EP4065962A1 - Méthode d'identification rapide de microorganismes par analyse de matrices excitation-émission - Google Patents

Méthode d'identification rapide de microorganismes par analyse de matrices excitation-émission

Info

Publication number
EP4065962A1
EP4065962A1 EP20824613.2A EP20824613A EP4065962A1 EP 4065962 A1 EP4065962 A1 EP 4065962A1 EP 20824613 A EP20824613 A EP 20824613A EP 4065962 A1 EP4065962 A1 EP 4065962A1
Authority
EP
European Patent Office
Prior art keywords
microorganism
matrix
eem
identified
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20824613.2A
Other languages
German (de)
English (en)
Inventor
Jean-François Bardeau
Jean-Philippe Bouchara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite dAngers
Centre Hospitalier Universitaire dAngers
Le Mans Universite
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite dAngers
Centre Hospitalier Universitaire dAngers
Le Mans Universite
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite dAngers, Centre Hospitalier Universitaire dAngers, Le Mans Universite filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP4065962A1 publication Critical patent/EP4065962A1/fr
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6419Excitation at two or more wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6421Measuring at two or more wavelengths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the invention falls within the field of methods for the identification and characterization of microorganisms.
  • the present invention is based on the analysis of Excitation-Emission matrices (or EEM matrices in the remainder of the description) and is of interest in all the fields concerned with the identification of microorganisms, in particular the medical sector, for example in research laboratories, microbiology, bacteriology or parasitology-mycology laboratories, Hospital Centers and medical biology analysis laboratories.
  • immunocompromised individuals are at higher risk of severe infections. Infections affecting immunocompromised individuals are often associated with high levels of morbidity and mortality. In order to initiate the appropriate treatment, it is essential to correctly and quickly identify the microorganism responsible for the infection.
  • the reference method for the identification of microorganisms is based on the sequencing of a particular region of the genome of said microorganism. This method involves the extraction of DNA and the analysis of the resulting sequence. This method is extremely reliable but requires suitable equipment and premises. In the absence of automation, this method is expensive and time consuming.
  • the deposition of the microorganism on a target determines the quality of the spectral fingerprints, and the resolving power. Indeed, the deposit must be regular and fine, that is to say in a "thin layer”. After drying and depositing a matrix, it must be possible to extract the proteins from the microorganism and to ionize them in order to obtain, after separation in the MALDI-TOF column, a mass spectrum allowing, by analysis low molecular weight ions, to determine the identity of the microorganism.
  • the profile of the peaks obtained by MALTI-DOF type mass spectrometry is then compared with a database consisting of reference spectra established for each of the microorganisms present in the base.
  • the database is fed with individual spectra obtained for different strains of microorganisms, sometimes cultivated under different conditions (culture media, age of cultures), from which superspectra characteristic of the species and independent of culture conditions can be defined.
  • DOF thus presents several disadvantages.
  • the equipment used and its annual maintenance makes it an expensive method.
  • the equipment is bulky. It is therefore difficult for a laboratory to have several items of equipment of this type, and this item of equipment cannot be transported from one department or from one laboratory to another.
  • the inventors have implemented a method for identifying microorganisms that is as reliable as the methods known to those skilled in the art to date, which does not have the disadvantages noted above.
  • the identification method which improves the current situation is based on a principal component analysis of an Excitation Emission matrix (EEM) characteristic of a microorganism with at least one reference matrix (EEMr), the matrices being obtained by example using a fluorimeter.
  • EEM Excitation Emission matrix
  • EEMr reference matrix
  • the microorganism is illuminated with a light characterized by its wavelength.
  • light is understood to mean a visible or invisible electromagnetic wave, preferably an electromagnetic wave chosen from ultraviolet (UV) to infrared (IR) and passing through the visible range.
  • the microorganism thus illuminated then passes from a so-called fundamental state to an excited state by absorbing photons called excitation photons.
  • the excited microorganism then recovers its ground state by re-emitting photons called emission photons.
  • the emission wavelengths i.e. the wavelengths of the re-emitted photons can change depending on the microorganism studied.
  • the method then consists in collecting, for each given excitation wavelength, the emission spectrum of the sample.
  • the emission spectrum represents the quantities of emission photons measured at different wavelengths, the quantity of emission photons being directly proportional to a power or light energy according to the classical laws of photoma and to the specific interaction with the sample studied.
  • the method is made all the more reliable that for the same microorganism, different excitation wavelengths are used and an emission spectrum is collected for each excitation wavelength.
  • the identification of a microorganism thus consists in measuring and analyzing the emission spectra emitted by the microorganism after having been successively illuminated by lights of different wavelengths.
  • the subject of the invention is thus a method for the identification of a microorganism to be identified comprising the following steps:
  • the identification of a microorganism using the present method is rapid. It is possible to identify a microorganism and for example a microorganism responsible for an infection.
  • the method according to the invention thus makes it possible to reduce a laborious analysis of an EEM matrix to a simple graphical comparison in a plane of points characteristic of a microorganism to be identified.
  • a computer program comprising instructions for the implementation of all or part of a method as defined herein when this program is executed by a processor.
  • a non-transient recording medium readable by a computer, on which is recorded a program for identifying microorganisms according to the present invention.
  • a non-transient, computer-readable recording medium on which the EEMr matrices of the reference microorganisms are recorded.
  • a first step of the present method comprises obtaining an Excitation-Emission matrix (EEM) characteristic of a microorganism to be identified.
  • EEM Excitation-Emission matrix
  • the microorganism to be identified can be a bacterium, a yeast, a filamentous fungus, a microalgae or a parasite. These strains are the cause of the majority of infections in the medical sector.
  • the culture of said microorganism can be carried out in liquid medium, for example in broth or in semi-solid medium, for example on agar medium, a cultured microorganism then in the form of colonies.
  • the present invention would be just as usable and effective. It would be enough simply to characterize a new reference organism.
  • Each of the microorganisms is identified by a species according to the known classification of microorganisms, or even by its genotype.
  • the present invention thus makes it possible to identify the genus of the microorganism, preferably the species or the species complex of the microorganism.
  • the microorganisms which can be identified by the method of the invention are all types of microorganisms, pathogenic or not, encountered both in industry and in the clinic, which may experience phenomena of resistance to antimicrobial agents. It can be, preferably, bacteria, molds, yeasts, microalgae or parasites. By way of example of such microorganisms, mention may be made of Gram-positive bacteria, Gram- negative and Mycobacteria.
  • Gram-negative bacteria By way of example of Gram-negative bacteria, mention may be made of those of the genera: Pseudomonas, Escherichia, Salmonella, Shigella, Enterobacter, Klebsiella, Serratia, Proteus, Acinetobacter, Citrobacter, Aeromonas, Stenotrophomonas, Morganella and Providencia, and in particular the species Escherichia coli, Enterobacter cloacae, Enterobacter aerogenes, Klebsiella pneumoniae, Klebsiella oxytoca, Pseudomonas aeruginosa, Providencia rettgeri, Pseudomonas putida, Stenotrophomonas maltophilia, Acinetobacter baumannii, Morganella morganens, Atitanella marmonella senciatia, Salmonella morganens, etc.
  • Gram-positive bacteria examples of Gram-positive bacteria that may be mentioned
  • yeasts By way of example of yeasts, mention may be made of those of the genera: Candida, Blastobotrys, Cryptococcus, Diutina, Kluyveromyces, Magnusiomyces, Meyerozyma, Pichia, Rhodotorula, Saccharomyces, Trichomonascus, Trichosporon, Wickerhamiella, Yarrowia, and in particular the species Candida albicans, Candida glabrata, Candida parapsilosis, Candida tropicalis, Blastobotrys adeninivorans, Cryptococcus neoformans, Diutina rugosa, Kluyveromyces marxianus, Magnusiomyces clavatus, Meyerozyma guilliermondii, Pichia kudriavzevii, Rhodotorula mucilaginosa, Saccharomyces cerevisiae, Trichomonascus ciferrii,
  • filamentous fungi By way of example of filamentous fungi, mention may be made of dermatophytes, molds, and dimorphic fungi.
  • dermatophytes By way of example of dermatophytes, mention may be made of those of the genera: Arthroderma, Epidennophyton, Microsporum, Nannizzia, Paraphyton, and Trichophyton, and in particular the species Arthroderma uncinatum, Epidermophyton floccosum, Microsporum canis, Microsporum audouinii, Nannizzia gypsea, Nannizzia persea Paraphyton cookei, Trichophyton rubrum, Trichophyton interdigitale, Trichophyton tonsurans etc ...
  • molds include those of the genera: Altemaria, Arthrographis, Aspergillus, Bissochlamys, Cladosporium, Cunninghamella, Exophiala, Fusarium, Geotrichum, Lichtheimia, Lichtheimia Lomentospora, Mucor, Neoscytalidium, Penicillium, Purpureocillium, Rasamsonia, Rhizomucor, Rhizopus, Sarocladium, Scedosporium, Scopulariopsis, Syncephalastrum, Trichoderma, Verruconis, including Alternaria infectoria, Arthrographis kalrae, Aspergillus flavus, Aspergillus fumigatus, Aspergillus nidulans, Aspergillus Niger, Aspergillus tenreus, Aspergillus versicolor, Byssochlamys spectabilis, Cladosporium cladosporioides, Cunninghamella bert
  • the microorganism studied can be obtained from a blood sample, a sample of skin and integuments (nails, hair, hair), saliva, mucous membrane, sputum, or any other sample .
  • the removal and cultivation of the microorganism to be identified are carried out according to methods known to those skilled in the art and / or to the user.
  • the microorganism in culture in a liquid medium or in a semi-solid medium can be stored for several days with a view to a deferred or repeated analysis over time.
  • the microorganism can thus be transported from one laboratory to another or from one hospital to another.
  • the analysis of the microorganism can be carried out directly on a colony obtained on the medium on which the microorganism has been cultivated.
  • the present invention thus makes possible a direct analysis of the sample unlike various identification methods of the prior art, for example the MALTI-DOF mass spectrometry method which requires prior disposition of the microorganism to be identified on a target.
  • the analysis of the microorganism is carried out after shaping of said microorganism on a solid support.
  • the solid support can be chosen so that its intrinsic emission in the study wavelength ranges does not interfere with the measurement of the emission of the sample in said study ranges (range of excitation wavelengths and range of emission wavelengths).
  • the solid support is preferably chosen non-fluorescent and / or non-luminescent in the range of study wavelengths.
  • the solid support is for example a support made of glass, metal, plastic, composite or wood.
  • the identification method according to the invention can follow a first identification.
  • the first identification can be achieved by simple visual identification of the type of microorganism, preferably under a microscope, by the user.
  • a second characterization according to the method of the present invention is carried out in order to identify the microorganism, that is to say the identification of the genus, or, preferably, of the species of a microorganism previously deposited on a solid support or grown on a semi-solid medium.
  • Emission Excitation Matrix (EEM)
  • An EEM Emission Excitation matrix is a matrix comprising N rows and M columns. Each row of the EEM matrix corresponds to an emission spectrum measured at a given excitation wavelength.
  • a matrix of N rows and M columns means that N emission spectra were measured for N different excitation wavelengths.
  • the measured emission spectrum includes M measured light intensity values for M different emission wavelengths.
  • the "light intensity" measured at an emission wavelength can be expressed according to the usual photometric quantities (for example the radiance, the luminance, the energy, the power, the number photons), or else unitless.
  • the value of the measurement is conventionally given by the spectrometer in a number between 1 and 2 p , p being the number of bits of the analog-to-digital converter.
  • an EEM matrix of a microorganism to be identified comprises N rows and M columns such as:
  • N is a positive integer corresponding to the number of excitation wavelengths; N is preferably between 2 and 20,000, preferably 10 and 1,500;
  • M is a positive integer corresponding to the number of emission wavelengths; M is preferably between 10 and 50,000, preferably between 350 and 1,500.
  • the EEM matrix is advantageously obtained for the
  • a range of at least 2 excitation wavelengths preferably at least 100 excitation wavelengths, and more preferably at least 500 excitation wavelengths between 140 and 2000 nm, preferably between 250 and 900 nm, in steps of 0.1 to 20 nm, preferably in steps of 0.1 to 10 nm, and more preferably in steps of 0.8 nm, and
  • the excitation wavelengths can be chosen over a very wide range of the electromagnetic spectrum. They are chosen so as to excite the sample. By way of illustration, the excitation wavelengths can be chosen from the ranges of gamma rays, X rays, far infrared, microwaves and radio waves.
  • the excitation wavelengths are preferably chosen from ultraviolet to infrared.
  • the emission wavelengths can be chosen over a very wide range of the electromagnetic spectrum. They are chosen so that an emission spectrum regardless of the measurement range can be produced as a function of an excitation wavelength.
  • the emission wavelengths can be chosen from the ranges of gamma rays, X rays, the visible, the infrared, the microwaves and the radio waves.
  • the emission wavelengths are preferably chosen from ultraviolet to infrared.
  • an EEM Matrix Obtaining an EEM matrix of a microorganism to be identified can be carried out using a measuring device, such as a fluorimeter, comprising a light source which emits excitation wavelengths and a unit for measuring the emission spectrum of the microorganism.
  • a measuring device such as a fluorimeter
  • the light source can be a light source emitting a continuous or discontinuous spectrum.
  • a light source emitting a discontinuous spectrum can be chosen from a light source made from several lasers or several LEDs of different wavelengths.
  • a light source emitting a continuous spectrum can be chosen, for example, from a halogen lamp, a fluorescent tube, a neon, a sodium lamp, a xenon lamp or an incandescent lamp.
  • the light source is a continuous source
  • said source is coupled to a monochromator to select the narrowest possible band of an excitation wavelength ( ⁇ excitation ) from the range wider wavelengths of the continuous light source.
  • a monochromator is for example a dispersive network system, a prism, a double monochromator in subtractive or additive mode.
  • the monochromator makes it possible to obtain excitation wavelengths of between 140 and 2000 nm, preferably between 250 and 900 nm, in steps of 0.1 to 20 nm, preferably in steps of 0.1 to 10 nm, and more preferably in steps of 0.8 nm.
  • the emission spectrum measurement unit allows the measurement of the emission spectrum of the microorganism to be identified for emission wavelengths (emission) between 180 and 5500 nm, preferably between 200 and 900 nm and more preferably between 220 and 750 nm, in steps of between 0.1 nm and 20 nm, preferably in steps of between 0.1 and 10 nm and more preferably in steps of 1 nm.
  • the measurement unit comprises a monochromator and a sensor.
  • the monochromator is for example a dispersive network system, a prism, a slit, a double monochromator in subtractive or additive mode.
  • the sensor can be a CMOS or CCD sensor, a CMOS bar, a CCD bar.
  • Such a sensor allows rapid and reliable measurement of the emission spectrum.
  • the measuring device such as a fluorimeter can be coupled to a microscope or to a fiber.
  • the user can advantageously bring the fiber directly above a microorganism in culture or deposited on a solid support in order to illuminate it and analyze its emission spectrum simply and quickly according to the method of the present invention.
  • the fiber allows the excitation of the sample and the collection of the light emitted by the sample.
  • the optical fiber can be coupled to an objective or to a measurement probe, placed at the end of the optical fiber, focusing the excitation light on the microorganism and collecting the emission light from said microorganism.
  • the study area may for example be an area with an average diameter of around 50 ⁇ m 2 .
  • the optical fiber can be a single mode, multimode or variable index optical fiber.
  • a measuring device for example a fluorimeter, a fiber fluorimeter or a fluorimeter coupled to a microscope, is easy to use and limits the size of the system. It is transportable and inexpensive.
  • the method that is the subject of the present invention therefore makes it possible to advantageously identify a microorganism with precision using equipment that is easier to use and less bulky than the equipment of the prior art, for example a MALDI- spectrometer. TOF.
