EP4056777B1 - Verkettungssystem mit thermischer trennung - Google Patents

Verkettungssystem mit thermischer trennung Download PDF

Info

Publication number
EP4056777B1
EP4056777B1 EP22161718.6A EP22161718A EP4056777B1 EP 4056777 B1 EP4056777 B1 EP 4056777B1 EP 22161718 A EP22161718 A EP 22161718A EP 4056777 B1 EP4056777 B1 EP 4056777B1
Authority
EP
European Patent Office
Prior art keywords
chaining system
reinforcing
given
sockets
reinforcing bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP22161718.6A
Other languages
English (en)
French (fr)
Other versions
EP4056777A3 (de
EP4056777A2 (de
Inventor
Josselin GUICHERD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Les Professionnels de la Chaudronnerie Industrielle
Original Assignee
Les Professionnels de la Chaudronnerie Industrielle
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Les Professionnels de la Chaudronnerie Industrielle filed Critical Les Professionnels de la Chaudronnerie Industrielle
Publication of EP4056777A2 publication Critical patent/EP4056777A2/de
Publication of EP4056777A3 publication Critical patent/EP4056777A3/de
Application granted granted Critical
Publication of EP4056777B1 publication Critical patent/EP4056777B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/003Balconies; Decks
    • E04B1/0038Anchoring devices specially adapted therefor with means for preventing cold bridging
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/32Floor structures wholly cast in situ with or without form units or reinforcements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7679Means preventing cold bridging at the junction of an exterior wall with an interior wall or a floor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/32Floor structures wholly cast in situ with or without form units or reinforcements
    • E04B2005/324Floor structures wholly cast in situ with or without form units or reinforcements with peripheral anchors or supports
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal

