EP4054934A1 - Single-blade aircraft rotor - Google Patents

Single-blade aircraft rotor

Info

Publication number
EP4054934A1
EP4054934A1 EP20800149.5A EP20800149A EP4054934A1 EP 4054934 A1 EP4054934 A1 EP 4054934A1 EP 20800149 A EP20800149 A EP 20800149A EP 4054934 A1 EP4054934 A1 EP 4054934A1
Authority
EP
European Patent Office
Prior art keywords
blade
rotor
force
axis
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20800149.5A
Other languages
German (de)
French (fr)
Inventor
Jean-Michel Simon
Louis Chemouni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innostar
Hutchinson SA
Original Assignee
Innostar
Hutchinson SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innostar, Hutchinson SA filed Critical Innostar
Publication of EP4054934A1 publication Critical patent/EP4054934A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/37Rotors having articulated joints
    • B64C27/41Rotors having articulated joints with flapping hinge or universal joint, common to the blades
    • B64C27/43Rotors having articulated joints with flapping hinge or universal joint, common to the blades see-saw type, i.e. two-bladed rotor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/001Vibration damping devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • B64C27/473Constructional features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/51Damping of blade movements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/001Vibration damping devices
    • B64C2027/005Vibration damping devices using suspended masses

Definitions

  • the present invention relates to a single blade rotary wing aircraft rotor.
  • This force generates a vibration of frequency equal to that of the rotation and of amplitude which depends, at constant speed of rotation, on the angle of the cone described by the blade.
  • This vibration is transmitted to the structure of the apparatus in an undesirable manner and is a cause of significant and rapid wear of the rotating members in the bearings of the rotor-mast and of these bearings themselves.
  • the rotational drag of the single-blade is a parasitic force which is not compensated for by the rotational drag of the counterweight of the single-blade.
  • This force perpendicular to the axis of the blade, rotates around the axis of rotation and needs to be dynamically balanced in order to reduce if not eliminate the vibration that it generates at the level of the bearings of the rotor.
  • this force is it composed with the preceding one and adds to the unbalanced parasitic force which is received by the structure of the apparatus in an undesirable manner and reinforces the risks of important and rapid wear of the rotating members in the bearings of the rotor mast and of these bearings themselves.
  • the invention intends to alleviate these drawbacks by providing a device for compensating this resultant of the parasitic forces formed by the horizontal component of the lift force and of the rotational drag exerted on the blade.
  • the invention relates to an aircraft rotor with rotary airfoil, equipped with a single-blade with a longitudinal pitch axis, mounted articulated on the rotation shaft of the rotor about a transverse axis. to this rotation shaft, said airfoil describing a cone when the angle of its pitch is not zero.
  • the rotor has a counterweight device (s) for balancing the resultant of the horizontal component of the lift force and the rotational drag force of the single-blade, mounted to rotate with the airfoil around its shaft.
  • the intensity of this force depends on the mass and on the position of the weight (s) and on its distance (s) from the axis of rotation, for a given speed of rotation. It should also be noted that the speed of rotation, the lift and the drag of the airfoil are linked. Thus, to obtain a given lift, the pitch angle of the single blade is all the greater the lower the speed, for example lower than the nominal speed. For example on take-off and landing, it may indeed be useful to operate at nominal speed, in particular to limit the noise emitted by the airfoil.
  • this balancing device Several embodiments of this balancing device are possible. Each of them will be primarily determined on the basis of the quality and finesse of the compensation that one wishes to obtain.
  • the centrifugal force which it undergoes does not exactly compensate for the aforementioned resultant of the parasitic forces in the service regime relating to the hovering flight of the aircraft.
  • a suitably calibrated spring makes it possible to return the weight from the second position to the first when the pitch angle of the blade passes below the aforementioned threshold.
  • the single-blade operates under an essentially variable speed (the collective pitch of the blade being variable as can also the speed of rotation) and the compensation must be permanently adjusted according to the variations. of this diet. This adjustment is then obtained by continuously adjusting the position of the weight along the aforesaid arm, parallel to the direction of the resultant of the parasitic forces.
  • the weight of the mechanism is mounted movably along the direction, obliquely on the longitudinal axis of the single-blade in the vicinity of the axis of rotation of the rotor while an actuator for its displacement along this oblique direction is controlled in response to the square of the pitch angle of the single blade.
  • this actuator comprises a threaded rod with an oblique axis in the divergent direction indicated above with which the weight cooperates in the manner of a screw-nut system, a motor, wedged on the screw for its operation in rotation and a motor control unit, receiving as input continuous information relating to the pitch angle of the blade to provide an appropriate motor command.
  • a return member of the weight the effect of which is opposite to that of the centrifugal force to regulate the motor force to be supplied.
  • the direction of this threaded rod will be inclined so as to diverge from the leading edge of the single-blade, in front of it.
  • the pitch of the blade should be increased and, interestingly, this increase in the pitch angle is taken into account by the law of slaving the displacement of the flyweight to favorably compensate. the decrease in the speed of rotation of the single-blade.
  • Another embodiment of the invention will also be mentioned in its application to the compensation of the resultant of parasitic forces.
  • each weight which rotates in synchronism with the blade and each of which weights are adjustable in angular position around the axis of the rotor shaft. It is understood that by acting on the position of each weight relative, on the one hand to the longitudinal axis of the blade and, on the other hand to the position of the other weight, it is possible to create an unbalance of position and of adjustable mass which will be subjected to a centrifugal force, of intensity and direction adjustable accordingly, which will be in opposition with the parasitic force to be compensated.
  • FIG. 1 is a diagram illustrating the horizontal horizontal force undergone by a single-blade, shown in profile, resulting from the lift of the wing,
  • FIG. 2 is a diagram illustrating, seen from above, the horizontal resultant of the parasitic force due to the lift with that due to the rotational drag of the blade and the principle of compensation according to the invention
  • FIG. 3 is the diagram of an exemplary embodiment of a first compensation device according to the invention
  • FIG. 4 is an alternative embodiment of Figure 3 suitable for small aircraft
  • FIG. 5 is a diagram of an example of means implemented for the control of the compensation device of Figure 3 or the figure 4,
  • FIG. 6 is a diagram of another embodiment of the vibration compensation device according to the invention.
  • FIG. 1 there is shown a single blade 1 rotating R counterclockwise around the rotor axis ZZ with its counterweight 2.
  • the rotor (or rotor shaft) 3 is driven by a motor 3a and the blade 1 is articulated freely on the rotor shaft 3 around a transverse axis 4.
  • the pitch of this blade 1 is not zero so that, as shown, the blade 1 describes a cone of angle A on the plane XX perpendicular to the ZZ axis of the rotor, plane which would contain the rotating blade 1 if the pitch of the blade 1 were zero.
  • the centrifugal forces Fl and F2 are opposed and balanced.
  • the lift force F3 has a vertical component F4 balanced by the lifted load F5.
  • the lift applied to the counterweight 2, which is negligible, has not been shown. It can be seen in this figure that the horizontal component F6 of the lift is directed towards the rotor 3 and is not compensated.
  • FIG. 2 which is a top view of FIG. 1, in addition to the elements already represented, the rotational drag of the blade 1 will be illustrated by F7 while neglecting that applied to the counterweight 2.
  • the leading edge of the blade 1 is noted la.
  • Figure 2 shows that the horizontal force F8, resulting from the composition of the drag F7 and the horizontal component F6 of the lift is not balanced, which results in the creation of para-site vibrations at the level of the 'embedding and bearings of the rotor shaft 3 in the structure of the aircraft.
  • the force F8 is oriented along a direction D which is substantially constant whatever the value of the load lifted, therefore whatever the collective pitch of the blade 1.
  • this direction D is inclined. on the longitudinal axis of pitch LL of the single blade 1 at an angle B of between 65 and 80 degrees, preferably between 70 and 75 degrees, here 70 degrees.
  • the intensity of this force depends on the value of the pitch of the blade 1 and the calculations show that it depends, in good approximation, on the value of the square of this collective pitch since the angle A is small (of the order of a few - 2 to 5 - degrees). So, to compensate for the imbalance of this force
  • FIG. 3 a device 6 according to the invention is shown in FIG. 3 which generates on the blade 1 a force F9 opposite to the force F8.
  • This device comprises a weight 7 which undergoes a centrifugal force during the rotation of the blade 1. It is mounted to move along a guide 8, one end 8a of which is integral with the blade 1, at its root, at most near the rotor 3.
  • the blade 1 has a root in the form of a stirrup 9 which is articulated to the rotor 3 around the transverse axis 4.
  • the device 6 is therefore advantageously housed between the branches of this stirrup 9. The cen trifugal force undergone by the weight 7 gives rise to the force F9 in the direction of the guide.
  • the guide 8 extends along a direction D inclined on the axis of an angle B corresponding to that formed on this direction by the resultant F8 of the horizontal component F6 of the lift force F3 and of the force of drag F7 of rotation of the blade 1. This results in an elimination or at least a significant reduction in the vibrations and rotating stresses to which the rotor shaft 3 is subjected.
  • the embodiment shown schematically in this FIG. 3 is especially suited to aircraft whose primary speed is hovering.
  • the lift of the canopy is constant and the force F8 is also constant.
  • the mass of the weight 7 is calculated so that, in its position at the end 8b of the guide 8 on the leading edge 1a side of the blade 1, it correctly compensates for the force F8. It will be noted that in the case of a weight 7 not controlled by the pitch angle of the blade 1, the weight 7 is released from a position close to the rotor axis towards its position close to the leading edge of the blade. blade 1 when the spring 10 is calibrated
  • the parasitic force compensation device then acts directly on the rotor shaft 3 while rotating with the single blade, the guide 8 being a radial rod of direction D integral with a bearing fixed in rotation on the rotor shaft 3.
  • the mass of the weight 7 is calculated so that, in its position at the end of the guide 8, here towards the leading edge 1a of the blade 1, it generates a force F9 which correctly compensates for the force F8. This arrangement is interesting on small machines where simplicity is sought.
  • the pitch angle of the blade 1 will advantageously, in this case, be brought to its maximum value as soon as the speed of rotation of the rotor 3 has reached 30% (for example) of the nominal speed of rotation.
  • the movement of the weight 7 along the guide 8 is controlled by a control unit 11 of a motor 12 which rotates the guide.
  • the weight 7 which is for example a screw, the weight 7 then being a nut fixed in rotation, cooperating with the screw like a screw-nut system.
  • the function of the spring 13 in this case is to relieve the force of the motor, in particular in the direction of rotation which produces an increase in the centrifugal force undergone by the weight.
  • the motor can constitute the flyweight itself cooperating with the guide 8 according to an appropriate kinematic chain. This flyweight can also include the engine supply battery.
  • the engine control unit receives as input the signal "a” corresponding to the instantaneous value of the pitch angle of the blade 1 (value averaged over a given revolution or space of time) and, in a more elaborate version of the positive, the signal “v” emitted by one or more accelerometers or vibration sensors 14 at the level of the structure receiving the rotor.
  • the control unit 11 will then act on the motor 12 in the direction of minimizing the signal “v”.
  • the device 14 is, in a known manner, located either on a structural element close to the rotor mast or on the rotor mast itself.
  • FIG. 6 another embodiment of the compensation device according to the invention has been shown. It comprises at least one pair of massager 15 and 16 each carried by the free end of an arm 17 and 18, the other end being integral with a ring 19 (the figure shows only one only) of axis con fused with that of the rotor shaft 3. Each ring is angularly indexable with respect to the axis of rotation of the rotor 3 and therefore with respect to the longitudinal axis of the blade 1. We understand than the position indexed with respect to the blade

