DE102021108014A1 - Verfahren und Anordnung zur Beobachtung von Flammen in einem Verbrennungsraum eines Heizgerätes, das mit Wasserstoff oder wasserstoffhaltigem Brenngas betreibbar ist - Google Patents

Verfahren und Anordnung zur Beobachtung von Flammen in einem Verbrennungsraum eines Heizgerätes, das mit Wasserstoff oder wasserstoffhaltigem Brenngas betreibbar ist Download PDF

Info

Publication number
DE102021108014A1
DE102021108014A1 DE102021108014.2A DE102021108014A DE102021108014A1 DE 102021108014 A1 DE102021108014 A1 DE 102021108014A1 DE 102021108014 A DE102021108014 A DE 102021108014A DE 102021108014 A1 DE102021108014 A1 DE 102021108014A1
Authority
DE
Germany
Prior art keywords
temperature
combustion chamber
flames
combustion
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102021108014.2A
Other languages
English (en)
Inventor
Bodo Oerder
Arnold Wohlfeil
Jochen Grabe
Fabian Staab
Matthias Hopf
Michael Schumacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vaillant GmbH
Original Assignee
Vaillant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vaillant GmbH filed Critical Vaillant GmbH
Priority to DE102021108014.2A priority Critical patent/DE102021108014A1/de
Priority to EP22162920.7A priority patent/EP4071408B1/de
Publication of DE102021108014A1 publication Critical patent/DE102021108014A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/022Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/9901Combustion process using hydrogen, hydrogen peroxide water or brown gas as fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/16Measuring temperature burner temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)

Abstract

Die Erfindung betrifft ein Verfahren und eine Anordnung zum Beobachten oder Überwachen von Flammen (16) in einem Verbrennungsraum (15) eines Heizgerätes (1), welches mit Wasserstoff oder einem wasserstoffhaltigen Brenngas betrieben wird, wobei eine Temperatur (TM) an mindestens einer Messstelle (19) in oder an dem Verbrennungsraum (15) gemessen wird, wobei außerdem die Temperatur (TB) an der Messstelle (19) anhand eines mathematischen Modells (11) aus anderen an dem Heizgerät (1) gemessenen oder vorgegebenen physikalischen Betriebsdaten (PB) berechnet wird und wobei die gemessene Temperatur (TM) und/oder deren zeitliches Verhalten (TM') mit der berechneten (TB, TB') verglichen und bei Abweichungen oberhalb eines Schwellwertes auf ein Zünden oder ein Erlöschen der Flammen (16) geschlossen wird. Die Erfindung erlaubt es, bei einem breiten Spektrum an Betriebszuständen eines Heizgerätes (1) mit einem Temperatursensor (10) eine zuverlässige Überwachung des Vorhandenseins von Flammen (16) im Verbrennungsraum (15) zu verwirklichen.

