructions that cause the described arrangement to carry out the described method.
  • the evaluation of the data measured by the sensor, its further use in the heater and the mathematical model as well as the evaluation logic require a program and data in order to be able to carry out the function as a flame detector, although both must be updated occasionally.
  • the explanations of the process can be used to characterize the arrangement in more detail, and vice versa.
  • the arrangement can also be set up in such a way that the procedure is carried out with it.
  • Fig. 1 shows schematically a heater 1 designed for operation with hydrogen as fuel gas or with hydrogen-containing fuel gas.
  • the heater 1 has a fan 2, which supplies a burner 3 with air from an air supply 4.
  • Fuel gas here hydrogen or a fuel gas mixture consisting predominantly of hydrogen
  • a control and regulation unit 7 is connected to the fan 2 and the fuel gas valve 5 via data lines 13, so that a mixture suitable for ignition and/or continuous operation is generated and the settings made for this (e.g. speed of the fan 2 and Opening of the fuel gas valve 5) can be reported back.
  • the temperature sensor 10 is also connected to the control and regulation unit 7 via a data line 13.
  • the combustion chamber 15 is surrounded by a housing 8, in which only indicated heat exchanger surfaces are located.
  • the resulting combustion gases are discharged into the environment via an exhaust system 9.
  • an ignition device 17 is present, which is connected to the control and regulation unit 7 by means of an ignition line 14.
  • a display 18 (which can also be elsewhere in the case of remote maintenance) provides information about the status of the heater 1.
  • the actually measured temperature TM is compared with this in an evaluation logic 12 and, in the event of strong deviations, it is concluded that the flames 16 have ignited or gone out.
  • the evaluation logic 12 can also process more detailed information and compare the temporal behavior TM ⁇ of the measured temperature with that of the calculated temperature TB ⁇ or the appearance of characteristic patterns in both and conclude from this the presence or extinction of flames 16.
  • a fault message S can be output, for example on the display 18.
  • the safety-relevant function of a flame monitor can be fulfilled with a signal "flame present yes/no".
  • the present invention makes it possible to reliably monitor the presence of flames 16 in the combustion chamber 15 with a temperature sensor 10 in a wide range of operating states of a heater 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)

Claims (9)