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Toys (AREA)

Abstract

Rotary wing aircraft rotor provided with a single blade (1) which has a longitudinal pitch axis (LL) and is hingedly mounted on the rotating shaft of the rotor about an axis (4) transverse to said rotating shaft, the wing system depicting a cone when the angle of its pitch is not zero, the rotor having a weighted device (6) for balancing the result (F8) of the horizontal component (F6) of the lifting force and the rotational drag force (F7) acting on the blade, the device being mounted so as to rotate with the wing system about its rotational shaft and generating, under the effect of the centrifugal force to which it is subjected when the wing system rotates, a horizontal force (F9) which is applied to the rotational shaft of the rotor, counter to the aforementioned result, with an intensity depending on the position of the weight(s) of the balancing device relative to the rotational shaft of the rotor.

Description

ROTOR D' AERONEF MONO-PALE SINGLE BLADE AIRCRAFT ROTOR
La présente invention concerne un rotor d'aéronef à voilure tournante à une seule pale. The present invention relates to a single blade rotary wing aircraft rotor.
ARRIERE PLAN DE L'INVENTION BACKGROUND OF THE INVENTION
Il est connu de l'état de la technique des rotors n'ayant qu'une pale, équilibrée en regard de la force cen trifuge par un contrepoids. Cet équilibre est presque par fait - à une traînée de frottement près - quand le pas de la pale est nul. La question est autre quand on cherche à donner une portance à la voilure tournante en agissant sur le pas de la pale car dans ce cas, la pale en rotation décrit un cône dont la pointe est tournée vers le bas. La force de portance exercée sur la pale est alors inclinée de quelques degrés vers l'axe du cône. Elle possède donc une composante verticale qui est compensée par le poids de l'aéronef et une composante horizontale, dirigée vers l'axe du rotor et qui constitue une force tournante autour de cet axe. Cette force est génératrice d'une vibration de fréquence égale à celle de la rotation et d'amplitude qui dépend, à vitesse de ro tation constante, de l'angle du cône décrit par la pale. Cette vibration se transmet à la structure de l'appareil de manière indésirable et est une cause d'usure importante et rapide des organes tournants dans les paliers du mât-rotor et de ces paliers eux-mêmes. It is known from the state of the art of rotors having only one blade, balanced with respect to the cen trifugal force by a counterweight. This equilibrium is almost by fact - except for a friction drag - when the pitch of the blade is zero. The question is different when one seeks to give lift to the rotary airfoil by acting on the pitch of the blade because in this case, the rotating blade describes a cone whose tip is turned downwards. The lift force exerted on the blade is then inclined a few degrees towards the axis of the cone. It therefore has a vertical component which is compensated by the weight of the aircraft and a horizontal component, directed towards the axis of the rotor and which constitutes a rotating force around this axis. This force generates a vibration of frequency equal to that of the rotation and of amplitude which depends, at constant speed of rotation, on the angle of the cone described by the blade. This vibration is transmitted to the structure of the apparatus in an undesirable manner and is a cause of significant and rapid wear of the rotating members in the bearings of the rotor-mast and of these bearings themselves.
Des solutions à ce problème ont été décrites dans le document US 6.619.585. Le principe général de ces solutions est de déplacer le centre de masse du rotor par rapport à son axe vertical de rotation en fonction de la valeur de l'angle au sommet du cône décrit par la mono-pale. Les mé canismes mis en œuvre agissent sur la position du contrepoids comme également dans le document US 2018222579 qui propose d'agir sur le contrepoids pour ajuster la compensation de la seule force centrifuge dont le point d'application sur la mono-pale a varié du fait de la conicité susdite. On a cons taté que cette action sur le contrepoids demande des moyens difficiles à mettre en œuvre. Par ailleurs, la traînée de rotation de la mono-pale est un effort parasite qui n'est pas compensé par la traînée de rotation du contrepoids de la mono-pale. Cette force, perpendiculaire à l'axe de la pale, est tournante autour de l'axe de rotation et demande à être équilibrée dynamiquement pour réduire sinon supprimer la vibration qu'elle engendre au niveau des paliers du rotor. Solutions to this problem have been described in US 6,619,585. The general principle of these solutions is to move the center of mass of the rotor relative to its vertical axis of rotation as a function of the value of the angle at the apex of the cone described by the single-blade. The mechanisms implemented act on the position of the counterweight as also in document US 2018222579 which proposes to act on the counterweight to adjust the compensation of the centrifugal force alone, the point of application of which on the single-blade has varied from made of the aforesaid taper. It has been noted that this action on the counterweight requires means that are difficult to implement. Furthermore, the rotational drag of the single-blade is a parasitic force which is not compensated for by the rotational drag of the counterweight of the single-blade. This force, perpendicular to the axis of the blade, rotates around the axis of rotation and needs to be dynamically balanced in order to reduce if not eliminate the vibration that it generates at the level of the bearings of the rotor.
Aussi cette force se compose-t-elle avec la précé dente et ajoute à l'effort parasite non équilibré qui est encaissé par la structure de l'appareil de manière indési rable et renforce les risques d'usure importante et rapide des organes tournants dans les paliers du mât-rotor et de ces paliers eux-mêmes. Also this force is it composed with the preceding one and adds to the unbalanced parasitic force which is received by the structure of the apparatus in an undesirable manner and reinforces the risks of important and rapid wear of the rotating members in the bearings of the rotor mast and of these bearings themselves.
BUT DE L'INVENTION L'invention entend pallier ces inconvénients en pro posant un dispositif de compensation de cette résultante des forces parasites que forment la composante horizontale de la force de portance et de la traînée de rotation s'exerçant sur la pale. EXPOSE DE L'INVENTION AIM OF THE INVENTION The invention intends to alleviate these drawbacks by providing a device for compensating this resultant of the parasitic forces formed by the horizontal component of the lift force and of the rotational drag exerted on the blade. DISCLOSURE OF THE INVENTION
A cet effet, l'invention a pour objet un rotor d'aé ronef à voilure tournante, équipé d'une mono-pale avec un axe de pas longitudinal, montée articulée sur l'arbre de rotation du rotor autour d'un axe transversal à cet arbre de rotation, ladite voilure décrivant un cône lorsque l'angle de son pas n'est pas nul. Le rotor possède un dispositif à masselotte (s) d'équilibrage de la résultante de la compo sante horizontale de la force de portance et de la force de traînée de rotation de la mono-pale, monté tournant avec la voilure autour de son arbre de rotation et engendrant, sous l'effet de la force centrifuge à laquelle il est soumis lors de la rotation de la voilure, une force horizontale, appli quée à l'arbre de rotation du rotor, opposée à la résultante susdite, avec une intensité fonction de la position de la (des) masselotte(s) du dispositif d'équilibrage par rapport à l'arbre de rotation du rotor. L'effet de ce dispositif est d'exercer sur l'arbre de rotation du rotor, lorsque la pale est en rotation et est portante, une force opposée à la résultante de la composante horizontale de la force de portance et de la force de traînée que subit cette pale, soit transmise par la racine de la pale à cet arbre, soit transmise directement à cet arbre. On comprend que l'intensité de cette force dépend de la masse et de la position de la ou des masselottes et de sa ou leur distance à l'axe de rotation, ce pour une vitesse de rotation donnée. Il faut en outre noter que la vitesse de rotation, la portance et la traînée de la