Description

  • Die Erfindung betrifft ein Verfahren und eine Anordnung zur Beobachtung von Flammen in einem Verbrennungsraum eines Heizgerätes, das mit Wasserstoff und/oder einem wasserstoffhaltigen Brenngas betreibbar ist. Wasserstoff als Brenngas oder als Beimischung zu Brenngasen wird immer wichtiger, und es werden große Anstrengungen unternommen, neue oder auch existierende Heizgeräte für einen Betrieb damit zu ertüchtigen. Dabei geht es nicht nur um große Anlagen, sondern auch um Wandgeräte zur Erwärmung von Wasser und generell um Heizgeräte für die Beheizung von Gebäuden und/oder die Bereitstellung von warmem Wasser.
  • Wasserstoff unterscheidet sich bei seiner Verbrennung in mehreren Punkten von bisher verwendeten Brenngasen, insbesondere ist eine Wasserstofflamme für das menschliche Auge fast unsichtbar, strahlt weniger Wärme ab als mit kohlenstoffhaltigen Brennstoffen erzeugte Flammen, und es werden andere Messsysteme benötigt als bei Heizgeräten für Brennstoffe aus Kohlenwasserstoffen. Die vorliegende Erfindung ist daher besonders, aber nicht nur geeignet für Heizgeräte, die mit reinem Wasserstoff oder mit Brenngas, das zu mehr als 50%, insbesondere mehr als 97% aus Wasserstoff besteht, betrieben werden.
  • In Heizgeräten werden bisher im Allgemeinen einfache und robuste Sensoren für Temperatur, Licht- oder Wärme-Strahlung, Druck, Volumenstrom und dergleichen eingesetzt, um die Heizgeräte zu regeln und deren sicheren Betrieb zu gewährleisten. Mit bisher üblicher Sensorik lassen sich jedoch bei Verwendung von Wasserstoff als Brenngas manche Messungen nicht zuverlässig durchführen. Eine wichtige Aufgabe ist das Feststellen des Vorhandenseins einer stabilen Flamme (ein sogenannter Flammenwächter), eine andere die Einstellung eines für eine stabile und umweltschonende Verbrennung geeigneten Verhältnisses von Verbrennungsluft zu Brenngas (Lambda-Wert).
  • Als Ersatz für bisher häufig verwendete Ionisationsmessungen, die bei Wasserstoff als oder im Brenngas nicht oder weniger zuverlässig funktionieren, wurden schon Temperaturmessungen im oder am Verbrennungsraum vorgeschlagen, da sich beim Zünden und Erlöschen von Flammen charakteristische Temperaturänderungen zeigen. Ein Flammenwächter und/oder eine Regelung der Verbrennung in einem Verbrennungsraum können daher grundsätzlich auch mit Temperaturmessungen durchgeführt werden. Wird das Vorhandensein einer Flamme in einem Verbrennungsraum mittels mindestens eines Temperatursensors überwacht, wird dessen Messwert kontinuierlich oder quasikontinuierlich an eine Steuer- und Regeleinheit weitergeleitet, wobei die Steuer- und Regeleinheit den Messwert und sein zeitliches Verhalten überwacht und mit vorgebbaren Sollbereichen vergleicht, und bei Abweichungen von einem der Sollbereiche die Brenngaszufuhr beendet.
  • Es können hierfür in der Steuer- und Regeleinheit Kalibrierdaten oder Kennfelder gespeichert sein oder verfügbar gemacht werden, mit denen Messwerte und deren zeitliche Ableitungen verglichen werden können.
  • Zündet eine Flamme ordnungsgemäß, so wird von dem Temperatursensor ein Anstieg der Temperatur gemessen. Erlischt die Flamme, so wird ein Abfall der Temperatur gemessen. Überschreitet die Temperaturabsenkung pro Zeiteinheit einen vorher z. B. experimentell ermittelten Wert, so wird dies als Erlöschen der Flamme durch die Auswerte- und Regeleinheit interpretiert und das Brenngasventil geschlossen. Bei der Zündung des Brenners wird umgekehrt verfahren. Kommt es nach der Zündung zu keinem schnellen Temperaturanstieg an dem Temperatursensor, so kann auf eine Fehlzündung geschlossen werden. Steigt die Temperatur mit der erwarteten Geschwindigkeit, so wird der Zündvorgang als erfolgreich gewertet. Durch die Temperaturüberwachung kann sichergestellt werden, dass Wasserstoff verbrannt wird. Dies gilt insbesondere immer dann, wenn die Temperatur im Verbrennungsraum > 833 K [Kelvin] (Selbstzündungstemperatur von Wasserstoff in Luft) und das Luftverhältnis > 1 (Lambda-Wert > 1) ist. Das Verbrennungsluftverhältnis (Lambda) setzt die tatsächlich zur Verfügung stehende Luftmasse ins Verhältnis zur mindestens notwendigen Luftmasse, die für eine stöchiometrisch vollständige Verbrennung theoretisch benötigt wird. Durch die Temperaturüberwachung mit der Funktion eines Flammenwächters kann also sichergestellt werden, dass eine Verbrennung stattfindet bzw. eine Abschaltung erfolgt, falls die Flamme erlischt.
  • Die beschriebenen Auswertungen erfordern allerdings eine gewisse Begrenzung des Anwendungsbereiches, in dem die Messwerte sicher interpretierbar sind, was den Einsatz dieser Technologie bei sicherheitsrelevanten Funktionen einschränken kann. Es ist nämlich nicht immer möglich, insbesondere bei sich ändernden Betriebsbedingungen (Modulation der Leistung, Abnahme unterschiedlicher Wärmemengen pro Zeiteinheit, Wiederstart nach einer Abschaltung etc.) des Heizgerätes, Temperaturen und/oder deren Änderungen eindeutig zu interpretieren. So kann z. B. eine schnelle Reduzierung der Leistung oder eine schnelle Zunahme der Wärmeabfuhr durch einen Wärmetauscher fälschlich als Erlöschen der Flammen angesehen werden, was eine sofortige Abschaltung auslösen würde.
