EP4048644A1 - Composite materials comprising concrete aggregates and porous carbon, and use thereof for eliminating pollutant gases - Google Patents

Composite materials comprising concrete aggregates and porous carbon, and use thereof for eliminating pollutant gases

Info

Publication number
EP4048644A1
EP4048644A1 EP20807072.2A EP20807072A EP4048644A1 EP 4048644 A1 EP4048644 A1 EP 4048644A1 EP 20807072 A EP20807072 A EP 20807072A EP 4048644 A1 EP4048644 A1 EP 4048644A1
Authority
EP
European Patent Office
Prior art keywords
composite according
porous carbon
equal
composite
fresh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20807072.2A
Other languages
German (de)
French (fr)
Inventor
Encarnacion Raymundo-Piñero
Jena JEONG
Rachelle OMNÉE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecole Speciale Des Travaux Publics Du Batiment Et De L'industrie
Centre National de la Recherche Scientifique CNRS
Original Assignee
Ecole Speciale Des Travaux Publics Du Batiment Et De L'industrie
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecole Speciale Des Travaux Publics Du Batiment Et De L'industrie, Centre National de la Recherche Scientifique CNRS filed Critical Ecole Speciale Des Travaux Publics Du Batiment Et De L'industrie
Publication of EP4048644A1 publication Critical patent/EP4048644A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • A61L9/014Deodorant compositions containing sorbent material, e.g. activated carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/022Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/10Burned or pyrolised refuse
    • C04B18/101Burned rice husks or other burned vegetable material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/16Waste materials; Refuse from building or ceramic industry
    • C04B18/167Recycled materials, i.e. waste materials reused in the production of the same materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/26Bituminous materials, e.g. tar, pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/20Method-related aspects
    • A61L2209/22Treatment by sorption, e.g. absorption, adsorption, chemisorption, scrubbing, wet cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/25Coated, impregnated or composite adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/306Surface area, e.g. BET-specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/311Porosity, e.g. pore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/91Bacteria; Microorganisms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0068Ingredients with a function or property not provided for elsewhere in C04B2103/00
    • C04B2103/0078Sorbent materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00767Uses not provided for elsewhere in C04B2111/00 for waste stabilisation purposes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/52Sound-insulating materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention belongs to the field of the elimination of polluting gases.
  • the invention belongs to the field of materials which absorb polluting gases such as CO2, SO2, NO x and VOCs (volatile organic compounds).
  • the present invention relates to a fresh composite or composite paste and a composite material comprising aggregates of recycled concrete, porous carbon, a binder and optionally water, to the manufacturing process of said composite as well as to its use to clean the air (indoor or outdoor).
  • the invention also relates to an article (eg noise barrier, tunnel lining, interior decor, street furniture, etc.) comprising the composite according to the invention.
  • Global warming also called global warming or climate change, is the phenomenon of increasing average ocean and atmospheric temperatures. The causes of this global warming are now known and it is mainly due to greenhouse gas (GHG) emissions. Global warming mainly refers to global warming observed since the beginning of the 20th century.
  • the CO2 concentration can be up to 10 times more concentrated than in an open environment.
  • the present invention thus relates in the first place to a new fresh composite or composite paste and a new composite material, comprising aggregates of recycled concrete and porous carbon.
  • the process for preparing this new material is also simple and inexpensive. They exhibit improved performance compared to existing absorbent materials, particularly in terms of absorption efficiency (speed and amount of gas absorbed).
  • the invention thus relates to a fresh composite or composite paste comprising at least one concrete aggregate having a porosity greater than or equal to 12%, carbon porous having a volume of micropores greater than or equal to 0.2 cm 3 / g and a volume of macropores greater than or equal to 0.2 cm 3 / g, a binder and optionally water.
  • the fresh composite according to the invention can comprise at least one concrete aggregate having a porosity greater than or equal to 12%, porous carbon having a volume of micropores greater than or equal to 0.2 cm 3 / g and a volume of macropores greater than or equal to 0.2 cm 3 / g, a binder and water.
  • fresh composite or “composite paste” is understood to mean the heterogeneous paste formed by the mixture of concrete aggregates, porous carbon, binder, optionally water and optionally additives. , adjuvants and / or aggregates, before curing leading to the composite according to the invention.
  • Concrete aggregate means concrete residue which may be recycled concrete which has been crushed or crushed in the form of aggregates. It may also contain residues such as, for example, residues or shards of brick, ceramic, glass and other elements (mainly those with a density close to that of concrete) that can be found in certain concrete. According to the article, “Porosity of recycled portion with substitution of recycled manner aggregate - An experimental study” (Cernent and Concriza Research, 32, 2002, 1301-1311), the porosity of a recycled concrete aggregate is generally between 13% to 15%.
  • porosity is meant all the voids (pores or spaces) of a solid material.
  • the pores can be filled with fluids such as liquids or gases.
  • the porosity f of a porous medium A can also be represented by a numerical value defined as the ratio between the total volume of the pores
  • V pores and the total volume of the porous medium (Vtotai): yA - Vpores / Vtotal.
  • the pores can be intra- or interparticulate.
  • the concrete aggregate and the porous carbon have intraparticular spaces.
  • the porous carbon there are also interparticle spaces which are generally due to the spaces between the graphene sheets which make up said porous carbon.
  • the concrete aggregate can have a porosity greater than or equal to
  • the concrete aggregate can consist essentially of recycled concrete.
  • Recycled concrete can include residues or chips of brick, ceramic, glass and other elements that can be found in some concrete.
  • the concrete aggregate can have an average diameter ranging from 1 to 50 mm, preferably from 1 to 20 and more preferably from 5 to 10 mm.
  • the size of the concrete aggregates can vary depending on the intended use of the composite material. Depending on the concrete surface accessible to gas, aggregates of small diameters are generally carbonated faster and saturate more quickly in the short term than large aggregates because the surface accessible to gas is greater than for the latter. Larger diameter aggregates will carbonate more slowly. These different kinetics can be taken into account depending on the different uses of composite materials according to the invention envisioned by those skilled in the art.
  • the fresh composite according to the invention can comprise 25 to 45% by mass of concrete aggregates, preferably 30 to 40%.
  • porous carbon is understood to mean residues of waste biomass, polymer, mineral carbon or residues from petroleum processes. Porous carbons can thus be obtained by thermal decomposition (pyrolysis) of a precursor such as biomass, polymer, mineral carbons or residues from petroleum processes. After pyrolysis, the porosity is generated by a chemical reaction at high temperature with an "activating agent" which can be chosen from the group comprising CO2, H2O, KOH, NaOH and H2PO4.
  • an "activating agent” can be chosen from the group comprising CO2, H2O, KOH, NaOH and H2PO4.
  • algae biomass
  • the porous carbon can consist essentially of carbon. It can have a more or less ordered structure having a large specific surface area and a high degree of porosity.
  • the porous carbon can be in the form of powder (with particle sizes ranging from ⁇ m to mm) or of pellets in the composite according to the invention.
  • pellet is meant an aggregate resulting from a mixture of a carbon powder and a binder.
  • this binder can be a carbon of petroleum or carbon pitch type.
  • the porous carbon can have a volume of micropores greater than or equal to 0.2 cm 3 / g, preferably greater than or equal to 0.4 cm 3 / g.
  • Micropore means a pore having a diameter of less than 2 nm.
  • the porous carbon can have a mesopore volume greater than or equal to 0.2 cm 3 / g, preferably ranging from 0.2 to 0.6 cm 3 / g.
  • the term “mesopore” is understood to mean a pore having a diameter ranging from 2 to 50 nm. They are generally not involved in absorption, but can be useful in the transport of CO2.
  • the porous carbon can have a volume of macropores greater than or equal to 0.2 cm 3 / g, preferably greater than or equal to 1 cm 3 / g.
  • Micropore means a pore having a diameter greater than 50 nm.
  • the powders, particles or porous carbon aggregates can have an average diameter ranging from 1 to 20 mm, preferably from 3 to 15 and more preferably from 5 to 10 mm.
  • the size of the particles, or aggregates of porous carbon can vary depending on the intended use of the composite material.
  • the porous carbon can be functionalized, preferably at the surface.
  • the surface functionalization can be at least one heteroatom selected from the group consisting of O, N, S and P.
  • the porous carbon can have a specific surface area ranging from 500 and 3000 m 2 / g, preferably from 700 to 2500 m 2 / g, and more preferably from 1500 to 2500 m 2 / g.
  • the fresh composite according to the invention can comprise from 1 to 20% by mass of porous carbon, preferably 1 to 10%.
  • binder is meant a finely ground material which reacts with water to form a paste which sets and hardens after mixing with water. It can be cement but also polymers, resins or carbon-based materials (pitch).
  • the binder is of polymer, resin or carbon-based material (pitch) type, the fresh composite and the composite according to the invention generally do not contain water.
  • the binder can be chosen from the group comprising cements, preferably cements of category CEM I (Portland cement), CEM II A or B (compound Portland cement), CEM III A, B or C (cement. of rule-foumeau), CEM IV A or B (pozzolanic cement) or CEM VA or B (compound cement).
  • CEM I Portland cement
  • CEM II A or B compound Portland cement
  • CEM III A, B or C cement. of rule-foumeau
  • CEM IV A or B pozzolanic cement
  • CEM VA or B compound cement
  • the binder can be chosen from the group comprising polymer or copolymer binders, preferably binders of unsaturated polyester type, epoxy, acrylic or vinyl acetate type resins, vinyl esters, phenolic resins, polyurethane resin, polyethylene. , polystyrene, polycarbonate, latex, alkyl copolymers, epoxy, acrylonitrile, polyvinyl chloride, polyurethane, chlorinated polymer binders and mixtures thereof.
  • the binder can be chosen from the group comprising carbon-based binders, preferably binders of carbon pitch or petroleum pitch type.
  • the fresh composite according to the invention can comprise 20 to 60% by mass of binder, preferably 30 to 50%.
  • the fresh composite according to the invention can comprise from 10 to 25% by mass of water, preferably 15 to 20%.
  • the fresh composite according to the invention can comprise:
  • porous carbon having a volume of micropores greater than or equal to 0.2 cm 3 / g and a volume of macropores greater than or equal to 0.2 cm 3 / g,
  • the fresh composite according to the invention can have the concrete aggregate / porous carbon volume ratio in the range from 30:70 to 80:20, preferably from 40:60 to 60:40.
  • the fresh composite according to the invention can have the ratio of external surface area of concrete aggregate / external surface of porous carbon in a range from 0.5 to 1.5.
  • the fresh composite according to the invention can have concrete aggregate / binder mass ratio within a range of 0.6 to 1.
  • the fresh composite according to the invention can have a porous carbon / binder mass ratio within a range ranging from 0.03 to 0.1.
  • the fresh composite according to the invention can have a concrete aggregate / (binder + water) mass ratio ranging from 0.4 to 0.8.