Definitions

  • the present invention relates to the field of manufacturing works comprising first and second molded elements.
  • Such a chaining system comprises a plurality of reinforcing rods each intended to connect these first and second structural elements molded in concrete together.
  • the main purpose of a chaining system is to provide a means of mechanical connection between the first and second molded elements of the structure.
  • thermal insulators To improve the thermal insulation of structures, it is known to apply thermal insulators to the interior or exterior walls of the structure.
  • US 2014/331581 A1 discloses a chaining system comprising the features of the preamble of claim 1.
  • the object of the invention is in particular to provide a chaining system intended to allow a connection between first and second molded work elements and limiting the thermal conduction between these first and second work elements.
  • the chaining system according to the invention is particularly advantageous because it provides thermal insulation between the first and second structural elements, which limits thermal bridges between these elements while guaranteeing a mechanical connection between these elements via each of the rods. armature of the plurality of rods.
  • Each second given portion of rod is arranged so that the second molded element can be overmolded against this second given portion.
  • this chaining system comprises a plurality of sleeves, each of these sleeves extending inside said layer of thermal insulating material and on either side of said layer of thermal insulating material, each given reinforcing rod of said plurality of reinforcing rods passing through one of the sleeves of the plurality of sleeves which corresponds to it, each of the reinforcing rods being at least partially protected from corrosion by the sleeve that corresponds to it.
  • the sleeves are preferably made of a polymer material and the reinforcing rods are preferably made of metal.
  • Each metal reinforcing rod is preferably made of steel. It is however possible, when this is compatible with the thermal and/or mechanical constraints that the chaining system must withstand, for the reinforcing rods to be in a composite material having a thermal conductivity lower than the thermal conductivity of steel.
  • a composite material could be formed of fibers such as glass or carbon or boron fibers linked together by a binder of these fibers, the binder being for example epoxy or vinyl ester resin (VE).
  • each reinforcing rod is protected at its periphery, against corrosion, by a polymer sleeve, preferably overmolded on the reinforcing rod.
  • the polymer may be a thermoset or a thermoplastic.
  • Corrosion phenomena are favored by humidity which tends to accumulate along the surface of the layer of thermal insulating material and along the molded work element facing which this layer of insulation extends. .
  • the reinforcing rods are at least partially protected against corrosion over an entire length portion of these rods which extends between the first and second work elements.
  • each sleeve provides protection for the rod which corresponds to it over the entire length portion of the rod formed between the first and second work elements.
  • This embodiment is particularly advantageous because it allows the use of reinforcing rods formed in a material sensitive to corrosion, such as an inexpensive metal, while minimizing the risk of this corrosion.
  • Each sleeve has a length less than the length of the rod that it protects to limit the protection to the zone of exposure to corrosion between the first and second structural elements.
  • the volume of polymer used for the manufacture of the sleeves is minimized by limiting the length of these sleeves to a maximum of 110% of the length portion of rod extending between the first and second elements of the work.
  • a work comprising first and second molded work elements and at least one chaining system according to any one of the embodiments described in the present patent application, this at least one system mechanically connecting these first and second molded work elements together.
  • the structure thus obtained has the advantages conferred on it by the chaining system according to the invention, in this case a limitation of thermal bridges, ease of construction and, depending on the case, increased resistance to corrosion of the reinforcing rods of the chaining.
  • the structure is preferably a building comprising the first and second elements which must be thermally insulated from each other to limit thermal bridges between these elements.
  • the first structural element is a wall and the second structural element is a floor or a wall which is at least partially supported by the first structural element.
  • a third aspect of the invention relates to a method of manufacturing a work comprising first and second work elements and a chaining system according to any one of the embodiments of the chaining system described in this patent application.
  • the first work element is molded around a first part of the chaining system, then the layer of thermal insulating material of the chaining system is positioned opposite the first element thus molded before carrying out the molding of the second work element around the second portions of the reinforcing rods of the plurality of reinforcing rods.
  • the invention relates according to a first aspect to a chaining system 1 intended to allow a connection between first and second molded structure elements 10, 20 in concrete so as to manufacture a structure 0.
  • the structure 0 is a building, the first structure element 10 being a load-bearing wall and the second structure element 20 is a floor at least partially supported by the first structure element 10.
  • the chaining system 1 comprises a plurality of reinforcing rods 11a, 11b each intended to connect these first and second molded concrete work elements 10, 20 together.
  • the chaining system is prefabricated and forms a module to achieve a predefined chaining length of the work 0.
  • the length of a chaining system module is intended to be carried and set up manually by a single operator.
  • each module has 8 reinforcing rods, but the number of these rods as well as their diameters or the shape of their sections can be chosen depending on the type of chaining to be carried out (examples will be given later ).
  • the chaining system according to the invention also comprises a layer of thermal insulating material 12 intended to extend between said first and second work elements 10, 20 (ideally this layer 12 extends against the first and against the second element of work 12).
  • Each of said reinforcing rods 11a, 11b passes through said layer of insulating material 10, 20 and has a first portion of rod P1 arranged facing a first side C1 of the layer of insulating material 12 to be able to engage mechanical with said first work element 10 and a second portion of rod P2 arranged facing a second side C2 of the layer of insulating material 12 to be able to come into mechanical engagement with said second work element 20.
  • first and second elements 10 and 20 of the structure 0 are connected together via the plurality of rods 11a, 11b which pass through the layer of insulating material 12.
  • This chaining system 1 is simple to implement and makes it possible to limit thermal bridges between the structural elements 10, 20 while ensuring a good mechanical connection between these elements 10, 20.
  • layer of insulating material 12 designates any block formed of one or more thermally insulating materials and having a thermal conductivity at 0.04 W m-1 K-1.
  • the chaining system can also comprise a plurality of sleeves 13a, 13b, each of these sleeves 13a, 13b extending inside said layer of thermal insulating material 12 and on either side of said layer of insulating material thermal.
  • Each given reinforcing rod 11a, 11b passes through one of the sleeves 13a, 13b of the plurality of sleeves which corresponds to it.
  • Each of the reinforcing rods is thus at least partially protected from corrosion by the sleeve which corresponds to it.
  • the protection conferred by a given sleeve is located around a rod surrounded by this given sleeve and at an interface zone between the interior and the exterior of the layer of insulating material 12, that is to say i.e. where the most severe corrosion conditions for the reinforcing rod are concentrated.
  • reinforcing rods 11a, 11b made of a material sensitive to corrosion can be used, the sleeves providing protection against corrosion at a lower cost.
  • the volume of polymer used for the manufacture of the sleeve is reduced, which is particularly economical.
  • each given reinforcing rod of said plurality of reinforcing rods 11a, 11b passing through one of the sleeves 13a of the plurality of sleeves which corresponds to it passes through this sleeve in a fluid-tight manner.