voilure sont liées. Ainsi, pour obtenir une portance donnée, l'angle de pas de la mono pale est d'autant plus important que la vitesse est plus faible, par exemple inférieure à la vitesse nominale. Par exemple au décollage et à l'atterrissage, il peut être en effet utile d'opérer sous la vitesse nominale, notamment pour limiter le bruit émis par la voilure. To this end, the invention relates to an aircraft rotor with rotary airfoil, equipped with a single-blade with a longitudinal pitch axis, mounted articulated on the rotation shaft of the rotor about a transverse axis. to this rotation shaft, said airfoil describing a cone when the angle of its pitch is not zero. The rotor has a counterweight device (s) for balancing the resultant of the horizontal component of the lift force and the rotational drag force of the single-blade, mounted to rotate with the airfoil around its shaft. rotation and generating, under the effect of the centrifugal force to which it is subjected during the rotation of the airfoil, a horizontal force, applied to the rotation shaft of the rotor, opposite to the aforesaid resultant, with a function intensity of the position of the weight (s) of the balancing device with respect to the rotation shaft of the rotor. The effect of this device is to exert on the shaft of rotation of the rotor, when the blade is rotating and is load-bearing, a force opposite to the resultant of the horizontal component of the lift force and the drag force. that this blade undergoes, either transmitted by the root of the blade to this tree, or transmitted directly to this tree. It will be understood that the intensity of this force depends on the mass and on the position of the weight (s) and on its distance (s) from the axis of rotation, for a given speed of rotation. It should also be noted that the speed of rotation, the lift and the drag of the airfoil are linked. Thus, to obtain a given lift, the pitch angle of the single blade is all the greater the lower the speed, for example lower than the nominal speed. For example on take-off and landing, it may indeed be useful to operate at nominal speed, in particular to limit the noise emitted by the airfoil.
Plusieurs formes de réalisation de ce dispositif d'équilibrage sont possibles. Chacune d'elles sera princi- paiement déterminée en fonction de la qualité et la finesse de la compensation que l'on souhaite obtenir. Several embodiments of this balancing device are possible. Each of them will be primarily determined on the basis of the quality and finesse of the compensation that one wishes to obtain.
En effet, dans certains usages d'une mono-pale, celle-ci possède un angle d'attaque (ou pas de la pale) pratiquement constant sur la presque totalité de son régime de service et ne possède que deux phases de fonctionnement transitoires très courtes par rapport à ce régime. C'est le cas, par exemple, d'aéronefs à décollage vertical qui sur volent de manière quasi-stationnaire une zone terrestre à surveiller ou contrôler. Dans cette application, on peut tolérer que, pendant ces phases transitoires, il existe une compensation imparfaite de cette force parasite et donc ac cepter l'existence de vibrations temporaires. La masselotte d'un premier mode de réalisation du dispositif selon l'in vention sera alors disposée de manière permanente à l'extré- mité d'un bras orienté parallèlement à la direction de la force parasite à compenser, fixé par son autre extrémité à la racine de la mono pale ou à l'arbre rotor. Dans cette position fixe déterminée, la force centrifuge qu'elle subit ne compense exactement la résultante susdite des forces pa rasites qu'en régime de service relatif au vol stationnaire de l'appareil. Dans une variante de cette réalisation, il est possible de prévoir une masselotte mobile entre deux positions, une première position sur le bras correspondant à une compensation nulle, verrouillée par un loquet ou ana logue qui s'efface lorsqu'un certain angle de pas de la pale est atteint (par exemple 60-70% de l'angle de pas nominal) pour lui permettre d'atteindre une seconde position sur le dit bras correspondant une compensation relativement effi cace (environ 85% de la résultante des forces parasites) lors du régime de service par exemple avec une charge utile d'environ 90% de la charge maximale au décollage (MTOW). Un ressort convenablement taré permet de rappeler la masselotte de la seconde position à la première quand l'angle de pas de la pale passe sous le seuil susdit. Indeed, in certain uses of a single-blade, it has an angle of attack (or not of the blade) practically constant over almost all of its operating speed and has only two very transient operating phases. short compared to this diet. This is the case, for example, with vertical take-off aircraft which fly in a quasi-stationary manner over a land area to be monitored or controlled. In this application, it is possible to tolerate that, during these transient phases, there is an imperfect compensation for this parasitic force and therefore to accept the existence of temporary vibrations. The weight of a first embodiment of the device according to the invention will then be permanently disposed at the end of an arm oriented parallel to the direction of the parasitic force to be compensated, fixed by its other end to the root of the single blade or the rotor shaft. In this determined fixed position, the centrifugal force which it undergoes does not exactly compensate for the aforementioned resultant of the parasitic forces in the service regime relating to the hovering flight of the aircraft. In a variant of this embodiment, it is possible to provide a flyweight movable between two positions, a first position on the arm corresponding to zero compensation, locked by a latch or the like which is erased when a certain pitch angle of the blade is reached (for example 60-70% of the nominal pitch angle) to allow it to reach a second position on the said arm corresponding to a relatively effective compensation (about 85% of the resultant of the parasitic forces) during operating speed, for example with a payload of approximately 90% of the maximum take-off load (MTOW). A suitably calibrated spring makes it possible to return the weight from the second position to the first when the pitch angle of the blade passes below the aforementioned threshold.
Dans d'autres usages, la mono-pale fonctionne sous un régime essentiellement variable (le pas collectif de la pale étant variable ainsi que peut l'être aussi la vitesse de rotation) et la compensation doit être ajustée en perma nence en fonction des variations de ce régime. Cet ajustement est alors obtenu par le réglage en continu de la position de la masselotte le long du bras susdit, parallèle à la direc tion de la résultante des forces parasites. In other uses, the single-blade operates under an essentially variable speed (the collective pitch of the blade being variable as can also the speed of rotation) and the compensation must be permanently adjusted according to the variations. of this diet. This adjustment is then obtained by continuously adjusting the position of the weight along the aforesaid arm, parallel to the direction of the resultant of the parasitic forces.
Après avoir recherché plusieurs lois de variation des paramètres à prendre en considération pour réaliser ce réglage continu, il est apparu que le carré du pas de la pale est une bonne variable d'asservissement de la distance de la masselotte à l'axe de rotation du rotor dans la direc tion définie ci-dessus, direction dont on a constaté qu'elle variait peu selon la charge. Il est important de noter que cette loi parabolique (fonction du carré du pas de la pale) permet un bon équilibrage de cet effort parasite horizontal quelles que soient les conditions de charge de l'aéronef. La compensation obtenue est supérieure à 90% de l'effort para site. After having researched several laws of variation of the parameters to be taken into consideration to achieve this continuous adjustment, it appeared that the square of the pitch of the blade is a good variable for controlling the distance of the weight to the axis of rotation of the blade. rotor in the direction defined above, a direction which was found to vary little according to the load. It is important to note that this parabolic law (function of the square of the pitch of the blade) allows good balancing of this horizontal parasitic force whatever the load conditions of the aircraft. The compensation obtained is greater than 90% of the para-site effort.
