EP4061557B1 - Giessereiform, verfahren zur herstellung der form und giessereiverfahren - Google Patents

Giessereiform, verfahren zur herstellung der form und giessereiverfahren Download PDF

Info

Publication number
EP4061557B1
EP4061557B1 EP20823888.1A EP20823888A EP4061557B1 EP 4061557 B1 EP4061557 B1 EP 4061557B1 EP 20823888 A EP20823888 A EP 20823888A EP 4061557 B1 EP4061557 B1 EP 4061557B1
Authority
EP
European Patent Office
Prior art keywords
mold
feeder
molding cavity
pair
arms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20823888.1A
Other languages
English (en)
French (fr)
Other versions
EP4061557A1 (de
Inventor
Serge Alain FARGEAS
Nicolas Romain Benjamin Leriche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP4061557A1 publication Critical patent/EP4061557A1/de
Application granted granted Critical
Publication of EP4061557B1 publication Critical patent/EP4061557B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/08Features with respect to supply of molten metal, e.g. ingates, circular gates, skim gates
    • B22C9/082Sprues, pouring cups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/02Lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • B22C9/043Removing the consumable pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/20Stack moulds, i.e. arrangement of multiple moulds or flasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould

Definitions

  • metal in the present context, we mean both pure metals and metal alloys.
  • the mold can retain these ends during cooling and contraction of the solidified metal. This then generates tensile forces in the part which can generate cracks and local recrystallizations, particularly at the transitions between the ends and the central part of the part. This phenomenon can be further aggravated by a temperature gradient along the molding cavity, between the end connected to the feed channel and an opposite closed end.
  • the present disclosure aims to remedy these drawbacks by proposing a foundry mold which makes it possible to reduce cracks and recrystallization phenomena due to internal tensions induced, during the cooling of the metal in the mold, by the differences between thermal contraction rates of the metal. and the mold.
  • the mold can comprise at least a first molding cavity extending, along a main horizontal axis, from a first end to a second end, and a first pair of feed arms.
  • a first feed arm of the first pair of feed arms is oriented with a main axis in a substantially vertical direction and connected to the first end of the first molding cavity, while a main axis of a second arm feed arm of the first pair of feed arms is substantially parallel to the first feed arm and connected to the second end of the first molding cavity.
  • the mold is configured such that any cross section of the first and second feed arms of the first pair of feed arms, perpendicular to a vertical axis, has a greater area than any cross section of the mold cavity perpendicular to the horizontal axis.
  • the thermal contraction of the metal in these feed arms will cause them to buckle towards each other, which makes it possible to balance the forces generated by the thermal contraction of the metal in the first molding cavity, thus avoiding the appearance of cracks and recrystallized grains which could weaken the part thus molded.
  • the solidification of the metal starting at the heart of the first molding cavity where the cross-section is smaller, can propagate towards and through the two feed arms by cross sections with increasing areas so as to avoid shrinkage defects due to constrictions in the mold cavities.
  • the mold can comprise docking heads connecting the first and second ends of the first molding cavity to the respective feed arms of the first pair of feed arms, each docking head having a section transverse, perpendicular to the horizontal axis, with an area greater than any cross section of the first molding cavity perpendicular to the horizontal axis, but less than any cross section of the first and second feed arms of the first pair of arms feed perpendicular to the vertical axis.
  • the first and second feed arms of the first pair of feed arms may have cross sections, perpendicular to the vertical axis, with increasing areas upwards along the vertical axis. .
  • the mold in order to allow the simultaneous molding of several parts in the same mold, can comprise a first row of molding cavities, including the first molding cavity, each molding cavity of the first row of molding cavities extending, along a respective horizontal axis, from a first end to a respective second end, the first end of each molding cavity of the first row of molding cavities being connected to the first feed arm of the first pair of feed arm, and the second end of each mold cavity of the first row of mold cavities being connected to the second feed arm of the first pair of feed arms.
  • a part can be formed in each molding cavity of the first row of molding cavities between the feed arms of the first pair of feed arms.
  • the mold can be configured in such a way that any cross section of the first and second feed arms of the first pair of feed arms, perpendicular to a vertical axis, is greater than any cross section of each molding cavity of the first plurality of molding cavities perpendicular to the respective horizontal axis.