  • the fresh composite according to the invention can have a porous carbon / (binder + water) mass ratio ranging from 0.02 to 0.08.
  • the fresh composite according to the invention can further comprise at least one adjuvant and / or one additive.
  • the fresh composite according to the invention can comprise from 0 to 2% of at least one adjuvant and / or additive.
  • adjuvant or “additive” is understood to mean chemicals usually added during mixing of the concrete and low dosages during preparation (less than 5% of the mass of the concrete). These products offer the possibility of improving certain characteristics of concrete such as its setting time or its tightness.
  • the adjuvants and / or additives can be incorporated during the manufacture thereof, more particularly during the mixing of the binder with the concrete aggregates and the porous carbon, in order to improve the properties thereof. properties.
  • An adjuvant can act on several parameters: strength, fluidity, setting time, permeability of the composite according to the invention.
  • Fluidity it is generally provided by plasticizers and superplasticizers. These products also increase the strength of the composite in the cured state.
  • the setting time it can generally be regulated by integrating an accelerator or a setting retarder.
  • Permeability This can usually be increased by incorporating an air entrainer, which creates microbubbles in the composite. Conversely, the bulk water repellent limits the penetration of water into the pores and capillaries of the composite.
  • Additives are generally considered as admixtures but having a more specific role of lowering the shear threshold to modify the rheological behavior of fresh concrete.
  • These can be, for example, superplasticizers.
  • the fresh composite according to the invention can comprise one or more adjuvants and / or additives chosen from the group comprising setting accelerators, hardening accelerators, setting retarders, plasticizers, plasticizers reducing water, superplasticizers (thinner or reducing agent), air entrainers, water repellents, pigments or dyes and curing products.
  • adjuvants and / or additives chosen from the group comprising setting accelerators, hardening accelerators, setting retarders, plasticizers, plasticizers reducing water, superplasticizers (thinner or reducing agent), air entrainers, water repellents, pigments or dyes and curing products.
  • the composite according to the invention can further comprise at least one aggregate.
  • aggregate is understood to mean a compound of mineral grains of varying sizes and shapes, the most common of which bear the names of “sand” and “gravel”. They are generally used in the composition of concrete and mortar.
  • the fresh composite according to the invention can comprise silica fume, carbon nanotubes (to add mechanical strength), polymers (as superplasticizers to facilitate manufacture and installation), dyes. (for the aesthetic aspect, expanded shale, polystyrene beads or even vegetable fibers.
  • the fresh composite according to the invention can comprise:
  • porous carbon having a volume of micropores greater than or equal to 0.2 cm 3 / g and a volume of macropores greater than or equal to 0.2 cm 3 / g,
  • the invention also relates to a novel composite material obtained by curing the fresh composite according to the invention.
  • the process for preparing these new materials is also simple and inexpensive. They exhibit improved performance compared to existing absorbent materials, particularly in terms of absorption efficiency (speed and amount of gas absorbed).
  • the invention also relates to a composite comprising at least one concrete aggregate having a porosity greater than or equal to 12%, porous carbon having a volume of micropores greater than or equal to 0.2 cm 3 / g. and a volume of macropores greater than or equal to 0.2 cm 3 / g, a binder and optionally water.
  • the composite can comprise at least one concrete aggregate having a porosity greater than or equal to 12%, porous carbon having a volume of micropores greater than or equal to 0.2 cm 3 / g and a volume of greater macropores. or equal to 0.2 cm 3 / g, a binder and water.
  • the composite according to the invention can comprise 25 to 45% by mass of concrete aggregates, preferably 30 to 40%.
  • the composite according to the invention can comprise from 1 to 20% by mass of porous carbon, preferably 1 to 10%.
  • the composite according to the invention can comprise 20 to 60% by mass of binder, preferably 30 to 50%.
  • the composite according to the invention can comprise from 10 to 25% by mass of water, preferably 15 to 20%.
  • the fresh composite and the composite according to the invention have the same composition.
  • the composite according to the invention generally comprises as much water as the fresh composite, the hardening not being a drying but a crystallization.
  • the quantity of water can nevertheless decrease: in particular when certain water molecules have not been in contact with the dry cement, the mixture of water with the dry cement not having been perfectly homogeneous. These water molecules can get trapped and risk evaporating over time.
  • this amount is generally low, and the composite according to the invention can have an amount of water up to only 10% lower, compared to the amount of water of the fresh composite according to the invention.
  • the composite according to the invention can have the concrete aggregate / porous carbon volume ratio in the range from 30:70 to 80:20, preferably from 40:60 to 60:40.
  • the fresh composite according to the invention can have the ratio of external surface area of concrete aggregate / external surface of porous carbon in a range from 0.5 to 1.5.
  • the composite according to the invention can have concrete aggregate / binder mass ratio within a range of 0.6 to 1.
  • the composite according to the invention can have a porous carbon / binder mass ratio within a range ranging from 0.03 to 0.1.
  • the composite according to the invention can have a concrete aggregate / (binder + water) mass ratio ranging from 0.4 to 0.8.
  • the composite according to the invention can have a porous carbon / (binder + water) mass ratio ranging from 0.02 to 0.08.
  • the composite according to the invention may further comprise at least one adjuvant and / or one additive, preferably in an amount less than or equal to 2%.
  • the composite according to the invention can comprise:
  • porous carbon having a volume of micropores greater than or equal to 0.2 cm 3 / g and a volume of macropores greater than or equal to 0.2 cm 3 / g,
  • the composite according to the invention can comprise:
  • porous carbon having a volume of micropores greater than or equal to 0.2 cm 3 / g and a volume of macropores greater than or equal to 0.2 cm 3 / g,
  • the invention also relates to a use of a composite according to the invention for cleaning the air.
  • Air can be air in an indoor or outdoor environment.
  • the use of the composite according to the invention can be to absorb polluting gases included in the air.
  • the composite according to the invention can thus be used to absorb CO2, SO2, NOx and VOCs.
  • NOx is understood to mean nitrogen oxides, which are chemical compounds formed from oxygen and nitrogen.
  • VOC volatile organic compound
  • VOC volatile organic compound
  • anthropogenic origin from refining, evaporation of organic solvents, unburnt, etc.
  • VOCs or biogenic VOCs emitted by plants or certain fermentations They may or may not be biodegradable.
  • the invention also relates to a process for manufacturing a composite according to the invention.
  • the method of manufacturing a composite according to the invention can comprise the steps: a) mixture of at least one concrete aggregate having a porosity greater than or equal to
  • porous carbon having a volume of micropores greater than or equal to 0.2 cm 3 / g and a volume of macropores greater than or equal to 0.2 cm 3 / g, of a binder, optionally water and optionally d additives, adjuvants and / or aggregates, and obtaining a fresh composite; b) molding and curing of the fresh composite obtained in step a); c) demoulding.
  • step b) can be the chemical reaction of the polymer, resin or carbon-based material binder to obtain the composite according to the invention.
  • the amounts of concrete aggregate, porous carbon, binder, water and optionally additive, adjuvant and / or aggregate in the mixture of step a) are such that defined above.
  • step a) further comprises the addition of any adjuvant, additive and / or aggregate.
  • step a) can comprise the sub-steps: i) mixing the aggregates of concrete, binder, porous carbon and optional aggregate, ii) homogenization, and iii) optionally adding water optionally comprising at least one adjuvant. and / or additive, preferably gradually.
  • step b) of curing can be carried out in molds of desired dimensions. Those skilled in the art will know how to adapt the mold according to the desired end use of the composite.
  • step b) can last from 4 to 48 hours, preferably 24 hours.
  • the demolding step c) should be carried out less than 24 hours after the start of hardening.
  • the hardening can thus continue after step c).
  • the duration of the hardening can be shortened or lengthened, in particular depending on the adjuvants and / or additives possibly present in the fresh composite. Those skilled in the art will know how to adapt the duration of step b) as a function of the fresh composite mixture prepared.
  • the curing can have a total duration of at least 10 to 30 days, preferably at least 20 days and more preferably at least 27 days.
  • the process according to the invention can be carried out at a temperature ranging from 10 to 35 ° C. At higher temperatures, water loss may occur.
  • the composite material according to the invention also has the following advantages:
  • the porous carbon included in the composite according to the invention is obtained from biomass plant waste, usually intended to provide energy by combustion, in which they are less valued than in the invention and may even entail risks of overexploitation Resource.
  • Figure 1 shows a diagram of the manufacturing process of the composite according to the invention.
  • Figure 2 represents the CO2 capture capacity for composites 1 and 2.
  • FIG. 3 represents the diffusion of CO2 in the matrix of the cementitious material in the composite 2 (a) and the composite 1 (b) after 20 days in an atmosphere of 10,000 ppm of CO2.
  • the darker gray areas correspond to the non-carbonated cementitious material.
  • Example 1 Synthesis of a composite according to the invention.
  • the composite material consists of aggregates of recycled concrete and porous carbon integrated into a cement matrix.
  • the process for preparing composites is similar to the conventional method for preparing concrete (see Figure 1). The different stages of the synthesis are:
  • Figure 1 of the appendix of a cross section of composite materials shows that the distribution of aggregates in the cement matrix is homogeneous, although they are small pieces (3 X 3 X 2 cm) made at the laboratory scale with manual mixing.
  • Example 2 Synthesis of a composite outside the invention.
  • the composite material consists of recycled concrete aggregates integrated into a cement matrix.
  • the process for preparing composites is similar to the conventional method for preparing concrete (see Ligure 1). The different stages of the synthesis are:
  • the fresh composite 2 is obtained (outside the invention).
  • Table 1 Summary of the characteristics of composites 1 and 2.
  • the composite materials were placed in a CO2 incubator conditioned in a relative humidity of about 63%, an ambient temperature of about 25 ° C and a CO2 concentration with an order of magnitude higher. to what can be found in highly polluted urban areas.
  • the concentration of CO2 in the air of a large city like Paris is around 400-450 ppm while it can reach over 1000 ppm when exiting a tunnel on a road.
  • the concentration chosen for the "accelerated" CO2 capture experiments was 10,000 ppm, or 10 times more concentrated than at the exit of a tunnel, for example.
  • Ligure 2 shows the quantity of CO2 captured for the two composites 1 and 2 (prepared in Examples 1 and 2), as a function of the number of days in the chamber (days of carbonation).
  • the composite material according to the invention contains 60% by volume of recycled concrete aggregates (with an average diameter of about 6 mm) and 40% by volume of porous carbon particles (with an average diameter of about 6 mm, obtained from biomass and with a specific surface of 1300 m 2 / g) in a cement matrix (cement type CEM1).
  • composite 1 exhibits:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Combustion & Propulsion (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)

Abstract

The invention belongs to the field of eliminating pollutant gases. In particular, the invention belongs to the field of pollutant gas-absorbing materials such as CO2, SO2, NOx and VOCs. The present invention relates to a fresh composite or composite paste and a composite material comprising aggregates of recycled concrete, porous carbon, a binder and optionally water, as well as to the method for manufacturing the composite and the use thereof for sanitising air (indoor or outdoor). The invention also relates to an article (for example, an anti-noise wall, a tunnel lining, an indoor decoration, an item of street furniture, etc.) comprising the composite according to the invention.