  • each sleeve 13a, 13b is molded, in this case overmolded, against and around the reinforcing rod 11a, 11b which corresponds to it.
  • a sleeve molded around a rod is particularly easy to manufacture while reinforcing the fluid seal between the sleeve and the rod.
  • the anchoring system comprises compressible interfaces formed of an elastically deformable water-tightness material which are arranged to oppose the passage of water between each of the sleeves of the plurality of sleeves and the rods of armature which extends into these sleeves.
  • These compressible interfaces can be made using an elastic polymer sleeve arranged to tighten the rod and prevent the passage of water between the rod and the sleeve and/or arranged to come against the socket and produce, between the sleeve and the socket, a peripheral seal to the stem.
  • This sealing could also be achieved by placing around each reinforcing rod, a washer forming a seal, each washer being clamped between a sleeve and a socket to prevent the passage of water towards the rod surrounded by the washer.
  • the fixing part 151 (this fixing part is here in the form of a plate but it could take other shapes) could be in an elastically deformable material at least at the periphery of the reinforcing rods for create a seal between each of these reinforcing rods and the fixing part 151 by tightening the sleeves against the fixing part.
  • the fixing part 151 could have a surface made of rubber or foam compressible by support of the sleeves.
  • annular chamfers 13a1 facilitate the introduction and guiding of the sleeves 13a, 13b through the layer of insulating material 12 and once the shoulders 13a2 of the sleeves are facing the second side C2 of the layer of insulating material, these shoulders then prevent the removal of the layer of insulating material 12.
  • the reinforcing rods 11a, 11b can be prepositioned in the layer of insulating material 12 so that said length portions P2 are in the layer of insulating material, these reinforcing rods then being substantially parallel to each other with a possibility of spacing/displacement of their threaded ends relative to each other.
  • the fitter can screw each given reinforcing rod 11a, 11b into the corresponding socket 14a, 14b by adjusting the relative spacing between rods to facilitate this screwing.
  • the fitter can then push the layer of prefabricated insulating material until the sleeves 13a, 13b are all placed in this layer 12 and this layer is wedged between the shoulders 13a2 of the sleeves and the first work element 10.
  • the reinforcing rods are then solidly fixed on the first structural element 10 with their portions P2 parallel to each other and ready to be covered with the material cast in a mold M2 to form the second structural element 20.
  • the chaining system 1 comprises at least one support 15 for reinforcing rod 11a, 11b intended to be mechanically engaged in the first work element 10 by overmolding of the first work element 10 around and against each at least one reinforcing rod support 15.
  • Said at least one reinforcing rod support 15 being here assembled with at least one of said reinforcing rods 11a, 11b of the plurality of reinforcing rods by a mechanical connection of the reversible embedding connection type to allow assembly after molding of the work element 10.
  • each at least one reinforcing rod fixing support 15 supports at least one reinforcing rod 11a, 11b of the plurality of rods via the mechanical connection of the recessed connection type, preferably reversible, and this at least one support for fixing a reinforcing rod forms an interface for fixing this at least one reinforcing rod vis-à-vis the first work element 10 molded in concrete when this at least one fixing support 15 is in mechanical engagement in the first work element 10.
  • the overall quality of the anchoring of the reinforcing rods in the first structure element 10 is thus improved because the anchoring is better distributed there via a support 15 common to at least some of the reinforcing rods 11a, 11b and sockets 152a, 152b.
  • the reinforcing rods 11a, 11b of the plurality of reinforcing rods are all fixed on said at least a reinforcing rod support 15 via a plurality of mechanical connections of the embedding type.
  • each mechanical connection of the embedding type between a given reinforcing rod 11a, 11b of the plurality of reinforcing rods and said at least one reinforcing rod support 15 is formed by screwing a threaded end 11a1 of this given reinforcing rod 11a, 11b in a threaded bore 15a corresponding to this given reinforcing rod which is formed in said at least one reinforcing rod support 15.
  • each reinforcing rod 11a, 11b has an externally threaded end 11a1 and said at least one reinforcing rod support 15 comprises a plurality of threaded bores 15a which are oriented to open out in the direction of the first side C1 of the layer of insulating material 12.
  • Each mechanical connection of the embedding type connection between a given reinforcing rod and said at least one reinforcing rod support 15 is produced by screwing a threaded end of this given reinforcing rod into one of the threaded bores of the support 15 of reinforcing rod.
  • each sleeve 13a, 13b crossed by a reinforcing rod 11a, 11b extends until it comes into contact against said at least one support 15 of reinforcing rod with which this reinforcing rod is assembled.
  • the reinforcement support 15 comprises on the one hand a fixing part 151 intended to extend against an internal face F1 of a mold M1 intended for molding the first work element 10 and on the other hand a plurality of sockets 152a, 152b assembled on this fixing part 151.
  • Each mechanical connection of the embedding type is formed inside one of the sockets 152a, 152b of the plurality of sockets.
  • each mechanical connection of the embedding type which is formed inside one of the sockets 152a, 152b of the plurality of sockets is a reversible mechanical connection.
  • the reversible mechanical connection is a screw-nut connection formed between a threaded end of the reinforcing rod and the reinforcing rod support.
  • sockets 152a, 152b can be assembled on the fixing part 151 by screwing or by gluing or clipping, or welding, or by magnetization between socket and fixing part 151, these assemblies being able to be reversible or irreversible.
  • the fixing part 151 and the bushings could belong to a single molded one-piece assembly.
  • a reversible assembly is for example useful in embodiments in which the sockets and/or the rods and/or the fastener 151 must be removed or repositioned.
  • the reversible assembly can be useful for, initially, positioning the sockets 152a, 152b in the mold M1, the fixing part 151 being used to position the sockets vis-à-vis an internal surface of the mold M1, and to, in a second step, allow the removal of the fixing part 151 while the sockets 152a, 152b remain engaged inside the first work element 10.
  • the fixing part 151 may be made of metal sheet or of polymer material or of composite material (a composite material could for example contain glass or carbon fibers and a binder of these fibers). This fixing part 151 has a flat face to extend against an internal surface of the mold M1.
  • This part 151 can be in the form of a flat plate or in the form of a lattice.
  • This part 151 can be metallic or made of polymer material and be obtained by cutting or molding.
  • the fixing part 151 can be overmolded around the sockets to facilitate the assembly of these sockets and guarantee positioning precision.
  • the sockets carried by the fixing part 151 are preferably arranged in an orthonormal manner, that is to say with a regular pitch between the sockets in a socket support plane common to all these sockets.
  • the fixing part 151 may also have localized recesses formed between the sockets to limit the quantity of material used in the part 151.
  • the frame support 15 may include a socket support bar 15b passing through several sockets of said plurality of sockets (preferably the sockets of the upper row), this bar 15b being placed back from a support plane common to all the sockets.
  • This support plane common to all the sockets is either a support plane against the fixing part 151 or a support plane intended to come against an internal face of mold M1 for the molding of the first work element 10.
  • the first work element can be overmolded against and around the bar 15b and against the fixing part 151.
  • the plate-shaped fixing part 151 may include several perforations 151a and each sleeve 152a, 152b may include a shoulder 152a1 of complementary shape to any one of these perforations 151a to be able to center/adjust there.
  • Each perforation 151a of the fixing plate 151 can also have a complementary thread of threads formed on the sockets 152a, 152b to allow the screwing of the sockets into the perforations 151a of the fixing plate 151.