  • the comparison of the EEM matrix of the microorganism to be identified with at least one other reference EEMr matrix comprises at least the following steps:
  • said data matrix comprising said vector obtained in the previous step with at least one other vector (vr) resulting from the unfolding of an EEMr matrix of a reference microorganism , said EEMr matrix being obtained under the same conditions as the EEM matrix.
  • a reference EEMr matrix is an Excitation-Emission matrix obtained according to the present invention from a reference microorganism, that is to say a known microorganism which is preferably known at least up to the species.
  • a "reference microorganism” is for example a strain of microorganism deposited in a collection of international cultures (for example, IHEM in Belgium, CBS in the Netherlands, ATCC in the USA, etc.).
  • the reference microorganism is characterized by an EEMr matrix and / or a reference vector.
  • the reference vector being obtained from the EEMr matrix.
  • the EEMr matrices and / or the characteristic vectors of the reference microorganisms can be stored in memory on a conventional electronic medium or on a computer server.
  • the analysis of the EEM matrix of the microorganism to be identified is advantageously carried out with a large number of reference EEMr matrices for high reliability in the identification of the microorganism.
  • the inventors implemented a step consisting in unfolding the EEM matrix of the microorganism to be identified into a single vector characteristic of said microorganism.
  • vector is understood to mean a vector of dimension (1, x), x being a positive integer.
  • unfolding is understood to mean the algebraic operation consisting in transforming a matrix of dimension (N, M) into a vector of dimension (1, N * M).
  • the value (i, j) of the EEM matrix becomes the value (1, (i-1) * M + j) of the vector thus obtained, or vector unfolded in the rest of the presentation.
  • the unfolded vector thus obtained is characteristic of the microorganism studied.
  • a characteristic unfolded vector may correspond to each microorganism studied.
  • the data matrix The unfolded vector characteristic of the microorganism to be identified is analyzed with at least one reference vector resulting from the unfolding of at least one EEMr matrix of a reference microorganism recorded with the same lengths of excitation and emission wave.
  • the normalized data matrix comprises at least two lines corresponding to an unfolded vector of the microorganism to be identified and to a reference vector.
  • the unfolded vectors composing the data matrix are advantageously obtained according to the same protocol according to the same method of the present description. That is, each unfolded vector characteristic of a reference microorganism or of a microorganism to be identified has the same dimensions.
  • data matrix is understood to mean a matrix which comprises U rows and V columns.
  • U corresponds to the number of unfolded vectors composing the normalized data matrix, U being an integer greater than or equal to 2.
  • V corresponds to the number of columns of the unfolded vectors. In the present description, V is typically N * M.
  • normalized data matrix is understood to mean a data matrix in which all the values are divided by the maximum value of said data matrix. This standardization makes it possible to identify the microorganisms among themselves without adding measurement bias.
  • the normalized data matrix comprises U unfolded vectors or individuals in the remainder of the description. Each individual is associated with a succession of emission spectra, ie V quantitative variables in the remainder of the presentation.
  • the U individuals therefore correspond to the U microorganisms studied, that is to say an unfolded vector of a microorganism to be identified with at least one reference vector resulting from the unfolding of at least one EEM matrix of a microorganism reference.
  • the V quantitative variables are the V columns of the normalized data matrix.
  • a quantitative variable corresponds to a measurement of light intensity taken at a particular emission wavelength for a given excitation wavelength.
  • Each individual can be represented by a point in a real positive space R v with V dimensions. Such a representation is unsatisfactory because it makes the identification of the microorganism very difficult.
  • Principal component analysis is a method of data analysis and more generally of statistics with several variables, which consists in transforming variables linked to each other (called " correlated variables ”in statistics) into new variables decorrelated from one another.
  • the new variables uncorrelated between them obtained following the analysis in principal components are called “principal components”.
  • the step which consists in analyzing the normalized data matrix into principal components is for example carried out using a computer or any other technical means allowing a principal component analysis, for example a calculator or a system. on-board calculation.
  • a new data matrix called the adjusted matrix is obtained.
  • the fitted matrix has the same number of rows and the same number of columns as the normalized data matrix.
  • the variables in the fitted matrix are the “principal components” of the normalized data matrix.
  • Said principal components are linear combinations of the variables of the normalized data matrix.
  • the principal components can be classified according to the quantity of information that they carry.
  • the major component that carries the greatest amount of information is the major component with the greatest weight.
  • the projection of the different observables according to this principal component presents the greatest statistical variance of the observables. It is therefore the variable of the adjusted matrix for which individuals show the strongest decorrelation between them.
  • the principal component with the lowest weight is the variable in the fitted data matrix for which the individuals are the least decorrelated.
  • classified principal components is understood to mean principal components sorted according to their weight, the principal component of the greatest weight is the main component 1 or PC1 and the main component of the least weight is the component.
  • the first column of the adjusted data matrix is PC1
  • the second column is PC2 and so on up to PCV.
  • the individuals of the adjusted data matrix can be projected into a new plane R v with V dimensions whose direction vectors are the V principal components.
  • Such a projection is time-consuming, laborious and requires additional mathematical and / or computer processing in order to measure, for example, the algebraic distances between the various characteristic points of the various individuals making up the standardized data matrix.
  • the inventors have implemented an advantageous method, which is simple and quick to use, comprising a step of projecting the vectors of the data matrix in a plane defined by two principal components of great weight, advantageously by the two principal components of greater weights.
  • This projection according to the two main components of greater weight allows the user to quickly and easily visualize the characteristic points of microorganisms, the characteristic points of microorganisms being the projections of vectors unfolded in the same plane.
  • the projection can advantageously be carried out by any medium allowing visualization of the plane according to two different principal components, preferably the principal components of the greatest weight (i.e. PC1 and PC2).
  • Such a support is for example a television screen, a computer screen, a tablet or a mobile phone. Said support is not necessarily connected or in the same room as the measuring device, that is to say the device emitting the excitation wavelengths and measuring the emission spectrum.
  • the user can have a portable display medium independent of the measuring device used to obtain the EEM matrix of the microorganism to be identified.
  • the method of the present invention can allow an operator to carry out the steps of the method in the same work area, for example an analysis or research laboratory, then to receive the results of the method. analysis via, for example, a mobile phone, tablet or laptop. The operator can then continue his work without having to wait for the results in the analysis laboratory.
  • the different stages of method of the invention can be carried out by different operators and can be located in very remote areas as long as the result obtained is shared on a display medium.
  • the communication of the result of the identification can be carried out by any means known to those skilled in the art, for example via the Internet network, a Wi-Fi network, a Bluetooth network or an NFC communication.
  • the projection of the vectors of the data matrix can be carried out in a plane defined by two principal components other than the principal components of greater weight.
  • the user can choose the principal components that he wishes and project the vectors of the matrix adjusted according to these principal components.
  • the projection of the vector of the microorganism to be identified and of at least one reference vector of the data matrix can be carried out in a space defined by at least three principal components other than the principal components of greater weight.
  • the user can choose the principal components he wishes and project the characteristic vectors of the strains of microorganisms according to these principal components.
  • a projection involving colors or a three-dimensional visualization can make it possible to easily visualize the projections of the vectors in a space with more than two dimensions.
  • the projection of the result of the analysis in a plane defined by two principal components, or a space defined by three principal components can further comprise the display of a list of distances between the projections of the microorganism and of the microorganism of reference.
  • the identification of the microorganism consists in discriminating the points resulting from the projection between them. Two close points on the two-dimensional projection are characteristic of two identical microorganisms.
  • two vectors are said to be “close” according to the visual appreciation of the operator.
  • the operator directly identifies the points resulting from the projection of the characteristic vectors of the strains of microorganisms in space according to the main components PC1 and PC2.
  • an EEM matrix of a microorganism may be identified with several reference EEMr matrices, for example with at least 5 EEMr matrices, preferably at least 100 EEMr matrices, and more preferably at least 200 EEMr matrices.
  • the identification can also be carried out automatically, for example by a computer. This analysis then consists in calculating the algebraic distance between two points and in defining a scalar below which the points are considered close. The scalar can be adjusted over time.
  • the representation resulting from the method of the present invention can allow the differentiation of several strains of microorganisms from one another or the identification of an unknown microorganism by comparison with a panel of at least one reference microorganism. [0126] Optional steps
  • the present invention can have intermediate data processing steps.
  • a filter can be coupled to the measuring device to cut certain specific emission wavelengths.
  • Digital processing can also be carried out in order to eliminate so-called parasitic reflections obtained during the measurement of the emission spectrum, for example digital processing can be carried out in order to eliminate or reduce Rayleigh scattering, backscattering, intrinsic scattering. to the sample and no longer characteristic of the microorganism to be identified.
  • obtaining the EEM matrix of the microorganism to be identified can include physical (using filters) or digital filtering of the noise when obtaining the EEM matrix.
  • obtaining the EEM matrix of the microorganism to be identified can further comprise physical (using filters) or digital filtering of the Rayleigh component.
  • the process of acquiring the EEM matrices, the optional image processing, the standardization of the data matrix can advantageously be automated. Preferably, no adjustment of the parameters will be requested from the operator.
  • the present invention requires very little biological material and technical procedures.
  • the present invention can be quickly implemented in analysis or research laboratories, but applications in all fields concerned with the identification of microorganisms is possible, for example in animal microbiology, in microbiological control in the environment. , in the food industry or in the field of plant production.
  • FIG. 1 shows a diagram illustrating an unfolding of an EEM matrix into a vector characteristic of a microorganism according to one embodiment of the invention
  • FIG. 2 shows four EEM matrices obtained for two different strains of reference microorganisms, each being analyzed twice;
  • FIG. 3 shows a diagram of an embodiment of the present invention
  • FIG. 4 shows the projections of four EEM matrices obtained for two different strains of reference microorganisms, each being analyzed twice, according to principal components obtained after principal component analysis of the four corresponding EEM matrices; Fig. 5
  • FIG. 5 shows a graph along PC1 and PC2 of four points resulting from the projection of four reference vectors.
  • FIG. 1 illustrates a die unfolding operation according to the method of the present invention.
  • the EEM matrix of figure 1 has an integer i of rows, i being a positive integer between 1 and N.
  • the EEM matrix of figure 1 has an integer j of columns, j being a positive integer between 1 and M.
  • the unfolded vector is then of dimension (1, N * M).
  • the element (i, j) of the EEM matrix becomes the element (1, (i-1) * M + j) of the unfolded vector.
  • FIG. 2 illustrates EEM matrices, the light intensity of which is represented according to a scale of shades of gray.
  • the EEM matrices are two independent EEM matrices obtained by the same method from the microorganism Candida parapsipolis and two independent EEM matrices obtained by the method from the microorganism Candida tropicalis.
  • the EEM matrices of the microorganisms Candida parapsipolis and Candida tropicalis seem identical while the microorganisms studied are quite different.
  • a studied microorganism 20 is illuminated by light of excitation wavelength ⁇ excitation .
  • the light source 10 is a continuous light source coupled to a double monochromator in subtractive mode 11.
  • the light source 10 is advantageously connected to an optical fiber 32 coupled to an objective 31.
  • the objective 31 makes it possible to select a more or less large area on the microorganism in culture. For example, the measurement area is less than 50 ⁇ m.
  • the objective is chosen according to the desired measurement zone.
  • the emission spectrum of strain 20 is measured using a measurement unit 40 comprising a double monochromator in subtractive mode and a CCD sensor.
  • the optical fiber coupled to the objective 31 refocuses the excitatory light on a point of the microorganism and the light reemitted by the microorganism is concentrated in the optical fiber up to the measurement unit 40.
  • the measuring device thus makes it possible to obtain the emission spectrum of the strain for a given excitation wavelength.
  • the operation is repeated for each of the study excitation wavelengths.
  • the change in excitation wavelength is very fast and so is the measurement of the emission spectrum.
  • the operation of obtaining an EEM matrix is thus fast, on the order of a minute.
  • This EEM matrix is unfolded according to the diagram in Figure 1 in order to obtain a single characteristic vector of the sample.
  • This operation is for example carried out using a computer 50.
  • This computer includes for example in memory 300, a panel of at least one unfolded reference vector REF.
  • the at least one REF reference vector and the unfolded vector characteristic of the microorganism studied are inserted into a DON data matrix.
  • the DON data matrix is normalized, then analyzed into principal components 200 to give a new adjusted PCA matrix.
  • the different vectors of the PCA matrix are then projected in a plane along PC1 and PC2 (ie in general the first two columns of the adjusted matrix) and displayed using a screen 60.
  • FIG. 3 shows four EEM matrices obtained according to one embodiment of the present invention.
  • strains of microorganisms studied are reference strains of Candida parapsilosis and Candida tropicalis, each strain being deposited in duplicate (deposits 3 and 8 for Candida parapsiposis, 2 and 7 for Candida tropicalis).
  • the excitation wavelengths are chosen between 325 and 600 nm in steps of 1 nm and the emission wavelengths are chosen between 300 and 750 nm, in steps of 2 nm.
  • EEM corresponds to an emission spectrum obtained for a given excitation wavelength.
  • each row of the EEM matrices can be projected in a plane according to two principal components previously calculated by principal component analysis.
  • Figure 4 shows for each microorganism studied the projections of the emission spectra obtained for each excitation wavelength (numbered in the figure from 302 to 450 in steps of 2). The projections are carried out according to PC1 and P21, PC1 and PC3, PC1 and PC4, PC1 and PC5.
  • Such a representation can make it possible to differentiate the strains of Candida parapsilosis and Candida tropicalis. Identification is not so easy and rapid identification using a projection of the vectors of the microorganism to be identified and reference microorganism in a plane according to PC1 and PC2.
  • Figure 5 shows a projection obtained at the end of the method of the present invention.
  • the characteristic vectors of the four microorganisms studied in the present example are projected in a plane along PC1 and PC2 illustrated in FIG. 5.
  • the graph in Figure 5 makes it possible to differentiate and instantly identify the four reference microorganisms, Pichia kudriavzevii (formerly Candida krusei), Candida parapsilosis, and Candida tropicalis, Candida Glabrata.
  • FIG. 5 makes it possible to separate the four microorganisms of different species at four distinct points in the same plane.
  • the identification of such microorganisms is usually done using a MALDI-TOF spectrometer having several drawbacks.
  • the present invention therefore makes it possible to identify microorganisms quickly and easily in a reliable manner.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