  • Aufgabe der vorliegenden Erfindung ist, die mit Bezug auf den Stand der Technik geschilderten Probleme wenigstens teilweise zu lösen. Insbesondere sollen ein Verfahren und eine Anordnung geschaffen werden, mit denen sich bei unterschiedlichen oder sich ändernden Betriebsbedingungen zuverlässig das Zünden und/oder das Erlöschen von Flammen in einem Verbrennungsraum eines Heizgerätes erkennen lässt.
  • Zur Lösung dieser Aufgabe dienen ein Verfahren und eine Anordnung sowie ein Computerprogrammprodukt gemäß den unabhängigen Ansprüchen. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind in den jeweiligen abhängigen Ansprüchen angegeben. Die Beschreibung, insbesondere im Zusammenhang mit der Zeichnung, veranschaulicht die Erfindung und gibt weitere Ausführungsbeispiele an.
  • Hierzu trägt ein Verfahren bei zum Beobachten oder Überwachen von Flammen in einem Verbrennungsraum eines Heizgerätes, welches mit Wasserstoff oder einem wasserstoffhaltigen Brenngas betrieben wird, wobei eine Temperatur an mindestens einer Messstelle in oder an dem Verbrennungsraum gemessen wird, wobei außerdem die Temperatur an der Messstelle anhand eines mathematischen Modells aus anderen an dem Heizgerät gemessenen oder vorgegebenen physikalischen Betriebsdaten berechnet wird und wobei die gemessene Temperatur und/oder deren zeitliches Verhalten mit der berechneten verglichen und bei Abweichungen oberhalb eines Schwellwertes auf ein Zünden oder ein Erlöschen der Flammen geschlossen wird.
  • Statt charakteristische Verläufe einer gemessenen absoluten Temperatur oder von deren zeitlichem Verhalten zu identifizieren, berechnet das mathematische Modell eine theoretische Temperatur und/oder einen theoretischen Temperaturverlauf, die gemessen werden müssten, wenn alle Systeme ordnungsgemäß funktionieren. Mit diesen werden dann die tatsächlich gemessenen Daten verglichen. Dies erlaubt (sofern das mathematische Modell gut genug ist und ihm genügend Informationen zur Verfügung stehen, was bei modernen Heizgeräten typischerweise der Fall ist) ggf. unter anderem eine Entscheidung, ob Flammen gezündet oder erloschen sind, unter praktisch allen Betriebsbedingungen und mit großer Zuverlässigkeit. So lässt sich ein robuster Flammenwächter für einen weiten Modulationsbereich der Leistung des Heizgerätes und viele unterschiedliche Betriebssituationen realisieren. Außerdem erlaubt das Modell eine Kontrolle oder Plausibilitätsprüfung von Messgeräten und Signalwegen. Dies bedeutet einen zusätzlichen Sicherheitsgewinn, weil frühzeitig erkannt werden kann, wenn einzelne Sensoren ausfallen, driften oder falsche Messwerte liefern. Abweichungen zwischen Modell und real gemessenen physikalischen Größen, die bei ähnlichen Betriebsbedingungen vorher nicht aufgetreten sind, können Hinweise auf Fehler liefern.
  • Insbesondere berücksichtigt das mathematische Modell die physikalischen Eigenschaften des Verbrennungsraumes und für die Verbrennung wesentliche Parameter. Der Verbrennungsraum, allgemeiner auch als Warmzelle bezeichnet, lässt sich wegen einer gewissen Symmetrie und Homogenität mit relativ wenigen Parametern schon gut beschreiben, wodurch die Temperatur als Funktion dieser Parameter abgebildet werden kann.
  • Dazu werden bevorzugt die Wärmekapazität wesentlicher Bauteile des Verbrennungsraumes (oder eine integrale Betrachtung davon), die Wärmeleitung und Wärmeübergangszahlen von verwendeten Materialien und eines verwendeten Temperaturmesssystems als physikalische Eigenschaften berücksichtigt. Wird dem Verbrennungsraum Wärme durch Verbrennung zugeführt, so heizt sich dieser auf, wobei jedoch nicht nur der gasförmige Inhalt des Verbrennungsraumes, sondern auch die Wärmeaufnahme von Wänden, insbesondere eines dort integrierten Wärmetauschers, und anderer Bauteile berücksichtigt werden. Deren Wärmekapazität und die Schnelligkeit, mit der Wärme in diese Bauteile übergeht (abhängig von Wärmeübergangszahlen), werden von dem Modell berücksichtigt. Auch die Eigenschaften eines Temperatursensors selbst sollten Beachtung finden, da ein Temperatursensor träge sein und verzögert auf Temperaturänderungen reagieren kann. Alle Eigenschaften des Verbrennungsraumes sind praktisch konstant, so dass das Verhalten des Verbrennungsraumes bei Wärmezufuhr oder - abfuhr durch gespeicherte Kennfelder (gerechnet und/oder Erfahrungswerte) oder wenige Parameter beschrieben werden kann.