Il est alors aisé de concevoir un ou plusieurs mé canismes d'asservissement pour mettre en œuvre cette loi de variation. It is then easy to design one or more control mechanisms to implement this law of variation.
En conséquence, dans une autre réalisation de l'in vention, la masselotte du mécanisme est montée mobile le long de la direction, oblique sur l'axe longitudinal de la mono-pale au voisinage de l'axe de rotation du rotor tandis qu'un actionneur de son déplacement le long de cette direc tion oblique est commandé en réponse au carré de l'angle de pas de la mono-pale. Consequently, in another embodiment of the invention, the weight of the mechanism is mounted movably along the direction, obliquely on the longitudinal axis of the single-blade in the vicinity of the axis of rotation of the rotor while an actuator for its displacement along this oblique direction is controlled in response to the square of the pitch angle of the single blade.
Ainsi de manière simple, cet actionneur comporte une tige filetée d'axe oblique selon la direction divergente indiquée ci-dessus avec laquelle la masselotte coopère à la manière d'un système vis-écrou, un moteur, calé sur la vis pour sa manœuvre en rotation et une unité de commande du moteur, recevant en entrée une information continue relative à l'angle de pas de la pale pour délivrer une commande du moteur appropriée. On peut adjoindre à ce mécanisme un organe de rappel de la masselotte dont l'effet est opposé à celui de la force centrifuge pour réguler l'effort moteur à four nir. La direction de cette tige filetée sera inclinée de manière à diverger du bord d'attaque de la mono-pale, en avant de celui-ci Thus, in a simple manner, this actuator comprises a threaded rod with an oblique axis in the divergent direction indicated above with which the weight cooperates in the manner of a screw-nut system, a motor, wedged on the screw for its operation in rotation and a motor control unit, receiving as input continuous information relating to the pitch angle of the blade to provide an appropriate motor command. We can add to this mechanism a return member of the weight, the effect of which is opposite to that of the centrifugal force to regulate the motor force to be supplied. The direction of this threaded rod will be inclined so as to diverge from the leading edge of the single-blade, in front of it.
Ce qui précède est vérifié indépendamment de la va leur de la vitesse de rotation de la voilure. Dans certains cas, il peut être utile de faire varier la vitesse de rota tion, par exemple la diminuer par rapport à la vitesse no- minale afin de réduire le bruit émis par l'appareil. En effet, pour obtenir une portance identique il convient d'aug menter le pas de la pale et de manière intéressante, cette augmentation de l'angle de pas est prise en compte par la loi d'asservissement du déplacement de la masselotte pour favorablement compenser la baisse de vitesse de rotation de la mono-pale. On mentionnera également un autre mode de réalisa tion de l'invention dans son application à la compensation, de la résultante des forces parasites. Il est constitué par au moins une paire de masselottes qui tourne en synchronisme avec la pale et dont chaque masselotte est réglable en po sition angulaire autour de l'axe de l'arbre rotor. On com prend qu'en agissant sur la position de chaque masselotte relativement, d'une part à l'axe longitudinal de la pale et, d'autre part à la position de l'autre masselotte on peut créer un balourd de position et de masse réglable qui sera soumis à une force centrifuge, d'intensité et de direction réglable en conséquence, qui sera en opposition avec l'ef fort parasite à compenser. The above is verified independently of the value of the speed of rotation of the airfoil. In certain cases, it may be useful to vary the speed of rotation, for example to reduce it compared to the nominal speed in order to reduce the noise emitted by the apparatus. In fact, to obtain identical lift, the pitch of the blade should be increased and, interestingly, this increase in the pitch angle is taken into account by the law of slaving the displacement of the flyweight to favorably compensate. the decrease in the speed of rotation of the single-blade. Another embodiment of the invention will also be mentioned in its application to the compensation of the resultant of parasitic forces. It consists of at least one pair of weights which rotates in synchronism with the blade and each of which weights are adjustable in angular position around the axis of the rotor shaft. It is understood that by acting on the position of each weight relative, on the one hand to the longitudinal axis of the blade and, on the other hand to the position of the other weight, it is possible to create an unbalance of position and of adjustable mass which will be subjected to a centrifugal force, of intensity and direction adjustable accordingly, which will be in opposition with the parasitic force to be compensated.
BREVE DESCRIPTION DES DESSINS L'invention sera mieux comprise au cours de la des cription et des dessins donnés ci-après. Il sera fait réfé rence aux figures dans lesquelles : BRIEF DESCRIPTION OF THE DRAWINGS The invention will be better understood during the description and the drawings given below. Reference will be made to the figures in which:
- la figure 1 est un schéma illustrant l'effort pa rasite horizontal subi par une mono-pale, représentée de profil, résultant de la portance de la voilure, - Figure 1 is a diagram illustrating the horizontal horizontal force undergone by a single-blade, shown in profile, resulting from the lift of the wing,
- la figure 2 est un schéma, illustrant vu de dessus, la résultante horizontale de l'effort parasite dû à la por tance avec celui dû à la traînée de rotation de la pale et le principe de la compensation selon l'invention, - la figure 3 est le schéma d'un exemple de réali sation d'un premier dispositif de compensation selon l'in vention, FIG. 2 is a diagram illustrating, seen from above, the horizontal resultant of the parasitic force due to the lift with that due to the rotational drag of the blade and the principle of compensation according to the invention, - the FIG. 3 is the diagram of an exemplary embodiment of a first compensation device according to the invention,
- la figure 4 est une variante de réalisation de la figure 3 adaptée aux aéronefs de petite taille, - la figure 5 est un schéma d'un exemple de moyens mis en œuvre pour la commande du dispositif de compensation de la figure 3 ou de la figure 4, - Figure 4 is an alternative embodiment of Figure 3 suitable for small aircraft, - Figure 5 is a diagram of an example of means implemented for the control of the compensation device of Figure 3 or the figure 4,
- la figure 6 est un schéma d'un autre mode de réa lisation du dispositif de compensation des vibrations selon l'invention. - Figure 6 is a diagram of another embodiment of the vibration compensation device according to the invention.
DESCRIPTION DETAILLEE DE L'INVENTION A la figure 1, on a représenté une mono-pale 1 en rotation R contra-horaire autour de l'axe rotor ZZ avec son contrepoids 2. Le rotor (ou arbre rotor) 3 est entraîné par un moteur 3a et la pale 1 est articulée librement sur l'arbre rotor 3 autour d'un axe transversal 4. Le pas de cette pale 1 n'est pas nul si bien que, comme représenté, la pale 1 décrit un cône d'angle A sur le plan XX perpendiculaire à l'axe ZZ du rotor, plan qui contiendrait la pale 1 en rota tion si le pas de la pale 1 était nul. Appliquées au centre de gravité 5 de la pale 1 et à celui du contrepoids 2, les forces centrifuges Fl et F2 sont opposées et équilibrées, La force de portance F3 possède une composante verticale F4 équilibrée par la charge soulevée F5. On n'a pas représenté la portance appliquée au contre- poids 2 qui est négligeable. On constate, sur cette figure, que la composante horizontale F6 de la portance est dirigée vers le rotor 3 et n'est pas compensée. DETAILED DESCRIPTION OF THE INVENTION In Figure 1, there is shown a single blade 1 rotating R counterclockwise around the rotor axis ZZ with its counterweight 2. The rotor (or rotor shaft) 3 is driven by a motor 3a and the blade 1 is articulated freely on the rotor shaft 3 around a transverse axis 4. The pitch of this blade 1 is not zero so that, as shown, the blade 1 describes a cone of angle A on the plane XX perpendicular to the ZZ axis of the rotor, plane which would contain the rotating blade 1 if the pitch of the blade 1 were zero. Applied to the center of gravity 5 of the blade 1 and to that of the counterweight 2, the centrifugal forces Fl and F2 are opposed and balanced. The lift force F3 has a vertical component F4 balanced by the lifted load F5. The lift applied to the counterweight 2, which is negligible, has not been shown. It can be seen in this figure that the horizontal component F6 of the lift is directed towards the rotor 3 and is not compensated.