La présente invention concerne une méthode pour l'identification d'un microorganisme à identifier comprenant les étapes suivantes : l'obtention d'une matrice Excitation-Emission EEM du microorganisme à identifier, L'analyse en composantes principales de ladite matrice EEM avec au moins une matrice EEMr de référence, la projection du résultat de l'analyse dans un plan défini par deux composantes principales, et l'identification du microorganisme à identifier

Description

Description
Titre : Méthode d'identification rapide de microorganismes par analyse de matrices excitation- émission Domaine technique et art antérieur
[0001] L’invention relève du domaine des méthodes d’identification et de caractérisation de microorganismes. La présente invention repose sur l’analyse des matrices Excitation-Emission (ou matrices EEM dans la suite de l’exposé) et trouve son intérêt dans tous les domaines concernés par l'identification de microorganismes, notamment le secteur médical, par exemple dans des laboratoires de recherche, des laboratoires de microbiologie, bactériologie ou parasitologie-mycologie, des Centres Hospitaliers et des laboratoires d’analyses de biologie médicale.
[0002] Les infections dues à des microorganismes tels que des bactéries, des levures, des champignons filamenteux, des parasites ou des micro-algues touchent des individus immunodéprimés comme des individus immunocompétents. Les individus immunodéprimés présentent cependant un risque plus élevé d'infections sévères. Les infections touchant les individus immunodéprimés sont souvent associées à des niveaux élevés de morbidité et de mortalité. Afin d’initier le traitement approprié, il est primordial d’identifier correctement et rapidement le microorganisme responsable de l’infection.
[0003] La méthode de référence pour l’identification des microorganismes repose sur le séquençage d'une région particulière du génome dudit microorganisme. Cette méthode implique l’extraction de l’ADN et l’analyse de la séquence obtenue. Cette méthode est extrêmement fiable mais nécessite un équipement et des locaux appropriés. En l’absence d’automatisation, cette méthode est coûteuse et consommatrice de temps.
[0004] Les limites de ces techniques moléculaires ont conduit au développement de méthodes alternatives, basées sur la spectrométrie de masse, notamment la spectrométrie de masse de type MALDI-TOF qui est de plus en plus largement utilisée dans les laboratoires de microbiologie, bactériologie, ou parasitologie- mycologie des centres hospitaliers comme dans les laboratoires d’analyses de biologie médicale pour l'identification des microorganismes.
[0005] Le coût d'un spectromètre de masse de type MALDI-TOF est élevé. Cet équipement nécessite une maintenance annuelle qui immobilise l'équipement pendant 24 à 48 h, avec notamment comme possible conséquence pour les laboratoires accrédités le non-respect des engagements en termes de délai de rendu des résultats.
[0006] Dans le cadre d’une méthode d’identification par spectrométrie de masse de type MALDI-TOF, le dépôt du microorganisme sur une cible détermine la qualité des empreintes spectrales, et le pouvoir résolutif. En effet, le dépôt doit être régulier et fin, c’est-à-dire en « couche mince ». Après séchage et dépôt d'une matrice, il faut qu’il soit possible d’extraire les protéines du microorganisme et de les ioniser afin d’obtenir après séparation dans la colonne du MALDI-TOF un spectre de masse permettant, par l’analyse des ions de faible masse moléculaire, de déterminer l’identité du microorganisme.
[0007] Le profil des pics obtenu par spectrométrie de masse de type MALTI-DOF est ensuite comparé à une base de données constituée de spectres de référence établis pour chacun des microorganismes présents dans la base. La base est alimentée de spectres individuels obtenus pour différentes souches de microorganismes, parfois cultivées dans différentes conditions (milieux de culture, âge des cultures), à partir desquels peuvent être définis des superspectres caractéristiques d’espèce et indépendants des conditions de culture.
[0008] Il existe cependant des différences, y compris dans les spectres de référence, en fonction des équipements MALTI-DOF utilisés. Les performances, en termes de pouvoir discriminant et de fiabilité de l'identification finale, sont fonction également des algorithmes utilisés. Ainsi, deux laboratoires ayant deux équipements différents peuvent parfois conclure à des identifications contraires d’un même microorganisme. [0009] La méthode d’identification par spectrométrie de masse de type MALTI-
DOF présente ainsi plusieurs désavantages. L’équipement utilisé et sa maintenance annuelle en font une méthode onéreuse. Pour certains fournisseurs, l’équipement est encombrant. Il est donc difficilement envisageable pour un laboratoire de détenir plusieurs équipements de ce type, et cet équipement n’est pas transportable d’un service ou d’un laboratoire à un autre. Problème technique
[0010] Les inventeurs ont mis en œuvre une méthode d’identification de microorganismes aussi fiable que les méthodes connues par l’homme du métier jusqu’à ce jour, ne présentant pas les désavantages relevés plus haut.
[0011] La méthode d’identification qui améliore la situation actuelle repose sur une analyse en composantes principales d’une matrice Excitation Emission (EEM) caractéristique d’un microorganisme avec au moins une matrice de référence (EEMr), les matrices étant obtenues par exemple à l’aide d’un fluorimètre.
Résumé de l’invention
[0012] Le microorganisme est éclairé avec une lumière caractérisée par sa longueur d’onde.
[0013] Dans le cadre du présent exposé, il est entendu par lumière une onde électromagnétique visible ou invisible, de préférence une onde électromagnétique choisie de l’ultraviolet (UV) jusqu’aux infrarouges (IR) et passant par le domaine du visible. [0014] Le microorganisme ainsi éclairé passe alors d’un état dit fondamental à un état excité en absorbant des photons dits photons d’excitation. Le microorganisme excité recouvre ensuite son état fondamental en réémettant des photons dits photons d’émission. Selon la longueur d’onde d’excitation, c’est-à-dire la longueur d’onde des photons d’excitation, les longueurs d’onde d’émission, c’est-à-dire les longueurs d'onde des photons réémis, peuvent changer et ceci en fonction du microorganisme étudié.
[0015] La méthode consiste alors à recueillir, pour chaque longueur d’onde d’excitation donnée, le spectre d’émission de l'échantillon. Le spectre d’émission représente les quantités de photons d’émission mesurées à différentes longueurs d’onde, la quantité de photons d’émission étant directement proportionnelle à une puissance ou une énergie lumineuse selon les lois classiques de la photomque et à l'interaction spécifique avec l’échantillon étudié.
[0016] La méthode est rendue d’autant plus fiable que pour un même microorganisme, on utilise différentes longueurs d’ondes d’excitation et que pour chaque longueur d’onde d’excitation on recueille un spectre d’émission.
[0017] L’identification d’un microorganisme consiste ainsi à mesurer et analyser les spectres d’émission émis par le microorganisme après avoir été éclairé successivement par des lumières de longueurs d’onde différentes.
Exposé de l’invention [0018] L’invention a ainsi pour objet une méthode pour l’identification d’un microorganisme à identifier comprenant les étapes suivantes :
- l’obtention d’une matrice Excitation-Emission EEM du microorganisme à identifier,
- l’analyse en composantes principales de ladite matrice EEM avec au moins une matrice Excitation-Emission de référence EEMr,
- la projection du résultat de l’analyse dans un plan défini par deux composantes principales, et
- l’identification du microorganisme à identifier.
[0019] L’identification d’un microorganisme à l’aide de la méthode présentement exposée est rapide. Il est possible d’identifier un microorganisme et par exemple un microorganisme responsable d’une infection.
[0020] Le procédé selon l’invention permet ainsi de ramener une analyse laborieuse de matrice EEM à une simple comparaison graphique dans un plan de points caractéristiques d’un microorganisme à identifier. [0021] Selon un autre aspect, il est proposé un programme informatique comportant des instructions pour la mise en œuvre de tout ou partie d’une méthode telle que définie dans la présente lorsque ce programme est exécuté par un processeur. [0022] Selon un autre aspect de l’invention, il est proposé un support d’enregistrement non transitoire, lisible par un ordinateur, sur lequel est enregistré un programme d’identification de microorganismes selon la présente invention.
[0023] Selon un autre aspect de l’invention, il est proposé un support d’enregistrement non transitoire, lisible par un ordinateur, sur lequel sont enregistrées les matrices EEMr des microorganismes de référence.
[0024] Obtention d’une matrice EEM
[0025] Une première étape de la présente méthode comprend l’obtention d’une matrice Excitation-Emission (EEM) caractéristique d'un microorganisme à identifier.
[0026] Le Micmorganisme à identifier
[0027] Le microorganisme à identifier peut être une bactérie, une levure, un champignon filamenteux, une micro-algue ou un parasite. Ces souches sont la cause de la majorité des infections en secteur médical. [0028] La culture dudit microorganisme peut être réalisée en milieu liquide, par exemple en bouillon ou en milieu semi-solide, par exemple sur milieu gélosé un microorganisme mis en culture se présentant alors sous forme de colonies.
[0029] Dans le cas où de nouvelles espèces de microorganismes étaient découvertes, la présente invention serait tout autant utilisable et efficace. Il suffirait simplement de caractériser un nouvel organisme de référence.
[0030] Chacun des microorganismes est identifié par une espèce selon la classification connue des microorganismes, voire par son génotype. La présente invention permet ainsi d’identifier le genre du microorganisme, de préférence l’espèce ou le complexe d’espèce du microorganisme. [0031] Les microorganismes qui peuvent être identifiés par le procédé de l'invention sont tous types de micro-organismes, pathogènes ou non, rencontrés tant dans l'industrie qu’en clinique, qui peuvent connaître des phénomènes de résistance aux agents antimicrobiens. Ce peut être, de préférence, des bactéries, des moisissures, des levures, des micro-algues ou des parasites. A titre d'exemple de tels microorganismes, on peut citer les bactéries Gram-positives, Gram- négatives et les Mycobactéries. A titre d'exemple de bactéries Gram-négatives, on peut citer celles des genres : Pseudomonas, Escherichia, Salmonella, Shigella, Enterobacter, Klebsiella, Serratia, Proteus, Acinetobacter, Citrobacter, Aeromonas, Stenotrophomonas, Morganella et Providencia, et notamment les espèces Escherichia coli, Enterobacter cloacae, Enterobacter aerogenes, Klebsiella pneumoniae, Klebsiella oxytoca, Pseudomonas aeruginosa, Providencia rettgeri, Pseudomonas putida, Stenotrophomonas maltophilia, Acinetobacter baumannii, Morganella morganii, Proteus mirabilis, Salmonella senftenberg, Serratia marcescens, Salmonella typhimurium etc... A titre d'exemple de bactéries Gram- positives, on peut citer celles des genres : Enterococcus, Streptococcus, Staphylococcus, Bacillus, Listeria et Clostridium.
[0032] A titre d’exemple de levures, on peut citer celles des genres : Candida, Blastobotrys, Cryptococcus, Diutina, Kluyveromyces, Magnusiomyces, Meyerozyma, Pichia, Rhodotorula, Saccharomyces, Trichomonascus, Trichosporon, Wickerhamiella, Yarrowia, et notamment les espèces Candida albicans, Candida glabrata, Candida parapsilosis, Candida tropicalis, Blastobotrys adeninivorans, Cryptococcus neoformans, Diutina rugosa, Kluyveromyces marxianus, Magnusiomyces clavatus, Meyerozyma guilliermondii, Pichia kudriavzevii, Rhodotorula mucilaginosa, Saccharomyces cerevisiae, Trichomonascus ciferrii, Trichosporon cutaneum, Wickerhamiella pararugosa, Yarrowia lipolytica etc...
[0033] A titre d’exemple de champignons filamenteux, on peut citer des dermatophytes, des moisissures, et des champignons dimorphiques. A titre d'exemple de dermatophytes, on peut citer ceux des genres : Arthroderma, Epidennophyton, Microsporum, Nannizzia, Paraphyton, et Trichophyton, et notamment les espèces Arthroderma uncinatum, Epidermophyton floccosum, Microsporum canis, Microsporum audouinii, Nannizzia gypsea, nannizzia persicolor, Paraphyton cookei, Trichophyton rubrum, Trichophyton interdigitale, Trichophyton tonsurans etc... A titre d’exemples de moisissures, on peut citer celles des genres : Altemaria, Arthrographis, Aspergillus, Bissochlamys, Cladosporium, Cunninghamella, Exophiala, Fusarium, Geotrichum, Lichtheimia, Lomentospora, Mucor, Neoscytalidium, Pénicillium, Purpureocillium, Rasamsonia, Rhizomucor, Rhizopus, Sarocladium, Scedosporium, Scopulariopsis, Syncephalastrum, Trichoderma, Verruconis, et notamment Altemaria infectoria, Arthrographis kalrae, Aspergillus flavus, Aspergillus fumigatus, Aspergillus nidulans, Aspergillus niger, Aspergillus tenreus, Aspergillus versicolor, Byssochlamys spectabilis, Cladosporium cladosporioides, Cunninghamella bertholletiae, Exophiala dermatitidis, Fusarium dimerum, Fusarium fujikuroi, Fusarium oxysporum, Fusarium solani, Geotrichum candidum, Lichtheimia corymbifera, Lomentospora prolificans, Mucor circinelloides, Neoscytalidium dimidiatum, Pénicillium expansum, Purpureocillium lilacinum, Rasamsonia argillacea, Rhizomucor pusillus, Rhizopus oryzae, Sarocladium kiliense, Scedosporium apiospermum, Scopulariopsis brevicaulis, Syncephalastrum racemosum, Trichoderma harzianum, Verruconis gallopava, e tc...
[0034] Le microorganisme étudié peut être obtenu à partir d’un prélèvement de sang, d’un prélèvement de peau et phanères (ongles, poils, cheveux), de salive, de muqueuse, d’une expectoration, ou de tout autre prélèvement.
[0035] Le prélèvement et la mise en culture du microorganisme à identifier sont effectués selon des méthodes connues de l’homme du métier et/ou de l'utilisateur.
[0036] Le microorganisme en culture en milieu liquide ou en milieu semi-solide peut être conservé plusieurs jours en vue d’une analyse différée ou répétée dans le temps. Le microorganisme peut ainsi être transporté d’un laboratoire à un autre ou d’un hôpital à un autre.
[0037] Dans le cas où le microorganisme est mis en culture en milieu semi-solide, tel un milieu gélosé, l’analyse du microorganisme peut être directement réalisée sur une colonie obtenue sur le milieu sur lequel le microorganisme a été cultivé. [0038] La présente invention rend ainsi possible une analyse directe de l’échantillon contrairement à diverses méthodes d’identification de l’art antérieur, par exemple la méthode par spectrométrie de masse MALTI-DOF qui nécessite une disposition préalable du microorganisme à identifier sur une cible.
[0039] Dans le cas où le microorganisme est mis en culture en milieu liquide, tel un bouillon, l’analyse du microorganisme est réalisée après mise en forme dudit microorganisme sur un support solide. [0040] Le support solide peut être choisi de sorte que son émission intrinsèque dans les gammes de longueurs d’ondes d'étude n’interfère pas avec la mesure de l’émission de l'échantillon dans lesdites gammes d’étude (gamme de longueurs d’onde d’excitation et gamme de longueurs d’onde d’émission). [0041] Le support solide est choisi de préférence non fluorescent et/ou non luminescent dans la gamme de longueurs d’onde d’étude.
[0042] Le support solide est par exemple un support en verre, en métal, en plastique, en composite ou en bois.
[0043] De manière avantageuse, la méthode d’identification selon l’invention peut succéder à une première identification. La première identification peut être réalisée par simple identification visuelle du type du microorganisme, de préférence au microscope, par l’utilisateur. Puis une deuxième caractérisation selon la méthode de la présente invention est réalisée afin d’identifier le microorganisme, c’est-à-dire l’identification du genre, ou, de préférence, de l'espèce d'un microorganisme préalablement déposé sur un support solide ou cultivé sur un milieu semi-solide.