  • each socket 152a, 152b serves to locate one of the mechanical connections of the embedding connection type between a reinforcing rod 11a, 11b and the frame support 15.
  • the fixing part 151 and the sockets 152a, 152b are preferably arranged so that the threaded bores of the sockets 152a, 152b open out facing the internal face F1 of the mold M1 when the fixing part is positioned against this face F1.
  • the layer of insulating material through which the reinforcing rods pass is thus precisely positioned since it can come to bear against all the sockets and/or against the fixing part 151 of the sockets and/or against a support plane of this fixing part on the first work element 10.
  • the second work element 20 can be molded against the layer of insulating material 12 and around the second portions P2 of the rods 11a, 11b so as to anchor them securely in the second concrete work element 20 (see the figures 3g, 3h, 3i ).
  • a mold M2 of the second work element 20 is formed around the second portions P2 of the reinforcing rods 11a, 11b and concrete is poured into this mold M2 all around these second portions P2 (See the figure 3h ) .
  • the molds M1, M2 can be removed (See the figure 3i ).
  • the first work element 10 comprises a reinforcement 17 which is specific to it, this reinforcement 17 comprising metal reinforcing bars and possibly a metal mesh.
  • the reinforcements 17 of the first element 10 are essentially made up of straight reinforcing bars which extend longitudinally in planes parallel to the main plane of extension of the fixing part of the reinforcement support. This main plane of extension is the main plane of plate 151.
  • the reinforcing rods 11a, 11b of the chaining system 1 extend in length in planes which are perpendicular to said main plane of extension of the fixing part 151 of the reinforcing rod support 15.
  • the second structural element 20 includes a reinforcement of its own, this reinforcement comprising metal reinforcing bars and/or a metal mesh. For a need to simplify the figures, these reinforcements of the second element 20 are not shown.
  • the reinforcements of the second structural element 20 are essentially made up of straight reinforcing bars which extend longitudinally in planes perpendicular to the plane of extension of the fixing part 151 of the support 15 of the reinforcing rod 11a, 11b.
  • the fixing part 151 can be provided with magnetization fixing elements intended to be fixed against an internal surface of the mold M1 intended for molding the first work element 10.
  • the fixing part 151 can be provided with bonding fixing elements intended to be fixed against an internal surface F1 of mold M1 intended for molding the first work element 10.
  • this fixing part 151 has a pre-glued zone intended to come into contact against the internal surface F1 of the mold M1 in which it is desired to mold the first concrete structure element 10.
  • This pre-glued zone is preferably preserved by a removable film until the moment when this fixing part 151 is stuck against the internal surface F1 of the mold M1 via the glued zone.
  • each socket 152a, 152b of the plurality of sockets has a shape flaring away from said fixing part 151 on which these sockets 152a, 152b are assembled.
  • the flared shape makes it possible to obtain an improved quality of mechanical anchoring between each socket and the first molded work element.
  • each socket 152a, 152b is a shape of revolution of axis of revolution coincident with a screwing axis of reinforcing rod in the socket and its cross section is flared in V or T to form said flared shape of the socket .
  • sockets 152a of the plurality of sockets are aligned with each other to form an upper row of sockets and in which sockets 152b of the plurality of sockets are aligned with each other to form a lower row of sockets distinct from said upper row of sockets , these upper and lower rows being parallel to each other.
  • the sockets 152a of the upper row have respective lengths which are preferably greater than the respective lengths of the sockets 152b of the lower row.
  • the anchoring depth of the sockets in the upper row is greater than the anchoring depth of the sockets in the lower row.
  • the chaining system 1 may comprise a plurality of curved reinforcing bars 16, each curved reinforcing bar 16 passing around at least one given socket 152a, 152b of the plurality of sockets and forming a stop opposing a movement of this given socket in a direction of movement going from this given socket towards the fixing part 151.
  • Each curved reinforcing bar 16 is thus taken with the sockets 152a, 152b in the concrete of the first work element 10 to form an obstacle to tearing.
  • each reinforcing bar 16 can be fixed on a metal frame 17 belonging to the first structural element 10 so as to increase the resistance to tearing of the bars 16 and the sockets.
  • the reinforcing rods of the plurality of rods are made of oxidizable steel and are in the form of solid cylindrical bars, for example with a diameter of 12 mm or more.
  • the reinforcing rods can be, as on the figures 5b , 5d has 5f essentially made of a composite material having a thermal conductivity lower than that of steel and be solid or hollow.
  • reinforcing rods may be hollow and tubular.
  • each hollow and tubular reinforcing rod is preferably of annular cross section having a cylindrical internal surface of diameter d and a cylindrical external surface of diameter D.
  • This annular section is particularly interesting because it presents a large and uniform quadratic moment in all directions of the cross-section plane.
  • This reinforcing rod of annular section always has a threaded end linked to be fixed by screwing on the socket 152a or 152b which corresponds to it.
  • the threaded ends of the tubular reinforcing rods can be formed outside the reinforcing rods and in this case the sockets have complementary internal threads, as is the case in the examples illustrated in the figures.
  • the threaded ends of the tubular reinforcing rods may be formed inside the rods and in this case the sockets may have external complementary threads.
  • At least some of said hollow and tubular reinforcing rods contain a thermally insulating core, each thermally insulating core being disposed in a hollow region of a hollow and tubular rod.
  • each hollow and tubular reinforcing rod is provided with a thermally insulating core placed in the hollow zone of the rod to thus limit thermal bridges via the rod.
  • the thermally insulating core can be formed by expanding a polymer foam in the hollow area of the rod or by inserting a pre-cut insulating block.
  • these reinforcing rods are solid or hollow and preferably have an external surface presenting roughness or relief in order to improve adhesion with the concrete.
  • these roughnesses or reliefs have a depth or height greater than 1mm.
  • threaded rod is made of steel, as on the figures 5a Or 5c its threaded end is directly formed on the steel of the rod.
  • the rod comprises a core formed of longitudinal fibers 11r and a polymer matrix
  • the threaded end 11a1 of the rod 11a, 11b is formed on an anchoring tube 11m of the given rod, this anchoring tube being overmolded around the core 11n of the rod.
  • the threaded end 11a1 is obtained by the thread 11f formed on the anchoring tube 11m, this thread 11f is preferably produced during the molding of the tube around the core 11n of the rod 11a, 11b thanks to shapes at the interior of the anchor tube injection mold.
  • this thread is produced by machining the 11m anchor tube while it is already fixedly anchored on the rod which corresponds to it.
  • the core 11n of the given reinforcing rod 11a, 11b extends substantially over the entire length of the rod and comprises longitudinal fibers 11r linked together by a connecting matrix 11s of these longitudinal fibers, these longitudinal fibers extending over the entire length of the core of the given rod.
  • the core of the connecting rod made up of longitudinal fibers and the connecting matrix of these polymer fibers has all the advantages of composite materials with in particular a thermal conductivity lower than the thermal conductivity of steel and high mechanical resistance .
  • the chaining system according to the invention forms a particularly effective and robust thermal breaker between the structural elements 10, 20.
  • this composite material has the advantage compared to steel of not corroding over time, which increases the longevity of the structure.
  • the longitudinal fibers are preferably chosen from glass or carbon or boron fibers.
  • the bonding matrix 11s is preferably selected from a polymer based on epoxy resin or phenolic resin, or polyester resin, or vinyl ester resin (VE), or urethane resin, or polyimide resin.
  • the connecting matrix 11s is made of a thermoplastic polymer material, for example a material based on polyamide (PA) resin.
  • PA polyamide
  • the 11m anchor tube is essentially made of polymer.
