EP4058173A1 - Logement creux pour recevoir une cartouche filtrante - Google Patents

Logement creux pour recevoir une cartouche filtrante

Info

Publication number
EP4058173A1
EP4058173A1 EP20800956.3A EP20800956A EP4058173A1 EP 4058173 A1 EP4058173 A1 EP 4058173A1 EP 20800956 A EP20800956 A EP 20800956A EP 4058173 A1 EP4058173 A1 EP 4058173A1
Authority
EP
European Patent Office
Prior art keywords
housing
axial
section
filter cartridge
axial end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20800956.3A
Other languages
German (de)
English (en)
Inventor
Diouf CHEIKH
Romain JACQUES
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Actblue Europe SARL
Original Assignee
Actblue Europe SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Actblue Europe SARL filed Critical Actblue Europe SARL
Publication of EP4058173A1 publication Critical patent/EP4058173A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/30Filter housing constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/114Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements arranged for inward flow filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/18Heating or cooling the filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2201/00Details relating to filtering apparatus
    • B01D2201/02Filtering elements having a conical form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2201/00Details relating to filtering apparatus
    • B01D2201/30Filter housing constructions
    • B01D2201/301Details of removable closures, lids, caps, filter heads
    • B01D2201/302Details of removable closures, lids, caps, filter heads having inlet or outlet ports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2201/00Details relating to filtering apparatus
    • B01D2201/34Seals or gaskets for filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2201/00Details relating to filtering apparatus
    • B01D2201/34Seals or gaskets for filtering elements
    • B01D2201/347Radial sealings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2201/00Details relating to filtering apparatus
    • B01D2201/40Special measures for connecting different parts of the filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2201/00Details relating to filtering apparatus
    • B01D2201/40Special measures for connecting different parts of the filter
    • B01D2201/4023Means for connecting filter housings to supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2201/00Details relating to filtering apparatus
    • B01D2201/40Special measures for connecting different parts of the filter
    • B01D2201/4092Threaded sections, e.g. screw
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates generally to the distribution of liquid additive used for example in a device for treating the exhaust gases of a motor vehicle such as a device for treatment by selective catalytic reduction (or SCR device, set for “Selective catalytic reduction” in English), and more particularly to an axial extension part of a hollow housing in a housing of such a device, designed to receive a filter cartridge.
  • the invention finds applications, in particular, in motor vehicles, in particular but not only those equipped with a diesel engine, for example in light vehicles, utility type vehicles or in trucks (or heavy vehicles) comprising such an engine.
  • the exhaust gases generated by vehicles with compression ignition engines (known as diesel engines) or by vehicles with positive ignition engines (known as gasoline engines) are in particular composed of gaseous atmospheric pollutants such as carbon oxides (called “Cox”, for CO and C02) and nitrogen oxides (called “NOx” for NO and N02).
  • Diesel engines in particular, are subject to regulations aimed at reducing the amount of polluting gases they emit.
  • the standards capping the levels of nitrogen oxides emitted are an example, they tend to be more and more restrictive.
  • the pollution control of the engine exhaust gases can be carried out by means of a gas treatment device implementing a pollution control method such as the selective catalytic reduction method. (or SCR method).
  • a gas treatment device implementing a pollution control method such as the selective catalytic reduction method. (or SCR method).
  • SCR method uses a depolluting liquid additive to selectively reduce nitrogen oxides (NOx) in exhaust gases.
  • NOx nitrogen oxides
  • liquid additive depolluting is meant a depolluting product which can be injected into an engine exhaust gas treatment device for the purpose of depolluting the exhaust gases before they are released into the atmosphere.
  • the liquid additive commonly used in the SCR method is a diesel exhaust fluid (or DEF, put for “Diesel exhaust fluid”) which is an aqueous solution of 32.5% urea ( by weight), also marketed under the brand AdBlue®.
  • the aqueous urea solution is a precursor of ammonia (NH3). This ammonia reacts with nitrogen oxides (NOx) in the exhaust gases to produce less polluting species, namely dinitrogen (N2), water and carbon dioxide (CO2).
  • NOx nitrogen oxides
  • N2 dinitrogen
  • CO2 carbon dioxide
  • the ammonia used in the SCR method is a reducing agent, supplied as a liquid additive.
  • the liquid additive is stored in a dedicated tank, which is equipped with a dosing module also called a liquid additive dispensing device.
  • the liquid additive dispensing device is suitable for taking the liquid additive, metering out a determined quantity and injecting it into the device for treating the exhaust gases with a view to the depollution of said gases.
  • the liquid additive dispensing device comprises a housing in which are arranged functional components such as in particular means for pumping, for filtering and / or for dosing the liquid additive, means for measuring the quantity of additive.
  • sensors such as a temperature sensor for the liquid additive present in the tank, means for heating the liquid additive suitable for thawing it if necessary, etc.
  • This dedicated tank represents additional space for the vehicle.
  • the metering module can be placed in the liquid additive reservoir so that its housing occupies part of the space in the reservoir.
  • a technical problem which then arises is the lack of flexibility in the filtration capacities for a given dosing module, having a housing of determined dimensions and shapes.
  • the invention aims to eliminate, or at least mitigate, all or part of the aforementioned drawbacks of the prior art.
  • a first aspect of the invention proposes an extension piece of a hollow housing provided in a housing to receive a first filter cartridge, said housing extending along a longitudinal axis determined between a first axial end and a second. opposite axial end, and having an opening at the first axial end for insertion of said first filter cartridge into the housing parallel to the direction of the longitudinal axis of the housing, as well as a bottom at the second end axial, said housing having a determined axial depth, between said opening and said bottom, and having at least one circumferential wall extending substantially parallel to said direction and forming an envelope of determined shape, said extension piece having a longitudinal axis and comprising : a) a first axial end through which the part can be inserted into the housing of the housing, and a second axial end provided with an opening through which a second filter cartridge, of axial length greater than the axial depth of the housing, can be inserted and sealed in the part when said part is mounted in the housing of the housing; b) a first axial section
  • the invention it is possible to use a filter cartridge of greater axial length than a standard filter cartridge for which the axial depth of the housing in the housing has been provided, without having to modify the housing.
  • the circumferential wall of the first section may comprise a first external annular groove, extending circumferentially around the first section in a plane perpendicular to the longitudinal axis which is adjacent to the first axial end of said first section, as well as a first seal annular extending in said first annular groove and capable of ensuring the seal between the circumferential wall of the first section of the part and the circumferential wall of the housing when the part is mounted in the housing;
  • the circumferential wall of the first section may comprise a second external annular groove, extending circumferentially around the first section in a plane perpendicular to the longitudinal axis which is adjacent to the first connecting zone of the part, on the side of the first axial end of the first section of the part with respect to said connecting zone, as well as a second annular seal extending in said annular groove and capable of ensuring the seal between the circumferential wall of the first section of the part and the wall circumferential of the housing when the part is inserted into the housing by its first distal end;
  • the housing of the housing being cylindrical in shape and the housing connection means at the level of the opening of the housing of the housing comprising an internal thread provided for the fixing by screwing of a sealed closure cap of the housing, the first connection means of the part may include a complementary thread of said internal thread;
  • the second connecting means of the part may have an internal thread identical to the internal thread of the housing at the level of the opening of the housing of the housing;
  • the part may include active heating elements suitable for, when the part is mounted in the housing of the housing, heating the fluid in the part and / or in the housing of the housing; and,
  • the second section may comprise at least one portion which is deformable towards the outside of the part which are adapted to, when the part is mounted in the housing of the housing, compensate for an increase in the volume of fluid in the part and / or in the housing of the housing due to the freezing of said fluid.
  • the invention also relates to a set comprising: a) a liquid additive dosing module for a device for treating the exhaust gases of a motor vehicle having a housing with a housing which is adapted to receive a removable filter cartridge and having an inlet for the insertion of the filter cartridge and a bottom opposite said inlet in the direction of an axis of insertion of the filter cartridge in the housing, and which has a determined length, according to said direction, between said inlet and said bottom having circumferential walls extending substantially parallel to said direction and forming an envelope of determined shape; as well as b) an extension piece according to the first aspect above adapted to axially extend the housing of the housing so as to allow the use of another filter cartridge of larger axial dimensions than the first filter cartridge.