[0044] Matrice d’Excitation Emission (EEM)
[0045] Une matrice d'Excitation Emission EEM est une matrice comprenant N lignes et M colonnes. [0046] Chaque ligne de la matrice EEM correspond à un spectre d’émission mesuré à une longueur d’onde d'excitation donnée.
[0047] Ainsi, une matrice de N lignes et M colonnes signifie que N spectres d’émission ont été mesurés pour N longueurs d’onde d’excitation différentes. Pour une longueur d’onde d’excitation donnée, le spectre d’émission mesuré comprend M valeurs d’intensité lumineuse mesurée pour M longueurs d’onde d’émission différentes.
[0048] Dans le présent exposé, l’« intensité lumineuse » mesurée à une longueur d’onde d’émission peut être exprimée selon les grandeurs photométriques usuelles (par exemple la radiance, la luminance, l’énergie, la puissance, le nombre de photons), ou bien sans unité. Dans le cas où l’intensité lumineuse est exprimée sans unité, la valeur de la mesure est classiquement donnée par le spectromètre en un nombre compris entre 1 et 2p, p étant le nombre de bits du convertisseur analogique-numérique.
[0049] Pour chaque longueur d’onde d’excitation, une mesure du spectre d’émission est réalisée mettant en œuvre des dispositifs discutés ci-après. [0050] Dans la suite de l’exposé, il est considéré qu’une matrice EEM d’un microorganisme à identifier comprend N lignes et M colonnes telles que :
N est un entier positif qui correspond au nombre de longueurs d’onde d’excitation ; N est préférentiellement compris entre 2 et 20000, de préférence 10 et 1500 ;
M est un entier positif qui correspond au nombre de longueurs d’onde d’émission ; M est préférentiellement compris entre 10 et 50000, de préférence entre 350 et 1500.
[0051] Dans le cadre de la présente invention, la matrice EEM est avantageusement obtenue pour
- une gamme d’au moins 2 longueurs d’onde d’excitation, de préférence au moins 100 longueurs d’onde d’excitation, et encore de préférence au moins 500 longueurs d’onde d’excitation comprise entre 140 et 2000 nm, de préférence entre 250 et 900 nm, par pas de 0,1 à 20 nm, de préférence par pas de 0,1 à 10 nm, et encore de préférence par pas de 0,8 nm, et
- une gamme d’au moins 10 longueurs d’onde d’émission, de préférence au moins 100 longueurs d’onde d’émission, et encore de préférence au moins 500 longueurs d’onde d’émission comprise entre 180 et 5500 nm, de préférence entre 200 et 900 nm et encore de préférence entre 220 et 750 nm, par pas compris entre 0,1 nm et 20 nm, de préférence par pas compris entre 0,1 et 10 nm et encore de préférence par pas de 1 nm. [0052] Les longueurs d’ondes d’excitation peuvent être choisies sur une gamme très large du spectre électromagnétique. Elles sont choisies de sorte à exciter l’échantillon. A titre illustratif, les longueurs d’ondes d'excitation peuvent être choisies parmi les gammes des rayons gamma, rayons X, les infra-rouges lointains, les micro-ondes et les ondes radio. [0053] Les longueurs d’ondes d’excitation sont de préférence choisies de l’ultraviolet à l’infrarouge. [0054] Les longueurs d’ondes d’émission peuvent être choisies sur une gamme très large du spectre électromagnétique. Elles sont choisies de sorte qu’un spectre d'émission quel que soit la gamme de mesure puisse être réalisé en fonction d’une longueur d’onde d’excitation. A titre illustratif, les longueurs d’ondes d’émission peuvent être choisies parmi les gammes des rayons gamma, rayons X, le visible, les infrarouges, les micro-ondes et les ondes radio.
[0055] Les longueurs d’ondes d’émission sont de préférence choisies de l’ultraviolet à l’infrarouge.
[0056] Obtention d’une matrice EEM [0057] L’obtention d’une matrice EEM d’un microorganisme à identifier peut être réalisée à l’aide d’un appareil de mesure, tel un fluorimètre, comprenant une source de lumière qui émet des longueurs d’onde d’excitation et une unité de mesure de spectre d’émission du microorganisme.
[0058] La source de lumière peut être une source de lumière émettant un spectre continu ou discontinu.
[0059] Une source de lumière émettant un spectre discontinu peut être choisie parmi une source de lumière réalisée à partir de plusieurs lasers ou plusieurs LEDs de longueurs d’onde différentes.
[0060] Une source de lumière émettant un spectre continu peut être choisie par exemple parmi une lampe halogène, un tube fluorescent, un néon, une lampe au sodium, une lampe au xénon ou une lampe à incandescence.
[0061] Dans le cas où la source de lumière est une source continue, ladite source est couplée à un monochromateur pour sélectionner une bande la plus étroite possible d’une longueur d’onde d’excitation (λexcitation) à partir de la gamme plus large de longueurs d’onde de la source de lumière continue.
[0062] Un monochromateur est par exemple un système dispersif à réseau, un prisme, un double monochromateur en mode soustractif ou additif.
[0063] Le monochromateur permet d’obtenir des longueurs d'onde d'excitation comprises entre 140 et 2000 nm, de préférence entre 250 et 900 nm, par pas de 0,1 à 20 nm, de préférence par pas de 0,1 à 10 nm, et encore de préférence par pas de 0,8 nm.
[0064] L'unité de mesure du spectre d’émission permet la mesure du spectre d’émission du microorganisme à identifier pour des longueurs d’onde d’émission (émission) comprises entre 180 et 5500 nm, de préférence entre 200 et 900 nm et encore de préférence entre 220 et 750 nm, par pas compris entre 0,1 nm et 20 nm, de préférence par pas compris entre 0,1 et 10 nm et encore de préférence par pas de 1 nm.
[0065] L’unité de mesure comprend un monochromateur et un capteur. [0066] Le monochromateur est par exemple un système dispersif à réseau, un prisme, une fente, un double monochromateur en mode soustractif ou additif.
[0067] Le capteur peut être un capteur CMOS, CCD, une barrette CMOS, une barrette CCD.
[0068] Un tel capteur permet une mesure rapide et fiable du spectre d’émission. [0069] L'appareil de mesure tel un fluorimètre peut être couplé à un microscope ou à une fibre.
[0070] Dans le cas où l’appareil de mesure est couplé à une fibre, l’utilisateur peut avantageusement amener la fibre directement au-dessus d’un microorganisme en culture ou déposé sur un support solide afin de l’éclairer et analyser son spectre d'émission simplement et rapidement d'après la méthode de la présente invention.
[0071] La fibre permet l’excitation de l’échantillon et la collection de la lumière émise par l'échantillon. La fibre optique peut être couplée à un objectif ou à une sonde de mesure, placée en bout de fibre optique, focalisant la lumière d'excitation sur le microorganisme et collectant la lumière d’émission dudit microorganisme. En fonction de l’objectif, la zone d’étude peut par exemple être une zone de diamètre moyen d'environ 50 μm2.
[0072] La fibre optique peut être une fibre optique monomode, multimode ou à indice variable. [0073] Un tel appareil de mesure, par exemple un fluorimètre, un fluorimètre fibre ou un fluorimètre couplé à un microscope, est facile d'utilisation et limite l’encombrement du système. Il est transportable et peu onéreux. La méthode objet de la présente invention permet donc de manière avantageuse d’identifier avec précision un microorganisme à l'aide d'un équipement plus simple d’utilisation et moins encombrant que les équipements de l’art antérieur, par exemple un spectromètre MALDI-TOF.
[0074] Analyse d’une matrice EEM avec au moins une matrice EEMr de référence [0075] La comparaison de la matrice EEM du microorganisme à identifier avec au moins une autre matrice EEMr de référence comprend au moins les étapes suivantes :
- le dépliement de la matrice EEM du microorganisme à identifier après l’obtention de ladite matrice en un unique vecteur caractéristique du microorganisme ; et
- l’analyse en composantes principales d’une matrice de données, ladite matrice de données comprenant ledit vecteur obtenu à l’étape précédente avec au moins un autre vecteur (vr) issu du dépliement d’une matrice EEMr d’un microorganisme de référence, ladite matrice EEMr étant obtenue dans les mêmes conditions que la matrice EEM.
[0076] Microorganisme de référence
[0077] Une matrice EEMr de référence est une matrice Excitation-Emission obtenue selon la présente invention à partir d’un micro-organisme de référence, c’est-à-dire un microorganisme connu dont on connaît de préférence au moins jusqu'à l'espèce.
[0078] Un «microorganisme de référence» est par exemple une souche de microorganisme déposée dans une collection de cultures internationales (par exemple, IHEM en Belgique, CBS aux Pays-Bas, ATCC aux USA, ...).
[0079] Le microorganisme de référence est caractérisé par une matrice EEMr et/ou un vecteur de référence. Le vecteur de référence étant obtenu d'après la matrice EEMr. [0080] Les matrices EEMr et/ou les vecteurs caractéristiques des microorganismes de référence peuvent être conservés en mémoire sur un support électronique classique ou sur un serveur informatique.
[0081] L’analyse de la matrice EEM du microorganisme à identifier est avantageusement réalisée avec un grand nombre de matrices EEMr de référence pour une grande fiabilité de l’identification du microorganisme.
[0082] Dépliement de matrice
[0083] Certaines méthodes connues de l'homme du métier consistent à analyser directement la matrice EEM obtenue pour le microorganisme étudié ; i.e. comparer ladite matrice EEM avec des matrices EEMr de microorganisme de référence.
[0084] Cependant, ces méthodes classiques connues de l’homme du métier sont peu fiables. En effet, deux matrices EEM obtenues pour deux microorganismes différents peuvent être très proches, c’est-à-dire que les spectres d’émission obtenus pour chacun des microorganismes sont très voisins. Cette proximité peut conduire à une mauvaise identification ; ainsi, l’homme du métier mettant en œuvre une méthode connue telle que discutée plus haut peut considérer deux microorganismes identiques alors qu’ils sont en réalité différents.
[0085] Afin d’éviter une telle erreur d’analyse, les inventeurs ont mis en œuvre une étape consistant à déplier la matrice EEM du microorganisme à identifier en un unique vecteur caractéristique dudit microorganisme.
[0086] Dans le présent exposé, il est entendu par « vecteur » un vecteur de dimension (1,x), x étant un entier positif.
[0087] Dans le présent exposé, il est entendu par « dépliement » l’opération algébrique consistant à transformer une matrice de dimension (N,M) en un vecteur de dimension (1,N*M).
[0088] A l’issue de l’opération de dépliement, la valeur (i,j) de la matrice EEM devient la valeur (1 ,(i-1 )*M+j) du vecteur ainsi obtenu, ou vecteur déplié dans la suite de l’exposé. [0089] Le vecteur déplié ainsi obtenu est caractéristique du microorganisme étudié. A chaque microorganisme étudié peut correspondre un vecteur déplié caractéristique.
[0090] La matrice de données [0091] Le vecteur déplié caractéristique du microorganisme à identifier est analysé avec au moins un vecteur de référence issu du dépliement d'au moins une matrice EEMr d’un microorganisme de référence enregistrée avec les mêmes longueurs d'onde d’excitation et d’émission.
[0092] Dans le cas où une matrice EEM d’un microorganisme à identifier ne comprend pas les mêmes longueurs d’onde d’étude (longueurs d’onde d’émission et d’excitation), tant en nombre qu’en termes de pas, qu'une matrice EEMr de référence, une série d’opérations mathématiques classiques permet de faire correspondre les longueurs d’étude de la matrice EEM avec les longueurs d’onde d’étude de la matrice EEMr de référence. [0093] La matrice de données normalisées comprend au moins deux lignes correspondant à un vecteur déplié du microorganisme à identifier et à un vecteur de référence.
[0094] Les vecteurs dépliés composant la matrice de données sont avantageusement obtenus selon le même protocole suivant la même méthode du présent exposé. C’est-à-dire que chaque vecteur déplié caractéristique d’un microorganisme de référence ou d’un microorganisme à identifier présente les mêmes dimensions.
[0095] Ainsi, dans le présent exposé, il est entendu par « matrice de données » une matrice qui comprend U lignes et V colonnes. U correspond au nombre de vecteurs dépliés composant la matrice de données normalisées, U étant un entier supérieur ou égal à 2.
V correspond au nombre de colonnes des vecteurs dépliés. Dans le présent exposé, V vaut typiquement N*M.
[0096] Dans le présent exposé, il est entendu par « matrice de données normalisées » une matrice de données dont toutes les valeurs sont divisées par la valeur maximale de ladite matrice de données. Cette normalisation permet d’identifier les microorganismes entre eux sans ajouter de biais de mesure.
[0097] En effet, deux spectres de deux mesures d’un même microorganisme peuvent quand même présenter de légères différences en termes d’intensité (par exemple en fonction de la quantité de bactéries ou de cellules fongiques en présence). Normaliser ces spectres permet d’éviter ces biais de mesure et de concentrer l’analyse sur la forme caractéristique du spectre plutôt que sur les intensités mesurées.
[0098] La matrice de données normalisées comprend U vecteurs dépliés ou individus dans la suite de l'exposé. A chaque individu est associé une succession de spectres d’émission, soit V variables quantitatives dans la suite de l’exposé.
[0099] Les U individus correspondent donc aux U microorganismes étudiés, c’est-à-dire un vecteur déplié d’un microorganisme à identifier avec au moins un vecteur de référence issu du dépliement d’au moins une matrice EEM d’un microorganisme de référence.
[0100] Les V variables quantitatives sont les V colonnes de la matrice de données normalisées. Une variable quantitative correspond à une mesure d'intensité lumineuse effectuée à une longueur d’onde d’émission particulière pour une longueur d’onde d’excitation donnée. [0101] Chaque individu peut être représenté par un point dans un espace réel positif Rv à V dimensions. Une telle représentation est peu satisfaisante car elle rend l’identification du microorganisme très difficile.
[0102] Analyse en composantes principales
[0103] L'analyse en composantes principales (ACP ou PCA en anglais pour principal component analysis), est une méthode d'analyse de données et plus généralement de statistique à plusieurs variables, qui consiste à transformer des variables liées entre elles (dites « variables corrélées » en statistique) en nouvelles variables décorrélées les unes des autres. Les nouvelles variables décorrélées entres elles obtenues à la suite de l’analyse en composantes principales sont nommées « composantes principales ». [0104] L’étape qui consiste à analyser en composantes principales la matrice de données normalisées est par exemple réalisée à l’aide d’un ordinateur ou de tout autre moyen technique permettant une analyse en composantes principales, par exemple une calculatrice ou un système de calcul embarqué. [0105] A la suite de l'analyse en composantes principales, une nouvelle matrice de données dite matrice ajustée est obtenue. La matrice ajustée comprend le même nombre de lignes et le même nombre de colonnes que la matrice de données normalisées. Les variables de la matrice ajustée sont les « composantes principales » de la matrice de données normalisées. Lesdites composantes principales sont des combinaisons linéaires des variables de la matrice de données normalisées.
[0106] De façon classique, les composantes principales peuvent être classées selon la quantité d'informations qu’elles transportent. La composante principale qui transporte la plus grande quantité d’informations est la composante principale de plus grand poids. La projection des différentes observables selon cette composante principale présente la plus grande variance statistique des observables. Il s’agit donc de la variable de la matrice ajustée pour laquelle les individus présentent la plus forte décorrélation entre eux. A l’inverse, la composante principale de poids le plus faible est la variable de la matrice de données ajustée pour laquelle les individus sont le moins décorrélés.