  • the mold may include at least a second row of molding cavities and a second pair of feed arms, each molding cavity of the second row of molding cavities extending, along a respective horizontal axis, from a first end to a respective second end, the first end of each molding cavity of the second row of molding cavities being connected to the first feed arm of the second pair of feed arms, and the second end of each molding cavity of the second row of molding cavities being connected to the second feed arm of the second pair of feed arms.
  • the mold can be configured such that any cross section of the first and second feed arms of the second pair of arms feed, perpendicular to a vertical axis, is also larger than any cross section of each molding cavity of the second row of molding cavities perpendicular to the respective horizontal axis.
  • upper ends of the supply arms can be connected to a supply bucket, for example by supply channels of liquid metal.
  • At least the first molding cavity can be configured to mold a turbomachine blade extending from a blade head to a blade root along the horizontal axis.
  • turbomachine in this context, we mean any machine in which a transfer of energy can take place between a fluid flow and at least one blade, such as, for example, a compressor, a pump, a turbine, a propeller, or a combination of at least two of these.
  • this blade is typically part of a rotor comprising a journal and a plurality of blades each extending radially from a blade root to a blade head in a corresponding radial direction relative to an axis of rotation of the journal.
  • These blades being subjected to particularly high mechanical and thermal forces, and being able to present, particularly at their trailing edges, thicknesses of material particularly fine, it is particularly desirable in this area to avoid any local defects such as cracks, shrinkage or recrystallization.
  • the mold can be configured as a shell mold.
  • shell mold is meant a mold formed by granules of a refractory material bonded by a slip cooked around the cavities of the mold.
  • the mold can in particular be formed by a plurality of superimposed layers, each comprising granules linked by the slip.
  • a seventh aspect of this disclosure concerns a method of producing this mold, comprising the steps of dipping a non-permanent model in a slip, sprinkling the non-permanent model, after dipping, with granules of a refractory material to form a layer of slip-coated refractory material granules, evacuating the non-permanent model of a shell formed by the slip-coated refractory material granules, and firing the shell.
  • An eighth aspect of this disclosure relates to a foundry process comprising the steps of pouring a metal in the liquid state into such a foundry mold, cooling and solidifying the metal in the mold, and removing the solidified metal from the mold.
  • this method can also include a step of preheating the mold in an oven before the casting step, and the mold being maintained in the oven until and during the casting step.
  • the preheating step it is also possible for the preheating step to be carried out in a first oven, and the casting step in a second oven, different from the first oven.
  • a foundry mold 1 is illustrated on the Figures 1A and 1B .
  • the mold 1, which is of the so-called “shell mold” type can include several cavities of molding 2. Each of these molding cavities 2 can extend, along a first horizontal axis X, from a first end 2a to a second end 2b, in such a way that the first horizontal axis formed to mold a turbomachine blade extending from a blade head to a blade root along this first horizontal axis pieces.
  • the mold 1 may also include several pairs of feed arms, each of which may include a first feed arm 3 and a second feed arm 4. Each of these feed arms 3, 4 can be oriented along a main axis respective in the direction of a substantially vertical Z axis. Each pair of feed arms 3,4 can be associated with a row of molding cavities 2 offset vertically relative to each other. Thus, in each row of molding cavities 2, the first end 2a of each molding cavity 2 can be connected to the first feed arm 3 of the respective pair of feed arms 3,4 by a first docking head 5, and the second end 2b of each molding cavity 2 be connected to the second feed arm 4 of the respective pair of feed arms 3,4 by a second docking head 6.
  • the pairs of feed arms 3, 4 can be laterally offset relative to each other in the direction of a second horizontal axis Y, substantially perpendicular to the first horizontal axis X.
  • the molding cavities 2 can thus be arranged in several parallel rows densely occupying the volume of the mold 1.
  • the first and second docking heads 5, 6 can correspond, respectively, to the blade root and to a blade head heel.
  • the mold 1 can present, at its top, a feed bucket 7 in the shape of a funnel, connected to the tops of the feed arms 3,4 of each pair of feed arms by a network of channels power supply 8.
  • the Heuvers circles process can be applied, as described, for example, by R. Wlodawer in “Directional Solidification of Steel Castings,” Pergamon Press, 1966 , such that the area Ab of any cross section S b of the first and second feed arms 3.4 of each pair, perpendicular to the vertical axis Z, is greater than the area A c of any section transverse S c of the molding cavities 2 of the corresponding row, perpendicular to the first horizontal axis , greater than the area A c of any cross section Sc of the corresponding molding cavity 2, perpendicular to the horizontal axis X, but less than the area A b of any cross section Sb of the feed arm 3.4 corresponding to the first pair of feed arms perpendicular to the vertical axis Z.
  • each feed arm 3, 4 can have cross sections Sb with area A b increasing upwards along the vertical axis. As illustrated on the Figure 1A , this can be obtained with a divergence angle ⁇ of, for example, between 5 and 15° between opposite edges of the feed arm3, 4.