Description

MATERIAUX COMPOSITES COMPRENANT DES AGREGATS DE BETON, DU CARBONE POREUX ET LEUR UTILISATION POUR L’ELIMINATION DE GAZ COMPOSITE MATERIALS CONTAINING CONCRETE AGGREGATES, POROUS CARBON AND THEIR USE FOR GAS REMOVAL
POLLUANTS POLLUTANTS
[1] L’invention appartient au domaine de l’élimination des gaz polluants. En particulier, l’invention appartient au domaine des matériaux absorbants de gaz polluants tels que le CO2, le SO2, les NOx et les COV (composés organiques volatiles). [1] The invention belongs to the field of the elimination of polluting gases. In particular, the invention belongs to the field of materials which absorb polluting gases such as CO2, SO2, NO x and VOCs (volatile organic compounds).
[2] La présente invention se rapporte à un composite frais ou pâte de composite et un matériau composite comprenant des agrégats de béton recyclé, du carbone poreux, un liant et optionnellement de l’eau, au procédé de fabrication dudit composite ainsi qu’à son utilisation pour assainir l’air (intérieur ou extérieur). L’invention se rapporte aussi à un article (par exemple mur anti-bruit, revêtement de tunnel, décor intérieur, mobilier urbain, etc....) comprenant le composite selon l’invention. [2] The present invention relates to a fresh composite or composite paste and a composite material comprising aggregates of recycled concrete, porous carbon, a binder and optionally water, to the manufacturing process of said composite as well as to its use to clean the air (indoor or outdoor). The invention also relates to an article (eg noise barrier, tunnel lining, interior decor, street furniture, etc.) comprising the composite according to the invention.
[3] Le réchauffement climatique, appelé également réchauffement planétaire ou dérèglement climatique, est le phénomène d'augmentation des températures moyennes océaniques et atmosphériques. Les causes de ce réchauffement climatique sont aujourd’hui connues et il est principalement dû aux émissions de gaz à effet de serre (GES). Le réchauffement climatique se réfère principalement au réchauffement mondial observé depuis le début du XXe siècle. [3] Global warming, also called global warming or climate change, is the phenomenon of increasing average ocean and atmospheric temperatures. The causes of this global warming are now known and it is mainly due to greenhouse gas (GHG) emissions. Global warming mainly refers to global warming observed since the beginning of the 20th century.
[4] Le Groupe d'experts intergouvememental sur l'évolution du climat (GIEC) créé en 1988 par l’ONU pour synthétiser les études scientifiques sur le climat est arrivé à la conclusion que « l’essentiel de l’élévation de la température moyenne du globe observée depuis le milieu du XXe siècle est très probablement attribuable à la hausse des concentrations de GES anthropiques » (Changement Climatiques 2007, Rapport de Synthèse, GIEC). Dans le rapport de 2014, on peut lire « les émissions anthropiques de gaz à effet de serre, qui ont augmenté depuis l’époque préindustrielle en raison essentiellement de la croissance économique et démographique, sont actuellement plus élevées que jamais, ce qui a entraîné des concentrations atmosphériques de dioxyde de carbone, de méthane et d’oxyde nitreux sans précédent depuis au moins 800000 ans. Leurs effets, associés à ceux d’autres facteurs anthropiques, ont été détectés dans tout le système climatique et il est extrêmement probable qu’ils aient été la cause principale du réchauffement observé depuis le milieu du XXe siècle ». [4] The Intergovernmental Panel on Climate Change (IPCC) created in 1988 by the UN to synthesize scientific studies on the climate came to the conclusion that "most of the rise in temperature global average observed since the mid-twentieth century is most likely attributable to the increase in anthropogenic GHG concentrations ”(Climate Change 2007, Synthesis Report, IPCC). In the 2014 report, we can read “Anthropogenic greenhouse gas emissions, which have increased since pre-industrial times mainly due to economic and demographic growth, are currently higher than ever, resulting in atmospheric concentrations of carbon dioxide, methane and nitrous oxide unprecedented for at least 800,000 years. Their effects, along with those of other anthropogenic factors, have been detected throughout the climate system and there is extremely likely that they were the main cause of the observed warming since the middle of the 20th century ”.
[5] Les dernières projections du GIEC sont que la température de surface du globe pourrait croître de 1,1 à 6,4 °C supplémentaires au cours du XXIe siècle. Les différences entre projections viennent des sensibilités différentes des modèles pour les concentrations de gaz à effet de serre et des différents scénarios d'émissions futures. La plupart des études ont choisi 2100 comme horizon, mais le réchauffement devrait se poursuivre au-delà car, même si les émissions s'arrêtaient, les océans ont déjà stocké beaucoup de chaleur, des puits de carbone sont à restaurer, et la durée de vie du dioxyde de carbone et des autres gaz à effet de serre dans l'atmosphère est longue. [5] The latest IPCC projections are that the earth's surface temperature could increase an additional 1.1 to 6.4 ° C over the course of the 21st century. The differences between projections come from the different sensitivities of the models for greenhouse gas concentrations and different scenarios of future emissions. Most studies have chosen 2100 as the horizon, but warming should continue beyond that because, even if the emissions stopped, the oceans have already stored a lot of heat, carbon sinks need to be restored, and the duration of the The life of carbon dioxide and other greenhouse gases in the atmosphere is long.
[6] L'approche généralement utilisée pour diminuer les gaz polluants dans l'atmosphère tels que le CO2, est d'agir directement sur les sources du CO2. Les pays ont décidé de se mobiliser chaque année à travers des Conférences de Parties. Lors de la COP21 à Paris, 149 pays avaient donné leur accord pour un même objectif de lutter contre les gaz à effet de serre. Depuis l'accord de Rio et le protocole de Kyoto, les émissions de GES (notamment CO2) ont légèrement diminué mais celles-ci ne seront pas suffisantes pour garder l’atmosphère saine et pour freiner l’augmentation de la température moyenne observée depuis quelques années à la surface de la Terre. La loi Européenne (norme Euro6) contrôlant l'émission de gaz des véhicules devient de plus en plus stricte et la règlementation thermique dans le BTP se redéfinie sans arrêt (RT2015 et bientôt RT2020). Les mesures prises sont donc l'application de nouvelles règlementations comme la taxe CO2 aux industriels tels que les cimenteries et les pétroliers afin de limiter le dégagement de gaz polluants dans l'atmosphère. [6] The approach generally used to reduce polluting gases in the atmosphere, such as CO2, is to act directly on the sources of CO2. The countries have decided to mobilize each year through Conferences of the Parties. At the COP21 in Paris, 149 countries agreed to the same objective of combating greenhouse gases. Since the Rio Accord and the Kyoto Protocol, GHG emissions (especially CO2) have decreased slightly, but these will not be sufficient to keep the atmosphere healthy and to slow the increase in average temperature observed in recent years. years on the surface of the Earth. The European law (Euro6 standard) controlling the emission of gas from vehicles is becoming increasingly strict and thermal regulations in the construction industry are constantly being redefined (RT2015 and soon RT2020). The measures taken are therefore the application of new regulations such as the CO2 tax to manufacturers such as cement factories and oil companies in order to limit the release of polluting gases into the atmosphere.
[7] Malheureusement ces efforts sont encore insuffisants. La proposition d’agir directement sur les sources de GES (notamment CO2, comme par exemple la méthode de la substitution sur le clinker) existe dans de nombreux domaines, mais les différentes études réalisées montrent qu’il y a également un besoin urgent d’agir aussi sur le CO2 déjà présent dans l’atmosphère. [7] Unfortunately these efforts are still insufficient. The proposal to act directly on the sources of GHGs (in particular CO2, for example the method of substitution on clinker) exists in many fields, but the various studies carried out show that there is also an urgent need for also act on the CO2 already present in the atmosphere.
[8] A ce jour, la quantité de CO2 présente dans l’atmosphère est bien trop importante. De plus, l'élimination de gaz polluants dans les agglomérations n'a jamais été résolue d'une manière satisfaisante, notamment à cause de problèmes économiques et de commercialisation récurrents. [8] To date, the quantity of CO2 present in the atmosphere is far too high. In addition, the elimination of polluting gases in agglomerations has never been resolved in a straightforward way. satisfactorily, in particular because of recurring economic and marketing problems.
[9] Il apparaît donc essentiel, en plus de la lutte contre les causes de l’émission de gaz à effet de serre, d'éliminer et de stocker les gaz polluants déjà présents dans l'atmosphère. [9] It therefore appears essential, in addition to combating the causes of greenhouse gas emissions, to eliminate and store the polluting gases already present in the atmosphere.
[10] Dans une optique du multi-avantage entre la revalorisation du déchet via la ré carbonatation et la diminution du gaz CO2 responsable de l'effet de serre, Des projets ont été lancés à travers le monde. L'objectif de ces projets est d’une part est de diminuer les déchets de BTP et les recycler mais également de capturer le CO2 à travers les agrégats de béton recyclé dans le double but de diminuer la quantité du CO2 dans l'atmosphère et d'améliorer la qualité des propriétés chimique-physiques du béton recyclé. En effet, pour fabriquer le clinker, la « matière première » du ciment, les cuissons du calcaire et de l'argile dans les fours à très haute température, libèrent de grandes quantités de CO2. Cette étape de décarbonatation représente environ 60% des émissions de CO2 par tonne produite (équivalent environs à 700kg de CO2 dégagé par tonne de ciment fabriqué !). Or la production mondiale du ciment représente plus de 3 milliards de tonnes par an dont plus de 16 milliers de tonnes sont issus des 12 cimenteries en France.). Par conséquent, ces études ont pour ambition de récupérer essentiellement la fumée sortant des cheminées de cimenterie par les agrégats de béton recyclé afin de stocker le CO2 dans les bétons recyclés par le phénomène de carbonatation accélérée. Afin d’optimiser ces procédures, la récupération de CO2 doit être rapide tout en assurant la carbonatation totale du béton recyclé car ce dernier récupère et piège un maximum de CO2. [10] With a view to the multi-advantage between the recovery of waste via re-carbonation and the reduction of CO2 gas responsible for the greenhouse effect, projects have been launched across the world. The objective of these projects is on the one hand to reduce construction waste and to recycle it but also to capture CO2 through recycled concrete aggregates with the dual aim of reducing the amount of CO2 in the atmosphere and '' improve the quality of the chemical-physical properties of recycled concrete. Indeed, to manufacture clinker, the “raw material” of cement, the firing of limestone and clay in furnaces at very high temperature, release large quantities of CO2. This decarbonation step represents around 60% of CO2 emissions per tonne produced (equivalent to around 700kg of CO2 released per tonne of cement produced!). However, global cement production represents more than 3 billion tonnes per year, of which more than 16 thousand tonnes come from the 12 cement factories in France.). Consequently, these studies aim to essentially recover the smoke leaving the cement works chimneys by the recycled concrete aggregates in order to store the CO2 in the concrete recycled by the phenomenon of accelerated carbonation. In order to optimize these procedures, the recovery of CO2 must be rapid while ensuring the total carbonation of the recycled concrete because the latter recovers and traps a maximum of CO2.
