EP4059122A1 - Liquid cooling machine - Google Patents

Liquid cooling machine

Info

Publication number
EP4059122A1
EP4059122A1 EP20817455.7A EP20817455A EP4059122A1 EP 4059122 A1 EP4059122 A1 EP 4059122A1 EP 20817455 A EP20817455 A EP 20817455A EP 4059122 A1 EP4059122 A1 EP 4059122A1
Authority
EP
European Patent Office
Prior art keywords
rotor
flange
liquid
cooling
sheets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20817455.7A
Other languages
German (de)
French (fr)
Inventor
Guillaume TARDY
Diana FANTUZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec PSA Emotors SAS
Original Assignee
Nidec PSA Emotors SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec PSA Emotors SAS filed Critical Nidec PSA Emotors SAS
Publication of EP4059122A1 publication Critical patent/EP4059122A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • the present invention relates to rotating electrical machines, and more particularly those cooled by a circulation of a liquid, in particular oil, circulating at least partially along the shaft of the machine.
  • the invention relates more particularly to synchronous or asynchronous machines with alternating current. It relates in particular to traction or propulsion machines for electric motor vehicles (Battery Electric Vehicle) and / or hybrids (Hybrid Electric Vehicle - Plug-in Hybrid Electric Vehicle), such as passenger cars, vans, trucks or buses.
  • the invention also applies to rotating electrical machines for industrial and / or energy production applications, in particular naval, aeronautical or wind turbines.
  • Application JP2003324901 describes a machine with a permanent magnet rotor in which the cooling liquid is supplied to the rotor by an axial channel, centered on the axis of rotation, circulates through radial channels to other channels extending axially. along the magnets to cool them. Liquid leaves the rotor at the end of these magnet cooling channels, to be sprayed onto stator coil heads.
  • the rotor has a particular arrangement, with a peripheral ring connecting in its middle to the shaft.
  • Application US2010 / 0194220 discloses another machine with liquid cooling, involving a circulation of liquid within the rotor to cool the magnets.
  • This application mentions a risk of the insulation of the coil heads being removed by the cooling liquid in the event of projection on the latter.
  • the rotor has end pieces attached to the packet of ro toric sheets, together forming a passage for the liquid, this passage opening outwards through outlets located radially set back from the radially outer surface of the rotor.
  • Such arrangement increases the number of constituent parts of the machine and complicates its production.
  • less cooling of the coil heads is penalizing in terms of performance thereof.
  • US 2019/0068012 discloses a rotor cooled by liquid circulation. The latter is discharged through through openings made in end flanges.
  • the invention aims to improve the cooling of electric machines cooled by circulating liquid.
  • the invention aims to meet this need and it achieves it by means of a rotating liquid-cooled electric machine comprising a rotor with magnets and a wound stator, the rotor comprising:
  • the liquid can circulate in cooling channels of the packet of rotor plates which are angularly offset around the axis of rotation, the cooling channels in which the liquid circulates backwards preferably alternating with those in which the liquid flows forward, these cooling channels preferably being parallel and associated with respective poles of the rotor.
  • the machine comprises a supply of coolant to the front and rear flanges, the liquid supplying the front flange circulating from the latter through the pack of sheets by at least one cooling channel towards the rear flange before leaving the rotor. by at least one evacuation channel delimited at least partially by the rear flange, and the liquid supplying the rear flange circulating from the latter to the front flange via at least one cooling channel of the pack of sheets before leaving the rotor through the minus one evacuation channel delimited at least partially by the front flange.
  • the discharge channels preferably open opposite the heads of the stator coils, in order to allow the projected liquid to cool them.
  • the invention allows the machine to be cooled while limiting the force with which the coolant impacts the stator.
  • the manufacture of the machine remains simple, and the flanges can be made simply, if desired, in one piece.
  • the invention achieves balanced cooling along the longitudinal axis of the machine.
  • the front flange may be the one located on the side of the rotor shaft that mechanically engages the driven elements, and that side of the shaft may have a drive pinion, for example machined with the shaft.
  • the front and rear flanges each bear axially against said pack of rotor plates at one end.
  • the aforementioned discharge channels can be formed recessed on the face of the flange facing said package of rotor plates.
  • Each flange may include at least one supply channel through which the liquid supplying the flange gains at least one cooling channel.
  • This feed channel can be formed in a hollow on the face of the flange facing the package of rotor plates.
  • the feed channels can each be a Y or T shape, or any other suitable shape.
  • the front and rear flanges are identical and angularly offset so as to supply different cooling channels, the cooling channels traversed by the liquid flowing from the front flange to the rear flange preferably being produced within the odd poles, and those traversed by the liquid in the opposite direction, preferably being located within the even poles.
  • the cooling channels are formed by housings receiving magnets, by the space left free by the magnet or magnets in these housings. This space left free can in particular be used to channel the magnetic flux in the sheets of the package.
  • the cooling channels may be other than housings receiving magnets.
  • the cooling channels can for example be formed in recesses used only for cooling, or for other uses, for example for the manufacturing process.
  • the discharge channels have a flared shape towards the outside.
  • the discharge channels can be formed by recesses the depth of which increases as they approach the outer periphery of the flange.
  • Each channel discharge can have a substantially trapezoidal shape. The shape of the discharge channels can limit the rate of ejection of the liquid while still allowing a large area of the stator coil heads to be sprayed.
  • the supply and discharge channels alternate in the circumferential direction on each flange.
  • the flanges can be fed through the rotor shaft, the rotor shaft possibly having a central channel and radial channels opening onto the aforementioned feed channels of the front and rear flanges.
  • the radial channels feeding the front flange can be angularly offset with respect to those feeding the rear flange, to take account of the angular offset between the flanges.
  • the machine may include at least one axial channel for distributing the coolant to the flange (s), which may be formed in the rotor mass or between the rotor mass and the shaft, along the shaft.
  • This or these axial distribution channels may pass axially through at least part of the rotor mass.
  • These axial distribution channels can for example be provided in the bundle of sheets and extend flush with the shaft.
  • the flanges can be supplied with cooling liquid by an axial coolant distribution channel formed in the rotor mass along the shaft.
  • each flange is a foundry part, being in particular made of aluminum or an aluminum alloy.
  • the geometry of the flange, with the feed or discharge channels formed at the interface between the flange and the rotor plate pack, allows very simple manufacture without re-machining or drilling. Materials other than aluminum can be used, for example other low-magnetic materials.
  • a further subject of the invention is a method for cooling a rotating electrical machine, the rotor of which comprises a bundle of sheets and magnets housed therein, and the rotor of which rotates within a stator having coil heads.
  • the liquid in particular a machine as defined above, in which the liquid is circulated in opposite directions within the rotor to cool the magnets, then the liquid is sprayed onto the heads of the stator coils after passing through the packet of rotor plates.
  • the circulation through the bundle of sheets can in particular take place crosswise over the entire length of the bundle of sheets, this circulation taking place between the front and rear flanges.
  • the invention makes it possible to cool the stator while limiting the force with which the cooling fluid impacts the stator.
  • the enlarged section of the outlets of the discharge channels prevents the formation of a powerful jet directed towards the stator.
  • the liquid circulates axially within the packet, then is ejected radially. The bend formed at the junction between the packet of rotor plates and the flanges breaks the flow, and thus decreases the speed with which the liquid impacts the coils.
  • the cooling fluid is circulated axially within the package of rotor plates through recesses thereof made in the housings of the magnets. Also preferably, all odd poles are cooled by circulation in one direction and all even poles by circulation in the opposite direction.
  • Figure 1 partially and schematically shows, in longitudinal section, a machine according to the invention
  • FIG. 2 represents the rotor of FIG. 1 in isolation, and illustrates the circulation of the cooling fluid in opposite directions within the package of rotor plates,
  • FIG 3 partially and schematically shows the rotor showing a flange in cross section in its thickness
  • Figure 4 shows a detail of the package of rotor plates
  • Figure 5 shows a flange in isolation
  • Figure 6 illustrates the cooling of the coil heads by the liquid projected by the discharge channels of the flanges on them.
  • the electric machine 1 according to the invention, partially shown in Figure 1, comprises a rotor 10 rotating inside a stator 20 about an axis of rotation X.
  • the stator 20 comprises a package 21 of stator sheets leaving notches for the electrical conductors of a winding. These conductors project axially from the packet of sheets 21 to form coil heads 22, also called chignons.
  • the rotor 10 comprises at least one pack 11 of rotor plates carried by a shaft 40 which is guided by bearings (not shown).
  • This shaft 40 carries at the front a pinion 48 which engraine with driven elements, not shown.
  • the end of the shaft 40 carrying the pinion 48 is also called the “drive end”.
  • the package 11 comprises, as can also be seen in FIG. 4, housings 13 in which permanent magnets 14 are arranged, the magnetization of which can be carried out if necessary after their installation in the housings 13.
  • the rotor 10 has two front and rear end flanges 30a and 30b arranged against the corresponding ends of the pack 11.
  • the two flanges 30a and 30b are identical in the example considered, and have, as illustrated in FIG. 5, on their face 31 facing the package 11, a set of recessed reliefs defining circulation passages for a cooling fluid.
  • This cooling fluid which is preferably an oil, is supplied through a central channel 41 of the shaft 40, as illustrated in Figure 2.
  • This channel 41 communicates with the front flange 30a via radial channels 42 and with the rear flange 30b via other radial channels 43 of which only the mouth opening into the central channel 41 can be seen in FIG. 2, these channels 43 being angularly offset with respect to the channels 42.
  • each flange 30a or 30b comprises supply channels 32 in the general shape of Y and discharge channels 33 which alternate with the supply channels 33 and open on the outer periphery of the flange.
  • the supply channels 32 each have a radial branch 32a which is aligned with a radial channel 42 of the shaft 40 and opens onto the latter, and two oblique branches 32b in which are distributes the flow of liquid circulating in branch 32a.
  • the branches 32b are at least partially superimposed on recesses 16 made in the sheets of the package 11, and forming longitudinal cooling channels 17 through the package 11, as illustrated in Figures 1 and 6.
  • the recesses 16 are made by cutting the sheets with the housings 13 of the magnets 14, and serve on the magnetic plane to channel the magnetic flux in the sheets of the package 11.
  • the exhaust channels 33 are superimposed on the recesses 16 of the poles located between those which are fed by the supply channels 32.
  • the rotor has 8 poles, and each flange 30a or 30b has four supply channels 32 and four discharge channels 33.
  • the flanges 30a and 30b are angularly offset by 45 ° in the example considered.
  • the channels 17 formed within the package 11 by the recesses 16 of the odd poles are superimposed at one end on the supply channels 32 of the front flange 30a and on the discharge channels 33 of the rear flange 30b, and the channels 17 formed by the recesses of the even poles are superimposed at one end on the discharge channels 33 of the front flange 30a and at the end opposite the supply channels 32 of the rear flange 30b.
  • the liquid arriving through the central channel 41 can reach the front flange 30a through the radial channels 42, then reach through the supply channels 32 the channels 17 of the odd poles and flow from the front to the rear within the bundle of sheets (circulation marked 1 in Figures 2 and 3), before reaching the discharge channels 33 of the rear flange 30b.
  • the liquid which does not pass through the channels 42 reaches the channels 43 by circulating along the central passage 41, then reaches the rear flange 30b and the supply channels 32 of the latter.
  • the liquid then circulates from the back to the front through the channels 17 of the even-numbered poles (circulation marked 2 in Figures 2 and 3), before reaching the discharge channels 33 of the front flange 30a.
  • Each discharge channel 33 has a generally substantially trapezoidal shape, with opposite side edges 36 which diverge outwardly, as illustrated in FIG. 5.
  • the angular extent occupied on the periphery of the flange by an discharge channel 33 is for example greater than or equal to 30 ° around the X axis.
  • the depth of the discharge channel 33 that is to say its distance from which it recedes with respect to the plane of the face 31 of the flange, can increase as illustrated in FIG. 6 with the distance to the center of the flange. .
  • the flanges 30a and 30b are preferably made by casting, in aluminum or an aluminum alloy, and can be held against the package 11 by tie rods, not shown.
  • the faces 31 of the flanges 30a and 30b advantageously cover the magnets 14 and thus contribute to their axial immobilization within the package 31.
  • the cooling liquid circulates in the opposite direction within the pack of sheets, as explained above, and cools the magnets.
  • the liquid leaving the channels 17 formed within the package 11 is sprayed through the discharge channels 33 on the coil heads 22 due to the centrifugal force.
  • the coolant sprayed on the stator can be collected and pumped outside the stator to be cooled before being reinjected by the hollow shaft 40.
  • the rotor may or may not be twisted.
  • the rotor can be made with other passages for the coolant.
  • the angular offset between the flanges can be different from 45 °, depending on the polarity of the machine.
  • this offset can be 3607n plus the possible twist angle of the rotor, where n denotes the number of poles of the rotor. It may for example be 60 ° for a 6-pole machine.
  • poles are cooled, but alternatively only some of them are, for example every other pole or one in four.
  • the flanges may have a shape other than that illustrated.