  • divergence angle
  • the solidification of the metal which can be triggered within each molding cavity 2, where the cross section is narrowest, will be able to extend to the feed arms 3, 4 with two solidification fronts 10,11 opposite and always wider, thus avoiding shrinkage defects which can be caused by constrictions in the mold cavities.
  • a first step of a process for manufacturing the mold 1 can be the creation of a non-permanent cluster 21 comprising a plurality of models 22, like that illustrated in the Figures 2A and 2B .
  • the parts of the cluster 21 intended to form hollow volumes in the mold 1, such as the models 22 intended to form the molding cavities 2, the vertical arms 23 intended to form the feed arms 3,4, the cone 24 intended to form the feed bucket 7, and the connections 25 connecting this cone 24 and the arms feed channels 3,4 to form the feed channels 8, can be formed from a material with a low melting temperature, such as a wax or modeling resin.
  • a material with a low melting temperature such as a wax or modeling resin.
  • the models 22 represent such horizontally oriented blades.
  • the non-permanent cluster 21 may also include refractory elements to ensure its structural integrity, such as for example descendants (not illustrated). These descenders can be located on the sides, in order to free up the space under the feed bucket 7 to accommodate additional molding cavities 2, but it is also possible to have only one refractory descender arranged, for example example, centrally under cone 24.
  • the cluster 21 can be dipped in a slip B, as illustrated in the Figure 3A , to then sprinkle it with refractory sand S, that is to say granules of refractory material, as illustrated on the Figure 3B .
  • the slip B can for example contain particles of ceramic materials, in particular in the form of flour, with a mineral colloidal binder and possibly adjuvants depending on the rheology desired for the slip, while the refractory sand S can also be ceramic . Ceramic materials that may be considered for slip B and/or refractory sand S include alumina, mullite and zircon.
  • the mineral colloidal binder may for example be a water-based mineral colloidal solution, such as in particular colloidal silica.
  • the adjuvants may include a wetting agent, a fluidizer and/or a texturizer. These soaking and sprinkling steps can be repeated several times, possibly with different slips B and sands S, until a shell C of sand impregnated with slip of a desired thickness is formed around the cluster 21. This thickness can be adapted to different locations in the mold, for example by locally limiting some of the sprinkling.
  • the cluster 21 coated with this carapace C can then be heated, for example in an autoclave 200 at a temperature between 160 and 180 ° C and at a pressure of 1 MPa, to melt and evacuate the material from the interior of the carapace. at a low melting temperature of the cluster 21. Then, in a cooking step at a higher temperature, for example between 900 and 1200°C, the slip B can solidify so as to consolidate the refractory sand S to form the refractory walls of mold 1, as illustrated in the Figure 3C .
  • a step of preheating this mold 1, as illustrated in the Figure 4A In a foundry process using the mold 1, before proceeding with the casting of the metal in the liquid state in this mold 1, we can carry out a step of preheating this mold 1, as illustrated in the Figure 4A .
  • the mold 1 can be heated in the oven 100, which can reach a first temperature T 1 .
  • T 1 a first temperature
  • the metal can be poured into the mold at a second temperature T2, higher than the first temperature T 1 .
  • the temperature difference ⁇ T between the second temperature T2 and the first temperature T 1 can be limited, for example not greater than 170°C, or even 100°C, or even 80° C.
  • the metal is, for example , an equiaxed nickel-based alloy of the René 77 type, with a solidus at 1240° C and a liquidus at 1340° C
  • the second temperature T 2 can be, for example, 1450° C
  • the first temperature T 1 be then 1350° C, with a difference ⁇ T not greater than 170° C.
  • the mold 1 can still be maintained in the oven 100 during a first stage of cooling and solidification of the metal M in the mold 1, in which the cooling rate dT/dt of the oven 100 can be controlled and limited, for example, to approximately 7°C/min maximum.
  • This upper limit on the cooling rate also makes it possible to limit the forces exerted on the metal by the difference in thermal contraction between the mold 1 and the metal which cools.
  • the thermal contraction of the metal M greater than that of the refractory walls of the mold 1, will cause buckling of the metal in the feed arms 3, 4, illustrated in dotted lines on the Figure 4C , buckling which will exert a compressive stress on the metal M in the molding cavities 2, so as to balance at least partially the tensile stresses caused by the thermal contraction of the metal M in the molding cavities 2. It is thus possible to avoid concentrations of forces that can disrupt the crystallization of the metal and create weak points in the parts resulting from this foundry process.
  • René 77 type alloy is an equiaxed polycrystalline alloy
  • the metal will form, during its solidification, a plurality of grains of substantially identical size, typically of the order of 1 mm, but of more or less random orientation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Casting Devices For Molds (AREA)