  • Auch werden bevorzugt von dem mathematischen Modell die Massenströme an Luft und Brenngas, die aus diesen Massenströmen durch Verbrennung erzielbare Energiemenge pro Zeiteinheit und die Umgebungstemperatur als für die Verbrennung wesentliche Betriebsdaten berücksichtigt. Bei einem modernen Heizgerät stehen viele Daten zur Verfügung, von denen für das Modell benötigte genutzt werden können. Im Ergebnis benötigt das Modell die Information, wieviel Luft mit welcher Temperatur und wieviel Brenngas mit welcher Temperatur dem Verbrennungsraum jeweils pro Zeiteinheit zugeführt wird. Die Drehzahl eines Gebläses und die Öffnung eines Brenngasventils können beispielsweise geeignete Parameter für die jeweiligen Massenströme sein. Aus der Art des Brenngases und unter der Voraussetzung einer vollständigen Verbrennung kann dann die pro Zeiteinheit dem Verbrennungsraum zugeführte (Wärme-)Energie berechnet werden. Ein geeigneter Algorithmus kann die zu erwartende Temperatur (insbesondere an der Messstelle) als Funktion der zugeführten Parameter angeben.
  • Danach wird bevorzugt die Differenz aus gemessener Temperatur und ohne Verbrennungsenergie berechneter Temperatur oder die Differenz von deren zeitlichem Verhalten ab dem Start des Heizgerätes gebildet und bei Überschreiten eines ersten Schwellwertes wird auf das Zünden von Flammen und Freisetzung von Verbrennungsenergie geschlossen. Da das Modell zwar die Information erhalten könnte, dass eine Zündung ausgelöst wurde, aber nicht berechnen kann, ob auch tatsächlich Flammen gebildet werden, berechnet das Modell beim Start des Heizgerätes die Temperatur ohne Zufuhr von Verbrennungsenergie. Die tatsächliche Temperatur muss dieser so lange entsprechen, wie keine Flammen gezündet wurden. Ist dies zu lange der Fall, so wird die Brenngaszufuhr gestoppt und evtl. der Startvorgang wiederholt oder eine Störmeldung abgegeben. Steigt die gemessene Temperatur aber auf charakteristische Weise über die berechnete, so ist dies ein sicherer Hinweis auf die korrekte Zündung von Flammen, so dass der Betrieb fortgesetzt (und das Modell auf Berechnung mit Verbrennungsenergie umgeschaltet werden) kann. Auch der umgekehrte Weg ist natürlich möglich, nämlich immer mit Verbrennungsenergie zu rechnen und zu erkennen, ob sich die gemessene Temperatur schnell genug auf den gerechneten Wert erhöht.
  • Entsprechend wird bevorzugt ab dem Zünden von Flammen die Differenz aus gemessener Temperatur und mit Verbrennungsenergie berechneter Temperatur oder die Differenz deren zeitlichem Verhalten nach dem Startvorgang des Heizgerätes gebildet und bei Unterschreiten eines zweiten vorgebbaren Schwellwertes auf Erlöschen von Flammen und Wegfall von Verbrennungsenergie geschlossen.
  • Zur Lösung der Aufgabe trägt auch eine Anordnung zum Beobachten oder Überwachen von Flammen in einem Verbrennungsraum eines Heizgerätes bei, welches mit Wasserstoff oder einem wasserstoffhaltigen Brenngas betreibbar ist, wobei mindestens ein Temperatursensor an oder in dem Verbrennungsraum vorhanden ist, der mit einer Steuer- und Regeleinheit verbunden ist, wobei in der Steuer- und Regeleinheit ein mathematisches Modell des Verbrennungsraumes mit Temperatursensor nachgebildet ist, wobei dem Modell Betriebsdaten des Heizgerätes und in der Steuer- und Regeleinheit gespeicherte physikalische Größen des Verbrennungsraumes und des Temperatursensors zuführbar sind und wobei eine Bewertungslogik vorhanden ist, die eingerichtet ist, aus einer vom mathematischen Modell berechneten Temperatur und/oder deren zeitlichem Verhalten und einer vom Temperatursensor gemessenen Temperatur bzw. deren zeitlichem Verhalten zu ermitteln, ob eine Zündung und/oder ein Erlöschen der Flammen stattgefunden hat. Die Bewertungslogik kann auch komplexere Aufgaben als die reine Differenzbildung von Temperaturen übernehmen, z. B. zeitliche Ableitungen der Temperaturen bilden und vergleichen oder das Vergleichen von charakteristischen Mustern des Temperaturverlaufes jeweils aus berechneten und gemessenen Temperaturen. Jedenfalls aber ist die Bewertung zuverlässiger als die Bewertung einer nur gemessenen absoluten Temperatur bzw. deren zeitlichem Verhalten.
  • Insbesondere sind dem mathematischen Modell mindestens eine Gebläsedrehzahl, ein Massenstrom an Brenngas und eine Umgebungstemperatur als für die Verbrennung wesentliche physikalische Betriebsdaten zuführbar. Es können auch andere Messgrößen zugeführt werden, die die gleiche Information (Massenströme an Luft und Brenngas, Umgebungstemperatur) durch Umrechnung liefern können.
  • Außerdem sind dem mathematischen Modell bevorzugt mindestens die Daten über eine Wärmekapazität des Verbrennungsraumes und über eine Trägheit des Temperatursensors zuführbar. Das Modell kann auch rekursiv arbeiten, indem es in kurzen Zeitabständen z. B. die Temperaturen an verschiedenen Stellen des Verbrennungsraumes berechnet und für die nächste Berechnung diese Temperaturen als Ausgangswert nimmt.
  • In einer besonderen Ausführungsform sind der Bewertungslogik die gemessene Temperatur und die berechnete Temperatur zuführbar, und die Bewertungslogik ist für die Funktion eines Flammenwächters eingerichtet, indem bei Ausbleiben einer erwarteten Zündung oder einem Erlöschen der Flammen eine Abschaltung eines Brenngasventils und/oder eine Störmeldung auslösbar ist.