Abstract

The invention relates to a rotary electric machine with liquid cooling, comprising a rotor with permanent magnets and a wound stator, the rotor comprising: (i) at least one rotor sheet stack, (ii) magnets housed in the sheet stack, and (iii) front and rear flanges adjacent to the sheet stack, the machine being configured to enable a cross-flow of the cooling liquid within the rotor sheet stack.

Description

Description Description
Titre : Machine à refroidissement par liquide Domaine technique Title: Liquid cooling machine Technical field
La présente invention concerne les machines électriques tournantes, et plus particulièrement celles refroidies par une circulation d’un liquide, notamment de l’huile, circulant au moins partiellement le long de l’arbre de la machine. The present invention relates to rotating electrical machines, and more particularly those cooled by a circulation of a liquid, in particular oil, circulating at least partially along the shaft of the machine.
L’invention porte plus particulièrement sur les machines synchrones ou asynchrones, à courant alternatif. Elle concerne notamment les machines de traction ou de propulsion de véhicules automobiles électriques (Battery Electric Vehicle) et/ou hybrides (Hybrid Electric Vehicle - Plug-in Hybrid Electric Vehicle), telles que voitures individuelles, camionnettes, camions ou bus. L’invention s’applique également à des machines électriques tournantes pour des applications industrielles et/ou de production d’énergie, notamment navales, aéronautiques ou éoliennes. The invention relates more particularly to synchronous or asynchronous machines with alternating current. It relates in particular to traction or propulsion machines for electric motor vehicles (Battery Electric Vehicle) and / or hybrids (Hybrid Electric Vehicle - Plug-in Hybrid Electric Vehicle), such as passenger cars, vans, trucks or buses. The invention also applies to rotating electrical machines for industrial and / or energy production applications, in particular naval, aeronautical or wind turbines.
Technique antérieure Prior art
Il est connu de refroidir les têtes de bobines du stator par un liquide de refroidissement éjecté par le rotor sur celles-ci au cours du fonctionnement de la machine. It is known practice to cool the heads of the stator coils with a cooling liquid ejected by the rotor onto them during the operation of the machine.
La demande JP2003324901 décrit une machine à rotor à aimants permanents dans laquelle le liquide de refroidissement est amené au rotor par un canal axial, centré sur l’axe de rotation, circule par des canaux radiaux jusqu’à d’autres canaux s’étendant axialement le long des aimants pour refroidir ces derniers. Le liquide quitte le rotor à l’extrémité de ces canaux de refroidissement des aimants, pour être projeté sur des têtes de bobines du stator. Le rotor présente un agencement particulier, avec une couronne périphérique se raccordant en son milieu à l’arbre. Application JP2003324901 describes a machine with a permanent magnet rotor in which the cooling liquid is supplied to the rotor by an axial channel, centered on the axis of rotation, circulates through radial channels to other channels extending axially. along the magnets to cool them. Liquid leaves the rotor at the end of these magnet cooling channels, to be sprayed onto stator coil heads. The rotor has a particular arrangement, with a peripheral ring connecting in its middle to the shaft.
La demande US2010/0194220 divulgue une autre machine à refroidissement par liquide, faisant intervenir une circulation de liquide au sein du rotor pour refroidir les aimants. Cette demande mentionne un risque d’enlèvement de l’isolant des têtes de bobines par le liquide de refroidissement en cas de projection sur ces dernières. Pour diminuer ce risque, le rotor comporte des pièces d’extrémité rapportées sur le paquet de tôles ro toriques, formant ensemble un passage pour le liquide, ce passage débouchant vers l’extérieur par des sorties situées radialement en retrait de la surface radialement extérieure du rotor. Un tel agencement accroît le nombre de pièces constitutives de la machine et complexifie sa réalisation. De plus, un moindre refroidissement des têtes de bobines est pénalisant sur le plan des performances de celle-ci. Application US2010 / 0194220 discloses another machine with liquid cooling, involving a circulation of liquid within the rotor to cool the magnets. This application mentions a risk of the insulation of the coil heads being removed by the cooling liquid in the event of projection on the latter. To reduce this risk, the rotor has end pieces attached to the packet of ro toric sheets, together forming a passage for the liquid, this passage opening outwards through outlets located radially set back from the radially outer surface of the rotor. Such arrangement increases the number of constituent parts of the machine and complicates its production. In addition, less cooling of the coil heads is penalizing in terms of performance thereof.
US 2019/0068012 divulgue un rotor refroidi par une circulation de liquide. Ce dernier est déchargé par des ouvertures traversantes réalisées dans des flasques d’extrémité. US 2019/0068012 discloses a rotor cooled by liquid circulation. The latter is discharged through through openings made in end flanges.
Exposé de l’invention Disclosure of the invention
L’invention vise à améliorer le refroidissement des machines électriques refroidies par une circulation de liquide. The invention aims to improve the cooling of electric machines cooled by circulating liquid.
Résumé de l’invention Summary of the invention
L’invention vise à répondre à ce besoin et elle y parvient grâce à une machine électrique tournante à refroidissement par liquide, comportant un rotor à aimants et un stator bobiné, le rotor comportant : The invention aims to meet this need and it achieves it by means of a rotating liquid-cooled electric machine comprising a rotor with magnets and a wound stator, the rotor comprising:
(i) au moins un paquet de tôles rotoriques, (i) at least one package of rotor plates,
(ii) des aimants logés dans ledit paquet de tôles, (ii) magnets housed in said package of sheets,
(iii) des flasques avant et arrière adjacents audit paquet de tôles, la machine étant configurée pour assurer une circulation croisée du liquide de refroidissement au sein du paquet de tôles rotoriques. (iii) front and rear flanges adjacent to said packet of sheets, the machine being configured to provide cross circulation of coolant within the packet of rotor sheets.
En particulier, le liquide peut circuler dans des canaux de refroidissement du paquet de tôles rotoriques qui sont décalés angulairement autour de l’axe de rotation, les canaux de refroidissement dans lesquels le liquide circule vers l’arrière alternant de préférence avec ceux dans lesquels le liquide circule vers l’avant, ces canaux de refroidissement étant de préférence parallèles et associés à des pôles respectifs du rotor. In particular, the liquid can circulate in cooling channels of the packet of rotor plates which are angularly offset around the axis of rotation, the cooling channels in which the liquid circulates backwards preferably alternating with those in which the liquid flows forward, these cooling channels preferably being parallel and associated with respective poles of the rotor.
De préférence, la machine comporte une alimentation en liquide de refroidissement des flasques avant et arrière, le liquide alimentant le flasque avant circulant depuis ce dernier à travers le paquet de tôles par au moins un canal de refroidissement vers le flasque arrière avant de quitter le rotor par au moins un canal d’évacuation délimité au moins partiellement par le flasque arrière, et le liquide alimentant le flasque arrière circulant depuis ce dernier vers le flasque avant par au moins un canal de refroidissement du paquet de tôles avant de quitter le rotor par au moins un canal d’évacuation délimité au moins partiellement par le flasque avant. Les canaux d’évacuation débouchent de préférence en regard de têtes de bobines du stator, afin de permettre au liquide projeté de les refroidir. Preferably, the machine comprises a supply of coolant to the front and rear flanges, the liquid supplying the front flange circulating from the latter through the pack of sheets by at least one cooling channel towards the rear flange before leaving the rotor. by at least one evacuation channel delimited at least partially by the rear flange, and the liquid supplying the rear flange circulating from the latter to the front flange via at least one cooling channel of the pack of sheets before leaving the rotor through the minus one evacuation channel delimited at least partially by the front flange. The discharge channels preferably open opposite the heads of the stator coils, in order to allow the projected liquid to cool them.