Claims (11)

  1. Gießform (1), die zumindest beinhaltet:
    einen ersten Formhohlraum (2), der sich einer horizontalen Achse (X) folgend von einem ersten Ende (2a) zu einem zweiten Ende (2b) erstreckt,
    ein erstes Paar von Zuführarmen, umfassend:
    einen ersten Zuführarm (3), der einer im Wesentlichen vertikalen Richtung folgend orientiert ist und mit dem ersten Ende (2a) des ersten Formhohlraums (2) verbunden ist, und
    einen zweiten Zuführarm (4), der im Wesentlichen parallel zu dem ersten Zuführarm (3) und mit dem zweiten Ende (2b) des ersten Formhohlraums (2) verbunden ist,
    wobei die Gießform (1) dadurch gekennzeichnet ist, dass jeder Querschnitt (Sb) des ersten und zweiten Zuführarms (3,4) des ersten Paars von Zuführarmen senkrecht zu einer vertikalen Achse (Z) eine größere Fläche aufweist als jeder Querschnitt (Sc) des ersten Formhohlraums (2) senkrecht zu der horizontalen Achse (X).
  2. Gießform (1) nach Anspruch 1, umfassend Andockköpfe (5, 6), welche das erste und zweite Ende (2a, 2b) des ersten Formhohlraums (2) mit den jeweiligen Zuführarmen (3, 4) des ersten Paars von Zuführarmen verbinden, wobei jeder Andockkopf (5, 6) einen Querschnitt (St) senkrecht zu der horizontalen Achse (X) aufweist, mit einer Fläche, die größer als jeder Querschnitt (Sc) des ersten Formhohlraums (2) senkrecht zu der horizontalen Achse (X), aber kleiner als jeder Querschnitt (Sb) des ersten und zweiten Zuführarms (3, 4) des ersten Paars von Zuführarmen senkrecht zu der vertikalen Achse (Z) ist.
  3. Gießform (1) nach einem der Ansprüche 1 oder 2, wobei der erste und zweite Zuführarm (3,4) des ersten Paars von Zuführarmen Querschnitte (St) senkrecht zu der vertikalen Achse (Z) mit nach oben der vertikalen Achse (Z) folgend zunehmenden Flächen aufweisen.
  4. Gießform (1) nach einem der Ansprüche 1 bis 3, umfassend eine erste Reihe von Formhohlräumen (2), zu welcher der erste Formhohlraum (2) gehört, wobei jeder Formhohlraum (2) der ersten Reihe von Formhohlräumen (2) sich einer jeweiligen horizontalen Achse (X) folgend von einem ersten Ende (2a) bis zu einem zweiten jeweiligen Ende (2b) erstreckt, wobei das erste Ende (2a) eines jeden Formhohlraums (2) der ersten Reihe von Formhohlräumen (2) mit dem ersten Zuführarm (3) des ersten Paars von Zuführarmen verbunden ist, und das zweite Ende (2b) eines jeden Formhohlraums (2) der ersten Reihe von Formhohlräumen (2) mit dem zweiten Zuführarm (4) des ersten Paars von Zuführarmen verbunden ist.