  • the anchor tube 11m is made of thermoplastic polymer containing for example polyamide resin (PA) or a thermosetting polymer such as a polymer based on epoxy resin or phenolic resin, or polyester resin, or vinyl ester resin (VE). ), or urethane resin, or polyimide resin.
  • PA polyamide resin
  • VE vinyl ester resin
  • urethane resin or polyimide resin.
  • the anchor tube 11m is preferably made of a material identical to the connecting matrix material 11s connecting the longitudinal fibers 11r together.
  • the anchor tube 11m is made of a thermoplastic material while the matrix connecting the longitudinal fibers 11r together is a thermosetting material.
  • the core of the rod 11a already solidified without risking deforming it, the matrix of the core here being made of thermosetting material.
  • the material constituting the 11m anchor tube is loaded with short fibers.
  • fibers we mean fibers with a length of less than 3 cm.
  • These short fibers are preferably glass fibers, but they could also be carbon or boron fibers or any mixture of these short fibers.
  • the core 11n of the given reinforcing rod 11a, 11b comprises anchoring reliefs 11x against which said anchoring tube 11m of the given rod (11a, 11b) is overmolded.
  • These reliefs preferably have an average height of between 0.1 and 2mm, that is to say that the material constituting the overmolded anchor tube can be in contact with these reliefs over, on average, 0.1 to 2mm in height, which allows to obtain very good anchoring of the core of the rod in the overmolded tube.
  • These 11x reliefs are preferably formed of grains of sand secured to the core of the given rod.
  • This mode is particularly economical to implement while being particularly mechanically resistant.
  • said reliefs 11x are formed by annular grooves of the core 11n or by grooves which extend around the core.
  • the rods 11a, 11b are structurally identical to each other.
  • the core of the rods can be obtained by cutting longitudinal portions of a pultruded composite bar of constant section and containing longitudinal fibers pre-stressed in tension in the material serving as a connecting matrix for these fibers.
  • the reliefs 11x on the core of the rods 11a, 11b which make it possible to ensure an embedded connection between the anchoring tube 11m and the core 11n of the given rod can be formed, for example, by machining the bar or of the given rod (as in the embodiments illustrated in figures 5b , 5d or 5e ) or by depositing sand on the surface of the bar or rod, before crosslinking of the matrix, or by bonding the sand using an adhesive against the already crosslinked matrix (as in the embodiment illustrated in figure 5f ).
  • the anchoring tube 11m comprises a shoulder 11m1 bearing against a complementary bearing surface of said at least one reinforcing rod support 15 so as to define a fixed longitudinal support position of the given rod relative to said at least one reinforcing rod support 15.
  • the shoulder 11m1 of the anchor tube 11m has a thickness which is equal to the thickness of the plate 151 which makes it possible to create a visual indicator of correct assembly, here an indicator of correct screwing, of the screw rod -vis the socket 152a, 152b which matches.
  • the position of said shoulder 11m1 could also be used to attest to the correct assembly of a rod / socket assembly by bayonets which will be discussed later.
  • the shoulder 11m1 has a visual qualitative control function making it possible to certify, before molding the second work element 20, that a reinforcing rod has been correctly fixed in the socket which corresponds to it and that it is thus correctly anchored in the first work element 10.
  • the shoulder 11m1 can be in a bright color (for example red) easily identifiable on the gray background of the concrete of the structure element 10.
  • each mechanical connection of the embedding connection type between a given reinforcing rod 11a, 11b of the plurality of reinforcing rods and said at least one reinforcing rod support 15 is formed by the intermediate of a bayonet fixing arranged at one end linked to this given reinforcing rod 11a, 11b in a bore 15a corresponding to this given reinforcing rod which is formed in said at least one reinforcing rod support 15.
  • the bayonet attachment is here formed at least partly on an anchor tube 11m of the given rod 11a, 11b which is overmolded around a core 11n of the given rod 11a, 11b.
  • the bayonets are preferably formed on the anchoring tube 11m overmolded around a core 11n of the given rod 11a, 11b.
  • the layer of insulating material may consist of one or more materials forming a thermally insulating block.
  • An insulating material can be selected from the list of materials consisting of mineral fibers such as rock wool, polymers such as polyurethane foam, plant fibers, such as wood fibers, miscanthus, hemp, hemp, linen, bamboo and a mixture of at least some of these materials.
  • the layer of insulating material 12 is integrated into a shell 125.
  • This shell 125 limits the migration of humidity towards an insulator sensitive to humidity which is placed in the shell.
  • This shell also limits the risk of settling of the insulating material found in the shell.
  • This shell 125 can be formed of two half-shells 121, 122 arranged to be assembled against one another. the other and to define a zone for receiving insulating material in the shell 125.
  • the assembly of the half-shells 121, 122 is preferably carried out via complementary sockets 123 formed on the half-shells.
  • the sockets 123 consist of male and female tongues which extend along the edge of each of the half-shells 121, 122 and are complementary to fit together.
  • the shell 125 is constituted by a simple film stretched around the layer of insulating material which allows, at lower cost, to protect it from humidity throughout its storage and also during the molding of the structural elements.
  • the layer of insulating material 12 can be of essentially parallelepiped shape with four longitudinal sides perpendicular to each other, two of these opposite sides parallel to each other form said first and second sides C1, C2 of the layer of insulating material 12 and two others of these sides parallel to each other forming upper and lower sides of layer 12.
  • Side C1 is intended to come opposite the first structure element 10 and side C2 is intended to come opposite the second element of the structure 20.
  • a thermal insulating plate 124 is placed in the shell 125.
  • This plate 124 is preferably made of a thermal insulating material selected to have a thermal conductivity X less than 0.04 W m-1 K-1.
  • the layer of insulating material 12 is preferably in at least one thermally insulating material selected to be flame retardant, such as rock wool. .
  • the shell 125 is made of another insulating material which is not necessarily flame retardant.
  • the shell 125 could be made of flame-retardant insulating material and in this case the plate 124 could be made of an expanded insulating material, not necessarily flame-retardant, such as polyurethane or polystyrene foam.
  • the plate 124 can be prefabricated to form a rigid block placed in the shell 125 or alternatively the plate 124 can be formed by injection of foam made of expansive insulating material inside the shell 125, this injection which can be done either upstream of the site, or directly on the site after inserting the reinforcing rods through the shell 125.
  • the advantage of having a shell made of thermally insulating and fire-retardant material into which an expansive insulating material is injected directly on the site is to obtain continuous insulation between several aligned shells while having a fire-retardant breaker between the structural elements 10, 20.
  • the plate 124 may have upper and lower sides having respectively upper and lower longitudinal grooves 124a, 124b parallel to each other.
  • the half-shells 121, 122 can also have internal bosses oriented towards an internal space of the shell 125 to come into said upper and lower longitudinal grooves 124a, 124b of the plate 124 in order to wedge it into the shell while eliminating any space vacuum between the plate 124 and the shell 125.
  • the half-shells 121, 122 are extruded profiles.
  • Perforations are preferably provided through these half-shells 121, 122 and the plate 124 to allow the passage / guidance of the reinforcing rods 11a, 11c through the hull.
  • these perforations 120 may have radial slots to obtain a radial elastic wedging effect around the reinforcing rods which pass through these perforations 120.
  • These radial slots are preferably formed on the side C2 of the layer 12 intended to be next to the second work element 20.
  • the plate 124 is extruded directly inside the shell 125, this shell 125 being able to be a hollow one-piece profile to contain the plate 124.