L’invention permet de refroidir la machine tout en limitant la force avec laquelle le fluide de refroidissement impacte le stator. La fabrication de la machine reste simple, et les flasques peuvent être réalisés simplement, si cela est souhaité, d’une seule pièce. L’invention permet d’obtenir un refroidissement équilibré selon l’axe longitudinal de la machine. The invention allows the machine to be cooled while limiting the force with which the coolant impacts the stator. The manufacture of the machine remains simple, and the flanges can be made simply, if desired, in one piece. The invention achieves balanced cooling along the longitudinal axis of the machine.
Le flasque avant peut être celui qui est situé du côté de l’arbre du rotor qui vient en prise mécaniquement avec les éléments entraînés, et ce côté de l’arbre peut comporter un pignon d’entraînement, par exemple usiné avec l’arbre. The front flange may be the one located on the side of the rotor shaft that mechanically engages the driven elements, and that side of the shaft may have a drive pinion, for example machined with the shaft.
De préférence, les flasques avant et arrière viennent chacun axialement en appui contre ledit paquet de tôles rotoriques à une extrémité. Ainsi, les canaux d’évacuation précités peuvent être formés en creux sur la face du flasque tournée vers ledit paquet de tôles rotoriques. Chaque flasque peut comporter au moins un canal d’alimentation par lequel le liquide alimentant le flasque gagne au moins un canal de refroidissement. Ce canal d’alimentation peut être formé en creux sur la face du flasque tournée vers le paquet de tôles rotoriques. Les canaux d’alimentation peuvent avoir chacun une forme de Y ou de T, ou toute autre forme appropriée. Preferably, the front and rear flanges each bear axially against said pack of rotor plates at one end. Thus, the aforementioned discharge channels can be formed recessed on the face of the flange facing said package of rotor plates. Each flange may include at least one supply channel through which the liquid supplying the flange gains at least one cooling channel. This feed channel can be formed in a hollow on the face of the flange facing the package of rotor plates. The feed channels can each be a Y or T shape, or any other suitable shape.
De préférence, les flasques avant et arrière sont identiques et décalés angulairement de manière à alimenter des canaux de refroidissement différents, les canaux de refroidissement parcourus par le liquide circulant du flasque avant vers le flasque arrière étant de préférence réalisés au sein des pôles impairs, et ceux parcourus par le liquide en sens inverse, étant de préférence situés au sein des pôles pairs. Preferably, the front and rear flanges are identical and angularly offset so as to supply different cooling channels, the cooling channels traversed by the liquid flowing from the front flange to the rear flange preferably being produced within the odd poles, and those traversed by the liquid in the opposite direction, preferably being located within the even poles.
De préférence les canaux de refroidissement sont formés par des logements recevant des aimants, par l’espace laissé libre par le ou les aimants dans ces logements. Cet espace laissé libre peut notamment servir à canaliser le flux magnétique dans les tôles du paquet. Preferably, the cooling channels are formed by housings receiving magnets, by the space left free by the magnet or magnets in these housings. This space left free can in particular be used to channel the magnetic flux in the sheets of the package.
En variante, les canaux de refroidissement peuvent être autre que des logements recevant des aimants. Les canaux de refroidissement peuvent être par exemple formés dans des évidements utilisés uniquement pour le refroidissement, ou pour d’autres utilisations, par exemple pour le procédé de fabrication. As a variant, the cooling channels may be other than housings receiving magnets. The cooling channels can for example be formed in recesses used only for cooling, or for other uses, for example for the manufacturing process.
De préférence, les canaux d’évacuation présentent une forme évasée vers l’extérieur. Les canaux d’évacuation peuvent être formés par des renfoncements dont la profondeur augmente en se rapprochant de la périphérie extérieure du flasque. Chaque canal d’évacuation peut avoir une forme sensiblement trapézoïdale. La forme des canaux d’évacuation peut limiter la vitesse d’éjection du liquide tout en permettant d’arroser une large étendue des têtes de bobines du stator. Preferably, the discharge channels have a flared shape towards the outside. The discharge channels can be formed by recesses the depth of which increases as they approach the outer periphery of the flange. Each channel discharge can have a substantially trapezoidal shape. The shape of the discharge channels can limit the rate of ejection of the liquid while still allowing a large area of the stator coil heads to be sprayed.
De préférence, les canaux d’alimentation et d’évacuation alternent dans la direction circonférentielle sur chaque flasque. Preferably, the supply and discharge channels alternate in the circumferential direction on each flange.
L’alimentation des flasques peut s’effectuer par l’arbre du rotor, ce dernier pouvant comporter un canal central et des canaux radiaux débouchant sur les canaux d’alimentation précités des flasques avant et arrière. Les canaux radiaux alimentant le flasque avant peuvent être décalés angulairement par rapport à ceux alimentant le flasque arrière, pour tenir compte du décalage angulaire entre les flasques. The flanges can be fed through the rotor shaft, the rotor shaft possibly having a central channel and radial channels opening onto the aforementioned feed channels of the front and rear flanges. The radial channels feeding the front flange can be angularly offset with respect to those feeding the rear flange, to take account of the angular offset between the flanges.
La machine peut comporter au moins un canal axial de distribution du fluide de refroidissement vers le ou les flasques, qui peut être formé dans la masse rotorique ou entre la masse rotorique et l’arbre, le long de l'arbre. Ce ou ces canaux axiaux de distribution peuvent traverser axialement au moins une partie de la masse rotorique. Ces canaux axiaux de distribution peuvent par exemple être ménagés dans le paquet de tôles et s'étendre au ras de l'arbre. The machine may include at least one axial channel for distributing the coolant to the flange (s), which may be formed in the rotor mass or between the rotor mass and the shaft, along the shaft. This or these axial distribution channels may pass axially through at least part of the rotor mass. These axial distribution channels can for example be provided in the bundle of sheets and extend flush with the shaft.
Les flasques peuvent être alimentés en liquide de refroidissement par un canal axial de distribution du fluide de refroidissement formé dans la masse rotorique le long de l'arbre. De préférence, chaque flasque est une pièce de fonderie, étant notamment réalisé en aluminium ou alliage d’aluminium. La géométrie du flasque, avec les canaux d’alimentation ou d’évacuation formés à l’interface entre le flasque et le paquet de tôles rotoriques, permet une fabrication très simple sans reprise d’usinage ni perçage. D’autres matériaux que l’aluminium peuvent être utilisés, par exemple d’autres matériaux peu magnétiques. L’invention a encore pour objet un procédé de refroidissement d’une machine électrique tournante dont le rotor comporte un paquet de tôles et des aimants logés dans celui-ci, et dont le rotor tourne au sein d’un stator ayant des têtes de bobines, notamment une machine telle que définie ci-dessus, dans lequel on fait circuler le liquide dans des sens opposés au sein du rotor pour refroidir les aimants, puis l’on projette sur les têtes de bobines du stator le liquide après traversée du paquet de tôles du rotor. La circulation à travers le paquet de tôles peut notamment avoir lieu de manière croisée sur toute la longueur du paquet de tôles, cette circulation s’effectuant entre des flasques avant et arrière. L’invention permet de refroidir le stator tout en limitant la force avec laquelle le fluide de refroidissement impacte le stator. La section agrandie des sorties des canaux d’évacuation évite la formation d’un jet puissant dirigé vers le stator. De préférence, le liquide circule axialement au sein du paquet, puis est éjecté radialement. Le coude formé à la jonction entre le paquet de tôles rotoriques et les flasques casse l’écoulement, et diminue ainsi la vitesse avec laquelle le liquide impacte les bobines. The flanges can be supplied with cooling liquid by an axial coolant distribution channel formed in the rotor mass along the shaft. Preferably, each flange is a foundry part, being in particular made of aluminum or an aluminum alloy. The geometry of the flange, with the feed or discharge channels formed at the interface between the flange and the rotor plate pack, allows very simple manufacture without re-machining or drilling. Materials other than aluminum can be used, for example other low-magnetic materials. A further subject of the invention is a method for cooling a rotating electrical machine, the rotor of which comprises a bundle of sheets and magnets housed therein, and the rotor of which rotates within a stator having coil heads. , in particular a machine as defined above, in which the liquid is circulated in opposite directions within the rotor to cool the magnets, then the liquid is sprayed onto the heads of the stator coils after passing through the packet of rotor plates. The circulation through the bundle of sheets can in particular take place crosswise over the entire length of the bundle of sheets, this circulation taking place between the front and rear flanges. The invention makes it possible to cool the stator while limiting the force with which the cooling fluid impacts the stator. The enlarged section of the outlets of the discharge channels prevents the formation of a powerful jet directed towards the stator. Preferably, the liquid circulates axially within the packet, then is ejected radially. The bend formed at the junction between the packet of rotor plates and the flanges breaks the flow, and thus decreases the speed with which the liquid impacts the coils.