  5. Gießform (1) nach Anspruch 4, umfassend zumindest eine zweite Reihe von Formhohlräumen (2) und ein zweites Paar von Zuführarmen, wobei jeder Formhohlraum (2) der zweiten Reihe von Formhohlräumen (2) sich einer jeweiligen horizontalen Achse (X) folgend von einem ersten Ende (2a) bis zu einem zweiten jeweiligen Ende (2b) erstreckt, wobei das erste Ende (2a) eines jeden Formhohlraums (2) der zweiten Reihe von Formhohlräumen (2) mit dem ersten Zuführarm (3) des zweiten Paars von Zuführarmen verbunden ist, und das zweite Ende (2b) eines jeden Formhohlraums (2) der zweiten Reihe von Formhohlräumen (2) mit dem zweiten Zuführarm (4) des zweiten Paars von Zuführarmen verbunden ist.
  6. Gießform (1) nach einem der vorhergehenden Ansprüche, wobei die oberen Enden der Zuführarme mit einem Zuführtrichter (7) verbunden sind.
  7. Gießform (1) nach einem der Ansprüche, wobei der erste Formhohlraum (2) dazu ausgestaltet ist, eine Turbomaschinenschaufel zu formen, die sich der horizontalen Achse (X) folgend von einem Schaufelkopf bis zu einem Schaufelfuß erstreckt.
  8. Gießform (1) nach einem der vorhergehenden Ansprüche, die als eine Maskenform ausgestaltet ist.
  9. Verfahren zur Herstellung einer Gießform (1) nach Anspruch 8, umfassend die folgenden Schritte:
    Eintauchen eines verlorenen Modells (22) in einen Tonschlamm,
    Bestreuen des verlorenen Modells (22) nach dem Eintauchen mit Körnern eines feuerfesten Materials, um eine Schicht aus Körnern des feuerfesten Materials zu bilden, die mit Tonschlamm beschichtet sind,
    Entnehmen des verlorenen Modells (22) aus einer Schale, die durch die Körner aus feuerfestem Material, die mit Tonschlamm beschichtet sind, gebildet wird, und Brennen der Schale.
  10. Gießverfahren, umfassend die folgenden Schritte:
    Gießen eines Metalls im flüssigen Zustand in eine Gießform (1) nach einem der Ansprüche 1 bis 7,
    Abkühlen und Verfestigen des Metalls in der Gießform (1), und
    Entformen des verfestigten Metalls.
  11. Gießverfahren nach Anspruch 10, umfassend einen Schritt des Vorwärmens der Gießform (1) in einem Ofen (100) vor dem Schritt des Gießens, und wobei die Form bis zu dem und während des Schritts des Gießens in dem Ofen (100) behalten wird.
EP20823888.1A 2019-11-21 2020-11-13 Giessereiform, verfahren zur herstellung der form und giessereiverfahren Active EP4061557B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1912996A FR3103400B1 (fr) 2019-11-21 2019-11-21 Moule de fonderie, procede de fabrication du moule et procede de fonderie
PCT/FR2020/052078 WO2021099721A1 (fr) 2019-11-21 2020-11-13 Moule de fonderie, procede de fabrication du moule et procede de fonderie