Sur la figure 2, qui est une vue de dessus de la figure 1, en plus des éléments déjà représentés, on aura illustré par F7 la traînée de rotation de la pale 1 en négligeant celle appliquée au contrepoids 2. Le bord d'at taque de la pale 1 est noté la. In FIG. 2, which is a top view of FIG. 1, in addition to the elements already represented, the rotational drag of the blade 1 will be illustrated by F7 while neglecting that applied to the counterweight 2. The leading edge of the blade 1 is noted la.
La figure 2 fait apparaître que la force horizontale F8, résultant de la composition de la traînée F7 et de la composante horizontale F6 de la portance n'est pas équili brée, ce qui se traduit par la création de vibrations para sites au niveau de l'encastrement et des paliers de l'arbre rotor 3 dans la structure de l'aéronef. Figure 2 shows that the horizontal force F8, resulting from the composition of the drag F7 and the horizontal component F6 of the lift is not balanced, which results in the creation of para-site vibrations at the level of the 'embedding and bearings of the rotor shaft 3 in the structure of the aircraft.
La force F8 est orientée le long d'une direction D qui est sensiblement constante quelle que soit la valeur de la charge soulevée donc quel que soit le pas collectif de la pale 1. Par la simulation, on a constaté que cette direction D est inclinée sur l'axe longitudinal de pas LL de la mono pale 1 d'un angle B compris entre 65 et 80 degrés, de pré- férence entre 70 et 75 degrés, ici 70 degrés. L'intensité de cette force dépend quant à elle de la valeur du pas de la pale 1 et les calculs montrent qu'elle dépend, en bonne approximation, de la valeur du carré de ce pas collectif puisque l'angle A est faible (de l'ordre de quelques - 2 à 5 - degrés). Ainsi, pour compenser le déséquilibre de cette forceThe force F8 is oriented along a direction D which is substantially constant whatever the value of the load lifted, therefore whatever the collective pitch of the blade 1. By simulation, it was found that this direction D is inclined. on the longitudinal axis of pitch LL of the single blade 1 at an angle B of between 65 and 80 degrees, preferably between 70 and 75 degrees, here 70 degrees. The intensity of this force depends on the value of the pitch of the blade 1 and the calculations show that it depends, in good approximation, on the value of the square of this collective pitch since the angle A is small (of the order of a few - 2 to 5 - degrees). So, to compensate for the imbalance of this force
F8, un dispositif 6 selon l'invention est représenté à la figure 3 qui engendre sur la pale 1, une force F9 opposée à la force F8. Ce dispositif comprend une masselotte 7 qui subit une force centrifuge lors de la rotation de la pale 1. Elle est montée à déplacement le long d'un guide 8, dont une extrémité 8a est solidaire de la pale 1, à son pied, au plus près du rotor 3. Par exemple, la pale 1 possède une racine en forme d'étrier 9 qui est articulé au rotor 3 autour de l'axe transversal 4. Le dispositif 6 est donc logé avanta- geusement entre les branches de cet étrier 9. La force cen trifuge subie par la masselotte 7 donne naissance à la force F9 dans la direction du guide. F8, a device 6 according to the invention is shown in FIG. 3 which generates on the blade 1 a force F9 opposite to the force F8. This device comprises a weight 7 which undergoes a centrifugal force during the rotation of the blade 1. It is mounted to move along a guide 8, one end 8a of which is integral with the blade 1, at its root, at most near the rotor 3. For example, the blade 1 has a root in the form of a stirrup 9 which is articulated to the rotor 3 around the transverse axis 4. The device 6 is therefore advantageously housed between the branches of this stirrup 9. The cen trifugal force undergone by the weight 7 gives rise to the force F9 in the direction of the guide.
Le guide 8 s'étend le long d'une direction D inclinée sur l'axe d'un angle B correspondant à celui que forme sur cette direction la résultante F8 de la composante horizon tale F6 de la force de portance F3 et de la force de traînée F7 de rotation de la pale 1. Il s'ensuit une suppression ou du moins une diminution sensible des vibrations et con traintes tournantes que subit l'arbre rotor 3. Le mode de réalisation représenté schématiquement à cette figure 3 est surtout adapté aux aéronefs dont le régime principal est le vol stationnaire. La portance de la voilure est constante et la force F8 est également constante. La masse de la masselotte 7 est calculée pour que, dans sa position en extrémité 8b du guide 8 du côté du bord d'attaque la de la pale 1, elle compense correctement la force F8. On notera que dans le cas d'une masselotte 7 non pilotée par l'angle de pas de la pale 1, la masselotte 7 est libérée d'une position proche de l'axe rotor vers sa position proche du bord d'attaque de la pale 1 quand le ressort 10 taréThe guide 8 extends along a direction D inclined on the axis of an angle B corresponding to that formed on this direction by the resultant F8 of the horizontal component F6 of the lift force F3 and of the force of drag F7 of rotation of the blade 1. This results in an elimination or at least a significant reduction in the vibrations and rotating stresses to which the rotor shaft 3 is subjected. The embodiment shown schematically in this FIG. 3 is especially suited to aircraft whose primary speed is hovering. The lift of the canopy is constant and the force F8 is also constant. The mass of the weight 7 is calculated so that, in its position at the end 8b of the guide 8 on the leading edge 1a side of the blade 1, it correctly compensates for the force F8. It will be noted that in the case of a weight 7 not controlled by the pitch angle of the blade 1, the weight 7 is released from a position close to the rotor axis towards its position close to the leading edge of the blade. blade 1 when the spring 10 is calibrated
« cède » ou, de manière plus générale, quand un verrou de la masselotte 7 s'efface à la vitesse de rotation nominale de la pale 1, le ressort 10 servant au rappel de cette masse- lotte?. "Gives way" or, more generally, when a lock in the flyweight 7 is erased at the nominal speed of rotation of the blade 1, the spring 10 serving to return this mass-buckle ?.
A la figure 4 on retrouve la plupart des éléments décrits en regard de la figure 3 avec les mêmes références. In Figure 4 we find most of the elements described with reference to Figure 3 with the same references.
Le dispositif de compensation des efforts parasites agit alors directement sur l'arbre rotor 3 tout en tournant avec la mono pale, le guide 8 étant une tige radiale de direction D solidaire d'un palier calé en rotation sur l'arbre rotor 3. The parasitic force compensation device then acts directly on the rotor shaft 3 while rotating with the single blade, the guide 8 being a radial rod of direction D integral with a bearing fixed in rotation on the rotor shaft 3.
La masse de la masselotte 7 est calculée pour que, dans sa position en extrémité du guide 8, ici vers le bord d'attaque la de la pale 1, elle engendre une force F9 qui compense correctement la force F8. Cette disposition est intéressante sur les petites machines où l'on recherche la simplicité. The mass of the weight 7 is calculated so that, in its position at the end of the guide 8, here towards the leading edge 1a of the blade 1, it generates a force F9 which correctly compensates for the force F8. This arrangement is interesting on small machines where simplicity is sought.
L'angle du pas de la pale 1 sera avantageusement, dans ce cas, porté à sa valeur maximale dès que la vitesse de rotation du rotor 3 aura atteint 30% (par exemple) de la vitesse de rotation nominale. The pitch angle of the blade 1 will advantageously, in this case, be brought to its maximum value as soon as the speed of rotation of the rotor 3 has reached 30% (for example) of the nominal speed of rotation.