  • the invention also relates to a device for treating the exhaust gases of a motor vehicle comprising a set according to the second aspect.
  • FIG. 1 is a functional diagram of a motor vehicle engine with an exhaust gas treatment device for the reduction of NOx;
  • Figure 2 is a simplified diagram of a fluid manifold in which a hollow housing is provided for the arrangement of a removable filter cartridge;
  • Figure 3 is a diagram of the fluid manifold of Figure 2 with a filter cartridge of standard dimensions arranged in the housing, with a plug sealing the housing, and with fluid under pressure;
  • Figure 4 is a schematic diagram, in section, of an extension part of the housing of the fluid manifold of Figure 2 according to embodiments;
  • FIG. 5 is a diagram of the fluid manifold of Figure 2 with the part of Figure 4 mounted in the housing, and with a filter cartridge of axial length greater than the filter cartridge of Figure 3 arranged in the room ;
  • FIG. 6 is a perspective view of an extension piece according to one embodiment.
  • Figure 7 is a longitudinal sectional view of the extension part of Figure 6, mounted in the housing of a fluid manifold adapted to receive a standard filter cartridge.
  • FIG. 1 schematically shows a motor vehicle 100 with an internal combustion engine 110, for example a diesel engine.
  • the motor vehicle 100 is for example a passenger car, a utility vehicle, a truck or a coach.
  • the motor vehicle 100 also includes an exhaust gas treatment device 120 with a module 130 for implementing the pollution control method known as the SCR method.
  • the vehicle 100 also comprises a reservoir 140 for the liquid additive 150, coupled to an injector 170 to introduce the liquid additive 150 into the gas treatment device 120, via an additive dosing module 160. liquid.
  • the dosing module 160 comprises a housing in which are arranged, in particular, functional components for taking the liquid additive and conveying it to the injector 170, heating it if necessary, and filter it, as well as sensors to deliver various information on the quantity and quality of the liquid additive present in the reservoir 140.
  • a pump for taking water. liquid additive from the reservoir conduits for conveying the liquid additive taken by the pump to the injector 170, at least one valve, various sensors such as level, pressure, temperature and / or flow sensors, a electronic control unit, at least one filter, one liquid additive heater, etc.
  • the liquid additive can be a 32.5% aqueous urea solution such as the solution under the trademark AdBlue®.
  • the exhaust gas treatment device 120 is supplied with liquid additive 150 by means of the liquid additive distribution device, or metering module 160, and to the injector 170.
  • the metering module 160 doses the amount of liquid additive to be injected.
  • the injector 170 introduces the depolluting solution into the device 120, in order to allow the selective catalytic reduction of NOx according to the method. SCR in a gas treatment zone 130 of said device 120. Exhaust gas pollution control is thus carried out.
  • the housing of the dosing module 160 is partially disposed in the interior space of the reservoir 140.
  • the part of the housing disposed in the reservoir 140 offers a surface in contact with the liquid additive 150 present in the reservoir.
  • the housing can be made of aluminum, for example, and can be covered with a non-technical polymeric material such as high density ethylene polymer (HDPE), which offers the advantage of not reacting with Adblue®, which is a corrosive solution.
  • a heater can be connected to parts of the aluminum housing which are in contact with the liquid additive in the tank, in order to transmit heat to the liquid additive by conduction. In particular, this makes it easier to thaw the liquid additive, if necessary.
  • the housing can be made of HDPE.
  • This polyethylene is the basic polymer in mechanical engineering and one of the cheapest. It is an inert plastic, that is to say a material which does not chemically react and / or does not deteriorate when in contact with a solution of chemical agent such as a solution of urea. In addition, it is easy to handle and resistant to cold.
  • the housing can also be made of a technical polymer material, such as, for example, a polymer of oxymethylene (POM), of polyamide, of polyimide or a mixture thereof.
  • a technical polymer material such as, for example, a polymer of oxymethylene (POM), of polyamide, of polyimide or a mixture thereof.
  • POM polymer of oxymethylene
  • Such a technical material has better mechanical properties allowing the creation of interfaces of complex shape on the body of the case with a tolerance, that is to say a relatively tight dimensional uncertainty, for example of the order of ⁇ 0.05 millimeters (mm).
  • the liquid additive reservoir and the housing of the dosing module advantageously form a compact assembly thus making it possible to save space in the motor vehicle.
  • the housing does not project outwardly from the reservoir 140.
  • FIG. 2 shows, in section, a portion of the housing 10 of a liquid additive metering module such as the module 160 of FIG. 1.
  • This portion of the housing 10 forms part of the fluid manifold. Anglo-Saxon). It more particularly comprises a hollow housing 11 provided in the housing to receive a filter cartridge, which may be removable.
  • a filter cartridge not shown in FIG. 2, has the function of, and is suitable for filtering the impurities in a fluid.
  • the fluid is the Adblue® liquid additive, pumped into the reservoir 140, and which must be filtered before it is injected by the injector 170 into the exhaust gas treatment device 120 of FIG. 1.
  • the filter cartridge concerned is a standard cartridge, that is to say a cartridge of standard dimensions.
  • the housing 11 extends along a determined longitudinal axis X, between a first axial end and a second opposite axial end. It has an opening 14 at the level of the first axial end, for the insertion of the standard filter cartridge (not shown in FIG. 2). The insertion of the filter cartridge into the housing 11 via the opening 14 takes place parallel to the direction of the longitudinal axis X of the housing.
  • the housing 11 also has a bottom 15 at the level of the second axial end.
  • the terms "front,” rear “,” in front of ",” behind “, and” depth " are used with reference to the direction of insertion into the housing according to the direction of the longitudinal axis X, from the opening 14 towards the bottom 15 of the housing 11.
  • the housing 11 has a determined axial depth. By axial depth is meant a depth in the direction of the longitudinal axis X. This axial depth can be measured, for example, between the opening 14 and the bottom 15 of the housing 11.
  • the housing 11 has at least one circumferential wall 16.
  • the term “circumferential wall” is understood to mean a wall extending substantially parallel to the direction of the longitudinal axis X, around said axis, and forming the casing of the housing 11.
  • This envelope has a determined shape, for example the shape of a cylinder.
  • the section of the casing of the housing 11 is, in this example, a circle. In other examples, it can be a polygon, when the housing has several flat walls, adjacent two by two, and extending parallel to the direction of the longitudinal axis X. Envelopes of more complex shapes are obviously possible, depending on the needs of the application.
  • a cylindrical casing is the most general case because the filter cartridges intended to take place in the housing are generally cylindrical in shape.
  • the housing 11 has a connection zone at the level of the opening 14, in which zone of the connection means 19 are provided for the sealed connection with a plug 21 for closing the housing.
  • the connecting means 19 of the housing 11 comprise an internal thread, adapted to cooperate with complementary connecting means of the plug 21 comprising a thread 22.
  • the sealing of the closure of the housing 11 by the plug 21 via these connecting means can be provided by an O-ring 18, not shown in FIG. 2 but visible in FIG. 3, which is placed at the level of the connection zone of the housing 11 comprising the internal thread 19, or of the end of the plug 21 comprising the thread 22, for example after the insertion of the filter cartridge and before the assembly of the plug.
  • the complementary connection means of the housing 11 and of the stopper 21 may comprise bayonet connection means, for example, or any other equivalent means within the reach of the man of the job.
  • the fluid manifold shown in Figure 2 comprises an inlet pipe 12 opening into the housing 11 for the entry of the unfiltered fluid into the housing, and a discharge pipe 13 for the outlet of the filtered fluid from the housing 11.
  • the admission of the fluid through the pipe 12, its passage through the filter cartridge in the housing 11, and its discharge through the pipe 13, are carried out by pressure difference between the inlet circuit comprising the pipe 12 and the pressure circuit. discharge comprising line 13.
  • This pressure difference is obtained by means of a fluid suction pump arranged upstream of line 12 or downstream of line 13, that is to say on the side of the additive reservoir liquid 140 or on the side of the exhaust gas treatment device 120 of FIG. 1, respectively, with respect to the filter.
  • arrows illustrate the flow of fluid from the visible inlet of the intake line 12 to the visible outlet of the discharge line 13, through a standard filter cartridge 20 when in place. in the housing 11 and that said housing is closed by the stopper 21.
  • an O-ring 16 is placed slightly in front of the bottom 15 of the housing 11 of the housing, and against which rests the front end of the filter cartridge 20.
  • a delivery chamber 17 forms between said front end of the standard filter cartridge 20 and the bottom 15 of the housing 10, in which the filtered fluid exits from the front of the chamber. filter cartridge 20.
  • the delivery pipe 13 discharges the filtered fluid from said chamber 17.
  • the O-ring 18 already mentioned above with reference to FIG.
  • the housing 10 comprises heating means 31 and 32 arranged around the housing 11, in the housing body, which are adapted to selectively heat the fluid in said housing, for example when the temperature of the fluid or surrounding temperature is measured below a certain threshold.
  • These heating means can be heating resistors, for example. In particular, they allow the liquid AdBlue® additive to be thawed when it is frozen.
  • the desired compactness for the assembly formed of the liquid additive reservoir 140 and of the dosing module 160 leads to designing a dosing module with minimum dimensions, that is, just sufficient to meet the needs of standard applications. This concerns in particular the housing 11 provided in the housing 10 of the dosing module to receive the standard filter cartridge 20.