De préférence, on fait circuler axialement le fluide de refroidissement au sein du paquet de tôles rotoriques à travers des évidements de celui-ci réalisés dans les logements des aimants. De préférence également, on refroidit tous les pôles impairs par une circulation dans un sens et tous les pôles pairs par une circulation dans le sens opposé. Preferably, the cooling fluid is circulated axially within the package of rotor plates through recesses thereof made in the housings of the magnets. Also preferably, all odd poles are cooled by circulation in one direction and all even poles by circulation in the opposite direction.
Brève description des dessins Brief description of the drawings
L’invention pourra être mieux comprise à la lecture de la description qui va suivre, d’un exemple de mise en œuvre non limitatif de celle-ci, et à l’examen du dessin annexé, sur lequel : The invention may be better understood from reading the following description, of an example of non-limiting implementation thereof, and from examining the appended drawing, in which:
[Fig 1] la figure 1 représente de façon partielle et schématique, en coupe longitudinale, une machine selon l’invention, [Fig 1] Figure 1 partially and schematically shows, in longitudinal section, a machine according to the invention,
[Fig 2] la figure 2 représente isolément le rotor de la figure 1, et illustre la circulation du fluide de refroidissement dans des sens opposés au sein du paquet de tôles rotoriques,[Fig 2] FIG. 2 represents the rotor of FIG. 1 in isolation, and illustrates the circulation of the cooling fluid in opposite directions within the package of rotor plates,
[Fig 3] la figure 3 représente de manière partielle et schématique le rotor en faisant apparaître un flasque en coupe transversale dans son épaisseur, [Fig 3] Figure 3 partially and schematically shows the rotor showing a flange in cross section in its thickness,
[Fig 4] la figure 4 représente un détail du paquet de tôles rotoriques, [Fig 4] Figure 4 shows a detail of the package of rotor plates,
[Fig 5] la figure 5 représente isolément un flasque, et [Fig 5] Figure 5 shows a flange in isolation, and
[Fig 6] la figure 6 illustre le refroidissement des têtes de bobine par le liquide projeté par les canaux d’évacuation des flasques sur celles-ci. [Fig 6] Figure 6 illustrates the cooling of the coil heads by the liquid projected by the discharge channels of the flanges on them.
Description détaillée detailed description
La machine électrique 1 selon l’invention, partiellement représentée à la figure 1, comporte un rotor 10 tournant à l’intérieur d’un stator 20 autour d’un axe de rotation X. The electric machine 1 according to the invention, partially shown in Figure 1, comprises a rotor 10 rotating inside a stator 20 about an axis of rotation X.
Le stator 20 comporte un paquet 21 de tôles statoriques ménageant des encoches pour des conducteurs électriques d’un bobinage. Ces conducteurs dépassent axialement du paquet de tôles 21 pour former des têtes de bobines 22, encore appelées chignons. The stator 20 comprises a package 21 of stator sheets leaving notches for the electrical conductors of a winding. These conductors project axially from the packet of sheets 21 to form coil heads 22, also called chignons.
Le rotor 10 comporte au moins un paquet 11 de tôles rotoriques porté par un arbre 40 qui est guidé par des roulements (non représentés). Cet arbre 40 porte à l’avant un pignon 48 qui engraine avec des éléments entraînés, non représentés. L’extrémité de l’arbre 40 portant le pignon 48 est encore appelée « drive end ». The rotor 10 comprises at least one pack 11 of rotor plates carried by a shaft 40 which is guided by bearings (not shown). This shaft 40 carries at the front a pinion 48 which engraine with driven elements, not shown. The end of the shaft 40 carrying the pinion 48 is also called the “drive end”.
Le paquet 11 comporte, comme visible également sur la figure 4, des logements 13 dans lesquels sont disposés des aimants permanents 14, dont la magnétisation peut être effectuée le cas échéant après leur mise en place dans les logements 13. The package 11 comprises, as can also be seen in FIG. 4, housings 13 in which permanent magnets 14 are arranged, the magnetization of which can be carried out if necessary after their installation in the housings 13.
Le rotor 10 comporte deux flasques d’extrémité avant et arrière 30a et 30b disposés contre les extrémités correspondantes du paquet 11. The rotor 10 has two front and rear end flanges 30a and 30b arranged against the corresponding ends of the pack 11.
Les deux flasques 30a et 30b sont identiques dans l’exemple considéré, et présentent comme illustré sur la figure 5 sur leur face 31 tournée vers le paquet 11 un ensemble de reliefs en creux définissant des passages de circulation d’un fluide de refroidissement. The two flanges 30a and 30b are identical in the example considered, and have, as illustrated in FIG. 5, on their face 31 facing the package 11, a set of recessed reliefs defining circulation passages for a cooling fluid.
Ce fluide de refroidissement, qui est de préférence une huile, est amené par un canal central 41 de l’arbre 40, comme illustré sur la figure 2. This cooling fluid, which is preferably an oil, is supplied through a central channel 41 of the shaft 40, as illustrated in Figure 2.
Ce canal 41 communique avec le flasque avant 30a par des canaux radiaux 42 et avec le flasque arrière 30b par d’autres canaux radiaux 43 dont on ne voit sur la figure 2 que l’embouchure donnant dans le canal central 41, ces canaux 43 étant décalés angulairement par rapport aux canaux 42. This channel 41 communicates with the front flange 30a via radial channels 42 and with the rear flange 30b via other radial channels 43 of which only the mouth opening into the central channel 41 can be seen in FIG. 2, these channels 43 being angularly offset with respect to the channels 42.
Si l’on se réfère à la figure 5, on voit que chaque flasque 30a ou 30b comporte des canaux d’alimentation 32 en forme générale de Y et des canaux d’évacuation 33 qui alternent avec les canaux d’alimentation 33 et débouchent sur la périphérie extérieure du flasque. Referring to Figure 5, we see that each flange 30a or 30b comprises supply channels 32 in the general shape of Y and discharge channels 33 which alternate with the supply channels 33 and open on the outer periphery of the flange.
Comme on peut le voir sur la figure 3, les canaux d’alimentation 32 présentent chacun une branche radiale 32a qui est alignée avec un canal radial 42 de l’arbre 40 et débouche sur celui-ci, et deux branches obliques 32b dans lesquelles se répartit le flux de liquide circulant dans la branche 32a. As can be seen in Figure 3, the supply channels 32 each have a radial branch 32a which is aligned with a radial channel 42 of the shaft 40 and opens onto the latter, and two oblique branches 32b in which are distributes the flow of liquid circulating in branch 32a.
Les branches 32b se superposent au moins partiellement à des évidements 16 réalisés dans les tôles du paquet 11, et formant des canaux de refroidissement longitudinaux 17 à travers le paquet 11, comme illustré sur les figures 1 et 6. The branches 32b are at least partially superimposed on recesses 16 made in the sheets of the package 11, and forming longitudinal cooling channels 17 through the package 11, as illustrated in Figures 1 and 6.
Les évidements 16 sont réalisés par découpe des tôles avec les logements 13 des aimants 14, et servent sur le plan magnétique à canaliser le flux magnétique dans les tôles du paquet 11. Les canaux d’évacuation 33 se superposent aux évidements 16 des pôles situés entre ceux qui sont alimentés par les canaux d’alimentation 32. The recesses 16 are made by cutting the sheets with the housings 13 of the magnets 14, and serve on the magnetic plane to channel the magnetic flux in the sheets of the package 11. The exhaust channels 33 are superimposed on the recesses 16 of the poles located between those which are fed by the supply channels 32.