  • Ein weiterer Aspekt betrifft auch ein Computerprogrammprodukt umfassend Befehle, die bewirken, dass die beschriebene Anordnung das beschriebene Verfahren ausführt. Die Auswertung der vom Sensor gemessenen Daten, deren weitere Verwendung im Heizgerät und das mathematische Modell sowie die Bewertungslogik benötigen ein Programm und Daten, um die Funktion als Flammenwächter durchführen zu können, wobei beides gelegentlich aktualisiert werden muss.
  • Die Erläuterungen zum Verfahren können zur näheren Charakterisierung der Anordnung herangezogen werden, und umgekehrt. Die Anordnung kann auch so eingerichtet sein, dass damit das Verfahren durchgeführt wird.
  • Ein schematisches Ausführungsbeispiel der Erfindung, auf das diese jedoch nicht beschränkt ist, und die Funktionsweise des Verfahrens werden nun anhand der Zeichnung näher erläutert. Es stellen dar:
    • 1: ein Heizgerät mit Temperatursensor und Steuer- und Regeleinheit und
    • 2: den schematischen Aufbau einer Steuer- und Regeleinheit mit mathematischem Modell und Bewertungslogik.
  • 1 zeigt schematisch ein für den Betrieb mit Wasserstoff als Brenngas oder mit wasserstoffhaltigem Brenngas ausgelegtes Heizgerät 1. Das Heizgerät 1 weist ein Gebläse 2 auf, welches einen Brenner 3 mit Luft von einer Luftzufuhr 4 versorgt. Über ein Brenngasventil 5 wird Brenngas (hier Wasserstoff oder ein vorwiegend aus Wasserstoff bestehendes Brenngasgemisch) aus einer Brenngasversorgung 6 der Luft beigemischt. Eine Steuer- und Regeleinheit 7 steht über Datenleitungen 13 mit dem Gebläse 2 und dem Brenngasventil 5 in Verbindung, so dass ein für eine Zündung und/oder einen Dauerbetrieb geeignetes Gemisch erzeugt und die dafür vorgenommenen Einstellungen (z. B. Drehzahl des Gebläses 2 und Öffnung des Brenngasventils 5) rückgemeldet werden können. Bei der Verbrennung dieses Gemisches in einem Verbrennungsraum 15 entstehen Flammen 16, deren Wirkung (und damit dessen Vorhandensein) anhand von mindestens einem Temperatursensor 10 an einer Messstelle 19 beobachtet wird. Der Temperatursensor 10 ist ebenfalls über eine Datenleitung 13 mit der Steuer- und Regeleinheit 7 verbunden. Der Verbrennungsraum 15 ist von einem Gehäuse 8 umgeben, in dem sich hier nur angedeutete Wärmetauscherflächen befinden. Entstehende Verbrennungsgase werden über eine Abgasanlage 9 an die Umgebung abgeleitet. Zum Zünden der Verbrennung ist eine Zündeinrichtung 17 vorhanden, die mittels einer Zündleitung 14 mit der Steuer- und Regeleinheit 7 verbunden ist. Eine Anzeige 18 (die bei einer Fernwartung auch an anderer Stelle sein kann) liefert Informationen über den Zustand des Heizgerätes 1.
  • Da eine zuverlässige Aussage über das Vorhandensein von Flammen 16 allein aufgrund der Messwerte des Temperatursensors 10 nicht unter allen Betriebsbedingungen möglich ist, weist die Steuer- und Regeleinheit 7, wie in 2 vergrößert dargestellt, ein mathematisches Modell 11 auf, in dem (mittels eines geeigneten Algorithmus) eine Temperatur TB berechnet wird, die sich (theoretisch) unter Berücksichtigung von physikalischen Betriebsdaten PB am Temperatursensor 10 ergeben müsste. Mit dieser wird die tatsächlich gemessene Temperatur TM in einer Bewertungslogik 12 verglichen und bei starken Abweichungen auf ein Zünden bzw. Erlöschen der Flammen 16 geschlossen. Die Bewertungslogik 12 kann auch detailliertere Informationen verarbeiten und das zeitliche Verhalten TM' der gemessenen Temperatur mit dem der berechneten Temperatur TB' oder das Auftreten charakteristischer Muster in beiden vergleichen und daraus auf das Vorhandensein oder Erlöschen von Flammen 16 schließen. Wird ein Ausbleiben einer Zündung oder das Erlöschen von Flammen 16 erkannt, kann eine Störmeldung S ausgegeben werden, beispielsweise auf der Anzeige 18. Außerdem kann mit einem Signal „Flamme vorhanden ja/nein“ die sicherheitsrelevante Funktion eines Flammenwächters erfüllt werden.
  • Die vorliegende Erfindung erlaubt es, bei einem breiten Spektrum an Betriebszuständen eines Heizgerätes 1 mit einem Temperatursensor 10 eine zuverlässige Überwachung des Vorhandenseins von Flammen 16 im Verbrennungsraum 15 zu verwirklichen.
  • Bezugszeichenliste
  • 1
    Heizgerät
    2
    Gebläse
    3
    Brenner
    4
    Luftzufuhr
    5
    Brenngasventil
    6
    Brenngasversorgung
    7
    Steuer- und Regeleinheit
    8
    Gehäuse
    9
    Abgasanlage
    10
    Temperatursensor
    11
    Mathematisches Modell
    12
    Bewertungslogik
    13
    Datenleitungen
    14
    Zündleitung
    15
    Verbrennungsraum
    16
    Flammen
    17
    Zündeinrichtung
    18
    Anzeige
    19
    Messstelle
    PB
    physikalische Betriebsdaten
    TM
    gemessene Temperatur
    TM'
    zeitliches Verhalten der gemessenen Temperatur
    TB
    berechnete Temperatur
    TB'
    zeitliches Verhalten der berechneten Temperatur
    S
    Störmeldung