  1. Procédé destiné à l'observation ou la surveillance de flammes (16) dans une chambre de combustion (15) d'un appareil de chauffage (1) qui est actionné avec de l'hydrogène ou un gaz combustible contenant de l'hydrogène, dans lequel une température (TM) au niveau d'au moins un point de mesure (19) est mesurée dans ou au niveau de la chambre de combustion (15), dans lequel outre la température (TB) au niveau du point de mesure (19) est calculée à l'aide d'un modèle mathématique (11) à partir d'autres données d'exploitation physiques (PB) mesurées ou prédéfinies au niveau de l'appareil de chauffage (1), et dans lequel la température mesurée (TM) et/ou le comportement dans le temps (TM') de celle-ci sont comparés avec le comportement calculé (TB, TB') et lors d'écarts au-dessus d'une valeur seuil un allumage ou une extinction des flammes (16) est déduit et dans lequel le modèle mathématique (11) prend en compte des propriétés physiques de la chambre de combustion (15) et des paramètres essentiels à la combustion, à savoir la capacité thermique de composants essentiels de la chambre de combustion (15) ainsi que la conductibilité thermique et des coefficients de transmission de chaleur de matériaux utilisés et d'un capteur de température (10) utilisé.
  2. Procédé selon la revendication 1, dans lequel des flux massiques d'air et de gaz combustible, la quantité d'énergie qui peut être obtenue par combustion à partir de ces flux massiques par unité de temps et une température ambiante sont pris en compte en tant que paramètres essentiels à la combustion.
  3. Procédé selon l'une quelconque des revendications 1 ou 2, dans lequel la différence de la température mesurée (TM) et de la température (TB) calculée sans énergie de combustion ou du comportement dans le temps (TM', TB') de celles-ci est formée à partir d'un démarrage de l'appareil de chauffage (1) et, lorsqu'une première valeur seuil est dépassée, est déduite à l'allumage de flammes (16) et à la libération d'une énergie de combustion.
  4. Procédé selon l'une quelconque des revendications précédentes, dans lequel à partir de l'allumage de flammes (16) la différence à partir de la température mesurée (TM) et avec la température (TB) calculée avec l'énergie de combustion ou le comportement dans le temps (TM', TB') de celles-ci est formée à partir d'un démarrage de l'appareil de chauffage (1) et est déduite lorsqu'une seconde valeur seuil prédéfinissable à l'extinction de flammes (16) et à la suppression de l'énergie de combustion n'est pas atteinte.
  5. Agencement destiné à l'observation ou la surveillance de flammes (16) dans une chambre de combustion (15) d'un appareil de chauffage (1) qui peut fonctionner avec de l'hydrogène ou un gaz combustible contenant de l'hydrogène, dans lequel au moins un capteur de température (10) est présent au niveau de ou dans la chambre de combustion (15), lequel est relié à une unité de commande et de régulation (7), dans lequel un modèle mathématique (11) de la chambre de combustion (15) est reproduit avec un capteur de température (10) dans l'unité de commande et de régulation (7), dans lequel des données d'exploitation physiques (PB) de l'appareil de chauffage (1) et des grandeurs physiques de la chambre de combustion (15) stockées dans l'unité de commande et de régulation (7), à savoir la capacité thermique de composants essentiels de la chambre de combustion (15) ainsi que la conductibilité thermique et les coefficients de transmission de chaleur de matériaux utilisés et du capteur de température (10) utilisé peuvent être amenées au modèle (11) et dans lequel une logique d'évaluation (12) est présente, qui est conçue pour déterminer à partir d'une température (TB) calculée par le modèle mathématique (11) et/ou du comportement dans le temps (TB') de celle-ci et d'une température (TM) mesurée par le capteur de température (10) resp. du comportement dans le temps (TM') de celle-ci si un allumage et/ou une extinction des flammes (16) a eu lieu.
  6. Agencement selon la revendication 5, dans lequel au modèle mathématique (11) au moins une vitesse de ventilateur, un flux massique de gaz combustible et une température ambiante peuvent être amenés en tant que données d'exploitation physiques essentielles à la combustion.
  7. Agencement selon la revendication 5 ou 6, dans lequel au moins des données sur la capacité thermique de la chambre de combustion (15) et sur une inertie du capteur de température (10) peuvent être amenées au modèle mathématique (11).
  8. Agencement selon l'une quelconque des revendications 5 à 7, dans lequel la température mesurée (TM) et la température calculée (TB) peuvent être amenées à la logique d'évaluation (12) et la logique d'évaluation (12) est conçue pour le fonctionnement d'un détecteur de flammes par déclenchement d'une fermeture d'une soupape de gaz combustible (5) en l'absence d'un allumage attendu ou d'une extinction des flammes (16).
  9. Produit de programme informatique comprenant des instructions qui font en sorte que l'agencement selon l'une quelconque des revendications 5 à 8 réalise le procédé selon l'une quelconque des revendications 1 à 4.
EP22162920.7A 2021-03-30 2022-03-18 Procédé et agencement de surveillance des flammes dans une chambre de combustion d'un chauffage pouvant fonctionner sur hydrogène ou sur gaz de combustion contenant de l'hydrogène Active EP4071408B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102021108014.2A DE102021108014A1 (de) 2021-03-30 2021-03-30 Verfahren und Anordnung zur Beobachtung von Flammen in einem Verbrennungsraum eines Heizgerätes, das mit Wasserstoff oder wasserstoffhaltigem Brenngas betreibbar ist

Publications (3)

Publication Number Publication Date
EP4071408A1 EP4071408A1 (fr) 2022-10-12
EP4071408B1 true EP4071408B1 (fr) 2023-09-27
EP4071408C0 EP4071408C0 (fr) 2023-09-27

Family

ID=80820149

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22162920.7A Active EP4071408B1 (fr) 2021-03-30 2022-03-18 Procédé et agencement de surveillance des flammes dans une chambre de combustion d'un chauffage pouvant fonctionner sur hydrogène ou sur gaz de combustion contenant de l'hydrogène

Country Status (2)

Country Link
EP (1) EP4071408B1 (fr)
DE (1) DE102021108014A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023101626A1 (de) * 2023-01-24 2024-07-25 Vaillant Gmbh Verfahren zum Betreiben eines Heizgerätes, Computerprogramm, Regel- und Steuergerät und Heizgerät

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011101736B4 (de) 2010-05-17 2015-09-10 Saacke Gmbh Verfahren zur Einstellung und Anpassung einer Feuerungsanlage unter Bestimmung deren Energie-Einsparpotentials
DE102012220526B3 (de) 2012-10-18 2014-01-23 Eberspächer Climate Control Systems GmbH & Co. KG Verfahren zur Flammabbrucherkennung bei einem brennstoffbetriebenen Heizgerät, insbesondere Fahrzeugheizgerät
WO2020079445A1 (fr) * 2018-10-17 2020-04-23 Worgas Burners Limited Procédé de formation d'une membrane de brûleur à gaz