  • the plate 124 is preformed, for example a preformed rock wool plate, the shell 125 being directly extruded around the plate 124, this shell 125 then being in one piece.
  • the fixing part 151 which supports the sockets 152a, 152b and the sleeves 13a are preferably shaped so that each given sleeve 13a can penetrate into the part 151, here in the form of a plate, until it comes to rest against a limiting stop the advancement of the given sleeve through part 151.
  • said fixing part 151 intended to extend against an internal face F1 of the mold M1 intended for molding the first work element 10 is shaped to be removable from the first work element 10 thus molded.
  • the fixing part 151 in this case in the form of a plate, is used to locate the sockets 152a, 152b of the plurality of sockets with respect to each other and with respect to the internal face F1 of the mold M1.
  • the fixing part 151 that is to say the plate 151, is removed to allow its reuse for the molding of another work element.
  • This solution for reusing the fixing part 151 makes it possible to minimize the average price of the chaining system according to the invention.
  • Said fixing part 151 is here essentially made of a flexible polymer material to be deformable.
  • the flexible polymer material of the fixing part 151 is preferably a foam plate, such as a polyurethane foam, or a rubber plate, this plate being able to contain permanent magnets, for example in the form of a magnetic layer making it possible to exercise on the sockets a magnetic holding force.
  • a foam plate such as a polyurethane foam, or a rubber plate, this plate being able to contain permanent magnets, for example in the form of a magnetic layer making it possible to exercise on the sockets a magnetic holding force.
  • the assembly formed of the sockets and the part fixing 151 can be moved in one piece to be positioned against the internal face F1 of the mold M1.
  • the magnetic fixing part 151 can simply be removed to reuse it.
  • Magnetization can be useful for positioning part 151 against the face of the mold M1 if this face is made of ferromagnetic metal.
  • each given sleeve rests at the bottom of a countersink which corresponds to it and which is formed in plate 151.
  • the fixing part 151 and the sockets of the plurality of sockets 152a, 152b are preferably shaped so that each given socket can penetrate into the plate 151 until it comes to rest against a stop 152a1 limiting the advancement of the given socket to the across the plate.
  • each given socket rests at the bottom of a countersink which corresponds to it and which is formed in the thickness of the plate 151.
  • Each given socket can, for example, be screwed into the plate 151, via an external thread of this given socket and a corresponding tapping formed in the plate.
  • the part 151 supporting the sockets can also have an essentially planar shape presenting protrusions oriented in the direction of the sockets and the bores receiving the sockets are created in these protuberances.
  • the stops of the part 151 against which the sleeves press extend in a first plane formed in the thickness of the part 151 and the stops of the part 151 against which the sleeves 13a press extend in a second plane formed in the thickness of the part 151, these first and second planes being spaced apart from each other to prevent the sleeves from pressing against the sleeves and to promote tightening of the part 151 between the sleeves and the sleeves carried by the reinforcing rods.
  • the chaining system according to the invention can also include reinforcements 18 opposing the bending of at least some of said reinforcing rods. Such reinforcements are for example illustrated on the figures 7a and 7b .
  • Each of these reinforcements 18 passes through said layer of insulating material 12 to oppose the bending of at least one given reinforcing rod.
  • this reinforcement 18 bears against the fixing part 151 of the socket support while surrounding, via a tubular part of the reinforcement 18, a length portion of the reinforcing rod to be reinforced.
  • this tubular reinforcing part 18 bears against the sleeve surrounding this reinforcing rod, but it is also possible that it comes directly against the reinforcing rod.
  • These reinforcements 18 are preferably made of steel.
  • Each of these reinforcements comprises two tubular parts connected together by a web, these reinforcements having an S shape.
  • Each reinforcement 18 is a single piece which can be made of metal, here steel or a composite material containing glass or carbon fibers and a binder of these fibers.
  • Each of these reinforcements has an upper tubular part intended to surround a portion of one of the reinforcing rods of the upper row and a lower tubular part intended to surround a portion of one of the reinforcing rods of the lower row , the veil connecting these tubular parts is in plane support against part 151 and passes through the thermal insulator.
  • Each of these reinforcements 18 makes it possible to maintain parallelism between reinforcing rods of the upper and lower rows.
  • the invention relates to a method of manufacturing a work 0 comprising first and second work elements 10, 20 and a chaining system 1 according to the invention, in which the first work element 10 is molded around a first part of the chaining system 1, then the layer of thermal insulating material 12 of the chaining system 1 is positioned opposite the first element 10 thus molded before molding the second work element around the second portions P2 of the reinforcing rods 11a, 11b of the plurality of reinforcing rods.
  • said first part of the chaining system around which said first work element 10 is molded comprises said at least one reinforcing rod support 15.
  • the reinforcing rods 11a, 11b of the plurality of rods are assembled with said at least one reinforcing rod support 15 after molding said first work element 10 around said at least one reinforcing rod support 15.
  • This method according to the invention is particularly advantageous because it makes it possible to mold the first structural element 10 while the reinforcing rods 11a, 11b are not yet fixed to the reinforcing rod support 15, which makes it possible to simplify the molding operation.
  • the mold M1 in which the first work element 10 is molded does not require having particular passages for the exit of the reinforcing rods 11a, 11b out of the mold, these rods being put in place after molding of the work element 10 and removal of this mold M1.
  • the reinforcing rods installed according to the method of the invention are fixed, after hardening and demolding of the first structural element 10, by assembly on the reinforcing rod support 15 which is mechanically engaged in the first element of the invention. work 10.
  • the method according to the invention also saves time during molding operations and increases the precision of positioning of the reinforcing rods 11a, 11b in the structure.
  • said first part of the chaining system 1 around which said first work element 10 is molded comprises said plurality of sockets 152a, 152b assembled on the fixing part 151.
  • this part 151 can be provided to be removed after molding of the first work element in order to be reused for the manufacture of another chaining (however this requires management of the parts fixing 151 and a need for cleaning and application of release grease).
  • this fixing part 151 is intended to remain in the structure 0 and it provides a sealing function around the reinforcing rods so as to limit the risks of corrosion of the rods.
  • the layer of thermal insulating material 12 which is positioned opposite the first element 10 is formed by at least one block of prefabricated insulating material comprising perforations 120 for the passage of reinforcing rods 11a, 11b through this layer 12.
  • These perforations 120 are preferably spaced apart from each other by a spacing pitch equal to a spacing pitch between the reinforcing rods of the plurality of reinforcing rods, this pitch being constant over the length of the chaining system.
  • this system could not include a part 151 to support the sockets of the plurality of sockets.
  • each socket of the plurality of sockets could be directly fixed against the internal surface of the mold via an assembly element specific to each socket such as a bonding or magnetization element of the socket. This embodiment is not preferred because it can generate positioning errors of the sockets relative to each other.
  • the reinforcing rods 11a, 11b are preferably transported with the layer of insulating material 12 but being outside this layer, against one of its longitudinal faces.
  • the shell 125 of the layer of insulating material 12 may have wedging tabs adapted to wedge and carry the reinforcing rods 11a, 11b against the shell parallel to a longitudinal direction of the layer 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chain Conveyers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Claims (27)