Claims (11)

  1. Verfahren zum Beobachten oder Überwachen von Flammen (16) in einem Verbrennungsraum (15) eines Heizgerätes (1), welches mit Wasserstoff oder einem wasserstoffhaltigen Brenngas betrieben wird, wobei eine Temperatur (TM) an mindestens einer Messstelle (19) in oder an dem Verbrennungsraum (15) gemessen wird, wobei außerdem die Temperatur (TB) an der Messstelle (19) anhand eines mathematischen Modells (11) aus anderen an dem Heizgerät (1) gemessenen oder vorgegebenen physikalischen Betriebsdaten (PB) berechnet wird, und wobei die gemessene Temperatur (TM) und/oder deren zeitliches Verhalten (TM') mit der berechneten (TB, TB') verglichen und bei Abweichungen oberhalb eines Schwellwertes auf ein Zünden oder ein Erlöschen der Flammen (16) geschlossen wird.
  2. Verfahren nach Anspruch 1, wobei das mathematische Modell (11) physikalische Eigenschaften des Verbrennungsraumes (15) und für die Verbrennung wesentliche Parameter berücksichtigt.
  3. Verfahren nach Anspruch 2, wobei die Wärmekapazität wesentlicher Bauteile des Verbrennungsraumes (15), die Wärmeleitung und Wärmeübergangszahlen von verwendeten Materialien und eines verwendeten Temperatursensors (10) als physikalische Eigenschaften berücksichtigt werden.
  4. Verfahren nach Anspruch 2 oder 3, wobei Massenströme an Luft und Brenngas, die aus diesen Massenströmen durch Verbrennung erzielbare Energiemenge pro Zeiteinheit und eine Umgebungstemperatur als für die Verbrennung wesentliche Parameter berücksichtigt werden.
  5. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Differenz aus gemessener Temperatur (TM) und ohne Verbrennungsenergie berechneter Temperatur (TB) oder von deren zeitlichem Verhalten (TM', TB') ab einem Start des Heizgerätes (1) gebildet und bei Überschreiten eines ersten Schwellwertes auf das Zünden von Flammen (16) und Freisetzung von Verbrennungsenergie geschlossen wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, wobei ab dem Zünden von Flammen (16) die Differenz aus gemessener Temperatur (TM) und mit Verbrennungsenergie berechneter Temperatur (TB) oder deren zeitlichem Verhalten (TM', TB') ab einem Start des Heizgerätes (1) gebildet und bei Unterschreiten eines zweiten vorgebbaren Schwellwertes auf Erlöschen von Flammen (16) und Wegfall von Verbrennungsenergie geschlossen wird.
  7. Anordnung zum Beobachten oder Überwachen von Flammen (16) in einem Verbrennungsraum (15) eines Heizgerätes (1), welches mit Wasserstoff oder einem wasserstoffhaltigen Brenngas betreibbar ist, wobei mindestens ein Temperatursensor (10) an oder in dem Verbrennungsraum (15) vorhanden ist, der mit einer Steuer- und Regeleinheit (7) verbunden ist, wobei in der Steuer- und Regeleinheit (7) ein mathematisches Modell (11) des Verbrennungsraumes (15) mit Temperatursensor (10) nachgebildet ist, wobei dem Modell (11) physikalische Betriebsdaten (PB) des Heizgerätes (1) und in der Steuer- und Regeleinheit (7) gespeicherte physikalische Größen des Verbrennungsraumes (15) und des Temperatursensors (10) zuführbar sind und wobei eine Bewertungslogik (12) vorhanden ist, die eingerichtet ist, aus einer vom mathematischen Modell (11) berechneten Temperatur (TB) und/oder deren zeitlichem Verhalten (TB') und einer vom Temperatursensor (10) gemessenen Temperatur (TM) bzw. deren zeitlichem Verhalten (TM') zu ermitteln, ob eine Zündung und/oder ein Erlöschen der Flammen (16) stattgefunden hat.
  8. Anordnung nach Anspruch 7, wobei dem mathematischen Modell (11) mindestens eine Gebläsedrehzahl, ein Massenstrom an Brenngas und eine Umgebungstemperatur als für die Verbrennung wesentliche physikalische Betriebsdaten zuführbar sind.
  9. Anordnung nach Anspruch 7 oder 8, wobei dem mathematischen Modell (11) mindestens Daten über eine Wärmekapazität des Verbrennungsraumes (15) und über eine Trägheit des Temperatursensors (10) zuführbar sind.
  10. Anordnung nach einem der Ansprüche 7 bis 9, wobei der Bewertungslogik (12) die gemessene Temperatur (TM) und die berechnete Temperatur (TB) zuführbar sind und die Bewertungslogik (12) für die Funktion eines Flammenwächters eingerichtet ist, indem bei Ausbleiben einer erwarteten Zündung oder einem Erlöschen der Flammen (16) eine Abschaltung eines Brenngasventils (5) auslösbar ist.
  11. Computerprogrammprodukt umfassend Befehle, die bewirken, dass die Anordnung nach einem der Ansprüche 7 bis 10 das Verfahren nach einem der Ansprüche 1 bis 6 ausführt.
DE102021108014.2A 2021-03-30 2021-03-30 Verfahren und Anordnung zur Beobachtung von Flammen in einem Verbrennungsraum eines Heizgerätes, das mit Wasserstoff oder wasserstoffhaltigem Brenngas betreibbar ist Pending DE102021108014A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102021108014.2A DE102021108014A1 (de) 2021-03-30 2021-03-30 Verfahren und Anordnung zur Beobachtung von Flammen in einem Verbrennungsraum eines Heizgerätes, das mit Wasserstoff oder wasserstoffhaltigem Brenngas betreibbar ist
EP22162920.7A EP4071408B1 (de) 2021-03-30 2022-03-18 Verfahren und anordnung zur beobachtung von flammen in einem verbrennungsraum eines heizgerätes, das mit wasserstoff oder wasserstoffhaltigem brenngas betreibbar ist