[11] On relève que selon l’analyse théorique (Steinour HH, Journal of American Concrète Institute, 1956, 30 :905-907), le maximum de CO2 capturé par le ciment serait limité à environ 50% massique (équivalent 500 kg de CO2 par tonne de ciment) à cause de la quantité limitée des éléments chimiques dans le ciment. [11] It is noted that according to the theoretical analysis (Steinour HH, Journal of American Concrete Institute, 1956, 30: 905-907), the maximum CO2 captured by the cement would be limited to approximately 50% by mass (equivalent to 500 kg of CO2 per tonne of cement) because of the limited amount of chemical elements in the cement.
[12] Mais ces quantités restent, à l'heure actuelle, insuffisantes et il n’existe pas de matériau, pouvant être conçu à partir de matériau recyclé, capable d’absorber une quantité supérieure en CO2, et même d'absorber d’autres gaz polluants tels que le SO2, les NOx et les COV. [13] De plus, aujourd’hui même si du béton recyclé est utilisé pour les travaux de chaussées et les remblais principalement, cette application ne couvre pas la totalité des déchets et les enfouissements restent toujours une solution largement pratiquée à l’heure actuelle. [12] But these quantities remain, at the present time, insufficient and there is no material, which can be designed from recycled material, capable of absorbing a greater quantity of CO2, and even of absorbing other polluting gases such as SO2, NO x and VOCs. [13] In addition, today even if recycled concrete is used for pavement work and backfill mainly, this application does not cover all waste and landfills are still a widely practiced solution today.
[14] On relève en outre que dans des atmosphères confinées ou mal aérées, telles que des salles de classe ou certains environnements de travail en intérieur, la concentration en CO2 peut être jusqu’à 10 fois plus concentrée qu’en environnement ouvert. [14] It is further noted that in confined or poorly ventilated atmospheres, such as classrooms or certain indoor work environments, the CO2 concentration can be up to 10 times more concentrated than in an open environment.
[15] Il existe donc un besoin de développer des matériaux composites palliant les défauts relevés dans l’état de la technique. En particulier, il existe un besoin pour un composite permettant d’augmenter signifîcativement tant la vitesse d’absorption que la quantité de polluants absorbés. [15] There is therefore a need to develop composite materials overcoming the defects noted in the state of the art. In particular, there is a need for a composite which can significantly increase both the rate of absorption and the amount of pollutants absorbed.
[16] Il est du mérite de la demanderesse d’avoir développé un nouveau type de matériau composite comprenant des agrégats de béton recyclé ainsi que du carbone poreux. L’association de ces deux éléments améliore de manière synergique les propriétés d’absorption de chacun de ces éléments pris séparément. La quantité de CO2 absorbée peut aller au-delà de 15% pourcent massique (par rapport à la masse total du matériau composite), soit au moins 5% de plus que les méthodes connues qui plafonnent généralement à 10% (par exemple le granulat de béton concassé). [16] It is to the credit of the applicant for having developed a new type of composite material comprising aggregates of recycled concrete as well as porous carbon. The combination of these two elements synergistically improves the absorption properties of each of these elements taken separately. The quantity of CO2 absorbed can go beyond 15% mass percent (relative to the total mass of the composite material), i.e. at least 5% more than the known methods which generally cap at 10% (for example the aggregate of crushed concrete).
[17] A l'heure actuelle, à la connaissance de la demanderesse, il n’existe aucun matériau, et encore moins matériau composite, quelle que soit sa nature, qui satisfasse ces exigences, tant au niveau de la vitesse d’absorption que de la quantité de gaz polluants absorbés. [17] At the present time, to the knowledge of the Applicant, there is no material, and even less composite material, whatever its nature, which meets these requirements, both in terms of absorption rate and the quantity of polluting gases absorbed.
[18] La présente invention se rapporte ainsi en premier lieu à un nouveau composite frais ou pâte de composite et un nouveau matériau composite, comprenant des agrégats de béton recyclé et du carbone poreux. Le procédé de préparation de ce nouveau matériau est en outre simple et peu coûteux. Ils présentent des performances améliorées par rapport aux matériaux absorbants existants, en particulier en termes d’efficacité d’absorption (vitesse et quantité de gaz absorbés). [18] The present invention thus relates in the first place to a new fresh composite or composite paste and a new composite material, comprising aggregates of recycled concrete and porous carbon. The process for preparing this new material is also simple and inexpensive. They exhibit improved performance compared to existing absorbent materials, particularly in terms of absorption efficiency (speed and amount of gas absorbed).
L’invention se rapporte ainsi à un composite frais ou pâte de composite comprenant au moins un agrégat de béton ayant une porosité supérieure ou égale à 12 %, du carbone poreux ayant un volume de micropores supérieur ou égal à 0,2 cm3/g et un volume de macropores supérieur ou égal à 0,2 cm3/g, un liant et optionnellement de l’eau. The invention thus relates to a fresh composite or composite paste comprising at least one concrete aggregate having a porosity greater than or equal to 12%, carbon porous having a volume of micropores greater than or equal to 0.2 cm 3 / g and a volume of macropores greater than or equal to 0.2 cm 3 / g, a binder and optionally water.
[19] Avantageusement, le composite frais selon l’invention peut comprendre au moins un agrégat de béton ayant une porosité supérieure ou égale à 12 %, du carbone poreux ayant un volume de micropores supérieur ou égal à 0,2 cm3/g et un volume de macropores supérieur ou égal à 0,2 cm3/g, un liant et de l’eau. [19] Advantageously, the fresh composite according to the invention can comprise at least one concrete aggregate having a porosity greater than or equal to 12%, porous carbon having a volume of micropores greater than or equal to 0.2 cm 3 / g and a volume of macropores greater than or equal to 0.2 cm 3 / g, a binder and water.
[20] Dans la présente demande, on entend par « composite frais » ou « pâte de composite », la pâte hétérogène formée par le mélange des agrégats de béton, du carbone poreux, du liant, optionnellement de l’eau et éventuellement des additifs, adjuvants et/ou granulats, avant le durcissement conduisant au composite selon l’invention. [20] In the present application, the term “fresh composite” or “composite paste” is understood to mean the heterogeneous paste formed by the mixture of concrete aggregates, porous carbon, binder, optionally water and optionally additives. , adjuvants and / or aggregates, before curing leading to the composite according to the invention.
[21] On entend par « agrégat de béton », des résidus de béton pouvant être du béton recyclé qui a été broyé ou concassé sous forme d’agrégats. Il peut également contenir des résidus tels que par exemple des résidus ou éclats de brique, céramique, verre et autres éléments (principalement ceux dont la densité est proche de celle du béton) que l’on peut trouver dans certains bétons. D’après l’article, « Porosity of recycled concrète with substitution of recycled concrète aggregate - An experimental study » (Cernent and Concrète Research, 32, 2002, 1301-1311), la porosité d’un agrégat de béton recyclé se situe généralement entre 13% à 15%. [21] "Concrete aggregate" means concrete residue which may be recycled concrete which has been crushed or crushed in the form of aggregates. It may also contain residues such as, for example, residues or shards of brick, ceramic, glass and other elements (mainly those with a density close to that of concrete) that can be found in certain concrete. According to the article, “Porosity of recycled concrète with substitution of recycled concrète aggregate - An experimental study” (Cernent and Concrète Research, 32, 2002, 1301-1311), the porosity of a recycled concrete aggregate is generally between 13% to 15%.
[22] Dans le cadre de l’invention, on entend par « porosité », l'ensemble des vides (pores ou espaces) d'un matériau solide. Les pores peuvent être remplis par des fluides tels que des liquides ou des gaz. La porosité f d’un milieu poreux A peut aussi être représentée par une valeur numérique définie comme le rapport entre le volume total des pores[22] In the context of the invention, by "porosity" is meant all the voids (pores or spaces) of a solid material. The pores can be filled with fluids such as liquids or gases. The porosity f of a porous medium A can also be represented by a numerical value defined as the ratio between the total volume of the pores
( V pores) et le volume total du milieu poreux (Vtotai) : yA Vpores / Vtotal. (V pores) and the total volume of the porous medium (Vtotai): yA - Vpores / Vtotal.
0 < (pA < 1 0 <(pA <1
On définit ainsi (pagrégat de béton et (pcarbone poreu . Les pores peuvent être intra- ou interparticulaires. L’agrégat de béton et le carbone poreux possèdent des espaces intrap articulaires. En ce qui concerne le carbone poreux il y a en outre des espaces interparticulaires qui sont généralement dus aux espaces entre les feuilles de graphène qui composent ledit carbone poreux. [23] Avantageusement, l’agrégat de béton peut avoir une porosité supérieure ou égale àWe thus define (p concrete aggregate and (pcarbone poreu. The pores can be intra- or interparticulate. The concrete aggregate and the porous carbon have intraparticular spaces. As regards the porous carbon there are also interparticle spaces which are generally due to the spaces between the graphene sheets which make up said porous carbon. [23] Advantageously, the concrete aggregate can have a porosity greater than or equal to
12 %, (pagrégat de béton ^ 0, 12. 12%, ( concrete aggregate ^ 0, 12.
[24] Avantageusement, l’agrégat de béton peut être composé essentiellement de béton recyclé. Le béton recyclé peut comprendre des résidus ou éclats de brique, céramique, verre et autres éléments que l’on peut trouver dans certains bétons. [24] Advantageously, the concrete aggregate can consist essentially of recycled concrete. Recycled concrete can include residues or chips of brick, ceramic, glass and other elements that can be found in some concrete.
[25] Avantageusement, l’agrégat de béton peut avoir un diamètre moyen allant de 1 à 50 mm, de préférence de 1 à 20 et de manière encore préférée de 5 à 10 mm. La taille des agrégats de béton peut varier en fonction de l’utilisation que l’on souhaite faire du matériau composite. En fonction de la surface de béton accessible au gaz, les agrégats de petits diamètres, sont généralement carbonatés plus vite et se saturent plus rapidement à courte terme que les agrégats de grande taille car la surface accessible au gaz est plus grande que pour ces derniers. Les agrégats de diamètre plus élevé seront carbonatés plus lentement. Ces différentes cinétiques peuvent être prises en compte en fonctions des différents usages de matériaux composites selon l’invention qu’envisage l’homme du métier. [25] Advantageously, the concrete aggregate can have an average diameter ranging from 1 to 50 mm, preferably from 1 to 20 and more preferably from 5 to 10 mm. The size of the concrete aggregates can vary depending on the intended use of the composite material. Depending on the concrete surface accessible to gas, aggregates of small diameters are generally carbonated faster and saturate more quickly in the short term than large aggregates because the surface accessible to gas is greater than for the latter. Larger diameter aggregates will carbonate more slowly. These different kinetics can be taken into account depending on the different uses of composite materials according to the invention envisioned by those skilled in the art.