Dans l’exemple considéré, le rotor présente 8 pôles, et chaque flasque 30a ou 30b comporte quatre canaux d’alimentation 32 et quatre canaux d’évacuation 33. Les flasques 30a et 30b sont décalés angulairement de 45° dans l’exemple considéré. In the example considered, the rotor has 8 poles, and each flange 30a or 30b has four supply channels 32 and four discharge channels 33. The flanges 30a and 30b are angularly offset by 45 ° in the example considered.
Ainsi, les canaux 17 formés au sein du paquet 11 par les évidements 16 des pôles impairs se superposent à une extrémité aux canaux d’alimentation 32 du flasque avant 30a et aux canaux d’évacuation 33 du flasque arrière 30b, et les canaux 17 formés par les évidements des pôles pairs se superposent à une extrémité aux canaux d’évacuation 33 du flasque avant 30a et à l’extrémité opposée aux canaux d’alimentation 32 du flasque arrière 30b. Thus, the channels 17 formed within the package 11 by the recesses 16 of the odd poles are superimposed at one end on the supply channels 32 of the front flange 30a and on the discharge channels 33 of the rear flange 30b, and the channels 17 formed by the recesses of the even poles are superimposed at one end on the discharge channels 33 of the front flange 30a and at the end opposite the supply channels 32 of the rear flange 30b.
Cela permet de créer au sein du rotor des circulations du liquide de refroidissement en des sens opposés. This makes it possible to create circulations of the cooling liquid within the rotor in opposite directions.
Plus précisément, comme illustré sur les figures 2 et 3, le liquide arrivant par le canal central 41 peut gagner le flasque avant 30a par les canaux radiaux 42, puis atteindre par les canaux d’alimentation 32 les canaux 17 des pôles impairs et circuler de l’avant vers l’arrière au sein du paquet de tôles (circulation marquée 1 sur les figures 2 et 3), avant de gagner les canaux d’évacuation 33 du flasque arrière 30b. More precisely, as illustrated in Figures 2 and 3, the liquid arriving through the central channel 41 can reach the front flange 30a through the radial channels 42, then reach through the supply channels 32 the channels 17 of the odd poles and flow from the front to the rear within the bundle of sheets (circulation marked 1 in Figures 2 and 3), before reaching the discharge channels 33 of the rear flange 30b.
Le liquide qui ne passe pas dans les canaux 42 atteint les canaux 43 en circulant le long du passage central 41, puis gagne le flasque arrière 30b et les canaux d’alimentation 32 de ce dernier. Le liquide circule alors de l’arrière vers l’avant dans les canaux 17 des pôles pairs (circulation marquée 2 sur les figures 2 et 3), avant de gagner les canaux d’évacuation 33 du flasque avant 30a. The liquid which does not pass through the channels 42 reaches the channels 43 by circulating along the central passage 41, then reaches the rear flange 30b and the supply channels 32 of the latter. The liquid then circulates from the back to the front through the channels 17 of the even-numbered poles (circulation marked 2 in Figures 2 and 3), before reaching the discharge channels 33 of the front flange 30a.
Chaque canal d’évacuation 33 présente une forme générale sensiblement trapézoïdale, avec des bords latéraux opposés 36 qui divergent vers l’extérieur, comme illustré sur la figure 5. L’étendue angulaire occupée sur la périphérie du flasque par un canal d’évacuation 33 est par exemple supérieure ou égale à 30° autour de l’axe X. Each discharge channel 33 has a generally substantially trapezoidal shape, with opposite side edges 36 which diverge outwardly, as illustrated in FIG. 5. The angular extent occupied on the periphery of the flange by an discharge channel 33 is for example greater than or equal to 30 ° around the X axis.
La profondeur du canal d’évacuation 33, c’est-à-dire sa distance de laquelle il vient en retrait par rapport au plan de la face 31 du flasque, peut augmenter comme illustré sur la figure 6 avec la distance au centre du flasque. The depth of the discharge channel 33, that is to say its distance from which it recedes with respect to the plane of the face 31 of the flange, can increase as illustrated in FIG. 6 with the distance to the center of the flange. .
Sur la figure 6, on voit que le fond 37 du canal d’évacuation 33 présente une forme plane inclinée obliquement en éloignement du paquet 11. In Figure 6, we see that the bottom 37 of the discharge channel 33 has a planar shape inclined obliquely away from the package 11.
La largeur angulaire de la sortie du canal d’évacuation 33, ainsi que la pente de son fond 37, permettent d’arroser avec le liquide de refroidissement une large portion des têtes de bobines 22, comme illustré sur la figure 6. The angular width of the outlet of the discharge channel 33, as well as the slope of its bottom 37, make it possible to spray coolant on a large portion of the coil heads 22, as shown in Figure 6.
Les flasques 30a et 30b sont de préférence réalisés par fonderie, en aluminium ou alliage d’aluminium, et peuvent être maintenus contre le paquet 11 par des tirants non représentés. Les faces 31 des flasques 30a et 30b viennent avantageusement recouvrir les aimants 14 et contribuent ainsi à leur immobilisation axiale au sein du paquet 31. The flanges 30a and 30b are preferably made by casting, in aluminum or an aluminum alloy, and can be held against the package 11 by tie rods, not shown. The faces 31 of the flanges 30a and 30b advantageously cover the magnets 14 and thus contribute to their axial immobilization within the package 31.
Le fonctionnement de la machine est le suivant. The operation of the machine is as follows.
Lors de la rotation du rotor 10, le liquide de refroidissement circule en sens contraire au sein du paquet de tôles, comme expliqué plus haut, et refroidit les aimants. Le liquide quittant les canaux 17 ménagés au sein du paquet 11 est pulvérisé par les canaux d’évacuation 33 sur les têtes de bobines 22 du fait de la force centrifuge. During the rotation of the rotor 10, the cooling liquid circulates in the opposite direction within the pack of sheets, as explained above, and cools the magnets. The liquid leaving the channels 17 formed within the package 11 is sprayed through the discharge channels 33 on the coil heads 22 due to the centrifugal force.
Compte-tenu de la section élargie des sorties des canaux d’évacuation 33, on évite la formation de jets fins sous haute pression dont l’impact sur les têtes de bobines serait susceptible de les endommager. In view of the enlarged section of the outlets of the discharge channels 33, the formation of fine high pressure jets, the impact of which on the coil heads would be liable to damage them, is avoided.
Dans l’exemple considéré, la présence du virage formé à la jonction entre les canaux de refroidissement 17, axiaux, et les canaux d’évacuation 33, radiaux, freine le liquide et réduit encore la vitesse d’impact sur les têtes de bobines. In the example considered, the presence of the bend formed at the junction between the cooling channels 17, axial, and the discharge channels 33, radial, brakes the liquid and further reduces the speed of impact on the coil heads.
Le fluide de refroidissement projeté sur le stator peut être récupéré et pompé à l’extérieur du stator pour être refroidi avant d’être réinjecté par l’arbre creux 40. The coolant sprayed on the stator can be collected and pumped outside the stator to be cooled before being reinjected by the hollow shaft 40.
Bien entendu, l’invention n’est pas limitée à l’exemple qui vient d’être décrit. Of course, the invention is not limited to the example which has just been described.
Le rotor peut être vrillé ou non. The rotor may or may not be twisted.
On peut réaliser le rotor avec d’ autres passages pour le fluide de refroidissement. Le décalage angulaire entre les flasques peut être différent de 45°, en fonction de la polarité de la machine. The rotor can be made with other passages for the coolant. The angular offset between the flanges can be different from 45 °, depending on the polarity of the machine.
D’une façon générale, ce décalage peut être de 3607n plus l’angle de vrillage éventuel du rotor, où n désigne le nombre de pôles du rotor. Il peut par exemple être de 60° pour une machine à 6 pôles. Generally speaking, this offset can be 3607n plus the possible twist angle of the rotor, where n denotes the number of poles of the rotor. It may for example be 60 ° for a 6-pole machine.
De préférence, tous les pôles sont refroidis, mais en variante seulement certains d’entre eux le sont, par exemple un pôle sur deux ou un sur quatre. Preferably all of the poles are cooled, but alternatively only some of them are, for example every other pole or one in four.
Les flasques peuvent présenter une forme autre que celle illustrée. The flanges may have a shape other than that illustrated.