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102021108014.2A DE102021108014A1 (de) 2021-03-30 2021-03-30 Verfahren und Anordnung zur Beobachtung von Flammen in einem Verbrennungsraum eines Heizgerätes, das mit Wasserstoff oder wasserstoffhaltigem Brenngas betreibbar ist

Publications (1)

Publication Number Publication Date
DE102021108014A1 true DE102021108014A1 (de) 2022-10-06

Family

ID=80820149

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102021108014.2A Pending DE102021108014A1 (de) 2021-03-30 2021-03-30 Verfahren und Anordnung zur Beobachtung von Flammen in einem Verbrennungsraum eines Heizgerätes, das mit Wasserstoff oder wasserstoffhaltigem Brenngas betreibbar ist

Country Status (2)

Country Link
EP (1) EP4071408B1 (de)
DE (1) DE102021108014A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023101626A1 (de) 2023-01-24 2024-07-25 Vaillant Gmbh Verfahren zum Betreiben eines Heizgerätes, Computerprogramm, Regel- und Steuergerät und Heizgerät
DE102023111345A1 (de) 2023-05-03 2024-11-07 Vaillant Gmbh Verfahren zum Betrieb eines Heizgerätes, Heizgerät und Computerprogramm

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011101736A1 (de) 2010-05-17 2011-12-01 Saacke Gmbh Verfahren zum Bestimmen eines Einsparpotentials des Energiebedarfs einer Feuerungsanlage
DE102012220526B3 (de) 2012-10-18 2014-01-23 Eberspächer Climate Control Systems GmbH & Co. KG Verfahren zur Flammabbrucherkennung bei einem brennstoffbetriebenen Heizgerät, insbesondere Fahrzeugheizgerät

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210348755A1 (en) * 2018-10-17 2021-11-11 Beckett Thermal Solutions Ltd. Method for forming a gas burner membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011101736A1 (de) 2010-05-17 2011-12-01 Saacke Gmbh Verfahren zum Bestimmen eines Einsparpotentials des Energiebedarfs einer Feuerungsanlage
DE102012220526B3 (de) 2012-10-18 2014-01-23 Eberspächer Climate Control Systems GmbH & Co. KG Verfahren zur Flammabbrucherkennung bei einem brennstoffbetriebenen Heizgerät, insbesondere Fahrzeugheizgerät