[26] Avantageusement, le composite frais selon l’invention peut comprendre de 25 à 45 % massique d’agrégats de béton, de préférence 30 à 40 %. [26] Advantageously, the fresh composite according to the invention can comprise 25 to 45% by mass of concrete aggregates, preferably 30 to 40%.
[27] Dans la présente demande, on entend par « carbone poreux », des résidus de déchets de biomasse, polymère, de carbones minéraux ou des résidus de procédés pétroliers. Les carbones poreux peuvent ainsi être obtenus par décomposition thermique (pyrolyse) d’un précurseur type biomasse, polymère, carbones minéraux ou résidus de procédés pétroliers. Après pyrolyse, la porosité est générée par une réaction chimique à haute température avec un « agent activant » qui peut être choisi dans le groupe comprenant le CO2, H2O, KOH, NaOH et H2PO4. Dans le cadre de l’invention, les algues (biomasse) sont préférées comme précurseur car il a été montré dans des travaux précédents qu’avec une seule étape de pyrolyse, il est possible d’obtenir des matériaux carbones poreux, grâce aux éléments présents dans la composition des algues. C’est également le cas avec des déchets de biomasse riches en cellulose (E. Raymundo-Pinero et al., Advanced Materials, 2006, 18, 1877-1882). [28] Avantageusement, le carbone poreux peut être composé essentiellement de carbone. Il peut avoir une structure plus ou moins ordonnée possédant une grande surface spécifique et un haut degré de porosité. Le carbone poreux peut se présenter sous la forme de poudre (avec des tailles de particules allant du pm au mm) ou de pellets dans le composite selon l’invention. On entend par pellet un agrégat issu d’un mélange d’une poudre de carbone et d’un liant. De préférence, ce liant peut être un carbone type brai de pétrole ou de carbone. [27] In the present application, the term “porous carbon” is understood to mean residues of waste biomass, polymer, mineral carbon or residues from petroleum processes. Porous carbons can thus be obtained by thermal decomposition (pyrolysis) of a precursor such as biomass, polymer, mineral carbons or residues from petroleum processes. After pyrolysis, the porosity is generated by a chemical reaction at high temperature with an "activating agent" which can be chosen from the group comprising CO2, H2O, KOH, NaOH and H2PO4. In the context of the invention, algae (biomass) are preferred as precursor because it has been shown in previous work that with a single pyrolysis step, it is possible to obtain porous carbon materials, thanks to the elements present. in the composition of algae. This is also the case with biomass waste rich in cellulose (E. Raymundo-Pinero et al., Advanced Materials, 2006, 18, 1877-1882). [28] Advantageously, the porous carbon can consist essentially of carbon. It can have a more or less ordered structure having a large specific surface area and a high degree of porosity. The porous carbon can be in the form of powder (with particle sizes ranging from μm to mm) or of pellets in the composite according to the invention. By pellet is meant an aggregate resulting from a mixture of a carbon powder and a binder. Preferably, this binder can be a carbon of petroleum or carbon pitch type.
[29] Avantageusement, le carbone poreux peut avoir un volume de micropores supérieur ou égal à 0,2 cm3/g, de préférence supérieur ou égal à 0,4 cm3/g. On entend par [29] Advantageously, the porous carbon can have a volume of micropores greater than or equal to 0.2 cm 3 / g, preferably greater than or equal to 0.4 cm 3 / g. We hear by
« micropore », un pore ayant un diamètre inférieur à 2 nm. "Micropore" means a pore having a diameter of less than 2 nm.
[30] Avantageusement, le carbone poreux peut avoir un volume de mésopores supérieur ou égal à 0,2 cm3/g, de préférence allant de 0,2 à 0,6 cm3/g. On entend par « mésopore », un pore ayant un diamètre allant de 2 à 50 nm. Ils ne sont généralement pas impliqués dans l’absorption, mais peuvent être utile dans le transport de CO2. [30] Advantageously, the porous carbon can have a mesopore volume greater than or equal to 0.2 cm 3 / g, preferably ranging from 0.2 to 0.6 cm 3 / g. The term “mesopore” is understood to mean a pore having a diameter ranging from 2 to 50 nm. They are generally not involved in absorption, but can be useful in the transport of CO2.
[31] Avantageusement, le carbone poreux peut avoir un volume de macropores supérieur ou égal à 0,2 cm3/g, de préférence supérieur ou égal à 1 cm3/g. On entend par [31] Advantageously, the porous carbon can have a volume of macropores greater than or equal to 0.2 cm 3 / g, preferably greater than or equal to 1 cm 3 / g. We hear by
« macropore », un pore ayant un diamètre supérieur à 50 nm. "Macropore" means a pore having a diameter greater than 50 nm.
[32] Avantageusement, les poudres, particules ou agrégats de carbone poreux peuvent avoir un diamètre moyen allant de 1 à 20 mm, de préférence de 3 à 15 et de manière encore préférée de 5 à 10 mm. La taille des particules, ou agrégats de carbone poreux peut varier en fonction de l’utilisation que l’on souhaite faire du matériau composite. [32] Advantageously, the powders, particles or porous carbon aggregates can have an average diameter ranging from 1 to 20 mm, preferably from 3 to 15 and more preferably from 5 to 10 mm. The size of the particles, or aggregates of porous carbon can vary depending on the intended use of the composite material.
[33] Avantageusement, le carbone poreux peut être fonctionnalisé, de préférence en surface. La fonctionnalisation de surface peut être d’au moins un hétéroatome choisi dans le groupe comprenant O, N, S et P. [33] Advantageously, the porous carbon can be functionalized, preferably at the surface. The surface functionalization can be at least one heteroatom selected from the group consisting of O, N, S and P.
[34] Avantageusement, le carbone poreux peut avoir une surface spécifique allant de 500 et 3000 m2/g, de préférence de 700 à 2500 m2/g, et de manière encore préférée de 1500 à 2500 m2/g. [34] Advantageously, the porous carbon can have a specific surface area ranging from 500 and 3000 m 2 / g, preferably from 700 to 2500 m 2 / g, and more preferably from 1500 to 2500 m 2 / g.
[35] Avantageusement, le composite frais selon l’invention peut comprendre de 1 à 20 % massique de carbone poreux, de préférence 1 à 10 %. [36] Dans la présente demande, on entend par « liant », une matière finement broyée qui réagit avec l'eau pour former une pâte qui fait prise et durcit après mélange avec l'eau. Il peut s’agir de ciment mais aussi de polymères, résines ou de matériaux à base de carbone (brai). Avantageusement, lorsque le liant est de type polymère, résine ou de matériau à base de carbone (brai), le composite frais et le composite selon l’invention ne contiennent généralement pas d’eau. [35] Advantageously, the fresh composite according to the invention can comprise from 1 to 20% by mass of porous carbon, preferably 1 to 10%. [36] In the present application, by "binder" is meant a finely ground material which reacts with water to form a paste which sets and hardens after mixing with water. It can be cement but also polymers, resins or carbon-based materials (pitch). Advantageously, when the binder is of polymer, resin or carbon-based material (pitch) type, the fresh composite and the composite according to the invention generally do not contain water.
[37] Avantageusement, le liant peut être choisi dans le groupe comprenant les ciments, de préférence les ciments de catégorie CEM I (ciment Portland), CEM II A ou B (ciment Portland composé), CEM III A, B ou C (ciment de haut-foumeau), CEM IV A ou B (ciment de type pouzzolanique) ou CEM V A ou B (ciment composé). [37] Advantageously, the binder can be chosen from the group comprising cements, preferably cements of category CEM I (Portland cement), CEM II A or B (compound Portland cement), CEM III A, B or C (cement. of haut-foumeau), CEM IV A or B (pozzolanic cement) or CEM VA or B (compound cement).
[38] Avantageusement, le liant peut être choisi dans le groupe comprenant les liants polymères ou copolymères, de préférence les liants de type polyesters insaturées, résines de type époxy, acrylique ou vinyle acétate, les esters vinyliques, résines phénoliques, résine polyuréthanes, polyéthylène, polystyrène, polycarbonate, latex, copolymères alkyle, époxy, acrylonitrile, chlorure polyvinyle, polyuréthane, les liants polymères chlorés et leurs mélanges. [38] Advantageously, the binder can be chosen from the group comprising polymer or copolymer binders, preferably binders of unsaturated polyester type, epoxy, acrylic or vinyl acetate type resins, vinyl esters, phenolic resins, polyurethane resin, polyethylene. , polystyrene, polycarbonate, latex, alkyl copolymers, epoxy, acrylonitrile, polyvinyl chloride, polyurethane, chlorinated polymer binders and mixtures thereof.
[39] Avantageusement, le liant peut être choisi dans le groupe comprenant les liants à base de carbone, de préférence les liants de type brai de carbone ou brai de pétrole. [39] Advantageously, the binder can be chosen from the group comprising carbon-based binders, preferably binders of carbon pitch or petroleum pitch type.
[40] Avantageusement, le composite frais selon l’invention peut comprendre de 20 à 60 % massique liant, de préférence 30 à 50 %. [40] Advantageously, the fresh composite according to the invention can comprise 20 to 60% by mass of binder, preferably 30 to 50%.
[41] Avantageusement, le composite frais selon l’invention peut comprendre de 10 à 25 % massique d’eau, de préférence 15 à 20 %. [41] Advantageously, the fresh composite according to the invention can comprise from 10 to 25% by mass of water, preferably 15 to 20%.
[42] Avantageusement, le composite frais selon l’invention peut comprendre : [42] Advantageously, the fresh composite according to the invention can comprise:
- de 25 à 45 % massique d’au moins un agrégat de béton ayant une porosité supérieure ou égale à 12 %, - from 25 to 45% by mass of at least one concrete aggregate with a porosity greater than or equal to 12%,
- de 1 à 20 % massique de carbone poreux ayant un volume de micropores supérieur ou égal à 0,2 cm3/g et un volume de macropores supérieur ou égal à 0,2 cm3/g, - from 1 to 20% by mass of porous carbon having a volume of micropores greater than or equal to 0.2 cm 3 / g and a volume of macropores greater than or equal to 0.2 cm 3 / g,
- de 20 à 60 % massique d’un liant et - from 20 to 60% by mass of a binder and
- optionnellement de 10 à 25 % massique d’eau. [43] Avantageusement, le composite frais selon l’invention peut avoir ratio volumique agrégat de béton / carbone poreux compris dans l’intervalle allant de 30:70 à 80:20, de préférence de 40:60 à 60:40. - optionally from 10 to 25% by mass of water. [43] Advantageously, the fresh composite according to the invention can have the concrete aggregate / porous carbon volume ratio in the range from 30:70 to 80:20, preferably from 40:60 to 60:40.