  • embodiments of the invention propose the use of an extension part of the housing 11. It is more particularly an axial extension of the housing 11, that is to say an extension in the direction of the longitudinal axis X.
  • This extension allows to enlarge the axial depth (in the aforementioned sense) of the space intended to receive the other filter cartridge, beyond the distance between the opening 14 and the bottom 15 of the housing 11.
  • the part of extension is an adapter because it allows to adapt a filter cartridge of larger axial dimensions for use in the housing 11 of smaller axial dimensions.
  • FIGs of Figure 4 and Figure 5 show, in section, respectively the extension part 40 alone and said extension part 40 in the housing 11 of the housing 10 of Figure 2.
  • the larger filter cartridge 25 is placed in the adapter 40.
  • Fig. 6 shows a three-dimensional view, in perspective, of one embodiment of the extension piece 40
  • Fig. 7 shows a sectional view of the part 40 of Figure 6 and of the housing 11 in the housing 10.
  • the extension part 40 is a hollow part, adapted to receive the filter cartridge of larger dimensions 25.
  • the extension part 40 has a longitudinal axis, which coincides with the longitudinal axis X of the housing 11 in the housing 10 when the part 4 is mounted in said housing.
  • the longitudinal axis X to denote indiscriminately the longitudinal axis of the housing 11 of the housing 10 on the one hand, and the longitudinal axis of the part 40, on the other hand.
  • the part 40 comprises a first axial end through which the part can be inserted into the housing 11 of the housing 10, called the “front end” in what follows. It also includes a second axial end, opposite the front end, and called “rear end” in the following.
  • the part 40 is provided with an opening 44 at its rear end, through which the filter cartridge 25 can be inserted into the part 40 even when the latter is engaged in the housing 11 by its front end.
  • the part 40 comprises two axial sections 41 and 42, which extend in the axial extension of one another.
  • the part thus comprises a first axial section 41, or front section, of axial length substantially equal, by values smaller than the axial depth of the housing 11 of the housing 10.
  • the front section 41 has a bottom perforated, due to an opening 47 at the front end of the part 40.
  • the front section 41 has at least one circumferential wall forming an envelope substantially conforming to the envelope of the housing 11 of the housing so as to be able to take place in said housing 11. This casing is perforated, due to the presence of side openings 45 and 46.
  • the openings 45 and 46 extend parallel to the direction of the longitudinal axis X and have a length substantially equal to the axial length of the front section 41, in order to provide the greatest possible passage for the fluid without too much adversely affect the rigidity of the part 40.
  • part 40 further comprises a second axial section 42, or rear section.
  • This extends in the axial direction in the extension of the first front section 41, on the side opposite the front end of the part 40, and to the rear end of the part 40.
  • the rear section 42 has at least one circumferential wall forming a non-perforated envelope, which axially extends the perforated envelope of the front section 41.
  • connection means comprise for example a thread 48 of the part 40 able to cooperate with the thread 19 of the housing 10 at the level of the opening 14 of the housing 11 of the housing 10.
  • the means for connecting the part 40 to the housing 10 are arranged in an axial position corresponding substantially to the junction between the first axial section 41 and the second axial section 42 of the part 40.
  • the aforementioned connecting means 48,19 are able to achieve the sealed fixing of the part 40 to the housing 10.
  • the connecting means can comprise and cooperate with a seal 38.
  • seal 38 is an annular seal, for example an O-ring.
  • the connecting means of the part 40 to the housing 10, provided at the level of the opening 14 of the housing 11 of the housing 10, comprise the internal thread. 19 in the housing 10 which is provided for the screw fixing of the sealing cap 21 of the housing 11 when a standard filter cartridge 20 is used ( Figure 3), on the one hand, as well as the first connecting means of the part 40 comprising the thread 48 which is complementary to said thread 19, on the other hand.
  • the part 40 comprises a second connection zone, at the rear end of the part, with second connection means for the sealed fixing of a plug capable of ensuring the leaktight closure of the part.
  • the stopper can advantageously be the stopper 21 used to close the housing 11 of the housing 10 when it contains the standard filter cartridge 20, or an identical stopper also comprising a thread 22.
  • the connecting means of the stopper 21 comprise the thread. 22 of the stopper 21, on the one hand, and second connecting means of the part 40 comprising an internal thread 49 complementary to the thread 22 at the rear end of the part 40, on the other hand.
  • the tapping 49 is preferably identical to the tapping 19 of the housing 10 at the level of the opening 14 of the housing 11 of the housing 10, to allow the re-use of the stopper 21.
  • the tightness of this connection between the part 40 and the stopper 21 can be provided by an annular seal, for example an O-ring, such as for example the seal 18 already described above with reference to the diagram of Figure 3, or an identical or similar seal.
  • the second connecting means of the part 40 comprise, at the rear end of the part, an internal thread 49 identical to the internal thread 19. of the housing 10 at the level of the opening 14 of the housing 11 of the housing 10. This allows the reuse of the same cap 21 as that provided for uses in which a standard filter cartridge is used, if necessary with the same gasket 18.
  • the circumferential wall of the first section 41 comprises a first external annular groove (that is to say open on the side of the wall which is opposite to the longitudinal axis X), extending circumferentially around the first section in a plane perpendicular to the longitudinal axis which is adjacent to the front end of said first section, as well as a first annular seal 36 extending in said first annular groove.
  • This seal 36 for example an O-ring as shown, is capable of ensuring the seal between the circumferential wall of the first section 41 of the part 40 and the wall.
  • circumferential 16 of the housing 11 substantially at the level of the bottom 15 of the housing, when the part 40 is mounted in the housing with the section 41 entirely housed in the housing 11.
  • the circumferential wall of the first section 41 can also include a second external annular groove (that is to say open on the side of the wall which is opposite to the longitudinal axis X), extending circumferentially around the first section 41 in a plane perpendicular to the longitudinal axis which is adjacent to the first connection zone (ie, the connection zone with the thread 48) of the part 40, on the side of the rear end of the first section 41 of said part 40 with respect to said connecting zone, as well as the annular seal 38 (already presented above) extending in said annular groove.
  • a second external annular groove that is to say open on the side of the wall which is opposite to the longitudinal axis X
  • the seal 38 for example an O-ring as shown, is able to provide the seal between the circumferential wall of the first section of the part and the circumferential wall of the housing 11, substantially at the level of the opening 14 of the housing. , when the part 40 is mounted in the housing with the section 41 fully housed in the housing 11.
  • the circulation of the fluid in the manifold is as follows when the cartridge of larger dimensions 25 is used in combination with the extension piece or adapter 40.
  • the fluid is admitted into the housing 11 and enters the part 40 via the side openings 4546 formed in the front section 41. It is prevented from passing directly into the delivery chamber 17, due to the O-ring 36. Under the effect of the pressure, it then passes through the circumferential envelope of the filter cartridge 25, and this not only at the level of the front section 41 but also at the level of the rear section 42 of the part 40.
  • the exchange surface between the fluid and the casing of the filter cartridge 25 is increased compared to the use of the standard filter cartridge 20 of FIG. 3.
  • the pressure drop due to the filter little t be reduced, and / or can be compensated or limited even when the filter cartridge 25 includes pores smaller than the pores of the standard cartridge 20 in order to provide better impurity retention capacity.
  • the fluid then exits the filter cartridge 25 at the level with the front end of the part 40, towards the bottom 15 of the housing 11 of the housing 10.
  • the part 40 may comprise active heating elements 33 and 34, arranged for example in the walls of the second section 42. These means 33 and 34, visible in FIG. 5, are suitable for, when the part
  • connection wires can connect the part 40 to a connector (not shown). of the housing 10.
  • the rear section 42 of the part 40 may comprise portions 50 which are deformable outwardly of the part 40 (that is to say by moving away from the longitudinal axis X).
  • Such portions 50 are suitable for, when the part 40 is mounted in the housing 11 of the housing 10, compensating for a possible increase in the volume of fluid in the part 4 and / or in the housing 11 due to the freezing of said fluid.
  • the portions 50 may have a lesser thickness, and / or not have ribbed reinforcements unlike the other portions of the rear section 42 of the part 40, visible for example in FIG. 6 and in FIG. 7, between the deformable portion 50 and the opening 44 at the rear end of the part 40.
  • the extension part 40 allows the use of a filter cartridge 25 of larger axial dimensions than the standard filter cartridge 20, while retaining the housing 10 with the housing 11, the axial depth of which has been designed to receive the standard filter cartridge 20.
  • the filter cartridge of larger dimensions 25 can be inserted into the extension piece 40 when said piece is mounted in the housing 11 of the housing 10. It is sealed therein ("leakproof” in English) when the closure cap 21 is put in place to close the opening 44 at the rear end of the part 40.
  • the part 40 can be made of aluminum, for strength, and then be covered with high density ethylene polymer (HDPE). As a variant, it can be made of HDPE. It can also be made of oxymethylene polymer (POM), polyamide, polyimide or a mixture thereof.
  • HDPE high density ethylene polymer
  • POM oxymethylene polymer