Also Published As

Publication number Publication date
DE102021108014A1 (de) 2022-10-06
EP4071408A1 (fr) 2022-10-12
EP4071408C0 (fr) 2023-09-27

Similar Documents

Publication Publication Date Title
DE10142514B4 (de) Verfahren zum Feststellen eines Flammenrückschlags in einem Gasturbinensystem, sowie Gasturbinensystem
EP3919817B1 (fr) Procédé et dispositif de détection des défauts d'allumage d'un brûleur avec un ventilateur pour l'alimentation en air et une soupape à combustible
DE102020126992A1 (de) Verfahren und Vorrichtung zum sicheren Betrieb eines mit hohem Wasserstoffanteil betriebenen Brenners
EP4071408B1 (fr) Procédé et agencement de surveillance des flammes dans une chambre de combustion d'un chauffage pouvant fonctionner sur hydrogène ou sur gaz de combustion contenant de l'hydrogène
EP2017531B1 (fr) Procédé de vérification d'un signal issu d'électrodes d'ionisation pour brûleurs
WO2017054798A1 (fr) Procédé de différentiation de deux gaz combustibles, prévus pour un processus de combustion, présentant des teneurs énergétiques différentes
DE102019131310A1 (de) Heizgerät mit Notbetriebsregelung
DE102021102713A1 (de) Verfahren und Anordnung zur Erkennung eines Flammenrückschlages in einen Vormisch-Brenner
DE102021103935A1 (de) Verfahren und Anordnung zur Vermeidung eines Flammenrückschlages in einen Vormisch-Brenner
DE102005011287A1 (de) Verfahren sowie eine Vorrichtung zum Betreiben wenigstens eines Brenners zur Befeuerung der Brennkammer einer Wärmekraftmaschine
EP4063732B1 (fr) Procédé et agencement d'observation des flammes dans un appareil de chauffage pouvant fonctionner sur l'hydrogène ou sur un gaz combustible contenant de l'hydrogène
EP4043789A1 (fr) Procédé et agencement de détection et/ou d'observation des flammes dans un appareil de chauffage
DE102020128045A1 (de) Verfahren und Vorrichtung zur Verhinderung eines Flammenrückschlags bei einer Brenneranordnung für ein vorgemischtes Brennstoff-Luft-Gemisch
EP4148325A1 (fr) Procédé et dispositif de détection de la présence des flammes dans une chambre de combustion lors d'une modulation d'un appareil chauffant
DE102022122935A1 (de) Vorrichtung zur Detektion einer Rückzündung in einem Heizgerät
EP4086516B1 (fr) Procédé de surveillance d'un fonctionnement d'un système de brûleur à gaz et système de brûleur à gaz
DE102021128479A1 (de) Verfahren zum Betreiben eines Heizgerätes, Computerprogramm, Speichermedium, Regel- und Steuergerät, Heizgerät und Verwendung einer erfassten Temperatur
EP4141322A1 (fr) Procédé et dispositif de fonctionnement et de commande sécurisés d'un processus de combustion dans un appareil de chauffage pour la combustion d'hydrogène
EP4145047A1 (fr) Procédé et dispositif de détection de l'allumage de flammes dans une chambre de combustion d'un appareil chauffant, produit programme informatique et utilisation
EP4155611A1 (fr) Procédé de détection de l'extinction d'une flamme d'un brûleur
DE102022110619A1 (de) Verfahren zum Erkennen einer Beschädigung eines Gehäuses eines Gebläses eines Heizgerätes, Computerprogrammprodukt, Regel- und Steuergerät, Heizgerät und Verwendung einer erfassten Größe
DE102022123081A1 (de) Verfahren zum Feststellen eines Flammenrückschlages bei einem Heizgerät; Regel- und Steuergerät, Heizgerät und Computerprogramm
DE102022122811A1 (de) Verfahren zum Betreiben eines Heizgerätes, Computerprogramm, Regel- und Steuer-gerät, Brennstoffdurchflussregler und Heizgerät
DE102022126343A1 (de) Verfahren zum Bestimmen einer Durchflussmenge, Verfahren zum Betreiben eines Heizgerätes, Computerprogramm, Regel- und Steuergerät und Heizgerät
EP4215815A1 (fr) Procédé de fonctionnement d'un appareil de chauffage produisant de la flamme d'une installation de chauffage, programme de com-puter, support de stockage, appareil de commande et utilisation d'un débit d'une installation de chauffage et d'ionisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230214

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230628

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502022000159

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20231027

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20231102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231227

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240127

U20 Renewal fee paid [unitary effect]

Year of fee payment: 3

Effective date: 20240304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240127

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502022000159

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240628