Publications (2)

Publication Number Publication Date
EP4061557A1 EP4061557A1 (de) 2022-09-28
EP4061557B1 true EP4061557B1 (de) 2024-01-31

Family

ID=71452277

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20823888.1A Active EP4061557B1 (de) 2019-11-21 2020-11-13 Giessereiform, verfahren zur herstellung der form und giessereiverfahren

Country Status (5)

Country Link
US (1) US11745254B2 (de)
EP (1) EP4061557B1 (de)
CN (1) CN114761151A (de)
FR (1) FR3103400B1 (de)
WO (1) WO2021099721A1 (de)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56154250A (en) * 1980-04-30 1981-11-28 Riken Corp Manufacture of mold for precision casting
JPS571539A (en) * 1980-06-04 1982-01-06 Hitachi Ltd Casting method and mold
FR2870147B1 (fr) 2004-05-12 2007-09-14 Snecma Moteurs Sa Procede de fonderie a cire perdue
FR2870148B1 (fr) 2004-05-12 2006-07-07 Snecma Moteurs Sa Procede de fonderie a cire perdue avec couche de contact
FR2985925B1 (fr) * 2012-01-24 2014-11-28 Snecma Carapace pour la fabrication par moulage a cire perdue d'elements aubages de turbomachine d'aeronef, revetue de bandes d'isolation thermique
US9498819B2 (en) * 2013-03-14 2016-11-22 Hitchiner Manufacturing Co., Inc. Refractory mold and method of making
DE102017100805A1 (de) * 2017-01-17 2018-07-19 Nemak, S.A.B. De C.V. Gießform zum Gießen von komplex geformten Gussteilen und Verwendung einer solchen Gießform
GB201708450D0 (en) * 2017-05-26 2017-07-12 Foseco Int Casting system

Also Published As

Publication number Publication date
US11745254B2 (en) 2023-09-05
FR3103400A1 (fr) 2021-05-28
CN114761151A (zh) 2022-07-15
US20220410254A1 (en) 2022-12-29
EP4061557A1 (de) 2022-09-28
FR3103400B1 (fr) 2022-08-19
WO2021099721A1 (fr) 2021-05-27

Similar Documents

Publication Publication Date Title
EP2092999B1 (de) Verfahren zur Herstellung von Laufradschaufeln mit gesteuertem Erstarrungsprozess
CA2885896C (fr) Moule carapace a ecran thermique
EP2945762B1 (de) Verfahren zur herstellung einer komponente mittels feingussverfahren mit gerichteter kühlung
CA2909031C (fr) Moule de fonderie monocristalline
FR2900850A1 (fr) Procede de fabrication de noyaux ceramiques de fonderie pour aubes de turbomachine
EP2895285B1 (de) Gusskörpermodell
EP3134219B1 (de) Form für monokristallines giessen
CA2954024A1 (fr) Procede de fabrication d'une aube bi-composant pour moteur a turbine a gaz et aube obtenue par un tel procede
EP3645191B1 (de) Giessverfahren mit heissformgiessen
EP4061557B1 (de) Giessereiform, verfahren zur herstellung der form und giessereiverfahren
FR2874340A1 (fr) Procede de fonderie de pieces en carapace, grappe et carapace pour sa mise en oeuvre, aube de turboreacteur obtenue par un tel procede, et moteur d'aeronef comportant de telles aubes
EP2741876B2 (de) Verfahren zum giessen von monokristallinen metallteilen
CA3029438C (fr) Four de refroidissement par solidification dirigee et procede de refroidissement utilisant un tel four
FR3108539A1 (fr) Procede de solidification dirigee pour alliages metalliques et modele en materiau eliminable pour le procede
WO2020240108A1 (fr) Procede de fabrication d'une aube de turbine metallique monocristalline
FR3130659A1 (fr) Moule de fonderie, sa fabrication et son utilisation

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220527

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230406

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230824

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020025082

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D