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023101626A1 (de) 2023-01-24 2024-07-25 Vaillant Gmbh Verfahren zum Betreiben eines Heizgerätes, Computerprogramm, Regel- und Steuergerät und Heizgerät
EP4411224A1 (de) * 2023-01-24 2024-08-07 Vaillant GmbH Verfahren zum betreiben eines heizgerätes, computerprogramm, regel- und steuergerät und heizgerät
DE102023111345A1 (de) 2023-05-03 2024-11-07 Vaillant Gmbh Verfahren zum Betrieb eines Heizgerätes, Heizgerät und Computerprogramm

Also Published As

Publication number Publication date
EP4071408B1 (de) 2023-09-27
EP4071408A1 (de) 2022-10-12
EP4071408C0 (de) 2023-09-27

Similar Documents

Publication Publication Date Title
EP4071408B1 (de) Verfahren und anordnung zur beobachtung von flammen in einem verbrennungsraum eines heizgerätes, das mit wasserstoff oder wasserstoffhaltigem brenngas betreibbar ist
DE10142514B4 (de) Verfahren zum Feststellen eines Flammenrückschlags in einem Gasturbinensystem, sowie Gasturbinensystem
CH703598A2 (de) Verfahren für die Zufuhr von zur Verbrennung bestimmten Turbinenkraftstoffen unterschiedlicher Qualität.
DE102020126992A1 (de) Verfahren und Vorrichtung zum sicheren Betrieb eines mit hohem Wasserstoffanteil betriebenen Brenners
DE112014001000T5 (de) Gasturbinensystem, Steuer- bzw. Regelungseinrichtung und Gasturbinenbetriebsverfahren
DE102019131310A1 (de) Heizgerät mit Notbetriebsregelung
DE102021102713A1 (de) Verfahren und Anordnung zur Erkennung eines Flammenrückschlages in einen Vormisch-Brenner
DE69504541T2 (de) Fehlererkennung eines Fühlers
EP4047270A1 (de) Verfahren und anordnung zur vermeidung eines flammenrückschlages in einen vormisch-brenner
EP4043789A1 (de) Verfahren und anordnung zum erkennen und/oder beobachten von flammen in einem heizgerät
EP2848934B1 (de) Verfahren und Sensor zur Bestimmung von Brennstoffeigenschaften von Gasgemischen
DE102020127558B4 (de) Heizungsanlage und Verfahren zum Betreiben einer Heizungsanlage
EP4063732A1 (de) Verfahren und anordnung zur beobachtung von flammen in einem heizgerät, das mit wasserstoff oder wasserstoffhaltigem brenngas betreibbar ist
DE102020128045A1 (de) Verfahren und Vorrichtung zur Verhinderung eines Flammenrückschlags bei einer Brenneranordnung für ein vorgemischtes Brennstoff-Luft-Gemisch
DE102021128479A1 (de) Verfahren zum Betreiben eines Heizgerätes, Computerprogramm, Speichermedium, Regel- und Steuergerät, Heizgerät und Verwendung einer erfassten Temperatur
DE102021123229A1 (de) Verfahren und Anordnung zur Sicherstellung des Vorhandenseins von Flammen in einem Verbrennungsraum bei einer Modulation eines Heizgerätes
EP4086516B1 (de) Verfahren zur überwachung eines betriebs eines gasbrennersystems und gasbrennersystem
EP4102136B1 (de) Verfahren zur verifikation der flammenüberwachung eines heizgerätes, heizgerät, computerprogramm und speichermedium
DE102021124643A1 (de) Verfahren zur Erkennung des Erlöschens einer Flamme eines Brenners
DE102021121027A1 (de) Verfahren und Anordnung zum sicheren Betreiben und Regeln eines Verbrennungsprozesses in einem Heizgerät für die Verbrennung von Wasserstoff
DE102022122935A1 (de) Vorrichtung zur Detektion einer Rückzündung in einem Heizgerät
DE102022126343A1 (de) Verfahren zum Bestimmen einer Durchflussmenge, Verfahren zum Betreiben eines Heizgerätes, Computerprogramm, Regel- und Steuergerät und Heizgerät
DE102022123081A1 (de) Verfahren zum Feststellen eines Flammenrückschlages bei einem Heizgerät; Regel- und Steuergerät, Heizgerät und Computerprogramm
DE102022110619A1 (de) Verfahren zum Erkennen einer Beschädigung eines Gehäuses eines Gebläses eines Heizgerätes, Computerprogrammprodukt, Regel- und Steuergerät, Heizgerät und Verwendung einer erfassten Größe
DE102021123070A1 (de) Verfahren und Anordnung zur Erkennung des Zündens von Flammen in einem Verbrennungsraum eines Heizgerätes, Computerprogrammprodukt und Verwendung

Legal Events

Date Code Title Description
R163 Identified publications notified