[44] Avantageusement, le composite frais selon l’invention peut avoir ratio surface externe agrégat de béton / surface externe carbone poreux compris dans un intervalle allant de 0,5 à 1,5. [44] Advantageously, the fresh composite according to the invention can have the ratio of external surface area of concrete aggregate / external surface of porous carbon in a range from 0.5 to 1.5.
[45] Avantageusement, le composite frais selon l’invention peut avoir ratio massique agrégat de béton / liant compris dans un intervalle allant de 0,6 à 1. [45] Advantageously, the fresh composite according to the invention can have concrete aggregate / binder mass ratio within a range of 0.6 to 1.
[46] Avantageusement, le composite frais selon l’invention peut avoir ratio massique carbone poreux / liant compris dans un intervalle allant de 0,03 à 0,1. [46] Advantageously, the fresh composite according to the invention can have a porous carbon / binder mass ratio within a range ranging from 0.03 to 0.1.
[47] Avantageusement, le composite frais selon l’invention peut avoir un ratio massique agrégat de béton / (liant + eau) allant de 0,4 à 0,8. [47] Advantageously, the fresh composite according to the invention can have a concrete aggregate / (binder + water) mass ratio ranging from 0.4 to 0.8.
[48] Avantageusement, le composite frais selon l’invention peut avoir un ratio massique carbone poreux / (liant + eau) allant de 0,02 à 0,08. [48] Advantageously, the fresh composite according to the invention can have a porous carbon / (binder + water) mass ratio ranging from 0.02 to 0.08.
[49] Avantageusement, le composite frais selon l’invention peut comprendre en outre au moins un adjuvant et/ou un additif. [49] Advantageously, the fresh composite according to the invention can further comprise at least one adjuvant and / or one additive.
[50] Avantageusement, le composite frais selon l’invention peut comprendre de 0 à 2 % d’au moins un adjuvant et/ou additif. [50] Advantageously, the fresh composite according to the invention can comprise from 0 to 2% of at least one adjuvant and / or additive.
[51] On entend par « adjuvant » ou « additif », des produits chimiques habituellement ajoutés lors du malaxage du béton et faiblement dosés lors de la préparation (moins de 5% de la masse du béton). Ces produits offrent la possibilité d’améliorer certaines caractéristiques du béton telles que son temps de prise ou son étanchéité. Dans le cadre de l’invention, les adjuvants et/ou les additifs peuvent être incorporés lors de la fabrication de celui-ci, plus particulièrement lors du mélange du liant avec les agrégats de béton et le carbone poreux, afin d’en améliorer les propriétés. Un adjuvant peut intervenir sur plusieurs paramètres : la résistance, la fluidité, le temps de prise, la perméabilité du composite selon l’invention. [51] The term “adjuvant” or “additive” is understood to mean chemicals usually added during mixing of the concrete and low dosages during preparation (less than 5% of the mass of the concrete). These products offer the possibility of improving certain characteristics of concrete such as its setting time or its tightness. In the context of the invention, the adjuvants and / or additives can be incorporated during the manufacture thereof, more particularly during the mixing of the binder with the concrete aggregates and the porous carbon, in order to improve the properties thereof. properties. An adjuvant can act on several parameters: strength, fluidity, setting time, permeability of the composite according to the invention.
La fluidité : elle est généralement apportée par les plastifiants et les super-plastifiants. Ces produits accroissent également la résistance du composite à l’état durci. Le temps de prise: il peut généralement être régulé par intégration d’un accélérateur ou d’un retardateur de prise. Fluidity: it is generally provided by plasticizers and superplasticizers. These products also increase the strength of the composite in the cured state. The setting time: it can generally be regulated by integrating an accelerator or a setting retarder.
La perméabilité : elle peut généralement être augmentée par l’incorporation d’un entraîneur d’air, qui crée des microbulles dans le composite. A l’inverse, l’hydrofuge de masse limite la pénétration de l’eau dans les pores et les capillaires du composite. Permeability: This can usually be increased by incorporating an air entrainer, which creates microbubbles in the composite. Conversely, the bulk water repellent limits the penetration of water into the pores and capillaries of the composite.
Les additifs sont généralement considérés comme des adjuvants mais ayant un rôle plus spécifique d’abaisser le seuil de cisaillement pour modifier le comportement rhéologique du béton frais. Il peut s’agir par exemple des superplastifiants. Additives are generally considered as admixtures but having a more specific role of lowering the shear threshold to modify the rheological behavior of fresh concrete. These can be, for example, superplasticizers.
[52] Avantageusement, le composite frais selon l’invention peut comprendre un ou plusieurs adjuvants et/ou additifs choisi dans le groupe comprenant les accélérateurs de prise, les accélérateurs de durcissement, les retardateurs de prise, les plastifiants, les plastifiants réducteurs d’eau, les superplastifïants (fluidifiant ou réducteur), les entraîneurs d’air, les hydrofuge, les pigments ou colorants et les produits de cure. [52] Advantageously, the fresh composite according to the invention can comprise one or more adjuvants and / or additives chosen from the group comprising setting accelerators, hardening accelerators, setting retarders, plasticizers, plasticizers reducing water, superplasticizers (thinner or reducing agent), air entrainers, water repellents, pigments or dyes and curing products.
[53] Avantageusement, le composite selon l’invention peut comprendre en outre au moins un granulat. [53] Advantageously, the composite according to the invention can further comprise at least one aggregate.
[54] On entend par « granulat », un composé de grains minéraux de tailles et de formes variables, dont les plus communs portent les noms de “sable” et de “gravier”. Ils entrent généralement dans la composition du béton et du mortier. [54] The term “aggregate” is understood to mean a compound of mineral grains of varying sizes and shapes, the most common of which bear the names of “sand” and “gravel”. They are generally used in the composition of concrete and mortar.
[55] Avantageusement, le composite frais selon l’invention peut comprendre de la fumée de silice, des nanotubes de carbone (pour ajouter de la résistance mécanique), des polymères (comme superplastifiants pour faciliter la fabrication et mise en place), des colorants (pour l’aspect esthétique, du schiste expansé, des billes de polystyrène ou bien encore des fibres végétales. [55] Advantageously, the fresh composite according to the invention can comprise silica fume, carbon nanotubes (to add mechanical strength), polymers (as superplasticizers to facilitate manufacture and installation), dyes. (for the aesthetic aspect, expanded shale, polystyrene beads or even vegetable fibers.
[56] Avantageusement, le composite frais selon l’invention peut comprendre : [56] Advantageously, the fresh composite according to the invention can comprise:
- de 25 à 45 % massique d’au moins un agrégat de béton ayant une porosité supérieure ou égale à 12%, - from 25 to 45% by mass of at least one concrete aggregate with a porosity greater than or equal to 12%,
- de 1 à 20 % massique de carbone poreux ayant un volume de micropores supérieur ou égal à 0,2 cm3/g et un volume de macropores supérieur ou égal à 0,2 cm3/g, - from 1 to 20% by mass of porous carbon having a volume of micropores greater than or equal to 0.2 cm 3 / g and a volume of macropores greater than or equal to 0.2 cm 3 / g,
- de 20 à 60 % massique d’un liant et - optionnellement de 10 à 25 % massique d’eau. - from 20 to 60% by mass of a binder and - optionally from 10 to 25% by mass of water.
- optionnellement de 0 à 2 % massique d’au moins un adjuvant et/ou additif. - optionally from 0 to 2% by mass of at least one adjuvant and / or additive.
[57] L’invention se rapporte également à un nouveau matériau composite obtenu par le durcissement du composite frais selon l’invention. Le procédé de préparation de ces nouveaux matériaux est en outre simple et peu coûteux. Ils présentent des performances améliorées par rapport aux matériaux absorbants existants, en particulier en termes d’efficacité d’absorption (vitesse et quantité de gaz absorbés). [57] The invention also relates to a novel composite material obtained by curing the fresh composite according to the invention. The process for preparing these new materials is also simple and inexpensive. They exhibit improved performance compared to existing absorbent materials, particularly in terms of absorption efficiency (speed and amount of gas absorbed).
[58] Ainsi, l’invention se rapporte aussi à un composite comprenant au moins un agrégat de béton ayant une porosité supérieure ou égale à 12 %, du carbone poreux ayant un volume de micropores supérieur ou égal à 0,2 cm3/g et un volume de macropores supérieur ou égal à 0,2 cm3/g, un liant et optionnellement de l’eau. [58] Thus, the invention also relates to a composite comprising at least one concrete aggregate having a porosity greater than or equal to 12%, porous carbon having a volume of micropores greater than or equal to 0.2 cm 3 / g. and a volume of macropores greater than or equal to 0.2 cm 3 / g, a binder and optionally water.
[59] Avantageusement, le composite peut comprendre au moins un agrégat de béton ayant une porosité supérieure ou égale à 12 %, du carbone poreux ayant un volume de micropores supérieur ou égal à 0,2 cm3/g et un volume de macropores supérieur ou égal à 0,2 cm3/g, un liant et de l’eau. [59] Advantageously, the composite can comprise at least one concrete aggregate having a porosity greater than or equal to 12%, porous carbon having a volume of micropores greater than or equal to 0.2 cm 3 / g and a volume of greater macropores. or equal to 0.2 cm 3 / g, a binder and water.
[60] Avantageusement, le composite selon l’invention peut comprendre de 25 à 45 % massique d’agrégats de béton, de préférence 30 à 40 %. [60] Advantageously, the composite according to the invention can comprise 25 to 45% by mass of concrete aggregates, preferably 30 to 40%.
[61] Avantageusement, le composite selon l’invention peut comprendre de 1 à 20 % massique de carbone poreux, de préférence 1 à 10 %. [61] Advantageously, the composite according to the invention can comprise from 1 to 20% by mass of porous carbon, preferably 1 to 10%.
[62] Avantageusement, le composite selon l’invention peut comprendre de 20 à 60 % massique liant, de préférence 30 à 50 %. [62] Advantageously, the composite according to the invention can comprise 20 to 60% by mass of binder, preferably 30 to 50%.
[63] Avantageusement, le composite selon l’invention peut comprendre de 10 à 25 % massique d’eau, de préférence 15 à 20 %. [63] Advantageously, the composite according to the invention can comprise from 10 to 25% by mass of water, preferably 15 to 20%.