Dans le cas d'un aéronef destiné à connaître des régimes variables entre vol stationnaire et vol de croisière, la portance varie d'un régime à l'autre car le pas de la pale 1 varie également. Il s'agit alors de disposer d'un dispositif qui s'adapte aux variations de la force F8 dont on rappelle qu'elle varie en raison du carré de l'angle de pas de la pale 1. In the case of an aircraft intended to experience variable speeds between hovering flight and cruising flight, the lift varies from one speed to another because the pitch of the blade 1 also varies. It is then a question of having a device which adapts to the variations of the force F8, which we recall that it varies due to the square of the pitch angle of the blade 1.
Dans ce cas illustré par la figure 5, le déplacement de la masselotte 7 le long du guide 8 est asservi par une unité de commande 11 d'un moteur 12 qui fait tourner le guideIn this case illustrated by FIG. 5, the movement of the weight 7 along the guide 8 is controlled by a control unit 11 of a motor 12 which rotates the guide.
8 qui est par exemple une vis, la masselotte 7 étant alors un écrou calé en rotation, coopérant avec la vis à l'instar d'un système vis-écrou. Le ressort 13 a pour fonction dans ce cas de soulager l'effort du moteur, notamment dans le sens de rotation qui produit une augmentation de la force centrifuge subie par la masselotte. Dans une réalisation non représentée, le moteur peut constituer la masselotte elle-même coopérant avec le guide 8 selon une chaîne cinématique appropriée. Cette masselotte peut aussi comprendre la batterie d'alimentation du moteur. L'unité de commande du moteur reçoit en entrée le signal « a » correspondant à la valeur instantanée de l'angle de pas de la pale 1 (valeur moyennée sur un tour ou un espace de temps donné) et, dans une version plus élaborée du dis positif, le signal « v » émis par un ou plusieurs accéléro- mètres ou capteurs de vibrations 14 au niveau de la structure recevant le rotor. L'unité de commande 11 agira alors sur le moteur 12 dans le sens d'une minimisation du signal « v ». Le dispositif 14 est, de manière connue, situé soit sur un élément de structure proche du mât rotor soit sur le mât rotor lui-même. 8 which is for example a screw, the weight 7 then being a nut fixed in rotation, cooperating with the screw like a screw-nut system. The function of the spring 13 in this case is to relieve the force of the motor, in particular in the direction of rotation which produces an increase in the centrifugal force undergone by the weight. In an embodiment not shown, the motor can constitute the flyweight itself cooperating with the guide 8 according to an appropriate kinematic chain. This flyweight can also include the engine supply battery. The engine control unit receives as input the signal "a" corresponding to the instantaneous value of the pitch angle of the blade 1 (value averaged over a given revolution or space of time) and, in a more elaborate version of the positive, the signal “v” emitted by one or more accelerometers or vibration sensors 14 at the level of the structure receiving the rotor. The control unit 11 will then act on the motor 12 in the direction of minimizing the signal “v”. The device 14 is, in a known manner, located either on a structural element close to the rotor mast or on the rotor mast itself.
En regard enfin de la figure 6, on a représenté un autre mode de réalisation du dispositif de compensation se lon l'invention. Il comporte au moins une paire de masse- lottes 15 et 16 portées chacune par l'extrémité libre d'un bras 17 et 18, l'autre extrémité étant solidaire d'une bague 19 (la figure n'en fait apparaître qu'une seule) d'axe con fondu avec celui de l'arbre rotor 3. Chaque bague est in- dexable angulairement par rapport à l'axe de rotation du rotor 3 et donc par rapport à l'axe longitudinal de la pale 1. On comprend que la position indexée par rapport à la paleFinally, with reference to FIG. 6, another embodiment of the compensation device according to the invention has been shown. It comprises at least one pair of massager 15 and 16 each carried by the free end of an arm 17 and 18, the other end being integral with a ring 19 (the figure shows only one only) of axis con fused with that of the rotor shaft 3. Each ring is angularly indexable with respect to the axis of rotation of the rotor 3 and therefore with respect to the longitudinal axis of the blade 1. We understand than the position indexed with respect to the blade
1 de chaque masselotte et leur écartement angulaire définit la direction DI (il s'agit de la bissectrice de l'angle formé par les deux bras 17 et 18) de la résultante F10 des forces centrifuges subies par les masselottes et l'intensité de cette résultante (cette résultante F10 est nulle quand les masselottes sont diamétralement opposées). Une commande de l'indexation de chaque masselotte par un dispositif d'asser vissement approprié, par exemple à la variation du pas de la pale 1, comme évoqué ci-dessus, permet d'ajuster la compen- sation en fonction des variations du régime de vol de l'ap pareil. Bien entendu, l'invention n'est pas limitée aux modes de réalisation décrits et englobe toute variante en trant dans le champ de l'invention telle que définie par les revendications . Ainsi, ce n'est pas sortir du cadre de l'invention que de prévoir une autre paire de masselottes telles que celles 15 et 16 s'il est nécessaire de compenser des efforts parasites dont l'intensité demanderait de mettre en place des masselottes trop volumineuses. Ce n'est pas sortir non plus du cadre de l'invention que d'assurer, sur les mêmes principes, une compensation des efforts parasites d'une voilure dans laquelle le contrepoids est une pale courte qui, en rotation, possède également une composante de la force de portance horizontale mais dirigée vers l'extrémité de la pale et une composante de traînée horizontale qui se compose avec cette composante horizontale de la force de portance pour engendrer un effort parasite le long de la pale/contrepoids à l'opposé de l'effort parasite existant dans la direction de la mono pale. Il s'ensuit, du fait de la composition de l'ensemble des forces en jeu (les composantes horizontales des portances et des traînées) et de la géométrie de la voilure tournante (conicité décrite plus aplatie) que les masselottes du dispositif d'équili brage à masselottes selon l'invention seront de masses plus faibles. 1 of each weight and their angular spacing defines the direction DI (this is the bisector of the angle formed by the two arms 17 and 18) of the resultant F10 of the centrifugal forces undergone by the weights and the intensity of this resultant (this resultant F10 is zero when the weights are diametrically opposed). A control of the indexing of each flyweight by an appropriate servo device, for example to the variation of the pitch of the blade 1, as mentioned above, makes it possible to adjust the compensation as a function of the variations in speed. flight of the device. Of course, the invention is not limited to the embodiments described and encompasses any variant falling within the scope of the invention as defined by the claims. Thus, it is not departing from the scope of the invention to provide another pair of weights such as those 15 and 16 if it is necessary to compensate for parasitic forces, the intensity of which would require the fitting of excessively high weights. voluminous. It is also not departing from the scope of the invention to ensure, on the same principles, compensation for the parasitic forces of a wing in which the counterweight is a short blade which, in rotation, also has a component. of the horizontal lift force but directed towards the end of the blade and a horizontal drag component which is composed with this horizontal component of the lift force to generate a parasitic force along the blade / counterweight opposite to the parasitic force existing in the direction of the single blade. It follows, due to the composition of all the forces in play (the horizontal components of the lift and drag) and the geometry of the rotary airfoil (taper described more flattened) that the weights of the balancing device Weights according to the invention will be of lower masses.