Abstract

Il est proposé une pièce de prolongation axiale qui permet d'utiliser une cartouche filtrante (25) de plus grandes dimensions axiales qu'une cartouche filtrante standard pour laquelle a été prévue la profondeur axiale d'un logement creux (11) d'un boîtier (10) d'un dispositif de réduction catalytique sélective (SCR). Cela permet d'avoir des caractéristiques de filtration différentes, sans avoir besoin de modifier le boîtier. La cartouche filtrante de plus grandes dimensions (25) peut être insérée dans la pièce de prolongation lorsque cette pièce est montée dans le logement (11) du boîtier (10). La cartouche y est enfermée de manière étanche lorsque le bouchon de fermeture (21) est mis en place pour fermer l'ouverture à l'extrémité arrière de la pièce.

Description

DESCRIPTION
LOGEMENT CREUX POUR RECEVOIR UNE CARTOUCHE FILTRANTE
[Domaine technique] La présente invention se rapporte de manière générale à la distribution d'additif liquide utilisé par exemple dans un dispositif de traitement des gaz d'échappement d’un véhicule automobile tel qu'un dispositif de traitement par réduction catalytique sélective(ou dispositif SCR, mis pour « Sélective catalytic réduction » en langue anglo-saxonne), et plus particulièrement à une pièce de prolongation axiale d’un logement creux dans un boîtier d’un tel dispositif, prévu pour recevoir une cartouche filtrante.
L'invention trouve des applications, en particulier, dans des véhicules automobiles, notamment mais pas uniquement ceux équipés d’un moteur diesel, par exemple dans des véhicules légers, des véhicules de type utilitaires ou dans des camions (ou véhicules poids lourds) comportant un tel moteur.
[Etat de la technique antérieure]
Les gaz d'échappement générés par les véhicules à moteur à allumage par compression (dits moteurs diesel) ou par les véhicules à moteur à allumage commandé (dits moteurs à essence), sont notamment composés de polluants atmosphériques gazeux tels que des oxydes de carbone (appelés « Cox », pour CO et C02) et des oxydes d'azote (appelés « NOx » pour NO et N02). Les moteurs diesel, en particulier, font l'objet d'une réglementation visant à réduire la quantité de gaz polluants qu'ils émettent. Les normes plafonnant les niveaux d'oxydes d'azote émis en sont un exemple, elles tendent à être de plus en plus restrictives.
Dans le cas particulier des véhicules équipés d'un moteur diesel, la dépollution des gaz d'échappement du moteur peut être réalisée au moyen d’un dispositif de traitement des gaz mettant en oeuvre une méthode de dépollution telle que la méthode de réduction catalytique sélective (ou méthode SCR). La méthode SCR emploie un additif liquide dépolluant afin de réduire sélectivement les oxydes d'azotes (NOx) contenus dans les gaz d'échappement. Par additif liquide dépolluant, on entend un produit dépolluant qui peut être injecté dans un dispositif de traitement de gaz d'échappement d'un moteur dans le but de dépolluer les gaz d'échappement avant leur rejet dans l’atmosphère.
L'additif liquide communément utilisé dans la méthode SCR est un fluide d'échappement diesel (ou DEF, mis pour « Diesel exhaust fluid », dans la langue anglo-saxonne) qui est une solution aqueuse d'urée à 32,5% (en poids), aussi commercialisée sous la marque AdBlue®. La solution aqueuse d'urée est un précurseur d'ammoniaque (NH3). Cette ammoniaque réagit avec les oxydes d'azote (NOx) des gaz d'échappement pour donner des espèces moins polluantes, à savoir du diazote (N2), de l'eau et du dioxyde de carbone (C02). Ainsi, l'ammoniaque utilisé dans la méthode SCR est un agent réducteur, fourni sous la forme d'un additif liquide.
Dans les véhicules, l'additif liquide est stocké dans un réservoir dédié, qui est équipé d'un module de dosage appelé aussi dispositif de distribution d'additif liquide. Le dispositif de distribution d'additif liquide est adapté pour prélever l'additif liquide, en doser une quantité déterminée et l'injecter dans le dispositif de traitement des gaz d'échappement en vue de la dépollution desdits gaz. Pour cela, le dispositif de distribution d'additif liquide comprend un boîtier dans lequel sont disposés des composants fonctionnels tels que notamment des moyens pour pomper, pour filtrer et/ou pour doser l'additif liquide, des moyens pour mesurer la quantité d'additif liquide présent dans le réservoir, des capteurs comme un capteur de température de l’additif liquide présent dans le réservoir, des moyens de chauffage de l’additif liquide adaptés pour le dégeler le cas échéant, etc.
Ce réservoir dédié représente un encombrement additionnel pour le véhicule.
Ainsi, de manière avantageuse, le module de dosage peut être placé dans le réservoir d'additif liquide en sorte que son boîtier occupe une partie de l'espace dans le réservoir.
Les documents DE102006040411A1 et DE102012003156A1 divulguent des cartouches filtrantes pour dispositif SCR. De telles cartouches filtrantes sont en général amovibles, afin de pouvoir être remplacées pendant la durée de vie du dispositif SCR. Il apparaît qu’il est souhaitable de pouvoir utiliser des cartouches de filtration offrant des capacités de filtration différentes sans avoir besoin, pour autant, de modifier le design d’un module de dosage existant. En effet, selon les véhicules, certaines applications requièrent l’utilisation d’un filtre ayant par exemple une meilleure capacité de rétention des impuretés (« Dust-holding capacity » en langue anglo-saxonne) et/ou une moindre perte de pression (« Pressure drop » en langue anglo-saxonne) que d’autres applications. L’obtention de telles caractéristiques améliorées peut rendre nécessaire l’utilisation d’une cartouche filtrante plus grande qu’une cartouche de dimensions standards pour laquelle un module de dosage peut avoir été conçu.
Un problème technique qui se pose alors est l’absence de flexibilité des capacités de filtration pour un module de dosage donné, ayant un boîtier de dimensions et de formes déterminées.
[Exposé de l’invention]
L'invention vise à supprimer, ou du moins atténuer, tout ou partie des inconvénients de l'art antérieur précités.
A cet effet, un premier aspect de l’invention propose une pièce de prolongation d’un logement creux prévu dans un boîtier pour recevoir une première cartouche filtrante, ledit logement s’étendant suivant un axe longitudinal déterminé entre une première extrémité axiale et une seconde extrémité axiale opposées, et ayant une ouverture au niveau de la première extrémité axiale pour l’insertion de ladite première cartouche filtrante dans le logement parallèlement à la direction de l’axe longitudinal du logement, ainsi qu’un fond au niveau de la seconde extrémité axiale, ledit logement présentant une profondeur axiale déterminée, entre ladite ouverture et ledit fond, et ayant au moins une paroi circonférentielle s’étendant sensiblement parallèlement à ladite direction et formant une enveloppe de forme déterminée, ladite pièce de prolongation ayant un axe longitudinal et comprenant : a) une première extrémité axiale par laquelle la pièce peut être insérée dans le logement du boîtier, et une seconde extrémité axiale munie d’une ouverture par laquelle une seconde cartouche filtrante, de longueur axiale supérieure à la profondeur axiale du logement, peut être insérée et enfermée de manière étanche dans la pièce lorsque ladite pièce est montée dans le logement du boîtier ; b) un premier tronçon axial de longueur axiale sensiblement égale, par valeurs inférieures, à la profondeur axiale du logement du boîtier, ayant un fond ajouré au niveau de la première extrémité axiale de la pièce, et ayant au moins une paroi circonférentielle formant une enveloppe ajourée sensiblement conforme à l’enveloppe du logement du boîtier de manière à pouvoir prendre place dans ledit logement; c) un second tronçon axial, s’étendant suivant la direction axiale dans le prolongement du premier tronçon axial du côté opposé à la première extrémité axiale de la pièce et jusqu’à la seconde extrémité axiale de la pièce, et ayant au moins une paroi circonférentielle formant une enveloppe non ajourée qui prolonge axialement l’enveloppe ajourée du premier tronçon ; d) une première zone de liaison, à une position axiale entre le premier tronçon axial et le second tronçon axial de la pièce, et présentant des premiers moyens de liaison coopérant avec des moyens de liaison complémentaires du boîtier au niveau de l’ouverture du logement du boîtier, pour la fixation étanche de la pièce au boîtier ; et, e) une seconde zone de liaison, au niveau de la seconde extrémité axiale de la pièce, et présentant des seconds moyens de liaison pour la fixation étanche d’un bouchon apte à assurer la fermeture étanche de la pièce.
Grâce à l’invention, il est possible d’utiliser une cartouche filtrante de plus grande longueur axiale qu’une cartouche filtrante standard pour laquelle la profondeur axiale du logement dans le boîtier a été prévue, et ce sans avoir à modifier le boîtier.
Des modes de réalisation pris isolément ou en combinaison, prévoient en outre que :
- la paroi circonférentielle du premier tronçon peut comprendre une première gorge annulaire externe, s’étendant circonférentiellement autour du premier tronçon dans un plan perpendiculaire à l’axe longitudinal qui est adjacent à la première extrémité axiale dudit premier tronçon, ainsi qu’un premier joint annulaire s’étendant dans ladite première gorge annulaire et apte à assurer l’étanchéité entre la paroi circonférentielle du premier tronçon de la pièce et la paroi circonférentielle du logement lorsque la pièce est montée dans le logement ; - la paroi circonférentielle du premier tronçon peut comprendre une seconde gorge annulaire externe, s’étendant circonférentiellement autour du premier tronçon dans un plan perpendiculaire à l’axe longitudinal qui est adjacent à la première zone de liaison de la pièce, du côté de la première extrémité axiale du premier tronçon de la pièce par rapport à ladite zone de liaison, ainsi qu’un second joint annulaire s’étendant dans ladite gorge annulaire et apte à assurer l’étanchéité entre la paroi circonférentielle du premier tronçon de la pièce et la paroi circonférentielle du logement lorsque la pièce est insérée dans le logement par sa première extrémité distale ;