[0107] Dans le présent exposé, il est entendu par composantes principales classées des composantes principales triées selon leur poids, la composante principale de poids le plus fort est la composante principale 1 ou PC1 et la composante principale de poids le plus faible est la composante principale V ou PCV pour une matrice de donnée comprenant V variables.
[0108] La première colonne de la matrice de données ajustée est la PC1, la deuxième colonne la PC2 et ainsi de suite jusqu’à la PCV.
[0109] Projection du résultat de l’analvse en composantes principales
[0110] Les individus de la matrice de données ajustée peuvent être projetés dans un nouveau plan Rv à V dimensions dont les vecteurs directeurs sont les V composantes principales. [0111] Une telle projection est chronophage, laborieuse et nécessite des traitements mathématiques et/ou informatiques supplémentaires afin de mesurer par exemple les distances algébriques entre les différents points caractéristiques des différents individus composant la matrice de données normalisées. [0112] Les inventeurs ont mis en œuvre un procédé avantageux, simple et rapide d’utilisation comprenant une étape de projection des vecteurs de la matrice de données dans un plan défini par deux composantes principales de grands poids, avantageusement par les deux composantes principales de plus grands poids.
[0113] Cette projection selon les deux composantes principales de plus grands poids permet à l’utilisateur de visualiser rapidement et sans difficultés les points caractéristiques des microorganismes, les points caractéristiques des microorganismes étant les projections des vecteurs dépliés dans un même plan.
[0114] La projection peut être avantageusement réalisée par n’importe quel support permettant une visualisation du plan selon deux composantes principales différentes, de préférence les composantes principales de poids le plus fort ( i.e . PC1 et PC2).
[0115] Un tel support est par exemple un écran de télévision, un écran d'ordinateur, une tablette ou un téléphone portable. Ledit support ne se trouve pas nécessairement relié ou dans la même pièce que l’appareil de mesure, c’est-à-dire le dispositif émettant les longueurs d’ondes d’excitation et mesurant le spectre d’émission.
[0116] Ainsi, dans un mode de réalisation de la présente invention, l’utilisateur peut avoir un support de visualisation portable et indépendant de l’appareil de mesure mis en œuvre pour l’obtention de la matrice EEM du microorganisme à identifier.
[0117] De façon avantageuse, le procédé de la présente invention peut permettre à un opérateur de réaliser les étapes de la méthode dans une même zone de travail, par exemple un laboratoire d'analyses ou de recherche, puis de recevoir les résultats de l’analyse via par exemple un téléphone portable, une tablette ou un ordinateur portable. L’opérateur peut alors continuer son travail sans devoir attendre les résultats dans le laboratoire d’analyses. Les différentes étapes de la méthode de l’invention peuvent être réalisées par des opérateurs différents et pouvant se situer dans des zones très éloignées tant que le résultat obtenu est partagé à un support de visualisation. La communication du résultat de l’identification peut être réalisée par n’importe quels moyens connus de l’homme du métier, par exemple via le réseau internet, un réseau Wi-Fi, un réseau Bluetooth ou une communication NFC.
[0118] La projection des vecteurs de la matrice de données peut être réalisée dans un plan défini par deux composantes principales autres que les composantes principales de plus grands poids. Dans ce cas, l’utilisateur peut choisir les composantes principales qu’il souhaite et projeter les vecteurs de la matrice ajustée selon ces composantes principales.
[0119] De même, la projection du vecteur du microorganisme à identifier et d’au moins un vecteur de référence de la matrice de données peut être réalisée dans un espace défini par au moins trois composantes principales autres que les composantes principales de plus grands poids. Dans ce cas, l'utilisateur peut choisir les composantes principales qu’il souhaite et projeter les vecteurs caractéristiques des souches de microorganismes selon ces composantes principales. Une projection mettant en jeu des couleurs ou une visualisation en trois dimensions peut permettre de visualiser facilement les projections des vecteurs dans un espace à plus de deux dimensions.
[0120] La projection du résultat de l’analyse dans un plan défini par deux composantes principales, ou un espace défini par trois composantes principales peut comprendre en outre l’affichage d’une liste de distances entre les projections du microorganisme et du microorganisme de référence. [0121] Identification du microoraanisme
L’identification du microorganisme consiste à discriminer les points issus de la projection entres eux. Deux points proches sur la projection à deux dimensions sont caractéristiques de deux microorganismes identiques.
[0122] Dans le présent exposé, deux vecteurs sont dits « proches » selon l’appréciation visuelle de l’opérateur. Dans ce cas, l’opérateur identifie directement les points issus de la projection des vecteurs caractéristiques des souches de microorganismes dans l’espace selon les composantes principales PC1 et PC2.
[0123] C'est pourquoi il peut être préférable d’analyser une matrice EEM d’un microorganisme à identifier avec plusieurs matrices EEMr de référence par exemple avec au moins 5 matrices EEMr, de préférence au moins 100 matrices EEMr, et encore de préférence au moins 200 matrices EEMr.
[0124] L’identification peut aussi être réalisée automatiquement par exemple par un ordinateur. Cette analyse consiste alors à calculer la distance algébrique entre deux points et à définir un scalaire en deçà duquel les points sont considérés proches. Le scalaire peut être ajusté au fil des mesures.
[0125] La représentation issue de la méthode de la présente invention peut permettre la différenciation de plusieurs souches de microorganismes entre elles ou bien l’identification d'un microorganisme inconnu par comparaison avec un panel d’au moins un microorganisme de référence. [0126] Etapes optionnelles
[0127] De façon optionnelle, la présente invention peut présenter des étapes intermédiaires de traitement de données.
[0128] Un filtre peut être couplé à l’appareil de mesure pour couper certaine longueurs d’onde d'émission spécifiques. Un traitement numérique peut aussi être réalisé afin d’éliminer des réflexions dites parasites obtenues lors de la mesure du spectre d’émission, par exemple un traitement numérique peut être réalisé afin d’éliminer ou diminuer la diffusion Rayleigh, la rétrodiffusion, la diffusion intrinsèque à l’échantillon et non plus caractéristique du microorganisme à identifier. [0129] De préférence, l’obtention de la matrice EEM du microorganisme à identifier peut comprendre un filtrage physique (à l'aide de filtres) ou numérique du bruit lors de l’obtention de la matrice EEM.
[0130] De préférence, l’obtention de la matrice EEM du microorganisme à identifier peut comprendre en outre un filtrage physique (à l'aide de filtres) ou numérique de la composante Rayleigh. [0131] Le processus d’acquisition des matrices EEM, le traitement d’image optionnel, la normalisation de la matrice de données peuvent avantageusement être automatisés. De préférence, aucun ajustement des paramètres ne sera demandé à l’opérateur. [0132] La présente invention ne nécessite que très peu de matériel biologique et de gestes techniques.
[0133] La présente invention peut être rapidement implémentée dans des laboratoires d’analyses ou de recherche, mais des applications dans tous les domaines concernés par l’identification de microorganismes est possible, par exemple en microbiologie animale, en contrôle microbiologique dans l’environnement, dans l’industrie agro-alimentaire ou dans le domaine des productions végétales.
Brève description des dessins
[0134] D’autres caractéristiques, détails et avantages de l’invention apparaîtront à la lecture de la description détaillée ci-après, et à l’analyse des dessins annexés, sur lesquels :
Fig. 1
[0135] [Fig. 1] montre un schéma illustrant un dépliement d’une matrice EEM en un vecteur caractéristique d’un microorganisme selon un mode de réalisation de l’invention ;
Fig. 2
[0136] [Fig. 2] montre quatre matrices EEM obtenues pour deux souches différentes de microorganismes de référence, chacune étant analysée deux fois ;
Fig. 3 [0137] [Fig. 3] montre un schéma d’un mode de réalisation de la présente invention ;
Fig. 4 [0138] [Fig. 4] montre les projections de quatre matrices EEM obtenues pour deux souches différentes de microorganismes de référence, chacune étant analysée deux fois, selon des composantes principales obtenues après analyse en composantes principales des quatre matrices EEM correspondantes ; Fig. 5
[0139] [Fig. 5] montre un graphique selon PC1 et PC2 de quatre points issus de la projection de quatre vecteurs de référence.
Description des modes de réalisation
[0140] Les dessins et la description ci-après contiennent, pour l’essentiel, des éléments de caractère certain. Ils pourront donc non seulement servir à mieux faire comprendre la présente invention, mais aussi contribuer à sa définition, le cas échéant.
[0141] La figure 1 illustre une opération de dépliement de matrice selon la méthode de la présente invention. La matrice EEM de la figure 1 présente un nombre entier i de lignes, i étant un entier positif compris entre 1 et N. La matrice EEM de la figure 1 présente un nombre entier j de colonnes, j étant un entier positif compris entre 1 et M. Le vecteur déplié est alors de dimension (1,N*M). L’élément (i,j) de la matrice EEM devenant l’élément (1,(i-1)*M+j) du vecteur déplié.
[0142] La figure 2 illustre des matrices EEM dont l'intensité lumineuse est représentée selon une échelle de nuances de gris. Les matrices EEM sont deux matrices EEM indépendantes obtenues selon la même méthode à partir du microorganisme Candida parapsipolis et deux matrices EEM indépendantes obtenues selon la méthode à partir du microorganisme Candida tropicalis. Les matrices EEM des microorganismes Candida parapsipolis et Candida tropicalis semblent identiques alors que les microorganismes étudiés sont bien différents.
[0143] Il est maintenant fait référence à la figure 3. Un microorganisme étudié 20 est éclairé par une lumière de longueur d'onde d’excitation λexcitation.
[0144] La source de lumière 10 est une source de lumière continue couplée à un double monochromateur en mode soustractif 11. [0145] La source de lumière 10 est avantageusement reliée à une fibre optique 32 couplée à un objectif 31. L’objectif 31 permet de sélectionner une zone plus ou moins grande sur le microorganisme en culture. Par exemple la zone de mesure est inférieure à 50 μm. L’objectif est choisi en fonction de la zone de mesure souhaitée.
[0146] A chaque longueur d’onde d’excitation, le spectre d’émission de la souche 20 est mesuré à l’aide d’une unité de mesure 40 comprenant un double monochromateur en mode soustractif et un capteur CCD.
[0147] La fibre optique couplée à l’objectif 31 refocalise la lumière excitatrice sur un point du microorganisme et la lumière réémise par le microorganisme est concentrée dans la fibre optique jusqu’à l’unité de mesure 40.
[0148] L’appareil de mesure permet ainsi d’obtenir le spectre d’émission de la souche pour une longueur d’onde d’excitation donnée. L'opération est répétée pour chacune des longueurs d’onde d’excitation d’étude. [0149] Grâce aux un ou deux monochromateurs fonctionnant en mode soustractif 11, le changement de longueur d’onde d’excitation est très rapide et la mesure du spectre d’émission aussi. L’opération d’obtention de matrice EEM est ainsi rapide, de l'ordre de la minute.
[0150] A l’issue de l'éclairage successif de la souche 20 par des longueurs d’onde d’excitation différentes, une matrice Excitation Emission EEM 100 comme illustré en figure 2 est obtenue, caractéristique du microorganisme étudié.
[0151] Cette matrice EEM est dépliée selon le schéma de la figure 1 afin d’obtenir un unique vecteur caractéristique de l’échantillon. Cette opération est par exemple réalisée à l’aide d’un ordinateur 50. Cet ordinateur comprend par exemple en mémoire 300, un panel d’au moins un vecteur déplié de référence REF. L’au moins un vecteur de référence REF et le vecteur déplié caractéristique du microorganisme étudié sont insérés dans une matrice de données DON.
[0152] La matrice de données DON est normalisée, puis analysée en composantes principales 200 pour donner une nouvelle matrice ajustée ACP. [0153] Les différents vecteurs de la matrice ACP sont alors projetés dans un plan selon PC1 et PC2 (i.e. en générale les deux premières colonnes de la matrice ajustée) et affichés à l’aide d’un écran 60.
Exemples [0154] Candida parapsilosis, Candida tropicalis
[0155] Il est maintenant fait référence à la figure 3. La figure 3 présente quatre matrices EEM obtenues selon un mode de réalisation de la présente invention.
[0156] Les souches de microorganismes étudiées sont des souches de référence de Candida parapsilosis et Candida tropicalis, chaque souche étant déposée en duplicate (dépôts 3 et 8 pour Candida parapsiposis, 2 et 7 pour Candida tropicalis).
[0157] Les longueurs d'onde d’excitation sont choisies entre 325 et 600 nm par pas de 1 nm et les longueurs d’onde d’émission sont choisies entre 300 et 750 nm, par pas de 2 nm.
[0158] Il est impossible de différencier rapidement et de façon fiable les deux souches de référence de l’exemple à partir de leur matrice EEM respectives illustrées à la figure 2. En effet, aucune différence ne semble émerger d’une telle représentation.
[0159] Les matrices EEM de l’exemple sont ensuite analysées selon la méthode de la présente invention. [0160] Il est maintenant fait référence à la figure 4. Chaque ligne des matrices
EEM correspond à un spectre d’émission obtenu pour une longueur d’onde d’excitation donnée. Ainsi, chaque ligne des matrices EEM peut être projetée dans un plan selon deux composantes principales préalablement calculées par analyse en composantes principales. [0161] La figure 4 présente pour chaque microorganisme étudié les projections des spectres d’émission obtenus pour chaque longueur d’onde d’excitation (numérotés dans la figure de 302 jusqu’à 450 par pas de 2). Les projections sont effectuées selon PC1 et P21, PC1 et PC3, PC1 et PC4, PC1 et PC5.
[0162] Une telle représentation peut permettre de différencier les souches de Candida parapsilosis et Candida tropicalis. L'identification n’est pas aussi aisée et rapide qu’une identification à l’aide d’une projection des vecteurs du microorganisme à identifier et microorganisme de référence dans un plan selon PC1 et PC2.
[0163] Il est maintenant fait référence à la figure 5. La figure 5 présente une projection obtenue à l’issue de la méthode de la présente invention.
[0164] Les vecteurs caractéristiques des quatre microorganismes étudiés du présent exemple sont projetés dans un plan selon PC1 et PC2 illustrés à la figure 5.
[0165] Le graphique de la figure 5 permet bien de différencier et d’identifier instantanément les quatre microorganismes de référence, Pichia kudriavzevii (anciennement Candida krusei), Candida parapsilosis, et Candida tropicalis, Candida Glabrata.
[0166] Contrairement aux illustrations discutées plus haut, la figure 5 permet de séparer les quatre microorganismes d’espèces différentes en quatre points distincts dans un même plan. Les points obtenus pour les deux analyses indépendantes réalisées pour la souche de Candida parapsilosis, comme ceux obtenus pour la souche de Candida tropicalis, sont très proches, attestant de la reproductibilité de la méthode.
[0167] L'identification de tels microorganismes se fait habituellement à l’aide d'un spectromètre MALDI-TOF présentant plusieurs inconvénients. La présente invention permet donc d’identifier rapidement et facilement de façon fiable des microorganismes.