  1. Verankerungssystem (1), das dazu bestimmt ist, eine Verbindung zwischen ersten und zweiten geformten Bauelementen (10, 20) zu gestatten, wobei das Verankerungssystem (1) eine Vielzahl von Bewehrungsstangen (11a, 11b) umfasst, die jeweils dazu bestimmt sind, diese ersten und zweiten geformten Bauelemente (10, 20) miteinander zu verbinden, wobei das Verankerungssystem (1) mindestens einen Träger (15) für eine Bewehrungsstange (11a, 11b) umfasst, der dazu bestimmt ist, mechanisch in das erste Bauelement (10) einzugreifen, wobei der genannte mindestens eine Bewehrungsstangenträger (15) mit den genannten Bewehrungsstangen (11a, 11b) der Vielzahl von Bewehrungsstangen über mechanische Verbindungen vom Typ reversible Einbauverbindung zusammengefügt wird, wobei der Bewehrungsträger (15) einerseits ein Befestigungsteil (151) und andererseits eine Vielzahl von Buchsen (152a, 152b) umfasst, die an diesem Befestigungsteil (151) montiert sind, wobei jede mechanische Verbindung vom Typ Einbauverbindung im Inneren einer der Buchsen (152a, 152b) der Vielzahl von Buchsen gebildet wird,
    wobei das genannte Verankerungssystem dadurch gekennzeichnet ist, dass es ferner eine Schicht (12) aus wärmeisolierendem Material umfasst, die dazu bestimmt ist, sich zwischen den genannten ersten und zweiten Bauelementen (10, 20) zu erstrecken, wobei jede der genannten Bewehrungsstangen (11a, 11b) durch die genannte Schicht (12) aus isolierendem Material hindurchgeht und einen ersten Stangenabschnitt (P1) aufweist, der gegenüber einer ersten Seite (C1) der Schicht (12) aus isolierendem Material angeordnet ist, um mit dem genannten ersten geformten Bauelement (10) in mechanischen Eingriff kommen zu können, und einen zweiten Stangenabschnitt (P2), der gegenüber einer zweiten Seite (C2) der Schicht (12) aus isolierendem Material angeordnet ist, um mit dem genannten zweiten geformten Bauelement (20) in mechanischen Eingriff kommen zu können, und dass das genannte Befestigungsteil (151) dazu bestimmt ist, sich an einer Innenfläche (F1) einer Form (M1) zu erstrecken, die zum Formen des ersten Bauelements (10) bestimmt ist.
  2. Verankerungssystem nach Anspruch 1, ferner umfassend eine Vielzahl von Hülsen (13a, 13b), wobei sich jede dieser Hülsen (13a, 13b) im Inneren der genannten Schicht (12) aus wärmeisolierendem Material erstreckt und zu beiden Seiten der genannten Schicht aus wärmeisolierendem Material, wobei jede gegebene Bewehrungsstange (11a, 11b) der genannten Vielzahl von Bewehrungsstangen durch eine der Hülsen (13, 13b) der Vielzahl von Hülsen, die ihr entspricht, verläuft, wobei jede der Bewehrungsstangen durch die ihr entsprechende Hülse zumindest teilweise vor Korrosion geschützt ist.
  3. Verankerungssystem nach Anspruch 2, bei dem jede gegebene Bewehrungsstange der genannten Vielzahl von Bewehrungsstangen, die durch eine der Hülsen der Vielzahl von Hülsen, die ihr entspricht, verläuft, durch diese Hülse flüssigkeitsdicht verläuft.
  4. Verankerungssystem nach einem der Ansprüche 2 oder 3, bei dem jede Hülse (13a, 13b) um die ihr entsprechende Bewehrungsstange (11a, 11b) herum geformt wird.
  5. Verankerungssystem nach einem der Ansprüche 2 bis 4, bei dem jede Hülse umfasst:
    - einerseits eine ringförmige Fase an einem ihrer Enden, um das Einfügen der Hülsen (13a, 13b) durch die Schicht (12) aus wärmeisolierendem Material zu erleichtern; und
    - andererseits eine Schulter, die an einem Ende der ringförmigen Fase ausgebildet ist, um einen Anschlag in Anlage an der genannten zweiten Seite (C2) der Schicht (12) aus isolierendem Material zu bilden.
  6. Verankerungssystem (1) nach einem der Ansprüche 1 bis 5, bei dem die Bewehrungsstangen (11a, 11b) der Vielzahl von Bewehrungsstangen alle an dem genannten mindestens einen Bewehrungsstangenträger (15) über eine Vielzahl von mechanischen Verbindungen vom Typ Einbauverbindung befestigt sind.
  7. Verankerungssystem nach einem der Ansprüche 1 bis 6, bei dem jede mechanische Verbindung vom Typ Einbauverbindung zwischen einer gegebenen Bewehrungsstange (11a, 11b) der Vielzahl von Bewehrungsstangen und dem genannten mindestens einen Bewehrungsstangenträger (15) durch Schrauben eines Gewindeendes (11a1) dieser gegebenen Bewehrungsstange (11a, 11b) in eine mit einem Innengewinde versehene Bohrung (15a) gebildet ist, die dieser gegebenen Bewehrungsstange entspricht, wobei die Bohrung in dem genannten mindestens einen Bewehrungsstangenträger (15) ausgebildet ist.
  8. Verankerungssystem nach Anspruch 7, bei dem das genannte Gewindeende (11a1) der gegebenen Stange (11a, 11b) auf einem Verankerungsrohr (11m) der gegebenen Stange (11a, 11b) gebildet ist, das um einen Kern (11n) der gegebenen Stange (11a, 11b) aufgeformt ist.
  9. Verankerungssystem nach Anspruch 8, bei dem sich der Kern (11n) der gegebenen Stange (11a, 11b) im Wesentlichen über die gesamte Länge der gegebenen Stange erstreckt und Längsfasern (11r) umfasst, die miteinander über eine Verbindungsmatrix (11s) zur Verbindung dieser Längsfasern verbunden sind, wobei sich diese Längsfasern über die gesamte Länge des Kerns der gegebenen Stange erstrecken.
  10. Verankerungssystem nach Anspruch 9, bei dem die Längsfasern aus Glas- oder Kohlenstoff- oder Borfasern ausgewählt sind.
  11. Verankerungssystem nach einem der Ansprüche 9 oder 10, bei dem die Verbindungsmatrix (11s), die die Längsfasern (11r) miteinander verbindet, aus einem Polymer auf Basis von Epoxidharz oder Phenolharz oder Polyesterharz oder Vinylesterharz (VE) oder Urethanharz oder Polyimidharz ausgewählt ist.
  12. Verankerungssystem nach einem der Ansprüche 9 bis 11, bei dem das Verankerungsrohr (11m) im Wesentlichen aus Polymer besteht.
  13. Verankerungssystem nach Anspruch 12, bei dem das Material, aus dem das Verankerungsrohr (11m) gebildet ist, mit kurzen Fasern beladen ist.
  14. Verankerungssystem nach mindestens einem der Ansprüche 8 bis 13, bei dem der Kern (11n) der gegebenen Stange (11a, 11b) Verankerungsreliefelemente (11x) umfasst, auf die das genannte Verankerungsrohr (11m) der gegebenen Stange (11a, 11b) aufgeformt ist.
  15. Verankerungssystem nach Anspruch 14, bei dem die genannten Reliefelemente (11x) aus Sandkörnern geformt sind, die an dem Kern der gegebenen Stange befestigt sind.
  16. Verankerungssystem nach Anspruch 15, bei dem die genannten Reliefelemente (11x) durch ringförmige Nuten des Kerns (11n) oder durch Riffeln gebildet sind.
  17. Verankerungssystem nach einem der Ansprüche 8 bis 16, bei dem das Verankerungsrohr (11m) eine Schulter (11m1) in Anlage an einer komplementären Anlagefläche des genannten mindestens einen Bewehrungsstangenträgers (15) umfasst, um eine ortsfeste Längsstützposition der gegebenen Stange in Bezug auf den genannten mindestens einen Bewehrungsstangenträger (15) zu definieren.
  18. Verankerungssystem nach einem der Ansprüche 1 bis 6, bei dem jede mechanische Verbindung vom Typ Einbauverbindung zwischen einer gegebenen Bewehrungsstange (11a, 11b) der Vielzahl von Bewehrungsstangen und dem genannten mindestens einen Bewehrungsstangenträger (15) durch eine Bajonettbefestigung gebildet ist, die an einem Ende (11a1) dieser gegebenen Bewehrungsstange (11a, 11b) in einer Bohrung (15a) angeordnet ist, die dieser gegebenen Bewehrungsstange entspricht und die in dem genannten mindestens einen Bewehrungsstangenträger (15) ausgebildet ist, wobei die Bajonettbefestigung zumindest teilweise auf einem Verankerungsrohr (11m) der gegebenen Stange (11a, 11b) ausgebildet ist, die um einen Kern (11n) der gegebenen Stange (11a, 11b) herum aufgeformt ist.
  19. Verankerungssystem nach einem der Ansprüche 1 bis 18, bei dem das Befestigungsteil ein Teil ist, das mit Befestigungselementen zur Befestigung durch Magnetisierung versehen ist, die dazu bestimmt sind, sich an einer Innenfläche der Form (M1) festzusetzen, die zum Formen des ersten Bauelements (10) bestimmt ist.
  20. Verankerungssystem nach Anspruch 1 bis 18, bei dem das Befestigungsteil (151) ein Teil ist, das mit Befestigungselementen zur Befestigung durch Kleben versehen ist, die dazu bestimmt sind, sich an einer Innenfläche (F1) der Form (M1) festzusetzen, die zum Formen des ersten Bauelements bestimmt ist.
  21. Verankerungssystem nach einem der Ansprüche 1 bis 20, bei dem einige der Buchsen (152a) der Vielzahl von Buchsen zueinander ausgerichtet sind, um eine obere Reihe von Buchsen zu bilden und bei dem Buchsen (152b) der Vielzahl von Buchsen miteinander ausgerichtet sind, um eine untere Reihe von Buchsen zu bilden, die von der genannten oberen Reihe von Buchsen verschieden ist, wobei diese obere und untere Reihe zueinander parallel sind.
  22. Verankerungssystem nach einem der Ansprüche 1 bis 21, bei dem das genannte Befestigungsteil (151), das dazu bestimmt ist, sich an einer Innenfläche (F1) einer Form (M1) zu erstrecken, die zum Formen des ersten Bauelements (10) bestimmt ist, so ausgebildet ist, dass es von dem so geformten ersten Bauelement (10) abnehmbar ist.
  23. Verankerungssystem nach einem der Ansprüche 1 bis 22, kombiniert mit Anspruch 2, bei dem sich jede von einer Bewehrungsstange (11a, 11b) durchsetzte Hülse (13a, 13b) bis zum Kontakt an dem genannten mindestens einen Bewehrungsstangenträger (15) erstreckt, mit dem diese Bewehrungsstange zusammengefügt ist.
  24. Verankerungssystem nach einem der Ansprüche 1 bis 23, bei dem zumindest einige der Bewehrungsstangen hohl und rohrförmig sind.
  25. Verankerungssystem nach Anspruch 24, bei dem zumindest einige der genannten hohlen und rohrförmigen Bewehrungsstangen einen wärmeisolierenden Kern enthalten, wobei jeder wärmeisolierende Kern in einer hohlen Zone einer hohlen und rohrförmigen Stange angeordnet ist.
  26. Bauwerk, umfassend erste und zweite geformte Bauelemente und ein Verankerungssystem nach einem der Ansprüche 1 bis 25, wobei dieses System diese ersten und zweiten geformten Bauelemente (10, 20) mechanisch miteinander verbindet.
  27. Verfahren zur Herstellung eines Bauwerks, umfassend erste und zweite Bauelemente (10, 20) und ein Verankerungssystem nach einem der Ansprüche 1 bis 26, bei dem das erste Bauelement (10) um einen ersten Teil des Verankerungssystems herum geformt ist, dann die Schicht aus wärmeisolierendem Material des Verankerungssystems gegenüber dem so geformten ersten Element positioniert wird, ehe das Formen des zweiten Bauelements um zweite Abschnitte (P2) der Bewehrungsstangen (11a, 11b) der Vielzahl von Bewehrungsstangen durchgeführt wird, bei dem der genannte erste Teil des Verankerungssystems, um den das genannte erste Bauelement (10) geformt ist, den genannten mindestens einen Bewehrungsstangenträger (15) umfasst, und wobei die Bewehrungsstangen (11a, 11b) der Vielzahl von Stangen mit dem genannten mindestens einen Bewehrungsstangenträger (15) zusammengefügt werden, nachdem das genannte erste Bauelement (10) um den genannten mindestens einen Bewehrungsstangenträger (15) herum geformt wurde.
EP22161718.6A 2021-03-11 2022-03-11 Verkettungssystem mit thermischer trennung Active EP4056777B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR2102395A FR3120640B1 (fr) 2021-03-11 2021-03-11 Système de chaînage avec rupteur thermique