- le logement du boîtier étant de forme cylindrique et les moyens de liaison du boîtier au niveau de l’ouverture du logement du boîtier comprenant un taraudage prévu pour la fixation par vissage d’un bouchon de fermeture étanche du logement, les premiers moyens de liaison de la pièce peuvent comprendre un filetage complémentaire dudit taraudage ;
- les seconds moyens de liaison de la pièce peuvent comportent un taraudage identique au taraudage du boîtier au niveau de l’ouverture du logement du boîtier ;
- la pièce peut comprendre des éléments chauffants actifs adaptés pour, lorsque la pièce est montée dans le logement du boîtier, chauffer le fluide dans la pièce et/ou dans le logement du boîtier ; et,
- le second tronçon peut comprendre au moins une portion déformable vers l’extérieur de la pièce qui sont adaptées pour, lorsque la pièce est montée dans le logement du boîtier, compenser une augmentation du volume de fluide dans la pièce et/ou dans le logement du boîtier due au gel dudit fluide.
Dans un deuxième aspect, l’invention concerne également un set comprenant : a) un module de dosage d'additif liquide pour dispositif de traitement des gaz d’échappement d’un véhicule automobile ayant un boîtier avec un logement qui est adapté pour recevoir une cartouche filtrante amovible et ayant une entrée pour l’insertion de la cartouche filtrante ainsi qu’un fond opposé à ladite entrée suivant la direction d’un axe d’insertion de la cartouche filtrante dans le logement, et qui présente une longueur déterminée, suivant ladite direction, entre ladite entrée et ledit fond en ayant des parois circonférentielles s’étendant sensiblement parallèlement à ladite direction et formant une enveloppe de forme déterminée ; ainsi que b) une pièce de prolongation selon le premier aspect ci-dessus adaptée pour prolonger axialement le logement du boîtier de manière à permettre l’utilisation d’une autre cartouche filtrante de plus grandes dimensions axiales que la première cartouche filtrante.
Dans un troisième aspect, l’invention a également pour objet un dispositif de traitement des gaz d’échappement d’un véhicule automobile comprenant un set selon le deuxième aspect.
[Description des dessins] D’autres caractéristiques et avantages de l’invention apparaîtront encore à la lecture de la description qui va suivre. Celle-ci est purement illustrative et doit être lue en regard des dessins annexés sur lesquels :
[Fig. 1] : la figure 1 est un schéma fonctionnel d'un moteur de véhicule automobile avec un dispositif de traitement des gaz d'échappement pour la réduction des NOx ;
[Fig. 2] : la figure 2 est un schéma simplifié d’un collecteur de fluide dans lequel un logement creux est prévu pour l’agencement d’une cartouche filtrante amovible ;
[Fig. 3] : la figure 3 est un schéma du collecteur de fluide de la figure 2 avec une cartouche filtrante de dimensions standards agencée dans le logement, avec un bouchon fermant le logement de manière étanche, et avec du fluide sous pression ;
[Fig. 4] : la figure 4 est un schéma est un schéma simplifié, en coupe, d’une pièce de prolongation du logement du collecteur de fluide de la figure 2 selon des modes de réalisation ;
[Fig. 5] : la figure 5 est un schéma du collecteur de fluide de la figure 2 avec la pièce de la figure 4 montée dans le logement, et avec une cartouche filtrante de longueur axiale plus grande que la cartouche filtrante de la figure 3 agencée dans la pièce ; [Fig. 6] : la figure 6 est une vue en perspectives d’une pièce de prolongation selon un mode de réalisation ; et,
[Fig. 7] : la figure 7 est une vue en coupe longitudinale de la pièce de prolongation de la figure 6, montée dans le logement d’un collecteur de fluide adapté pour recevoir une cartouche filtrante standard.
[Description des modes de réalisation]
Dans la description de modes de réalisation qui va suivre et dans les Figures des dessins annexés, les mêmes éléments ou des éléments similaires portent les mêmes références numériques aux dessins. La figure 1, montre schématiquement un véhicule à moteur 100 avec un moteur à combustion interne 110, par exemple un moteur diesel. Le véhicule à moteur 100 est par exemple une voiture de tourisme, un véhicule utilitaire, un camion ou un autocar. Le véhicule à moteur 100 comprend également un dispositif 120 de traitement des gaz d'échappement avec un module 130 pour la mise en œuvre de la méthode de dépollution dite méthode SCR. Le véhicule 100 comprend aussi un réservoir 140 pour l'additif liquide 150, couplé à un injecteur 170 pour introduire l'additif liquide 150 dans le dispositif 120 de traitement des gaz, par l’intermédiaire d’un module 160 de dosage d’additif liquide.
Le module de dosage 160, ou dispositif de distribution d'additif liquide, comprend un boîtier dans lequel sont agencés, notamment, des composants fonctionnels pour prélever l'additif liquide et l’acheminer vers l’injecteur 170, le chauffer le cas échéant, et le filtrer, ainsi que des capteurs pour délivrer différentes informations sur la quantité et la qualité de l’additif liquide présent dans le réservoir 140. Parmi les éléments ainsi disposés dans le boîtier, on trouve par exemple : une pompe pour prélever de l'additif liquide du réservoir, des conduits pour acheminer l'additif liquide prélevé par la pompe vers l’injecteur 170, au moins une valve, divers capteurs tels que des capteurs de niveau, de pression, de température et/ou d'écoulement, une unité de contrôle électronique, au moins un filtre, un dispositif de chauffage de l’additif liquide, etc. L'additif liquide peut être une solution aqueuse d'urée à 32,5% telle que la solution conne sous la marque AdBlue®. Lorsque le moteur 110 produit des gaz d'échappement, ces gaz sont dirigés vers le dispositif de traitement des gaz d'échappement 120. Le dispositif de traitement des gaz d'échappement 120 est alimenté en additif liquide 150 grâce au dispositif de distribution d'additif liquide, ou module de dosage 160, et à l’injecteur 170. Le module de dosage 160 dose la quantité d'additif liquide à injecter. Puis, grâce au conduit 180 auquel le module 160 est connecté, l'additif liquide est acheminé vers l'injecteur 170. L'injecteur 170 introduit la solution dépolluante dans le dispositif 120, afin de permettre la réduction catalytique sélective des NOx selon la méthode SCR dans une zone 130 de traitement des gaz dudit dispositif 120. La dépollution des gaz d'échappement est ainsi opérée.
De manière avantageuse, le boîtier du module de dosage 160 est partiellement disposé dans l'espace intérieur du réservoir 140. La partie du boîtier disposée dans le réservoir 140 offre une surface en contact avec l'additif liquide 150 présent dans le réservoir. Le boîtier peut être réalisé en aluminium, par exemple, et peut être recouvert d’un matériau polymère non technique comme un polymère d'éthylène haute densité (PEHD), qui offre l’avantage de ne pas réagir avec l’Adblue®, qui est une solution corrosive. Ainsi, un dispositif de chauffage peut être relié à des parties du boîtier en aluminium qui sont en contact avec l’additif liquide dans le réservoir, afin de transmettre de la chaleur à l’additif liquide par conduction. Ceci permet notamment de dégeler plus facilement l’additif liquide, le cas échéant.
En variante, le boîtier peut être réalisé en PEHD. Ce polyéthylène est le polymère de base de la construction mécanique et un des moins chers. C'est un plastique inerte, c’est-à-dire un matériau qui ne réagit pas chimiquement et/ou ne s'altère pas lorsqu'il est au contact d'une solution d'agent chimique telle qu'une solution d'urée. En outre, il est facile à manier et résistant au froid.
En variante, encore, le boîtier peut aussi être réalisé en un matériau polymère technique, comme par exemple un polymère d'oxyméthylène (POM), de polyamide, de polyimide ou un mélange de ceux-ci. Un tel matériau technique présente de meilleures propriétés mécaniques autorisant la création d’interfaces de forme complexe sur le corps du boîtier avec une tolérance, c’est-à-dire une incertitude dimensionnelle, relativement serrée, par exemple de l'ordre de ± 0,05 millimètres (mm).
Dans tous les cas, le réservoir d'additif liquide et le boîtier du module de dosage forment avantageusement un ensemble compact permettant ainsi un gain de place dans le véhicule à moteur. Dans la configuration telle que représentée à la figure 1, par exemple, le boîtier ne fait pas saillie vers l’extérieur du réservoir 140.
La figure 2 montre, en coupe, une portion du boîtier 10 d’un module de dosage d’additif liquide comme le module 160 de la figure 1. Cette portion du boîtier 10 fait partie du collecteur de fluide (« fluid manifold » en langue anglo-saxonne). Elle comprend plus particulièrement un logement creux 11 prévu dans le boîtier pour recevoir une cartouche filtrante, qui peut être amovible. Une telle cartouche filtrante, non représentée à la figure 2, a pour fonction de, et est adaptée pour filtrer les impuretés dans un fluide. Dans l’application envisagée, le fluide est de l’additif liquide Adblue®, pompé dans le réservoir 140, et qui doit être filtré avant son injection par l’injecteur 170 dans le dispositif de traitement des gaz d'échappement 120 de la figure 1.
Pour les besoins de la présente description, on considérera que la cartouche filtrante concernée est une cartouche standard, c’est-à-dire une cartouche de dimensions standards.
En référence à la figure 2, le logement 11 s’étend suivant un axe longitudinal X déterminé, entre une première extrémité axiale et une seconde extrémité axiale opposées. Il présente une ouverture 14 au niveau de la première extrémité axiale, pour l’insertion de la cartouche filtrante standard (non représentée à la figure 2). L’insertion de la cartouche filtrante dans le logement 11 via l’ouverture 14 se fait parallèlement à la direction de l’axe longitudinal X du logement. Le logement 11 présente en outre un fond 15 au niveau de la seconde extrémité axiale. Dans ce qui suit et sauf mention contraire expresse, les termes « avant, « arrière », « en avant de », « en arrière de », et « profondeur », sont utilisés en référence au sens d’insertion dans le logement suivant la direction de l’axe longitudinal X, depuis l’ouverture 14 vers le fond 15 du logement 11. Le logement 11 présente une profondeur axiale déterminée. Par profondeur axiale, on entend une profondeur suivant la direction de l’axe longitudinal X. Cette profondeur axiale peut être mesurée, par exemple, entre l’ouverture 14 et le fond 15 du logement 11.