Claims

Revendications Claims
1. Machine électrique tournante (1) à refroidissement par liquide, comportant un rotor1. Liquid-cooled rotating electric machine (1) comprising a rotor
(10) à aimants (14) et un stator bobiné (20), le rotor comportant : (10) with magnets (14) and a wound stator (20), the rotor comprising:
(i) au moins un paquet (11) de tôles rotoriques, (i) at least one package (11) of rotor plates,
(11) des aimants (14) logés dans ledit paquet de tôles, (11) magnets (14) housed in said package of sheets,
(iii) des flasques avant (30a) et arrière (30b) adjacents audit paquet (11) de tôles, la machine étant configurée pour assurer une circulation croisée du liquide de refroidissement au sein du paquet de tôles rotoriques la machine comportant une alimentation en liquide de refroidissement des flasques avant et arrière, le liquide alimentant le flasque avant (30a) circulant depuis ce dernier à travers le paquet de tôles (11) par au moins un canal de refroidissement (17) vers le flasque arrière (30b) avant de quitter le rotor par au moins un canal d’évacuation (33) délimité au moins partiellement par le flasque arrière (30b), et le liquide alimentant le flasque arrière (30b) circulant depuis ce dernier vers le flasque avant (30a) par au moins un canal de refroidissement (17) avant de quitter le rotor par au moins un canal d’évacuation (33) délimité au moins partiellement par le flasque avant (30a), les flasques avant et arrière venant chacun axialement en appui contre ledit paquet de tôles rotoriques (11) à une extrémité, et les canaux d’évacuation (33) étant formés en creux sur la face (31) du flasque tournée vers ledit paquet de tôles rotoriques. (iii) the front (30a) and rear (30b) flanges adjacent to said pack (11) of sheets, the machine being configured to ensure cross circulation of the cooling liquid within the pack of rotor sheets, the machine comprising a liquid supply cooling of the front and rear flanges, the liquid supplying the front flange (30a) circulating from the latter through the pack of sheets (11) through at least one cooling channel (17) towards the rear flange (30b) before leaving the rotor by at least one discharge channel (33) delimited at least partially by the rear flange (30b), and the liquid supplying the rear flange (30b) flowing from the latter to the front flange (30a) by at least one cooling channel (17) before leaving the rotor via at least one discharge channel (33) delimited at least partially by the front flange (30a), the front and rear flanges each coming axially to bear against said pack of sheets rotor (11) at one end, and the discharge channels (33) being formed recessed on the face (31) of the flange facing said packet of rotor plates.
2. Machine électrique tournante (1) à refroidissement par liquide, comportant un rotor2. Liquid-cooled rotating electric machine (1) comprising a rotor
(10) à aimants (14) et un stator bobiné (20), le rotor comportant : (10) with magnets (14) and a wound stator (20), the rotor comprising:
(i) au moins un paquet (11) de tôles rotoriques, (i) at least one package (11) of rotor plates,
(11) des aimants (14) logés dans ledit paquet de tôles, (11) magnets (14) housed in said package of sheets,
(iii) des flasques avant (30a) et arrière (30b) adjacents audit paquet (11) de tôles, la machine étant configurée pour assurer une circulation croisée du liquide de refroidissement au sein du paquet de tôles rotoriques la machine comportant une alimentation en liquide de refroidissement des flasques avant et arrière, le liquide alimentant le flasque avant (30a) circulant depuis ce dernier à travers le paquet de tôles (11) par au moins un canal de refroidissement (17) vers le flasque arrière (30b) avant de quitter le rotor par au moins un canal d’évacuation (33) délimité au moins partiellement par le flasque arrière (30b), et le liquide alimentant le flasque arrière (30b) circulant depuis ce dernier vers le flasque avant (30a) par au moins un canal de refroidissement (17) avant de quitter le rotor par au moins un canal d’évacuation (33) délimité au moins partiellement par le flasque avant (30a), chaque flasque (30a ; 30b) étant une pièce de fonderie, étant notamment réalisé en aluminium ou alliage d’aluminium. (iii) the front (30a) and rear (30b) flanges adjacent to said pack (11) of sheets, the machine being configured to ensure cross circulation of the cooling liquid within the pack of rotor sheets, the machine comprising a liquid supply cooling of the front and rear flanges, the liquid supplying the front flange (30a) circulating from the latter through the pack of sheets (11) through at least one cooling channel (17) towards the rear flange (30b) before to leave the rotor through at least one discharge channel (33) delimited at least partially by the rear flange (30b), and the liquid supplying the rear flange (30b) flowing from the latter to the front flange (30a) by au at least one cooling channel (17) before leaving the rotor via at least one discharge channel (33) delimited at least partially by the front flange (30a), each flange (30a; 30b) being a foundry part, being in particular made of aluminum or aluminum alloy.
3. Machine électrique tournante (1) à refroidissement par liquide, comportant un rotor3. Liquid-cooled rotating electric machine (1), comprising a rotor
(10) à aimants (14) et un stator bobiné (20), le rotor comportant : (10) with magnets (14) and a wound stator (20), the rotor comprising:
(i) au moins un paquet (11) de tôles rotoriques, (i) at least one package (11) of rotor plates,
(11) des aimants (14) logés dans ledit paquet de tôles, (11) magnets (14) housed in said package of sheets,
(iii) des flasques avant (30a) et arrière (30b) adjacents audit paquet (11) de tôles, la machine étant configurée pour assurer une circulation croisée du liquide de refroidissement au sein du paquet de tôles rotoriques la machine comportant une alimentation en liquide de refroidissement des flasques avant et arrière, le liquide alimentant le flasque avant (30a) circulant depuis ce dernier à travers le paquet de tôles (11) par au moins un canal de refroidissement (17) vers le flasque arrière (30b) avant de quitter le rotor par au moins un canal d’évacuation (33) délimité au moins partiellement par le flasque arrière (30b), et le liquide alimentant le flasque arrière (30b) circulant depuis ce dernier vers le flasque avant (30a) par au moins un canal de refroidissement (17) avant de quitter le rotor par au moins un canal d’évacuation (33) délimité au moins partiellement par le flasque avant (30a), l’alimentation des flasques s’effectuant par un arbre du rotor, l'arbre comportant un canal central (41), ce canal central (41) communiquant avec le flasque avant (30a) par des canaux radiaux (42) et avec le flasque arrière (30b) par d’autres canaux radiaux (43). (iii) the front (30a) and rear (30b) flanges adjacent to said pack (11) of sheets, the machine being configured to ensure cross circulation of the cooling liquid within the pack of rotor sheets, the machine comprising a liquid supply cooling of the front and rear flanges, the liquid supplying the front flange (30a) circulating from the latter through the pack of sheets (11) through at least one cooling channel (17) towards the rear flange (30b) before leaving the rotor by at least one discharge channel (33) delimited at least partially by the rear flange (30b), and the liquid supplying the rear flange (30b) flowing from the latter to the front flange (30a) by at least one cooling channel (17) before leaving the rotor via at least one discharge channel (33) delimited at least partially by the front flange (30a), the flanges being fed by a shaft of the rotor, the tree with a channel central (41), this central channel (41) communicating with the front flange (30a) via radial channels (42) and with the rear flange (30b) via other radial channels (43).