[64] Avantageusement, le composite frais et le composite selon l’invention ont la même composition. En particulier, le composite selon l’invention comprend généralement autant d’eau que le composite frais, le durcissement n’étant pas un séchage mais une cristallisation. On peut aussi parler de « semi-cristallisation » dans le sens où, dans la pâte, le CSH (ou gel de CSH) peut être mal cristallisé et avoir des formes de feuilles ou bien de paillettes, alors que le Ca(OH)2 est généralement complètement cristallisé. Avec le temps, la quantité en eau peut malgré tout diminuer : notamment lorsque certaines molécules d’eau n’ont pas été en contact avec le ciment sec, le mélange de l’eau avec le ciment sec n’ayant pas été parfaitement homogène. Ces molécules d’eau peuvent rester piégées et risquent de s’évaporer avec le temps. Mais cette quantité est généralement faible, et le composite selon l’invention peut avoir une quantité en eau jusqu’à seulement 10% inférieure, par rapport à la quantité en eau du composite frais selon l’invention. [64] Advantageously, the fresh composite and the composite according to the invention have the same composition. In particular, the composite according to the invention generally comprises as much water as the fresh composite, the hardening not being a drying but a crystallization. We can also speak of "semi-crystallization" in the sense that, in the paste, the CSH (or CSH gel) can be poorly crystallized and have the shape of sheets or even flakes, while Ca (OH) 2 is usually completely crystallized. With over time, the quantity of water can nevertheless decrease: in particular when certain water molecules have not been in contact with the dry cement, the mixture of water with the dry cement not having been perfectly homogeneous. These water molecules can get trapped and risk evaporating over time. However, this amount is generally low, and the composite according to the invention can have an amount of water up to only 10% lower, compared to the amount of water of the fresh composite according to the invention.
[65] Avantageusement, le composite selon l’invention peut avoir ratio volumique agrégat de béton / carbone poreux compris dans l’intervalle allant de 30:70 à 80:20, de préférence de 40:60 à 60:40. [65] Advantageously, the composite according to the invention can have the concrete aggregate / porous carbon volume ratio in the range from 30:70 to 80:20, preferably from 40:60 to 60:40.
[66] Avantageusement, le composite frais selon l’invention peut avoir ratio surface externe agrégat de béton / surface externe carbone poreux compris dans un intervalle allant de 0,5 à 1,5. [66] Advantageously, the fresh composite according to the invention can have the ratio of external surface area of concrete aggregate / external surface of porous carbon in a range from 0.5 to 1.5.
[67] Avantageusement, le composite selon l’invention peut avoir ratio massique agrégat de béton / liant compris dans un intervalle allant de 0,6 à 1. [67] Advantageously, the composite according to the invention can have concrete aggregate / binder mass ratio within a range of 0.6 to 1.
[68] Avantageusement, le composite selon l’invention peut avoir ratio massique carbone poreux / liant compris dans un intervalle allant de 0,03 à 0,1. [68] Advantageously, the composite according to the invention can have a porous carbon / binder mass ratio within a range ranging from 0.03 to 0.1.
[69] Avantageusement, le composite selon l’invention peut avoir un ratio massique agrégat de béton / (liant + eau) allant de 0,4 à 0,8. [69] Advantageously, the composite according to the invention can have a concrete aggregate / (binder + water) mass ratio ranging from 0.4 to 0.8.
[70] Avantageusement, le composite selon l’invention peut avoir un ratio massique carbone poreux / (liant + eau) allant de 0,02 à 0,08. [70] Advantageously, the composite according to the invention can have a porous carbon / (binder + water) mass ratio ranging from 0.02 to 0.08.
[71 ] Avantageusement, le composite selon l’invention peut comprendre en outre au moins un adjuvant et/ou un additif, de préférence en quantité inférieure ou égale à 2%. [71] Advantageously, the composite according to the invention may further comprise at least one adjuvant and / or one additive, preferably in an amount less than or equal to 2%.
[72] Avantageusement, le composite selon l’invention peut comprendre : [72] Advantageously, the composite according to the invention can comprise:
- de 25 à 45 % massique d’au moins un agrégat de béton ayant une porosité supérieure ou égale à 12 %, - from 25 to 45% by mass of at least one concrete aggregate with a porosity greater than or equal to 12%,
- de 1 à 20 % massique de carbone poreux ayant un volume de micropores supérieur ou égal à 0,2 cm3/g et un volume de macropores supérieur ou égal à 0,2 cm3/g, - from 1 to 20% by mass of porous carbon having a volume of micropores greater than or equal to 0.2 cm 3 / g and a volume of macropores greater than or equal to 0.2 cm 3 / g,
- de 20 à 60 % massique d’un liant et - from 20 to 60% by mass of a binder and
- optionnellement de 10 à 25 % massique d’eau. [73] Avantageusement, le composite selon l’invention peut comprendre : - optionally from 10 to 25% by mass of water. [73] Advantageously, the composite according to the invention can comprise:
- de 25 à 45 % massique d’au moins un agrégat de béton ayant une porosité supérieure ou égale à 12 %, - from 25 to 45% by mass of at least one concrete aggregate with a porosity greater than or equal to 12%,
- de 1 à 20 % massique de carbone poreux ayant un volume de micropores supérieur ou égale à 0,2 cm3/g et un volume de macropores supérieur ou égal à 0,2 cm3/g, - from 1 to 20% by mass of porous carbon having a volume of micropores greater than or equal to 0.2 cm 3 / g and a volume of macropores greater than or equal to 0.2 cm 3 / g,
- de 20 à 60 % massique d’un liant et - from 20 to 60% by mass of a binder and
- optionnellement de 10 à 25 % massique d’eau. - optionally from 10 to 25% by mass of water.
- optionnellement de 0 à 2 % massique d’au moins un adjuvant et/ou additif. - optionally from 0 to 2% by mass of at least one adjuvant and / or additive.
[74] L’invention se rapporte également à une utilisation d’un composite selon l’invention pour assainir l’air. L’air peut être de l’air dans un environnement intérieur ou extérieur. [74] The invention also relates to a use of a composite according to the invention for cleaning the air. Air can be air in an indoor or outdoor environment.
[75] Avantageusement, l’utilisation du composite selon l’invention peut être pour absorber des gaz polluants compris dans l’air. Le composite selon l’invention peut ainsi être utilisé pour absorber le CO2, le SO2, les NOx et les COV. [75] Advantageously, the use of the composite according to the invention can be to absorb polluting gases included in the air. The composite according to the invention can thus be used to absorb CO2, SO2, NOx and VOCs.
[76] On entend par « NOx », les oxydes d'azote qui sont des composés chimiques formés d'oxygène et d'azote. [76] The term “NOx” is understood to mean nitrogen oxides, which are chemical compounds formed from oxygen and nitrogen.
[77] On entend par « COV », « VOC » ou « composé organique volatil », des composés organiques pouvant facilement se trouver sous forme gazeuse dans l'atmosphère terrestre. Ils constituent une famille de produits très large. Ces composés ont la particularité d'avoir un point d'ébullition très bas, ils s'évaporent ou se subliment facilement depuis leur forme solide ou liquide. Cela leur confère l'aptitude de se propager plus ou moins loin de leur lieu d’émission, entraînant ainsi des impacts directs et indirects sur les animaux et la nature. Les COV peuvent être d'origine anthropique (provenant du raffinage, de l'évaporation de solvants organiques, imbrûlés, etc.) ou d'origine biotique (COVB ou COV biogéniques émis par les plantes ou certaines fermentations). Ils peuvent être biodégradables ou non. [77] The term “VOC”, “VOC” or “volatile organic compound” is understood to mean organic compounds which can easily be found in gaseous form in the earth's atmosphere. They constitute a very broad family of products. These compounds have the particularity of having a very low boiling point, they evaporate or sublimate easily from their solid or liquid form. This gives them the ability to spread more or less far from their place of emission, thus leading to direct and indirect impacts on animals and nature. VOCs can be of anthropogenic origin (from refining, evaporation of organic solvents, unburnt, etc.) or of biotic origin (VOCs or biogenic VOCs emitted by plants or certain fermentations). They may or may not be biodegradable.
[78] L’invention se rapporte également à un procédé de fabrication de composite selon l’invention. [78] The invention also relates to a process for manufacturing a composite according to the invention.
[79] Avantageusement, le procédé de fabrication d’un composite selon l’invention peut comprendre les étapes : a) mélange d’au moins un agrégat de béton ayant une porosité supérieure ou égale à[79] Advantageously, the method of manufacturing a composite according to the invention can comprise the steps: a) mixture of at least one concrete aggregate having a porosity greater than or equal to
12 %, de carbone poreux ayant un volume de micropores supérieur ou égale à 0,2 cm3/g et un volume de macropores supérieur ou égal à 0,2cm3/g , d’un liant, optionnellement d’eau et éventuellement d’additifs, d’adjuvants et/ou de granulats, et obtention d’un composite frais ; b) moulage et durcissement du composite frais obtenu à l’étape a) ; c) démoulage. 12%, of porous carbon having a volume of micropores greater than or equal to 0.2 cm 3 / g and a volume of macropores greater than or equal to 0.2 cm 3 / g, of a binder, optionally water and optionally d additives, adjuvants and / or aggregates, and obtaining a fresh composite; b) molding and curing of the fresh composite obtained in step a); c) demoulding.
[80] On entend par « durcissement » ou « hydratation », notamment dans le domaine du génie civil, le processus d’hydratation qui produit les éléments chimiques plus au moins cristallisés du produit final, les deux expressions sont généralement utilisées indifféremment car le durcissement est le résultat de l’hydratation (augmentation de la valeur de Module de Young). Lorsque le composite frais ne comprend pas d’eau, le durcissement de l’étape b) peut être la réaction chimique du liant polymère, résine ou matériau à base de carbone permettant d’obtenir le composite selon l’invention. [80] The term "hardening" or "hydration" is understood to mean, in particular in the field of civil engineering, the hydration process which produces the more or less crystallized chemical elements of the final product, the two expressions are generally used interchangeably because the hardening is the result of hydration (increase in Young's modulus value). When the fresh composite does not include water, the curing of step b) can be the chemical reaction of the polymer, resin or carbon-based material binder to obtain the composite according to the invention.
[81] Avantageusement, les quantités d’agrégat de béton, de carbone poreux, de liant, d’eau et optionnellement d’additif, d’adjuvant et/ou de de granulat dans le mélange de l’étape a) sont telles que définies ci-dessus. [81] Advantageously, the amounts of concrete aggregate, porous carbon, binder, water and optionally additive, adjuvant and / or aggregate in the mixture of step a) are such that defined above.
[82] Avantageusement, l’étape a) comprend en outre l’ajout d’éventuel adjuvant, additif et/ou granulat. De préférence, l’étape a) peut comprendre les sous-étapes : i) mélange des agrégats de béton, liant, carbone poreux et éventuel granulat, ii) homogénéisation, et iii) optionnellement ajout de l’eau comprenant éventuellement au moins un adjuvant et/ou additif, de préférence de manière progressive. [82] Advantageously, step a) further comprises the addition of any adjuvant, additive and / or aggregate. Preferably, step a) can comprise the sub-steps: i) mixing the aggregates of concrete, binder, porous carbon and optional aggregate, ii) homogenization, and iii) optionally adding water optionally comprising at least one adjuvant. and / or additive, preferably gradually.