En outre, le logement 11 possède au moins une paroi circonférentielle 16. Par paroi circonférentielle, on entend une paroi s’étendant sensiblement parallèlement à la direction de l’axe longitudinal X, autour dudit axe, et formant l’enveloppe du logement 11. Cette enveloppe présente une forme déterminée, par exemple la forme d’un cylindre. Dit autrement, la section de l’enveloppe du logement 11 est, selon cet exemple, un cercle. Dans d’autres exemples, elle peut être un polygone, lorsque le logement présente plusieurs parois planes, adjacentes deux-à-deux, et s’étendant parallèlement à la direction de l’axe longitudinal X. Des enveloppes de formes plus complexes son évidemment envisageables, selon les besoins de l’application. Cependant, une enveloppe cylindrique est le cas le plus général car les cartouches filtrantes destinées à prendre place dans le logement sont généralement de forme cylindrique.
Le logement 11 présente une zone de liaison au niveau de l’ouverture 14, dans laquelle zone des moyens de liaison 19 sont prévus pour la liaison étanche avec un bouchon 21 de fermeture du logement. Dans l’exemple représenté d’un logement de forme cylindrique, les moyens de liaison 19 du logement 11 comprennent un taraudage, adapté pour coopérer avec des moyens de liaison complémentaires du bouchon 21 comprenant un filetage 22. L’étanchéité de la fermeture du logement 11 par le bouchon 21 via ces moyens de liaison peut être assurée par un joint torique 18, non représenté à la figure 2 mais visible à la figure 3, qui est mis en place au niveau de la zone de liaison du logement 11 comprenant le taraudage 19, ou de l’extrémité du bouchon 21 comprenant le filetage 22, par exemple après l’insertion de la cartouche filtrante et avant le montage du bouchon. En variante, notamment si le logement a une enveloppe non cylindrique, les moyens de liaisons complémentaires du logement 11 et du bouchon 21 peuvent comprendre des moyens de liaison à baïonnette, par exemple, ou tous autres moyens équivalents à la portée de l’homme du métier. Le collecteur de fluide représenté à la figure 2 comprend une conduite d’admission 12 débuchant dans le logement 11 pour l’entrée du fluide non filtré dans le logement, et une conduite de refoulement 13 pour la sortie du fluide filtré depuis le logement 11. L’admission du fluide par la conduite 12, son passage à travers la cartouche filtrante dans le logement 11 , et son refoulement par la conduite 13, sont réalisées par différence de pression entre le circuit d’admission comprenant la conduite 12 et le circuit de refoulement comprenant la conduite 13. Cette différence de pression est obtenue grâce à une pompe d’aspiration du fluide disposée en amont de la conduite 12 ou en aval de la conduite 13, c’est-à-dire du côté du réservoir d’additif liquide 140 ou du côté du dispositif 120 de traitement des gaz d'échappement de la figure 1 , respectivement, par rapport au filtre.
A la figure 3, des flèches illustrent la circulation du fluide depuis l’entrée visible de la conduite d’admission 12 jusqu’à la sortie visible de la conduite de refoulement 13, à travers une cartouche filtrante standard 20 lorsqu’elle est en place dans le logement 11 et que ledit logement est fermé par le bouchon 21. Ainsi qu’on peut le voir à la figure, un joint torique 16 est mis en place légèrement en avant du fond 15 du logement 11 du boîtier, et contre lequel appuie l’extrémité avant de la cartouche filtrante 20. Ainsi, il se forme une chambre de refoulement 17 entre ladite extrémité avant de la cartouche filtrante standard 20 et le fond 15 du logement 10, dans laquelle du fluide filtré sort par l’avant de la cartouche filtrante 20. La conduite de refoulement 13 évacue le fluide filtré depuis ladite chambre 17. En outre, le joint torique 18 déjà mentionné plus haut en référence à la figure 2 est mis en place au niveau de la zone de liaison du logement 11 avec le taraudage 19, contre lequel appuie l’extrémité avant du bouchon 21 lorsque le filetage 22 engage avec le taraudage 19. Ainsi, il se crée une chambre d’admission 17a entre le corps cylindrique de la cartouche filtrante et l’enveloppe du logement 11. La conduite d’admission 12 débouche dans ladite chambre 17a. Le fluide pénètre dans la cartouche filtrante 20 par son enveloppe circonférentielle, et en ressort filtré, par l’extrémité avant précitée de ladite cartouche 20.
Enfin, le boîtier 10 comprend des moyens de chauffage 31 et 32 disposés autour du logement 11 , dans le corps du boîtier, qui sont adaptés pour chauffer sélectivement le fluide dans ledit logement, par exemple lorsque la température du fluide ou une température environnante est mesurée en dessous d’un certain seuil. Ces moyens de chauffage peuvent être des résistances chauffantes, par exemple. Ils permettent notamment de dégeler l’additif liquide AdBlue® lorsqu’il est gelé.
La compacité recherchée pour l’ensemble formé du réservoir d’additif liquide 140 et du module de dosage 160, qui a déjà été mentionnée plus haut en référence au schéma de la figure 1 , amène à concevoir un module de dosage avec des dimensions minimales, c’est-à-dire juste suffisantes pour satisfaire les besoins des applications standards. Cela concerne en particulier le logement 11 prévu dans le boîtier 10 du module de dosage pour recevoir la cartouche filtrante standard 20.
Cependant, certaines applications requièrent l’utilisation d’un filtre ayant par exemple une meilleure capacité de rétention des impuretés (« Dust-holding capacity » en langue anglo-saxonne) et/ou une moindre perte de pression (« Pressure drop » en langue anglo-saxonne). L’obtention de telles caractéristiques améliorées peut rendre nécessaire l’utilisation d’une cartouche filtrante plus grande qu’une cartouche de dimensions standards pour laquelle un module de dosage peut avoir été conçu. Dans un tel cas, un homme du métier ne bénéficiant pas de l’enseignement de l’invention sera amené à modifier la conception du boîtier afin de prévoir un logement plus grand, apte à recevoir une cartouche filtrante de plus grandes dimensions.
Afin de permettre l’utilisation d’une autre cartouche filtrante, de dimensions plus importantes que celles de la cartouche filtrante standard pour laquelle le logement 11 dans le boîtier 10 de la figure 2 a été prévu, des modes de réalisation de l’invention proposent l’utilisation d’une pièce de prolongation du logement 11. Il s’agit plus particulièrement d’une prolongation axiale du logement 11 , c’est-à-dire une prolongation suivant la direction de l’axe longitudinal X. Cette prolongation permet d’agrandir la profondeur axiale (au sens précité) de l’espace destiné à recevoir l’autre cartouche filtrante, au-delà de la distance entre l’ouverture 14 et le fond 15 du logement 11. En ce sens, la pièce de prolongation est un adaptateur car elle permet d’adapter une cartouche filtrante de plus grandes dimensions axiales pour une utilisation dans le logement 11 de moindres dimensions axiales. Les schémas simplifiés de la figure 4 et de la figure 5 montrent, en coupe, respectivement la pièce de prolongation 40 seule et ladite pièce de prolongation 40 dans le logement 11 du boîtier 10 de la figure 2. Dans la configuration de la figure 5, en outre, la cartouche filtrante de plus grandes dimensions 25 est mise en place dans l’adaptateur 40. La figure 6 montre une vue en trois dimensions, en perspectives, d’un mode de réalisation de la pièce de prolongation 40, et la figure 7 montre une vue en coupe de la pièce 40 de la figure 6 et du logement 11 dans le boîtier 10. Sur ces figures, les mêmes éléments que ceux déjà décrits en référence aux figures 2 et 3 portent les mêmes références et leur description ne sera pas reprise.
La pièce de prolongation 40 est une pièce creuse, adaptée pour recevoir la cartouche filtrante de plus grandes dimensions 25. La pièce de prolongation 40 a un axe longitudinal, qui coïncide avec l’axe longitudinal X du logement 11 dans le boîtier 10 lorsque la pièce 4 est montée dans ledit logement. Par mesure de simplicité, on se référera à l’axe longitudinal X pour désigner indistinctement l’axe longitudinal du logement 11 du boîtier 10 d’une part, et l’axe longitudinal de la pièce 40, d’autre part.
La pièce 40 comprend une première extrémité axiale par laquelle la pièce peut être insérée dans le logement 11 du boîtier 10, appelée « extrémité avant » dans ce qui suit. Elle comprend aussi une seconde extrémité axiale, opposée à l’extrémité avant, et appelée « extrémité arrière » dans ce qui suit. La pièce 40 est munie d’une ouverture 44 au niveau de son extrémité arrière, par laquelle la cartouche filtrante 25 peut être insérée dans la pièce 40 même lorsque celle-ci est engagée dans le logement 11 par son extrémité avant.
Comme montré en particulier sur les figures 4 et 6, la pièce 40 comprend deux tronçons axiaux 41 et 42, qui s’étendent dans le prolongement axial l’un de l’autre.
Du côté de l’extrémité avant, la pièce comprend ainsi un premier tronçon axial 41 , ou tronçon avant, de longueur axiale sensiblement égale, par valeurs inférieures, à la profondeur axiale du logement 11 du boîtier 10. Le tronçon avant 41 possède un fond ajouré, en raison d’une ouverture 47 au niveau de l’extrémité avant de la pièce 40. Le tronçon avant 41 possède au moins une paroi circonférentielle formant une enveloppe sensiblement conforme à l’enveloppe du logement 11 du boîtier de manière à pouvoir prendre place dans ledit logement 11. Cette enveloppe est ajourée, en raison de la présence d’ouvertures latérales 45 et 46.
De préférence, les ouvertures 45 et 46 s’étendent parallèlement à la direction de l’axe longitudinal X et ont une longueur sensiblement égale à la longueur axiale du tronçon avant 41 , afin d’offrir un passage le plus important possible au fluide sans trop nuire à la rigidité de la pièce 40.