4. Machine électrique tournante (1) à refroidissement par liquide, comportant un rotor4. Liquid-cooled rotating electric machine (1), comprising a rotor
(10) à aimants (14) et un stator bobiné (20), le rotor comportant : (10) with magnets (14) and a wound stator (20), the rotor comprising:
(i) au moins un paquet (11) de tôles rotoriques, (i) at least one package (11) of rotor plates,
(11) des aimants (14) logés dans ledit paquet de tôles, (11) magnets (14) housed in said package of sheets,
(iii) des flasques avant (30a) et arrière (30b) adjacents audit paquet (11) de tôles, la machine étant configurée pour assurer une circulation croisée du liquide de refroidissement au sein du paquet de tôles rotoriques la machine comportant une alimentation en liquide de refroidissement des flasques avant et arrière, le liquide alimentant le flasque avant (30a) circulant depuis ce dernier à travers le paquet de tôles (11) par au moins un canal de refroidissement (17) vers le flasque arrière (30b) avant de quitter le rotor par au moins un canal d’évacuation (33) délimité au moins partiellement par le flasque arrière (30b), et le liquide alimentant le flasque arrière (30b) circulant depuis ce dernier vers le flasque avant (30a) par au moins un canal de refroidissement (17) avant de quitter le rotor par au moins un canal d’évacuation (33) délimité au moins partiellement par le flasque avant (30a), les flasques étant alimentés en liquide de refroidissement par un canal axial de distribution du fluide de refroidissement formé dans la masse rotorique le long de l'arbre. (iii) front (30a) and rear (30b) flanges adjacent to said package (11) of sheets, the machine being configured to ensure a cross circulation of the cooling liquid within the package of rotor plates, the machine comprising a supply of cooling liquid from the front and rear flanges, the liquid supplying the front flange (30a) circulating from the latter through the latter through the packet of sheets (11) by at least one cooling channel (17) towards the rear flange (30b) before leaving the rotor through at least one discharge channel (33) delimited at least partially by the rear flange (30b) ), and the liquid supplying the rear flange (30b) flowing from the latter to the front flange (30a) through at least one cooling channel (17) before leaving the rotor through at least one discharge channel (33) delimited at least partially by the front flange (30a), the flanges being supplied with cooling liquid by an axial coolant distribution channel formed in the rotor mass along the shaft.
5. Machine selon l’une quelconque des revendications précédentes, à l'exception de la revendication 3 chaque flasque comportant au moins un canal d’alimentation (32) par lequel le liquide alimentant le flasque gagne au moins un canal de refroidissement (17). 5. Machine according to any one of the preceding claims, with the exception of claim 3, each flange comprising at least one supply channel (32) through which the liquid supplying the flange gains at least one cooling channel (17). .
6. Machine selon la revendication 5, le canal d’alimentation (32) étant formé en creux sur la face du flasque tournée vers le paquet (11) de tôles rotoriques. 6. Machine according to claim 5, the feed channel (32) being formed recessed on the face of the flange facing the package (11) of rotor plates.
7. Machine selon l’une des revendications 5 et 6, les canaux d’alimentation (32) ayant chacun une forme de Y ou de T. 7. Machine according to one of claims 5 and 6, the feed channels (32) each having a Y or T shape.
8. Machine selon l’une quelconque des revendications précédentes, les flasques avant (30a) et arrière (30b) étant identiques et décalés angulairement de manière à alimenter des canaux de refroidissement (17) différents, les canaux de refroidissement (17) parcourus par le liquide circulant du flasque avant vers le flasque arrière étant de préférence réalisés au sein des pôles impairs, et ceux parcourus par le liquide en sens inverse, étant de préférence situés au sein des pôles pairs. 8. Machine according to any one of the preceding claims, the front (30a) and rear (30b) flanges being identical and angularly offset so as to supply different cooling channels (17), the cooling channels (17) traversed by the liquid flowing from the front flange to the rear flange preferably being formed within the odd poles, and those through which the liquid passes in the opposite direction, preferably being located within the even poles.
9. Machine selon l’une quelconque des revendications précédentes, les canaux de refroidissement étant formés par des logements (13) recevant des aimants (14), par l’espace (16) laissé libre par le ou les aimants dans ces logements. 9. Machine according to any one of the preceding claims, the cooling channels being formed by housings (13) receiving magnets (14), by the space (16) left free by the magnet or magnets in these housings.
10. Machine selon l’une quelconque des revendications précédentes, les canaux d’évacuation (33) étant formés par des renfoncements dont la profondeur augmente en se rapprochant de la périphérie extérieure du flasque. 10. Machine according to any one of the preceding claims, the discharge channels (33) being formed by recesses whose depth increases as they approach the outer periphery of the flange.
11. Machine selon l’une quelconque des revendications précédentes, les canaux d’alimentation (32) et d’évacuation (33) alternant dans la direction circonférentielle sur chaque flasque (30a ; 30b). 11. Machine according to any one of the preceding claims, the supply (32) and discharge (33) channels alternating in the circumferential direction on each flange (30a; 30b).
12. Machine selon la revendication précédente, chaque canal d’évacuation (33) ayant une forme sensiblement trapézoïdale. 12. Machine according to the preceding claim, each discharge channel (33) having a substantially trapezoidal shape.
13. Machine selon l’une quelconque des revendications précédentes à l'exception de la revendication 4, l’alimentation des flasques s’effectuant par un arbre (40) du rotor. 13. Machine according to any one of the preceding claims with the exception of claim 4, the supply of the flanges being effected by a shaft (40) of the rotor.
14. Machine selon l’une quelconque des revendications précédentes, les canaux d’évacuation (33) débouchant en regard de têtes de bobines (22) du stator. 14. Machine according to any one of the preceding claims, the discharge channels (33) opening opposite the coil heads (22) of the stator.
15. Machine selon l’une quelconque des revendications précédentes à l'exception de la revendication 2, chaque flasque (30a ; 30b) étant une pièce de fonderie, étant notamment réalisé en aluminium ou alliage d’aluminium. 15. Machine according to any one of the preceding claims with the exception of claim 2, each flange (30a; 30b) being a foundry part, being in particular made of aluminum or an aluminum alloy.
16. Procédé de refroidissement d’une machine électrique tournante telle que définie dans l’une quelconque des revendications précédentes, dans lequel on fait circuler le liquide dans des sens opposés au sein du rotor pour refroidir les aimants, puis l’on projette sur les têtes de bobines du stator le liquide après traversée du paquet de tôles (11) du rotor. 16. A method of cooling a rotating electrical machine as defined in any one of the preceding claims, in which the liquid is circulated in opposite directions within the rotor to cool the magnets, then it is sprayed onto them. stator coil heads the liquid after passing through the rotor plate pack (11).
EP20817455.7A 2019-11-14 2020-11-04 Liquid cooling machine Pending EP4059122A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1912738A FR3103332B1 (en) 2019-11-14 2019-11-14 liquid cooling machine
PCT/FR2020/051988 WO2021094670A1 (en) 2019-11-14 2020-11-04 Liquid cooling machine