Claims

REVENDICATIONS
1. Rotor d'aéronef à voilure tournante équipé d'une mono-pale (1) avec un axe de pas longitudinal (LL), montée articulée sur l'arbre de rotation du rotor autour d'un axe transversal (4) à cet arbre de rotation, ladite voilure décrivant un cône lorsque l'angle de son pas n'est pas nul, caractérisé en ce qu'il possède un dispositif (6) à masselotte(s) d'équilibrage de la résultante (F8) de la composante horizontale (F6) de la force de portance et de la force (F7) de traînée de rotation de la pale, monté tournant avec la voilure autour de son arbre de rotation et engen drant, sous l'effet de la force centrifuge à laquelle il est soumis lors de la rotation de la voilure, une force horizon tale (F9), appliquée à l'arbre de rotation du rotor, opposée à la résultante susdite, avec une intensité fonction de la position de la (des) masselotte(s) du dispositif d'équili brage par rapport à l'arbre de rotation du rotor. 1. Rotor of a rotary wing aircraft equipped with a single blade (1) with a longitudinal pitch axis (LL), mounted articulated on the rotation shaft of the rotor about a transverse axis (4) to this rotation shaft, said airfoil describing a cone when the angle of its pitch is not zero, characterized in that it has a device (6) with weight (s) for balancing the resultant (F8) of the horizontal component (F6) of the lift force and the rotational drag force (F7) of the blade, mounted rotating with the airfoil around its rotating shaft and generating, under the effect of the centrifugal force at which it is subjected during the rotation of the airfoil, a horizontal force (F9), applied to the rotation shaft of the rotor, opposite to the aforesaid resultant, with an intensity depending on the position of the flyweight (s) ) of the balancing device with respect to the rotation shaft of the rotor.
2. Rotor selon la revendication 1, caractérisé en ce que le dispositif ne comporte qu'une seule masselotte (7) d'équilibrage portée par un bras (8) dont une extrémité (8a) est solidaire de la racine de la pale (1) qui s'étend en avant dudit axe longitudinal de pas (LL) dans le sens de rotation de la pale et est incliné d'un angle (B) sur cet axe, correspondant à celui que forme sur ledit axe ladite résultante (F8). 2. Rotor according to claim 1, characterized in that the device comprises only one counterweight (7) for balancing carried by an arm (8), one end (8a) of which is integral with the root of the blade (1 ) which extends in front of said longitudinal pitch axis (LL) in the direction of rotation of the blade and is inclined at an angle (B) on this axis, corresponding to that formed on said axis by said resultant (F8) .
3. Rotor selon la revendication 2, caractérisé en ce que la masselotte (7) est fixée sur ce bras (8) dans une position déterminée pour que la force de compensation (F9) obtenue dans cette position ne compense exactement la résul tante susdite que pour un angle de pas nominal de la mono pale. 3. Rotor according to claim 2, characterized in that the weight (7) is fixed to this arm (8) in a determined position so that the compensation force (F9) obtained in this position does not exactly compensate for the aforesaid resultant that for a nominal pitch angle of the single blade.
4. Rotor selon la revendication 2, caractérisé en ce que la masselotte (7) est réglable en position le long du bras (8). 4. Rotor according to claim 2, characterized in that the weight (7) is adjustable in position along the arm (8).
5. Rotor selon l'une des revendications 2 à 4, caractérisé en ce que l'axe du bras (8) passe par l'axe de l'arbre de rotation du rotor(3). 5. Rotor according to one of claims 2 to 4, characterized in that the axis of the arm (8) passes through the axis of the shaft of rotation of the rotor (3).
6. Rotor selon l'une des revendications 2 à 5, caractérisé en ce que l'angle (B) susdit est compris entre 65 et 80 degrés et de préférence 70 et 75 degrés. 6. Rotor according to one of claims 2 to 5, characterized in that the aforesaid angle (B) is between 65 and 80 degrees and preferably 70 and 75 degrees.
7. Rotor selon la revendication 4, caractérisée en ce que la masselotte (7) est accouplée à un organe de com mande (11) de son déplacement le long du bras, proportionnel au carré de l'angle de pas de la mono-pale (1). 7. Rotor according to claim 4, characterized in that the weight (7) is coupled to a control member (11) of its displacement along the arm, proportional to the square of the pitch angle of the single-blade. (1).
8. Rotor selon la revendication 1, caractérisé en ce que le dispositif (6) à masselottes d'équilibrage comporte au moins une paire de masselottes (15,16), chacune disposée à l'extrémité libre d'un bras (17,18)qui tourne en synchro nisme avec la pale et qui est réglable en position angulaire autour de l'axe de l'arbre rotor (3). 8. Rotor according to claim 1, characterized in that the device (6) with balancing weights comprises at least one pair of weights (15,16), each disposed at the free end of an arm (17,18 ) which rotates in synchro nism with the blade and which is adjustable in angular position around the axis of the rotor shaft (3).
EP20800149.5A 2019-11-04 2020-11-04 Single-blade aircraft rotor Pending EP4054934A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1912342A FR3102751A1 (en) 2019-11-04 2019-11-04 Single-blade aircraft rotor.
PCT/EP2020/080951 WO2021089616A1 (en) 2019-11-04 2020-11-04 Single-blade aircraft rotor