Claims

Revendications
[Revendication 1] Une méthode pour l’identification d’un microorganisme à identifier comprenant les étapes suivantes :
- l’obtention d’une matrice Excitation-Emission EEM du microorganisme à identifier,
- l’analyse en composantes principales de ladite matrice EEM avec au moins une matrice EEMr de référence, où l'étape d’analyse comprend les étapes suivantes :
/il le dépliement de la matrice EEM du microorganisme à identifier après l’obtention de ladite matrice en un unique vecteur caractéristique du microorganisme ; et
/ii/ l’analyse en composantes principales d’une matrice de données, ladite matrice de données comprenant ledit vecteur obtenu à l’étape précédente avec au moins un autre vecteur (vr) issu du dépliement d'une matrice EEMr d’un microorganisme de référence, ladite matrice EEMr étant obtenue dans les mêmes conditions que la matrice EEM,
- la projection du résultat de l’analyse dans un plan défini par deux composantes principales, et
- l’identification du microorganisme à identifier, où l'obtention de la matrice Excitation-Emission (EEM) du microorganisme à identifier est réalisée avec un fluorimètre.
[Revendication 2] Méthode selon la revendications 1 , dans laquelle la matrice EEM est obtenue pour
- une gamme d’au moins 2 longueurs d’onde d’excitation, de préférence au moins 100 longueurs d’onde d’excitation, et encore de préférence au moins
500 longueurs d’onde d’excitation comprise entre 140 et 2000 nm, de préférence entre 250 et 900 nm, par pas de 0,1 à 20 nm, de préférence par pas de 0,1 à 10 nm, et encore de préférence par pas de 0,8 nm, et
- une gamme d’au moins 10 longueurs d’onde d’émission, de préférence au moins 100 longueurs d’onde d’émission, et encore de préférence au moins 500 longueurs d’onde d’émission comprise entre 180 et 5500 nm, de préférence entre 200 et 900 nm et encore de préférence entre 220 et 750 nm, par pas compris entre 0,1 nm et 20 nm, de préférence par pas compris entre 1 et 10 nm et encore de préférence par pas de 1 nm.
[Revendication 3] Méthode selon les revendications 1 à 3, où l’obtention de la matrice EEM à identifier est réalisée directement sur un milieu de culture sur lequel le microorganisme à identifier a été préalablement cultivé, de préférence un milieu de culture semi-solide tel un milieu gélosé.
[Revendication 4] Méthode selon les revendications précédentes, dans laquelle le résultat de l'analyse en composantes principales est projeté dans un plan défini par deux composantes principales de plus grand poids.
[Revendication 5] Méthode selon les revendications précédentes, dans laquelle la projection du résultat de l’analyse dans un plan défini par deux composantes principales comprend en outre l’affichage d’une liste de distances entre les projections du microorganisme et du microorganisme de référence.
[Revendication 6] Support d’enregistrement non transitoire lisible par un ordinateur sur lequel est enregistré un programme pour la mise en œuvre du procédé selon l’une des revendications 1 à 6 lorsque ce programme est exécuté par un processeur.
[Revendication 7] Support d’enregistrement non transitoire lisible par un ordinateur sur lequel est enregistré un panel d’au moins 100 microorganismes de référence, de préférence au moins 200 microorganismes de référence.
EP20824613.2A 2019-11-29 2020-11-27 Méthode d'identification rapide de microorganismes par analyse de matrices excitation-émission Pending EP4065962A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1913480A FR3103900B1 (fr) 2019-11-29 2019-11-29 Méthode d'identification rapide de microorganismes par analyse de matrices excitation-émission
PCT/FR2020/052216 WO2021105640A1 (fr) 2019-11-29 2020-11-27 Méthode d'identification rapide de microorganismes par analyse de matrices excitation-émission

Publications (1)

Publication Number Publication Date
EP4065962A1 true EP4065962A1 (fr) 2022-10-05

Family

ID=70456837

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20824613.2A Pending EP4065962A1 (fr) 2019-11-29 2020-11-27 Méthode d'identification rapide de microorganismes par analyse de matrices excitation-émission

Country Status (4)

Country Link
US (1) US20230003652A1 (fr)
EP (1) EP4065962A1 (fr)
FR (1) FR3103900B1 (fr)
WO (1) WO2021105640A1 (fr)