Du côté de l’extrémité arrière, la pièce 40 comprend en outre un second tronçon axial 42, ou tronçon arrière. Celui-ci s’étend suivant la direction axiale dans le prolongement du premier tronçon avant 41 , du côté opposé à l’extrémité avant de la pièce 40, et jusqu’à l’extrémité arrière de la pièce 40. Le tronçon arrière 42 possède au moins une paroi circonférentielle formant une enveloppe non ajourée, laquelle prolonge axialement l’enveloppe ajourée du tronçon avant 41. Lorsque le tronçon avant 41 est complètement inséré dans le logement 11 du boîtier 10, comme montré à la figure 5 et à la figure 7, le tronçon arrière 42 dépasse axialement à l’extérieur dudit boîtier 10, dans la direction opposée au fond 15 du logement 11 du boîtier 10.
Les tronçons 41 et 42 sont délimités entre eux, axialement, par une première zone de liaison comprenant des moyens pour la liaison de la pièce 40 au boîtier 10. Ces moyens de liaison comprennent par exemple un filetage 48 de la pièce 40 apte à coopérer avec le taraudage 19 du boîtier 10 au niveau de l’ouverture 14 du logement 11 du boîtier 10. Dit autrement, les moyens de liaison de la pièce 40 au boîtier 10 sont disposés à une position axiale correspondant sensiblement à la jonction entre le premier tronçon axial 41 et le second tronçon axial 42 de la pièce 40. Les moyens de liaison 48,19 précités sont aptes à réaliser la fixation étanche de la pièce 40 au boîtier 10. Pour obtenir cette étanchéité, les moyens de liaison peuvent comprendre et coopérer avec un joint 38. Dans l’exemple représenté, le joint 38 est un joint annulaire, par exemple un joint torique.
En d’autres termes, et en supposant que le logement 10 du boîtier est de forme cylindrique, les moyens de liaison de la pièce 40 au boîtier 10, prévus au niveau de l’ouverture 14 du logement 11 du boîtier 10, comprennent le taraudage 19 dans le boîtier 10 qui est prévu pour la fixation par vissage du bouchon 21 de fermeture étanche du logement 11 lorsqu’une cartouche filtrante standard 20 est utilisée (figure 3), d’une part, ainsi que les premiers moyens de liaison de la pièce 40 comprenant le filetage 48 qui est complémentaire dudit taraudage 19, d’autre part.
La pièce 40 comprend une seconde zone de liaison, au niveau de l’extrémité arrière de la pièce, avec des seconds moyens de liaison pour la fixation étanche d’un bouchon apte à assurer la fermeture étanche de la pièce. Le bouchon peut avantageusement être le bouchon 21 utilisé pour fermer le logement 11 du boîtier 10 lorsqu’il renferme la cartouche filtrante standard 20, ou un bouchon identique comprenant lui aussi un filetage 22. Moyennant quoi les moyens de liaison du bouchon 21 comprennent le filetage 22 du bouchon 21 , d’une part, et des seconds moyens de liaison de la pièce 40 comprenant un taraudage 49 complémentaire du filetage 22 au niveau de l’extrémité arrière de la pièce 40, d’autre part. Le taraudage 49 est de préférence identique au taraudage 19 du boîtier 10 au niveau de l’ouverture 14 du logement 11 du boîtier 10, pour permettre le réemploi du bouchon 21. L’étanchéité de cette liaison entre la pièce 40 et le bouchon 21 peut être assurée par un joint annulaire, par exemple un joint torique, comme par exemple le joint 18 déjà décrit plus haut en référence au schéma de la figure 3, ou un joint identique ou similaire.
En d’autres termes, et toujours en supposant que le logement 10 du boîtier est de forme cylindrique, les seconds moyens de liaison de la pièce 40 comportent, au niveau de l’extrémité arrière de la pièce, un taraudage 49 identique au taraudage 19 du boîtier 10 au niveau de l’ouverture 14 du logement 11 du boîtier 10. Cela permet le réemploi du même bouchon 21 que celui prévu pour les utilisations dans lesquelles une cartouche de filtration standard est utilisée, le cas échéant avec le même joint 18.
Dans un mode de réalisation, la paroi circonférentielle du premier tronçon 41 comprend une première gorge annulaire externe (c’est-à-dire ouverte du côté de la paroi qui est opposé à l’axe longitudinal X), s’étendant circonférentiellement autour du premier tronçon dans un plan perpendiculaire à l’axe longitudinal qui est adjacent à l’extrémité avant dudit premier tronçon, ainsi qu’un premier joint annulaire 36 s’étendant dans ladite première gorge annulaire. Ce joint 36, par exemple un joint torique comme représenté, est apte à assurer l’étanchéité entre la paroi circonférentielle du premier tronçon 41 de la pièce 40 et la paroi circonférentielle 16 du logement 11 , sensiblement au niveau du fond 15 du logement, lorsque la pièce 40 est montée dans le logement avec le tronçon 41 entièrement logé dans le logement 11.
Dans un autre mode de réalisation, la paroi circonférentielle du premier tronçon 41 peut aussi comprendre une seconde gorge annulaire externe (c’est-à-dire ouverte du côté de la paroi qui est opposé à l’axe longitudinal X), s’étendant circonférentiellement autour du premier tronçon 41 dans un plan perpendiculaire à l’axe longitudinal qui est adjacent à la première zone de liaison (i.e., la zone de liaison avec le filetage 48) de la pièce 40, du côté de l’extrémité arrière du premier tronçon 41 de ladite pièce 40 par rapport à ladite zone de liaison, ainsi que le joint annulaire 38 (déjà présenté plus haut) s’étendant dans ladite gorge annulaire.
Ainsi disposé, le joint 38, par exemple un joint torique comme représenté, est apte à assurer l’étanchéité entre la paroi circonférentielle du premier tronçon de la pièce et la paroi circonférentielle du logement 11 , sensiblement au niveau de l’ouverture 14 du logement, lorsque la pièce 40 est montée dans le logement avec le tronçon 41 entièrement logé dans le logement 11.
En référence au schéma simplifié de la figure 5, la circulation du fluide dans le collecteur est la suivante lorsque la cartouche de plus grandes dimensions 25 est utilisée en combinaison avec la pièce de prolongation ou adaptateur 40. Comme montré par les flèches sur la figure 5, le fluide est admis dans le logement 11 et entre dans la pièce 40 via les ouvertures latérales 4546 ménagées dans le tronçon avant 41. Il est empêché de passer directement dans la chambre de refoulement 17, en raison du joint torique 36. Sous l’effet de la pression, il traverse ensuite l’enveloppe circonférentielle de la cartouche filtrante 25, et ce non seulement au niveau du tronçon avant 41 mais aussi au niveau du tronçon arrière 42 de la pièce 40. De ce fait, la surface d’échange entre le fluide et l’enveloppe de la cartouche filtrante 25 est augmentée par rapport à l’utilisation de la cartouche filtrante standard 20 de la figure 3. Il en résulte que, en particulier, le chute de pression due au filtre peut être réduite, et/ou qu’elle peut être compensée ou limitée même lorsque la cartouche filtrante 25 comprend des pores plus petits que les pores de la cartouche standard 20 afin de procurer une meilleure capacité de rétention des impuretés. Le fluide sort ensuite de la cartouche filtrante 25 au niveau de l’extrémité avant de la pièce 40, vers le fond 15 du logement 11 du boîtier 10.
Dans des modes de réalisation, la pièce 40 peut comprendre des éléments chauffants actifs 33 et 34, disposé par exemple dans les parois du second tronçon 42. Ces moyens 33 et 34, visibles à la figure 5, sont adaptés pour, lorsque la pièce
40 est montée dans le logement 11 du boîtier 10, chauffer le fluide dans la pièce 40 et/ou dans le logement 11. Ceci est particulièrement utile car, le second tronçon 42 de la pièce 40 faisant saillie vers l’extérieur du boîtier 10, le risque de gel de l’additif liquide Adblue® en hiver est augmenté par rapport à l’utilisation de la cartouche filtrante standard 20 (figure 3). Ces éléments 33 et 34 peuvent être commandés par les même moyens que ceux qui commandent les éléments chauffants 31 et 32 du boîtier 10. A cet effet, des fils de connexion (non représentés) peuvent relier la pièce 40 à un connecteur (non représenté) du boîtier 10. Dans un autre mode de réalisation, le tronçon arrière 42 de la pièce 40 peut comprendre des portions 50 déformables vers l’extérieur de la pièce 40 (c’est-à- dire en s’éloignant de l’axe longitudinal X). De telles portions 50 sont adaptées pour, lorsque la pièce 40 est montée dans le logement 11 du boîtier 10, compenser une éventuelle augmentation du volume de fluide dans la pièce 4 et/ou dans le logement 11 due au gel dudit fluide. A cet effet, les portions 50 peuvent présenter une moindre épaisseur, et/ou ne pas présenter de renforts nervurés contrairement aux autres portions du tronçon arrière 42 de la pièce 40, visibles par exemple à la figure 6 et à la figure 7, entre la portion déformable 50 et l’ouverture 44 à l’extrémité arrière de la pièce 40. Ainsi qu’on l’a compris, la pièce de prolongation 40 permet d’utiliser une cartouche filtrante 25 de plus grandes dimensions axiales que la cartouche filtrante standard 20, tout en conservant le boîtier 10 avec le logement 11 dont la profondeur axiale a été prévue pour recevoir cartouche filtrante standard 20. La cartouche filtrante de plus grandes dimensions 25 peut être insérée dans la pièce de prolongation 40 lorsque ladite pièce est montée dans le logement 11 du boîtier 10. Elle y est enfermée de manière étanche (« leakproof » en langue anglo-saxonne) lorsque le bouchon de fermeture 21 est mis en place pour fermer l’ouverture 44 à l’extrémité arrière de la pièce 40.
La pièce 40 peut être réalisée en alu, pour la solidité, et être alors recouverte de polymère d'éthylène haute densité (PEHD). En variante, elle peut être réalisée en PEHD. Elle peut aussi être réalisée en polymère d'oxyméthylène (POM), en polyamide, en polyimide ou en un mélange de ceux-ci
La présente invention a été décrite et illustrée dans la présente description détaillée et dans les figures des dessins annexés, dans des formes de réalisation possibles. La présente invention ne se limite pas, toutefois, aux formes de réalisation présentées. D’autres variantes et modes de réalisation peuvent être déduits et mis en oeuvre par la personne du métier à la lecture de la présente description et des dessins annexés.
Dans le présent exposé, le terme "comprendre" ou "comporter" n’exclut pas d’autres éléments ou d’autres étapes. Les différentes caractéristiques présentées peuvent être avantageusement combinées. Leur présence dans des parties différentes de la présente demande de brevet, n’excluent pas cette possibilité. Les signes de référence aux dessins ne sauraient être compris comme limitant la portée de l’invention.