Publications (1)

Publication Number Publication Date
EP4054934A1 true EP4054934A1 (en) 2022-09-14

Family

ID=72356017

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20800149.5A Pending EP4054934A1 (en) 2019-11-04 2020-11-04 Single-blade aircraft rotor

Country Status (5)

Country Link
US (1) US11987347B2 (en)
EP (1) EP4054934A1 (en)
CN (1) CN114641430A (en)
FR (1) FR3102751A1 (en)
WO (1) WO2021089616A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115126820B (en) * 2022-08-10 2023-08-18 桂林航天工业学院 Damping device of electromechanical equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1106435A (en) * 1953-08-17 1955-12-19 Bohn & Kahler Motoren Und Masc Rotary unbalance mechanism with variable eccentricity of the weights, in particular for vibrating devices for soil, concrete, etc.
US4239455A (en) * 1978-09-11 1980-12-16 Textron, Inc. Blade-mounted centrifugal pendulum
IT1303441B1 (en) * 1998-12-03 2000-11-06 Vladimiro Lidak MAIN SINGLE BLADE ROTOR FOR HELICOPTERS
US9889925B2 (en) * 2014-09-22 2018-02-13 The Boeing Company Single blade propeller with variable pitch
FR3039506B1 (en) * 2015-07-31 2019-05-24 Innostar SUSTENTATION ROTOR AND HYBRID AERODYNE WITH VERTICAL OR SHORT TAKEOFF AND / OR LANDING COMPRISING THE SAME
WO2017165456A1 (en) * 2016-03-23 2017-09-28 Amazon Technologies, Inc. Coaxially aligned propellers of an aerial vehicle

Also Published As

Publication number Publication date
WO2021089616A1 (en) 2021-05-14
US20220388641A1 (en) 2022-12-08
FR3102751A1 (en) 2021-05-07
CN114641430A (en) 2022-06-17
US11987347B2 (en) 2024-05-21

Similar Documents

Publication Publication Date Title
EP2096031B1 (en) Helicopter equipped with a plurality of lifting elements for controlling the angle of attack of its blades
EP2096030B1 (en) Helicopter equipped with a plurality of lifting elements equipped with a flap for controlling the angle of attack of its blades
EP3560830B1 (en) Rotorcraft provided with a rotary wing and at least two propellers, and method applied by said rotorcraft
CA2902851C (en) Variable-pitch vane
FR2534829A1 (en) CONE CRUSHER
FR2770826A1 (en) Rotor blade construction
EP1939087A1 (en) Rotorcraft rotor improvement equipped with inter-blade shock absorbers
CA2914331A1 (en) Rear rotorcraft rotor, rotorcraft equipped with such a rear rotor and static and/or dynamic balancing method for a rear rotor of a rotorcraft
EP4054934A1 (en) Single-blade aircraft rotor
FR2964942A1 (en) Device for controlling orientation of blades of fast propeller of open-rotor turboshaft engine of civilian aircraft, has drive units that are regrouped in enclosure to ensure lubrication of drive units
EP3702278B1 (en) Device for assisted transmission and aircraft
FR2948631A1 (en) METHOD FOR REDUCING OR REMOVING VIBRATIONS FROM A ROTOR OF SUSTAINATION AND PROPULSION OF A GIRAVION, AND AN AERODYNAMIC ASSEMBLY AND A ROTOR USING SAID METHOD
WO2000009393A1 (en) Method for reducing blade-vortex interaction noise generated by a rotary wing
EP2138399B1 (en) Blade for reducing the drag movements of said blade and method for reducing such a drag movement
FR2892382A1 (en) Rotocraft rotor blade, has electromechanical actuator to pivot flap around hinge axis along wing span of blade and flap, and main ball joint prestressed in chord direction of flap by applying centrifugal forces on flap/ball joint assembly
BE1023550B1 (en) CYCLIC TRAY SYSTEM FOR HELICOPTER ROTOR
EP2721293B1 (en) Vertical axis wind turbine with braking device
EP0121636A1 (en) Aerogenerator or wind engine
FR3078945A1 (en) HYBRID AERODYNE OF VTOL OR STOL TYPE (ROTOR SWITCH)
EP0033258B1 (en) Wind turbine with an adjustably orientable rotor axis
FR2847352A1 (en) ELECTRIC FLIGHT CONTROL SYSTEM FOR AN AIRCRAFT HAVING A DETECTION OF OSCILLATORY PILOTAGE COUPLINGS AND A PILOTAGE MEMBER FOR SUCH A SYSTEM
EP3081483B1 (en) A flapping abutment mechanism for a lift assembly, a rotorcraft rotor including the abutment mechanism, and a rotorcraft
FR2996591A1 (en) BLADE SETTING DEVICE OF A TURBOMACHINE PROPELLER
FR2648106A1 (en) DEVICE FOR REMOVABLE STOPS FOR ROTOR BLADES OF GIRAVIONS, AND ROTOR HEAD COMPRISING THE SAME
FR2607107A1 (en) HELICOPTER ROTOR

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220512

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230629