Publications (3)

Publication Number Publication Date
EP4056777A2 EP4056777A2 (de) 2022-09-14
EP4056777A3 EP4056777A3 (de) 2023-01-04
EP4056777B1 true EP4056777B1 (de) 2024-05-01

Family

ID=75746864

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22161718.6A Active EP4056777B1 (de) 2021-03-11 2022-03-11 Verkettungssystem mit thermischer trennung

Country Status (2)

Country Link
EP (1) EP4056777B1 (de)
FR (2) FR3120640B1 (de)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH676615A5 (de) * 1988-04-22 1991-02-15 Bau Box Ewiag
CH691606A5 (de) * 1996-11-08 2001-08-31 Pecon Ag Kragplattenanschlusselement.
DE29903589U1 (de) * 1999-02-26 1999-05-20 Schöck Bauteile GmbH, 76534 Baden-Baden Bauelement zur Wärmedämmung
EP1250499A1 (de) * 2000-01-13 2002-10-23 The Dow Chemical Company Bewehrungsstäbe für betonstrukturen
FR2873727B1 (fr) * 2004-07-29 2008-06-27 Armatures Assemblees Mure S N Procede pour limiter les ponts thermiques lors de l'edification de parois de construction mettant en oeuvre des armatures de reprise vissees
US8973317B2 (en) * 2013-05-13 2015-03-10 James Larkin Thermal break for concrete slab edges and balconies

Also Published As

Publication number Publication date
FR3120640B1 (fr) 2023-11-03
FR3120640A1 (fr) 2022-09-16
EP4056777A3 (de) 2023-01-04
FR3140388A1 (fr) 2024-04-05
EP4056777A2 (de) 2022-09-14

Similar Documents

Publication Publication Date Title
EP0979332B1 (de) Verfahren zur herstellung vorfabrizierter bauelemente und vorgespannte baukonstruktion aus solchen elementen hergestellt
EP2550153B1 (de) Verfahren zur kontinuierlichen herstellung eines verbindungsteils aus einem verbundstoff
FR3009318A1 (fr) Procede d'edification d'un ouvrage en elements prefabriques en beton et ouvrage associe
EP3205788A1 (de) Isolierter konstruktionsblock mit dämmung zwischen zwei platten und haltestruktur für die platten
EP4056777B1 (de) Verkettungssystem mit thermischer trennung
EP2868829B1 (de) Verstärkungsverfahren eines Bauelements aus Holz durch den Zusammenbau eines nachgespannten Verstärkungsmoduls
WO2017017357A1 (fr) Procede de fabrication d'un element de paroi d'un reservoir etanche et thermiquement isolant
EP1956156B1 (de) Anschluss zur Verbindung von zwei Platten einer Mauer mit verlorener Verschalung
EP2907927A1 (de) Vorrichtung zur Aussparung von Kanalisationsdurchlässen
CH677250A5 (de)
FR3008116A1 (fr) Procede, kit et bloc de construction
EP3992476A1 (de) Abstandshalter und befestigungskit für aussenverkleidungen
FR2943701A1 (fr) Procede de fabrication d'un panneau prefabrique destine a former une paroi isolante de batiment
EP3763897A1 (de) Hubanker für eine mauer mit integrierter schalung, und mauer mit integrierter schalung, die einen solchen hubanker umfasst
WO2019180092A1 (fr) Element de construction
FR2539782A1 (fr) Poutre sollicitee en flexion en beton precontraint ou en beton arme
FR2912440A1 (fr) Panneau prefabrique destine a former une paroi isolante d'un batiment,et procede de fabrication de ce panneau
EP2837749A1 (de) Herstellungsverfahren einer Verbundwand
FR2739118A1 (fr) Construction en bois munie d'une ame d'encastrement
FR3107910A1 (fr) Connecteurs pour relier entre elles des première et seconde parois d’un élément préfabriqué.
EP1812662A1 (de) Schalungselement zur herstellung einer verstärkten formplatte und durch zusammenbau der elemente erhaltbare schalungsstruktur
WO2022074146A1 (fr) Système de pont modulaire et son procédé de fabrication
FR3115844A3 (fr) Cheville de maintien et kit de fixation pour parement extérieur
FR3115843A1 (fr) Cheville de maintien et kit de fixation pour parement extérieur
FR3096699A1 (fr) Procédé de construction à base de prédalle d’un plancher à rupture de pont thermique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: E04C 5/07 20060101ALN20221129BHEP

Ipc: E04B 5/32 20060101ALN20221129BHEP

Ipc: E04B 1/76 20060101ALN20221129BHEP

Ipc: E04B 1/00 20060101AFI20221129BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230703

RAV Requested validation state of the european patent: fee paid

Extension state: TN

Effective date: 20230703

Extension state: MA

Effective date: 20230703

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GUICHERD, JOSSELIN

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: E04C 5/07 20060101ALN20231018BHEP

Ipc: E04B 1/76 20060101ALN20231018BHEP

Ipc: E04B 5/32 20060101ALI20231018BHEP

Ipc: E04B 1/00 20060101AFI20231018BHEP

INTG Intention to grant announced

Effective date: 20231108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602022003116

Country of ref document: DE