Family Cites Families (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3470373A (en) * 1966-10-18 1969-09-30 Litton Systems Inc Method for analysis and identification of biologic entities by phosphorescence
US3449571A (en) * 1967-07-07 1969-06-10 Us Navy Method of detecting and identifying microorganisms and other biologic materials
US4526865A (en) * 1981-10-01 1985-07-02 Amb Systems Corp. Microorganism identification technique
US4753878A (en) * 1981-10-01 1988-06-28 Amb Systems Corp. Microorganism identification technique
US4847198A (en) * 1987-10-07 1989-07-11 The Board Of Governors For Higher Education, State Of Rhode Island And Providence Plantations Detection and indentification of bacteria by means of ultra-violet excited resonance Raman spectra
US5187368A (en) * 1989-09-29 1993-02-16 Glaxo Inc. Detection method for liquids using near infrared spectra
US5164597A (en) * 1989-09-29 1992-11-17 University Of Kentucky Research Foundation Method and apparatus for detecting microorganisms within a liquid product in a sealed vial
US5164301A (en) * 1990-06-22 1992-11-17 Difco Laboratories Process and kit for detecting microbial metabolism
ATE254965T1 (de) * 1995-04-25 2003-12-15 Discovery Partners Internation Fernprogrammierbare matrizen mit speichern und verwendungen davon
US6040191A (en) * 1996-06-13 2000-03-21 Grow; Ann E. Raman spectroscopic method for determining the ligand binding capacity of biologicals
US5866430A (en) * 1996-06-13 1999-02-02 Grow; Ann E. Raman optrode processes and devices for detection of chemicals and microorganisms
JP2002505866A (ja) * 1998-03-10 2002-02-26 ラージ・スケール・プローティオーミックス・コーポレイション 微生物の検出および特性付与
US6738502B1 (en) * 1999-06-04 2004-05-18 Kairos Scientific, Inc. Multispectral taxonomic identification
US6372895B1 (en) * 2000-07-07 2002-04-16 3M Innovative Properties Company Fluorogenic compounds
US6996472B2 (en) * 2000-10-10 2006-02-07 The United States Of America As Represented By The Department Of Health And Human Services Drift compensation method for fingerprint spectra
CN1582400A (zh) * 2001-02-21 2005-02-16 加拿大国立研究院 用于微生物鉴定和分类的磁共振波谱分析
US20020158211A1 (en) * 2001-04-16 2002-10-31 Dakota Technologies, Inc. Multi-dimensional fluorescence apparatus and method for rapid and highly sensitive quantitative analysis of mixtures
DE10155185A1 (de) * 2001-11-12 2003-05-22 Synthon Kg Verfahren zur Charakterisierung und/oder Identifizierung von Wirkmechanismen antimikrobieller Prüfsubstanzen
WO2003060444A1 (fr) * 2002-01-10 2003-07-24 Chemimage Corporation Procede de detection de micro-organismes pathogenes
US7945393B2 (en) * 2002-01-10 2011-05-17 Chemimage Corporation Detection of pathogenic microorganisms using fused sensor data
US7057721B2 (en) * 2002-01-10 2006-06-06 Chemimage Corporation Wide field method for detecting pathogenic microorganisms
US6750006B2 (en) * 2002-01-22 2004-06-15 Microbiosystems, Limited Partnership Method for detecting the presence of microbes and determining their physiological status
US7211377B1 (en) * 2002-01-22 2007-05-01 Microbiosystems, Limited Partnership Method for detecting the presence of dormant cryptobiotic microorganisms
SG104963A1 (en) * 2002-04-03 2004-07-30 Ntu Ventures Private Ltd Fiber optic bio-sensor
FI112504B (fi) * 2002-08-07 2003-12-15 Cyflo Oy Menetelmä bakteerien tunnistamiseksi
FR2845097B1 (fr) * 2002-10-01 2006-06-16 Metis Biotechnologies Procede de detection et de comptage de microorganismes dans un echantillon
US7122384B2 (en) * 2002-11-06 2006-10-17 E. I. Du Pont De Nemours And Company Resonant light scattering microparticle methods
US20040234952A1 (en) * 2003-01-07 2004-11-25 Wibke Kallow Process for identifying microoraganisms by means of mass spectrometry
US8688384B2 (en) * 2003-05-12 2014-04-01 River Diagnostics B.V. Automated characterization and classification of microorganisms
US7684934B2 (en) * 2003-06-06 2010-03-23 The United States Of America As Represented By The Department Of Health And Human Services Pattern recognition of whole cell mass spectra
EP1491876A1 (fr) * 2003-06-24 2004-12-29 Ecole Polytechnique Dispositif et méthode d'ellipsométrie à l'infrarouge avec transformation de fourier pour caractérisation et identification ultérieure d'échantillons de matériaux biologiques complexes, des microorganismes en particulier
US7794968B2 (en) * 2003-07-10 2010-09-14 Ben-Gurion University Of The Negev Research And Development Authority Polydiacetylene-containing solid colorimetric and/or fluorescent detector, method for its preparation and uses thereof
US20070279629A1 (en) * 2004-01-07 2007-12-06 Jacob Grun Method and apparatus for identifying a substance using a spectral library database
WO2006071247A2 (fr) * 2004-03-30 2006-07-06 California Institute Of Technology Analyses diagnostiques comprenant des analyses immunologiques sur membrane multiplexees faisant intervenir des points quantiques
US20080032420A1 (en) * 2004-03-30 2008-02-07 Lambert James L Surface Enhanced Raman Scattering and Multiplexed Diagnostic Assays
US7532320B2 (en) * 2004-06-30 2009-05-12 Chemimage Corporation Multimodal method for identifying hazardous agents
DE112005001530B4 (de) * 2004-07-01 2013-02-28 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Health Verfahren zur Spektralidentifikation von Mikroorganismen
WO2006010252A1 (fr) * 2004-07-27 2006-02-02 National Research Council Of Canada Systeme fluorometrique a longueurs d'ondes multiples destine a la surveillance en ligne de procedes biologiques
US8183052B2 (en) * 2004-08-19 2012-05-22 Blood Cell Storage, Inc. Methods and apparatus for sterility testing
US8497134B2 (en) * 2004-08-19 2013-07-30 Blood Cell Storage, Inc. Fluorescent detector systems for the detection of chemical perturbations in sterile storage devices
US7760354B2 (en) * 2005-01-07 2010-07-20 The United States Of America As Represented By The Secretary Of The Navy Spectroscopic method and apparatus for identification of a substance using a tunable light source
DE102005006237A1 (de) * 2005-02-10 2006-08-24 Henkel Kgaa Verfahren zur Bestimmung von Keimen
WO2006119166A2 (fr) * 2005-04-29 2006-11-09 The Regents Of The University Of Colorado Systemes de diagnostic a plusieurs excitations et methodes de classification de tissu
US20070037135A1 (en) * 2005-08-08 2007-02-15 Barnes Russell H System and method for the identification and quantification of a biological sample suspended in a liquid
US20070111225A1 (en) * 2005-08-10 2007-05-17 California Institute Of Technology System and method for monitoring an analyte
US8362435B2 (en) * 2005-10-24 2013-01-29 The United States Of America As Represented By The Secretary Of The Air Force Method of classifying microorganisms using UV irradiation and excitation fluorescence
WO2007056568A2 (fr) * 2005-11-09 2007-05-18 Chemimage Corporation Imagerie spectrale de biofilms
US20070269814A1 (en) * 2005-11-10 2007-11-22 Litmus, L.L.C. Method of pathogen or chemical detection
US20110237446A1 (en) * 2006-06-09 2011-09-29 Chemlmage Corporation Detection of Pathogenic Microorganisms Using Fused Raman, SWIR and LIBS Sensor Data
DE102006053540B3 (de) * 2006-11-14 2008-01-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur Analyse biologischer Proben
US20120134582A1 (en) * 2007-01-16 2012-05-31 Chemimage Corporation System and Method for Multimodal Detection of Unknown Substances Including Explosives
WO2009011565A1 (fr) * 2007-07-17 2009-01-22 Erasmus University Medical Center Rotterdam Procédé permettant le typage et l'identification de micro-organismes
BRPI0818741A2 (pt) * 2007-11-06 2018-07-17 Claro Scient Llc equipamento e método de avaliação da presença de microorganismos no sangue
FR2926820B1 (fr) * 2008-01-30 2014-10-17 Alain Rambach Procede de selection de microorganismes dans un echantillon biologique
CA2715569C (fr) * 2008-02-19 2019-03-05 Becton, Dickinson And Company Systemes et procedes pour identifier une culture comme etant positive pour des micro-organismes avec un degre de confiance eleve
US20110208432A1 (en) * 2008-02-19 2011-08-25 Patrick Shawn Beaty Systems and methods for presumptive identification of microorganism type in a culture
US7983874B2 (en) * 2008-06-10 2011-07-19 National University Of Ireland, Galway Similarity index: a rapid classification method for multivariate data arrays
US8512975B2 (en) * 2008-07-24 2013-08-20 Biomerieux, Inc. Method for detection and characterization of a microorganism in a sample using time dependent spectroscopic measurements
FR2936252B1 (fr) * 2008-09-23 2010-11-05 Millipore Corp Dispositif pour l'analyse microbiologique.
WO2010062354A1 (fr) * 2008-10-31 2010-06-03 Biomerieux, Inc. Procédés de séparation, de caractérisation et/ou d'identification de microorganismes à l'aide de spectrométrie de masse
KR20110095277A (ko) * 2008-10-31 2011-08-24 바이오메리욱스, 인코포레이티드. 라만 분광법을 이용하여 미생물을 분리, 특성규명, 및/또는 동정하는 방법
AU2009320337B2 (en) * 2008-10-31 2014-07-31 Biomerieux, Inc. Methods for separation, characterization and/or identification of microorganisms using spectroscopy
US8647835B2 (en) * 2008-10-31 2014-02-11 BIO MéRIEUX, INC. Methods for separation, characterization and/or identification of microorganisms using spectroscopy
JP2012507710A (ja) * 2008-10-31 2012-03-29 バイオメリュー・インコーポレイテッド 同定作用物質を使用した微生物の分離、キャラクタリゼーションおよび/または同定方法
US10059975B2 (en) * 2008-10-31 2018-08-28 Biomerieux, Inc. Methods for the isolation and identification of microorganisms
WO2010062350A1 (fr) * 2008-10-31 2010-06-03 Biomerieux, Inc. Procédés pour détection, caractérisation et/ou identification de micro-organismes dans un récipient scellé
MX2011005988A (es) * 2008-12-16 2011-09-01 Bio Merieux Inc Metodos para la caracterizacion de microorganismos en un medio solido o semisolido.
DE102009007266B4 (de) * 2009-02-03 2012-04-19 Bruker Daltonik Gmbh Massenspektrometrische Identifizierung von Mikroorganismen in komplexen Proben
WO2010129779A1 (fr) * 2009-05-07 2010-11-11 Biomerieux, Inc. Méthodes de détermination de la résistance antimicrobienne
US8987686B2 (en) * 2009-12-16 2015-03-24 Spectralys Innovation Method and spectroscopic analysis appliance, especially for analysing food, with multi-channel treatment of spectral data