Claims

Revendications
[Revendication 1] Pièce (40) de prolongation d’un logement creux (11 ) prévu dans un boîtier (10) pour recevoir une première cartouche filtrante (20), ledit logement s’étendant suivant un axe longitudinal (X) déterminé entre une première extrémité axiale et une seconde extrémité axiale opposées, et ayant une ouverture (14) au niveau de la première extrémité axiale pour l’insertion de ladite première cartouche filtrante dans le logement parallèlement à la direction de l’axe longitudinal du logement, ainsi qu’un fond (15) au niveau de la seconde extrémité axiale, ledit logement présentant une profondeur axiale déterminée, entre ladite ouverture et ledit fond, et ayant au moins une paroi circonférentielle (16) s’étendant sensiblement parallèlement à ladite direction et formant une enveloppe de forme déterminée, ladite pièce de prolongation ayant un axe longitudinal et comprenant : a) une première extrémité axiale par laquelle la pièce peut être insérée dans le logement du boîtier, et une seconde extrémité axiale munie d’une ouverture (44) par laquelle une seconde cartouche filtrante (25), de longueur axiale supérieure à la profondeur axiale du logement, peut être insérée et enfermée de manière étanche dans la pièce lorsque ladite pièce est montée dans le logement du boîtier ; b) un premier tronçon axial (41 ) de longueur axiale sensiblement égale, par valeurs inférieures, à la profondeur axiale du logement du boîtier, ayant un fond ajouré (47) au niveau de la première extrémité axiale de la pièce, et ayant au moins une paroi circonférentielle formant une enveloppe ajourée (45,46) sensiblement conforme à l’enveloppe du logement du boîtier de manière à pouvoir prendre place dans ledit logement ; c) un second tronçon axial (42), s’étendant suivant la direction axiale dans le prolongement du premier tronçon axial du côté opposé à la première extrémité axiale de la pièce et jusqu’à la seconde extrémité axiale de la pièce, et ayant au moins une paroi circonférentielle formant une enveloppe non ajourée qui prolonge axialement l’enveloppe ajourée du premier tronçon ; d) une première zone de liaison, à une position axiale entre le premier tronçon axial et le second tronçon axial de la pièce, et présentant des premiers moyens de liaison (48) coopérant avec des moyens de liaison complémentaires (19) du boîtier au niveau de l’ouverture du logement du boîtier, pour la fixation étanche de la pièce au boîtier ; et, e) une seconde zone de liaison, au niveau de la seconde extrémité axiale de la pièce, et présentant des seconds moyens de liaison (22) pour la fixation étanche d’un bouchon (21 ) apte à assurer la fermeture étanche de la pièce.
[Revendication 2] Pièce selon la revendication 1 , dans laquelle la paroi circonférentielle du premier tronçon comprend une première gorge annulaire externe, s’étendant circonférentiellement autour du premier tronçon dans un plan perpendiculaire à l’axe longitudinal qui est adjacent à la première extrémité axiale dudit premier tronçon, ainsi qu’un premier joint annulaire (36) s’étendant dans ladite première gorge annulaire et apte à assurer l’étanchéité entre la paroi circonférentielle du premier tronçon de la pièce et la paroi circonférentielle du logement lorsque la pièce est montée dans le logement.
[Revendication 3] Pièce selon la revendication 1 ou la revendication 2, dans laquelle la paroi circonférentielle du premier tronçon comprend une seconde gorge annulaire externe, s’étendant circonférentiellement autour du premier tronçon dans un plan perpendiculaire à l’axe longitudinal qui est adjacent à la première zone de liaison de la pièce, du côté de la première extrémité axiale du premier tronçon de la pièce par rapport à ladite zone de liaison, ainsi qu’un second joint annulaire (38) s’étendant dans ladite gorge annulaire et apte à assurer l’étanchéité entre la paroi circonférentielle du premier tronçon de la pièce et la paroi circonférentielle du logement lorsque la pièce est insérée dans le logement par sa première extrémité distale.
[Revendication 4] Pièce selon l’une quelconque des revendications précédentes, dans laquelle, le logement du boîtier étant de forme cylindrique et les moyens de liaison du boîtier au niveau de l’ouverture du logement du boîtier comprenant un taraudage (19) prévu pour la fixation par vissage d’un bouchon de fermeture étanche du logement, les premiers moyens de liaison de la pièce comprennent un filetage (48) complémentaire dudit taraudage.
[Revendication 5] Pièce selon la revendication 4, dans laquelle les seconds moyens de liaison de la pièce comportent un taraudage (49) identique au taraudage (19) du boîtier au niveau de l’ouverture du logement du boîtier.
[Revendication 6] Pièce selon l’une quelconque des revendications précédentes, comprenant des éléments chauffants actifs (33,34) adaptés pour, lorsque la pièce est montée dans le logement du boîtier, chauffer le fluide dans la pièce et/ou dans le logement du boîtier.
[Revendication 7] Pièce selon l’une quelconque des revendications précédentes, dans laquelle le second tronçon comprend au moins une portion (50) déformable vers l’extérieur de la pièce qui sont adaptées pour, lorsque la pièce est montée dans le logement du boîtier, compenser une augmentation du volume de fluide dans la pièce et/ou dans le logement du boîtier due au gel dudit fluide.
[Revendication 8] Set comprenant : a) un module (160) de dosage d'additif liquide (150) pour dispositif (120) de traitement des gaz d’échappement d’un véhicule automobile (100) ayant un boîtier (10) avec un logement (11 ) adapté pour recevoir une cartouche filtrante (20) amovible et ayant une entrée (14) pour l’insertion de la cartouche filtrante ainsi qu’un fond (15) opposé à ladite entrée suivant la direction d’un axe d’insertion de la cartouche filtrante dans le logement, et présentant une longueur déterminée, suivant ladite direction, entre ladite entrée et ledit fond, et ayant des parois circonférentielles (16) s’étendant sensiblement parallèlement à ladite direction et formant une enveloppe de forme déterminée ; et, b) une pièce de prolongation selon l’un quelconque des revendications précédentes, adaptée pour prolonger axialement le logement du boîtier e manière à permettre l’utilisation d’une autre cartouche filtrante (25) de plus grandes dimensions axiales que la première cartouche filtrante.
[Revendication 9] Dispositif de traitement des gaz d’échappement d’un véhicule automobile comprenant un set selon la revendication 8.
EP20800956.3A 2019-11-14 2020-11-10 Logement creux pour recevoir une cartouche filtrante Pending EP4058173A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1912689A FR3103116B1 (fr) 2019-11-14 2019-11-14 Pièce de prolongation axiale d’un logement creux pour recevoir une cartouche filtrante dans un boîtier d’un dispositif SCR
PCT/EP2020/081573 WO2021094281A1 (fr) 2019-11-14 2020-11-10 Logement creux pour recevoir une cartouche filtrante

Publications (1)

Publication Number Publication Date
EP4058173A1 true EP4058173A1 (fr) 2022-09-21

Family

ID=69572168

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20800956.3A Pending EP4058173A1 (fr) 2019-11-14 2020-11-10 Logement creux pour recevoir une cartouche filtrante

Country Status (5)

Country Link
US (1) US20230001337A1 (fr)
EP (1) EP4058173A1 (fr)
CN (1) CN115279476A (fr)
FR (1) FR3103116B1 (fr)
WO (1) WO2021094281A1 (fr)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5190102A (en) * 1990-10-22 1993-03-02 Otis Engineering Corporation Sintered metal substitute for prepack screen aggregate
DE102006040411A1 (de) 2006-08-29 2008-03-06 Purem Abgassysteme Gmbh & Co. Kg Reduktionsmitteldosiersystem
US9211488B2 (en) * 2007-07-13 2015-12-15 Cummins Filtration Ip, Inc. Fluid filter with localized flow attachment
US20130068684A1 (en) * 2011-09-15 2013-03-21 Whirlpool Corporation Filter unit
DE102012003156B4 (de) 2012-02-16 2016-02-25 Emitec France S.A.S Filterkartusche für eine gefriergefährdete Flüssigkeit
DE102012003121A1 (de) * 2012-02-16 2013-08-22 Emitec France S.A.S Filterkartusche für eine Reduktionsmittelfördervorrichtung
CN203648186U (zh) * 2013-11-15 2014-06-18 上海索菲玛汽车滤清器有限公司 滤芯和过滤器单元
WO2015164528A1 (fr) * 2014-04-23 2015-10-29 Baird Michael T Cartouche de filtre à eau et joint d'étanchéité de tête de collecteur
CN108619773A (zh) * 2017-03-15 2018-10-09 深圳市金利源净水设备有限公司 一种集成式滤芯结构

Also Published As

Publication number Publication date
FR3103116B1 (fr) 2022-09-02
US20230001337A1 (en) 2023-01-05
CN115279476A (zh) 2022-11-01
WO2021094281A1 (fr) 2021-05-20
FR3103116A1 (fr) 2021-05-21

Similar Documents

Publication Publication Date Title
FR2918576A1 (fr) Systeme d'alimentation d'un liquide pour vehicule et module pompe/filtre integre.
FR2905161A1 (fr) Raccord avec element chauffant integre.
FR2918718A1 (fr) Pompe rotative pour vehicule.
FR2921105A1 (fr) Systeme scr et methode pour sa purge
FR2902136A1 (fr) Systeme de stockage pour additif de gaz d'echappement d'un moteur
FR2936844A1 (fr) Pompe rotative pour vehicule
EP3080454B1 (fr) Pompe pour additif
WO2019145561A1 (fr) Système d'injection d'une solution aqueuse dans un moteur à injection
FR2949503A1 (fr) Reservoir souple pour produit additif
EP3785488B1 (fr) Dispositif de chauffage bi-energie pour reservoir de produits aqueux
EP4058173A1 (fr) Logement creux pour recevoir une cartouche filtrante
FR3051736A1 (fr) Tete de remplissage pour le remplissage d’un reservoir par un liquide
FR2975013A1 (fr) Unite de filtration de fluide
EP3149300B1 (fr) Dispositif de post-traitement des gaz d'échappement d'un moteur a combustion
FR3042219A1 (fr) Dispositif de post-traitement des gaz d’echappement d’un moteur a combustion
FR3087835A1 (fr) Injecteur pour injecter un agent reducteur gazeux dans le flux de gaz d’echappement d’un moteur a combustion interne
EP2694786B1 (fr) Procédé de détermination de la durée d'ouverture d'un orifice
FR2918111A1 (fr) Systeme de stockage et d'injection d'un additif dans des gaz d'echappement d'un moteur.
FR2949504A1 (fr) Reservoir souple pour produit additif
FR3098257A3 (fr) Module integre pour la commande et la gestion de liquides a bord d'un vehicule et groupe d'alimentation associe pour la commande, la gestion et l'alimentation en liquides a bord d'un vehicule
FR2805002A1 (fr) Dispositif d'injection d'un additif liquide dans un carburant contenu dans le circuit d'alimentation d'un moteur a combustion interne d'un vehicule
FR2956155A1 (fr) Ligne d'echappement pour un moteur a combustion interne
FR2995942A1 (fr) Systeme et procede pour reduire la quantite d'oxydes d'azote dans les gaz d'echappement d'un vehicule automobile
BE1019966A3 (fr) Tubulure pour systeme a fluide embarque dans un vehicule.
WO2019207134A1 (fr) Dispositif de chauffage bi-energie pour reservoir de produits aqueux

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220608

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230727