Publications (1)

Publication Number Publication Date
EP4059122A1 true EP4059122A1 (en) 2022-09-21

Family

ID=70154480

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20817455.7A Pending EP4059122A1 (en) 2019-11-14 2020-11-04 Liquid cooling machine

Country Status (5)

Country Link
US (1) US20220399770A1 (en)
EP (1) EP4059122A1 (en)
CN (1) CN114731079A (en)
FR (1) FR3103332B1 (en)
WO (1) WO2021094670A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021207594A1 (en) * 2021-07-16 2023-01-19 Magna powertrain gmbh & co kg electrical machine
AT525415A1 (en) * 2021-09-10 2023-03-15 Miba Emobility Gmbh Electrical machine and drive unit with such an electrical machine
US20240006943A1 (en) * 2022-07-01 2024-01-04 Atieva, Inc. Electric motor with centrifugal pump to flow fluid in rotor channel

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3967624B2 (en) 2002-04-26 2007-08-29 株式会社日本自動車部品総合研究所 Electric motor
JP4560067B2 (en) 2007-07-19 2010-10-13 トヨタ自動車株式会社 Rotating electric machine
JP2010239799A (en) * 2009-03-31 2010-10-21 Aisin Aw Co Ltd Rotating electric machine and end plate for rotating electric machine
EP2583372A2 (en) * 2010-06-21 2013-04-24 Nidec Motor Corporation Electric motor assemblies including stator and/or rotor cooling
JP5738007B2 (en) * 2011-03-02 2015-06-17 株式会社小松製作所 Electric motor cooling structure and electric motor
JP6269436B2 (en) * 2014-10-23 2018-01-31 トヨタ自動車株式会社 Rotating electrical machine rotor
US10550892B2 (en) * 2015-09-02 2020-02-04 Nidec Motor Corporation Motor bearing lubrication arrangement
JP6546972B2 (en) 2017-08-25 2019-07-17 本田技研工業株式会社 Rotor for electric machine, electromagnetic steel sheet for electric machine and electric vehicle
JP6655598B2 (en) * 2017-12-28 2020-02-26 本田技研工業株式会社 Rotating electric machine rotor
JP6676668B2 (en) * 2018-01-23 2020-04-08 本田技研工業株式会社 Rotor of rotating electric machine and rotating electric machine
JP7055668B2 (en) * 2018-03-08 2022-04-18 本田技研工業株式会社 Rotating machine rotor
US11476733B2 (en) * 2019-11-01 2022-10-18 GM Global Technology Operations LLC Electric machine with forced convection-based rotor cooling of rotor magnets

Also Published As

Publication number Publication date
WO2021094670A1 (en) 2021-05-20
FR3103332A1 (en) 2021-05-21
US20220399770A1 (en) 2022-12-15
FR3103332B1 (en) 2023-02-24
CN114731079A (en) 2022-07-08

Similar Documents

Publication Publication Date Title
EP4059122A1 (en) Liquid cooling machine
EP2311172B1 (en) Rotating electrical machine
EP2266191B1 (en) Electric machine comprising a fan with multiple ducts
EP2274816B1 (en) Electric machine with separate double ventilation
EP3516757B1 (en) Electrical machine cooled by a dual-flow impeller
FR2894088A1 (en) DYNAMO-ELECTRIC MACHINE
FR2819350A1 (en) PERFECTED ROTATING MACHINE FOR MOTOR VEHICLES
FR3056849A1 (en) THERMAL DISSIPATOR FOR ROTATING ELECTRICAL MACHINE
WO2021105631A1 (en) Liquid-cooled electrical machine
FR3069972A1 (en) CONCENTRIC MAGNET ROTOR FOR ROTATING ELECTRIC MACHINE
WO2022112704A1 (en) Flange and rotor for a rotary electrical machine
EP3516755A1 (en) Sleeve and shaft for an electrical machine
FR3082373A1 (en) ROTATING ELECTRIC MACHINE STATOR
WO2020174176A1 (en) Rotary electric machine having a circuit for cooling the magnets via the shaft
WO2022112702A1 (en) End shield and rotor for a rotary electric machine
WO2022112703A1 (en) End shield and rotor for a rotary electric machine
EP4170873B1 (en) Rotating electric machine and vehicle thereof
WO2024084158A1 (en) Rotor end shield for an electric machine
FR3047364B1 (en) ROTATING ELECTRIC MACHINE FOR VEHICLE
FR2803449A1 (en) ROTATING ELECTRIC MACHINE HAVING A STATOR AND / OR ROTOR HAVING PERIPHERAL RECESSES
WO2023094747A1 (en) Rotor for a rotary electric machine
FR3093390A1 (en) Rotating electric machine with a shaft cooling circuit
FR3128078A1 (en) Flange for rotating electrical machine
FR2904487A1 (en) Polyphase stator for variable reluctance dynamo-electric machine e.g. motor, has magnetic circuit with phases distributed in angular sectors, where number of sectors is equal to number of phases that are even and are equal to/more than four

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220613

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)