EP2516666B1 (fr) * 2009-12-22 2016-04-20 3M Innovative Properties Company Procédés de détection de micro-organismes et trousses pour ceux-ci
US8666673B2 (en) * 2010-05-14 2014-03-04 Biomerieux, Inc Identification and/or characterization of a microbial agent using taxonomic hierarchical classification
FR2961597B1 (fr) * 2010-06-16 2017-02-24 Spectralys Innovation Procede de caracterisation d'un produit agroalimentaire et appareil pour la mise en oeuvre d'un tel procede.
MX341795B (es) * 2010-11-05 2016-09-02 Hoffmann La Roche Impresion dactilar espectroscopica de materia prima.
FR2976952A1 (fr) * 2011-06-27 2012-12-28 Commissariat Energie Atomique Procede pour caracteriser la presence ou l'absence d'un microorganisme dans un milieu biologique
GB2495899B (en) * 2011-07-04 2018-05-16 Thermo Fisher Scient Bremen Gmbh Identification of samples using a multi pass or multi reflection time of flight mass spectrometer
EP2600284A1 (fr) * 2011-12-02 2013-06-05 bioMérieux, Inc. Procédé d'identification de microorganismes par spectrométrie de masse et normalisation de scores
EP2795293A4 (fr) * 2011-12-19 2016-01-20 Opticul Diagnostics Ltd Moyens et procédés spectroscopiques pour identifier des micro-organismes en culture
WO2014014353A1 (fr) * 2012-07-18 2014-01-23 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Nouveau procédé de classification pour données spectrales
JP2014168442A (ja) * 2013-03-05 2014-09-18 Azbil Corp 微生物検出装置及び微生物検出方法
US20140257710A1 (en) * 2013-03-07 2014-09-11 Ofek Eshkolot Research And Development Ltd. Method and system for analyzing the taxonomic composition of a metagenome in a sample
US9677109B2 (en) * 2013-03-15 2017-06-13 Accelerate Diagnostics, Inc. Rapid determination of microbial growth and antimicrobial susceptibility
US11286513B2 (en) * 2013-05-31 2022-03-29 3I Diagnostics, Inc. Rapid microbial detection
US9217710B2 (en) * 2013-07-31 2015-12-22 The Arizona Board Of Regents On Behalf Of The University Of Arizona Method of simultaneous frequency-sweeping lifetime measurements on multiple excitation wavelengths
US10718012B2 (en) * 2013-10-14 2020-07-21 Agency For Science, Technology And Research Non-motorized optical multiplexing for the simultaneous detection of DNA target amplicons in a polymerase chain reaction solution
DE102013022016B4 (de) * 2013-12-20 2015-07-09 Bruker Daltonik Gmbh Mikroben-Identifizierung durch Massenspektrometrie und Infrarot-Spektrometrie
AU2015208884B2 (en) * 2014-01-27 2019-07-04 Tantillus Synergy Limited Improvements in the synthesis of phycocyanins
GB201403376D0 (en) * 2014-02-26 2014-04-09 Univ Manchester A method of analysing a sample including a microorganism of interest
FR3024465B1 (fr) * 2014-07-30 2018-03-23 Biomerieux Caracterisation de micro-organismes par maldi-tof
JP6913433B2 (ja) * 2014-11-14 2021-08-04 Jnc株式会社 微生物検査装置、方法およびプログラム
CN112964625B (zh) * 2015-03-06 2024-06-07 英国质谱公司 细胞群体分析
WO2016142681A1 (fr) * 2015-03-06 2016-09-15 Micromass Uk Limited Analyse spectrométrique de microbes
WO2016142825A1 (fr) * 2015-03-06 2016-09-15 Pocared Diagnostics Ltd. Identification sans réactif des gènes de résistance contenant des bactéries à l'aide d'un procédé de fluorescence intrinsèque rapide
US10591388B2 (en) * 2015-04-27 2020-03-17 Virtual Fluid Monitoring Services LLC Fluid analysis and monitoring using optical spectroscopy
FR3044415B1 (fr) * 2015-11-27 2017-12-01 Biomerieux Sa Procede de determination de la reaction d'un microorganisme a son exposition a un antibiotique
JP6709434B2 (ja) * 2016-03-31 2020-06-17 株式会社島津製作所 微生物の識別方法
WO2017210783A1 (fr) * 2016-06-06 2017-12-14 The Royal Institution For The Advancement Of Learning/Mcgill University Activité de l'eau contrôlée de micro-organismes pour identification spectrale
ES2716170T3 (es) * 2016-06-16 2019-06-10 Biomerieux Sa Método y sistema de identificación del tipo de Gram de una bacteria
DE102016116377A1 (de) * 2016-09-01 2018-03-01 Rheinisch-Westfälisch Technische Hochschule (RWTH) Aachen Verfahren und Vorrichtung zur Erfassung von Prozessparametern in Flüssigkulturen
US20190318807A1 (en) * 2016-10-26 2019-10-17 The Joan & Irwin Jacobs Technion-Cornell Institute Systems and methods for ultra-fast identification and abundance estimates of microorganisms using a kmer-depth based approach and privacy-preserving protocols
EP3561490A4 (fr) * 2016-12-22 2020-07-15 University of Tsukuba Procédé de création de données et procédé d'utilisation de données
US11591557B2 (en) * 2017-02-21 2023-02-28 Dots Technology Corp. Systems for allergen detection
WO2018173073A1 (fr) * 2017-03-22 2018-09-27 Adiuvo Diagnostics Pvt Ltd Dispositif et procédé de détection et de classification d'agents pathogènes
DE102017108278B4 (de) * 2017-04-19 2019-03-07 Bruker Daltonik Gmbh Mikrobieller Teststandard für die Verwendung in der Infrarot-Spektrometrie
US11061019B2 (en) * 2017-06-14 2021-07-13 Jinghong Chen High sensitivity optical detection system
WO2019000094A1 (fr) * 2017-06-30 2019-01-03 The Royal Institution For The Advancement Of Learning/Mcgill University Identification de micro-organismes par spectroscopie infrarouge de réflexion
HUP1700422A1 (hu) * 2017-10-17 2019-04-29 Martin And Co Kft Eljárás és berendezés sejtes objektumok és az ellenük hatékony tesztvegyületek azonosítására
FR3075825B1 (fr) * 2017-12-21 2022-01-21 Biomerieux Sa Procede et systeme d'identificationdu type de gram d'une bacterie
FR3075824B1 (fr) * 2017-12-21 2022-01-14 Biomerieux Sa Procede d'identification d'une levure ou d'une bacterie
IT201800002353A1 (it) * 2018-02-02 2019-08-02 Alifax Srl Procedimento di identificazione batterica tramite analisi multivariata di profili spettrali
WO2019183136A1 (fr) * 2018-03-20 2019-09-26 SafetySpect, Inc. Appareil et procédé de détection analytique multimode d'articles tels que des aliments
CN112534241A (zh) * 2018-06-01 2021-03-19 奥布Xyz股份有限公司 检测介质中的分析物
US20190369015A1 (en) * 2018-06-01 2019-12-05 Irid Corp. Identification of microorganisms using disposable dual reflection substrate for measuring infrared spectra of said microorganisms
WO2019232450A1 (fr) * 2018-06-01 2019-12-05 Orb Xyz, Inc. Détection de substances biologiques
JP2020034545A (ja) * 2018-08-28 2020-03-05 パナソニックIpマネジメント株式会社 成分分析装置及び成分分析方法
US11255783B2 (en) * 2018-08-30 2022-02-22 Board Of Trustee Of The University Of Arkansas Systems and processes for early detection of biological ammonia oxidation in water using fluorometry
IL262298A (en) * 2018-10-11 2020-04-30 The State Of Israel Ministry Of Agriculture & Rural Development Agricultural Res Organization Aro Vo System and method for quantifying bacteria in water by fluorescence range measurement and machine learning
US11747205B2 (en) * 2019-02-27 2023-09-05 Deep Smart Light Ltd. Noninvasive, multispectral-fluorescence characterization of biological tissues with machine/deep learning
US11885788B2 (en) * 2019-03-19 2024-01-30 Safety Spect, Inc Apparatus and method for multimode analytical sensing of items such as food
US11639897B2 (en) * 2019-03-29 2023-05-02 Vyv, Inc. Contamination load sensing device
US20230121472A1 (en) * 2020-03-26 2023-04-20 Orb Xyz, Inc. Detecting an analyte in a medium

Also Published As

Publication number Publication date
WO2021105640A1 (fr) 2021-06-03
FR3103900B1 (fr) 2024-07-19
FR3103900A1 (fr) 2021-06-04
US20230003652A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
FR2909202A1 (fr) Procede d'analyse de la disposition de produits dans un lineaire de magasin.
US20210164898A1 (en) Characterization of liquids in sealed containers
EP3257947B1 (fr) Procede et systeme d'identification du type de gram d'une bacterie
Mo et al. Non-destructive quality evaluation of pepper (Capsicum annuum L.) seeds using LED-induced hyperspectral reflectance imaging
Berghian-Grosan et al. Application of Raman spectroscopy and Machine Learning algorithms for fruit distillates discrimination
Ramos et al. Non‐invasive setup for grape maturation classification using deep learning
WO2016185108A1 (fr) Procédé d'identification par spectrométrie de masse d'un sous-groupe de microorganisme inconnu parmi un ensemble de sous-groupes de référence
FR2961597A1 (fr) Procede de caracterisation d'un produit agroalimentaire et appareil pour la mise en oeuvre d'un tel procede.
WO2021219969A1 (fr) Méthode de détection de la présence d'un agent pathogène dans un liquide biologique par spectroscopie raman exaltée de surface
EP2600284A1 (fr) Procédé d'identification de microorganismes par spectrométrie de masse et normalisation de scores
EP3028202B1 (fr) Procédé et dispositif d'analyse d'un échantillon biologique
Mo et al. Fluorescence hyperspectral imaging technique for foreign substance detection on fresh‐cut lettuce
EP3728623A1 (fr) Procede et systeme d'identification du type de gram d'une bacterie
EP3728624A1 (fr) Procede d'identification d'une levure ou d'une bacterie
EP4065962A1 (fr) Méthode d'identification rapide de microorganismes par analyse de matrices excitation-émission
Swanson et al. Pollen classification using a single particle fluorescence spectroscopy technique
Hamdy et al. Utilization of laser-induced breakdown spectroscopy, with principal component analysis and artificial neural networks in revealing adulteration of similarly looking fish fillets
Bernardes et al. Different chemometric methods for the discrimination of commercial aged cachaças
CN113916860B (zh) 一种基于荧光光谱的农药残留种类识别方法
EP4233014A1 (fr) Procédé de classification d'une image d'entrée représentant une particule dans un échantillon
WO2019162620A1 (fr) Methode de determination d'une pathologie par analyse de matiere fecale par spectrometrie de masse de type maldi-tof
Al Riza et al. Preliminary investigation on rice bran residue detection using ultraviolet fluorescence imaging
CN118443642B (zh) 基于光谱分析技术的食品安全检测方法及设备
Schulte et al. Utilization of spectral signatures of food for daily use
EP4437493A1 (fr) Procédé de détermination de la susceptibilité d'un microorganisme à un agent antimicrobien

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220602

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)