[83] Avantageusement, l’étape b) de durcissement peut être réalisée dans des moules de dimensions souhaitées. L’homme du métier saura adapter le moule en fonction de l’utilisation finale souhaitée du composite. [83] Advantageously, step b) of curing can be carried out in molds of desired dimensions. Those skilled in the art will know how to adapt the mold according to the desired end use of the composite.
[84] Avantageusement, l’étape b) peut durer de 4 à 48 heures, de préférence 24 heures. De préférence, l’étape c) de démoulage doit être mise en œuvre moins de 24 heures après le début du durcissement. Le durcissement peut ainsi se poursuivre après l’étape c). La durée du durcissement peut être raccourcie ou allongée notamment en fonction des adjuvants et/ou additifs éventuellement présents dans le composite frais. L’homme du métier saura adapter la durée de l’étape b) en fonction du mélange composite frais préparé. [84] Advantageously, step b) can last from 4 to 48 hours, preferably 24 hours. Preferably, the demolding step c) should be carried out less than 24 hours after the start of hardening. The hardening can thus continue after step c). The duration of the hardening can be shortened or lengthened, in particular depending on the adjuvants and / or additives possibly present in the fresh composite. Those skilled in the art will know how to adapt the duration of step b) as a function of the fresh composite mixture prepared.
[85] Avantageusement, le durcissement peut avoir une durée totale d’au moins 10 à 30 jours, de préférence, d’au moins 20 jours et de manière encore préférée d’au moins 27 jours. [85] Advantageously, the curing can have a total duration of at least 10 to 30 days, preferably at least 20 days and more preferably at least 27 days.
[86] Avantageusement, le procédé selon l’invention peut être réalisé à une température allant de 10 à 35°C. A des températures supérieures, des pertes en eau peuvent survenir.[86] Advantageously, the process according to the invention can be carried out at a temperature ranging from 10 to 35 ° C. At higher temperatures, water loss may occur.
A des températures inférieures, le durcissement peut être ralenti. At lower temperatures, hardening may be slowed down.
[87] Le matériau composite selon l’invention présente en outre les avantages suivants : [87] The composite material according to the invention also has the following advantages:
- il présente une grande valeur ajoutée car il peut être préparé à partir de déchets (béton recyclé et biomasse) et leur donner une nouvelle fonction comme matériau dépolluant ;- it has great added value because it can be prepared from waste (recycled concrete and biomass) and give them a new function as a depolluting material;
- il présente des capacités dépolluantes exceptionnelles par la présence combinée des agrégats de béton et du carbone poreux ; - it has exceptional depolluting capacities by the combined presence of concrete aggregates and porous carbon;
- il présente la capacité d’éliminer des gaz comme le SO2 et les NOx en les transformant en produits non nocifs - it has the ability to remove gases such as SO2 and NO x by transforming them into non-harmful products
- il peut être fabriqué simplement avec des techniques traditionnelles dans les usines de préfabrication de matériaux cimentaires pour obtenir des produits adaptés pour de nouveaux ouvrages ou pour couvrir des ouvrages existants ; - it can be manufactured simply with traditional techniques in factories for the prefabrication of cementitious materials to obtain products suitable for new structures or to cover existing structures;
- le carbone poreux compris dans le composite selon l’invention est issu de déchet végétaux de biomasse, habituellement destinés à fournir de l'énergie par combustion, dans laquelle ils sont moins valorisé que dans l’invention et peuvent même entraîner des risques de surexploitation des ressources. - the porous carbon included in the composite according to the invention is obtained from biomass plant waste, usually intended to provide energy by combustion, in which they are less valued than in the invention and may even entail risks of overexploitation Resource.
[88] Brève description des figures : [88] Brief description of the figures:
[89] [Fig. 1] La Figure 1 représente un schéma du procédé de fabrication du composite selon l’invention. [89] [Fig. 1] Figure 1 shows a diagram of the manufacturing process of the composite according to the invention.
[90] [Fig. 2] La Figure 2 représente la capacité de captage du CO2 pour les composites 1 et 2. (a) Capacité de captage du CO2 en fonction de la masse du matériau composite ; (b) Capacité de captage du CO2 en fonction du volume de matériau ; (c) Capacité de captage du CO2 en fonction de la surface accessible au gaz. [90] [Fig. 2] Figure 2 represents the CO2 capture capacity for composites 1 and 2. (a) CO2 capture capacity as a function of the mass of the composite material; (b) CO2 capture capacity as a function of the volume of material; (c) CO2 capture capacity as a function of the area accessible to the gas.
[91] [Fig. 3] La Figure 3 représente la diffusion du CO2 dans la matrice du matériau cimentaire dans le composite 2 (a) et le composite 1 (b) après 20 jours en une atmosphère de 10000 ppm de CO2. Les zones en gris plus foncé correspondent au matériau cimentaire non carbonaté. [91] [Fig. 3] FIG. 3 represents the diffusion of CO2 in the matrix of the cementitious material in the composite 2 (a) and the composite 1 (b) after 20 days in an atmosphere of 10,000 ppm of CO2. The darker gray areas correspond to the non-carbonated cementitious material.
[92] L’invention est davantage illustrée par les exemples suivants, de manière non limitative. [92] The invention is further illustrated by the following examples, without limitation.
[93] Exemple 1 : Synthèse d’un composite selon l’invention. [93] Example 1: Synthesis of a composite according to the invention.
[94] Le matériau composite est constitué des agrégats de béton recyclé et de carbone poreux intégrés dans une matrice cimentière. Le procédé de préparation des composites se rapproche de la méthode classique de préparation du béton (voir Figure 1). Les différentes étapes de la synthèse sont : [94] The composite material consists of aggregates of recycled concrete and porous carbon integrated into a cement matrix. The process for preparing composites is similar to the conventional method for preparing concrete (see Figure 1). The different stages of the synthesis are:
1) Préparer le carbone poreux par pyrolyse des algues brunes (Lessonia Nigrescens) dans un four à 750°C et une atmosphère de 100 ml/min de gaz inerte (N2), 1) Prepare the porous carbon by pyrolysis of brown algae (Lessonia Nigrescens) in an oven at 750 ° C and an atmosphere of 100 ml / min of inert gas (N2),
2) Mélanger les agrégats de béton recyclé et le carbone poreux avec un rapport volumique béton recyclé : carbone poreux de 60:40. Pour cela 319 g d’agrégats de béton recyclé (porosité de 13 %) d’un diamètre moyen d’environ 6 mm sont mélangés à 11,9 g de particules de carbone poreux d’un diamètre moyen d’environ 6 mm et ayant un volume de micropores de 0,4 cm3/g et un volume de macropores de 4,8 cm3/g (surface spécifique 746 m2/g). 2) Mix the recycled concrete aggregates and the porous carbon with a recycled concrete: porous carbon volume ratio of 60:40. For this, 319 g of recycled concrete aggregates (13% porosity) with an average diameter of about 6 mm are mixed with 11.9 g of porous carbon particles with an average diameter of about 6 mm and having a micropore volume of 0.4 cm 3 / g and a macropore volume of 4.8 cm 3 / g (specific surface area 746 m 2 / g).
3) Préparer le liant en réalisant une pâte de ciment avec du ciment et de l’eau. La quantité de ciment correspond avec un rapport massique agrégats/ciment d’environ 0,8. La quantité d’eau correspond à un rapport E/C de 0,45. Pour cela 400 g de ciment CEM I sont mélangés manuellement avec 180 g d’eau. 3) Prepare the binder by making a cement paste with cement and water. The amount of cement corresponds with an aggregate / cement mass ratio of about 0.8. The amount of water corresponds to an E / C ratio of 0.45. For this, 400 g of CEM I cement are manually mixed with 180 g of water.
4) Mélange des agrégats avec le liant de façon manuelle jusqu’à la répartition homogène des agrégats dans la pâte de « ciment ». 4) Mixing the aggregates with the binder manually until the aggregates are evenly distributed in the "cement" paste.
On obtient le composite frais 1 , We obtain the fresh composite 1,
Pour préparer le composite, on poursuit avec les étapes : To prepare the composite, we continue with the steps:
4) Verser le composite frais dans un moule avec des dimensions 9*3*2 cm et laisser durcir pendant 24 heures dans une enceinte avec une humidité relative de environ 100%4) Pour the fresh composite into a mold with dimensions 9 * 3 * 2 cm and leave cure for 24 hours in an enclosure with a relative humidity of approximately 100%
5) Démouler et passer à une étape d’hydratation de 27 jours dans une enceinte climatique avec une humidité relative d’environ 100%. 5) Unmold and proceed to a 27-day hydration step in a climatic chamber with a relative humidity of approximately 100%.
La Figure 1 de l’annexe d’une coupe transversale des matériaux composites montre que la distribution des agrégats dans la matrice cimentière est homogène, bien qu'il s’agisse de petites pièces (3X3X2 cm) réalisées à l’échelle laboratoire avec un mélange manuel. Figure 1 of the appendix of a cross section of composite materials shows that the distribution of aggregates in the cement matrix is homogeneous, although they are small pieces (3 X 3 X 2 cm) made at the laboratory scale with manual mixing.
[95] Exemple 2 : Synthèse d’un composite hors invention. [95] Example 2: Synthesis of a composite outside the invention.
[96] Le matériau composite est constitué des agrégats de béton recyclé intégrés dans une matrice cimentière. Le procédé de préparation des composites se rapproche de la méthode classique de préparation du béton (voir Ligure 1). Les différentes étapes de la synthèse sont : [96] The composite material consists of recycled concrete aggregates integrated into a cement matrix. The process for preparing composites is similar to the conventional method for preparing concrete (see Ligure 1). The different stages of the synthesis are:
[97] 1) Préparer 474 g de granulats de béton recyclé (porosité de 13 %) d’un diamètre moyen d’environ 6 mm. [97] 1) Prepare 474 g of recycled concrete aggregate (13% porosity) with an average diameter of about 6 mm.
2) Préparer le liant en réalisant une pâte de ciment avec du ciment et de l’eau. La quantité de ciment correspond avec un rapport massique agrégats/ciment d’environ 1,2. La quantité d’eau correspond à un rapport E/C de 0,45. Pour cela 400 g de ciment CEM I sont mélangés manuellement avec 180 g d’eau. 2) Prepare the binder by making a cement paste with cement and water. The amount of cement corresponds with an aggregate / cement mass ratio of about 1.2. The amount of water corresponds to an E / C ratio of 0.45. For this, 400 g of CEM I cement are manually mixed with 180 g of water.
3) Mélange des agrégats avec le liant de façon manuelle jusqu’à la répartition homogène des agrégats dans la pâte de « ciment ». 3) Mixing the aggregates with the binder manually until the aggregates are evenly distributed in the "cement" paste.
On obtient le composite frais 2 (hors invention). The fresh composite 2 is obtained (outside the invention).
Pour préparer le composite on ajoute les étapes : To prepare the composite we add the steps:
4) Verser le composite frais dans un moule avec des dimensions 9*3*2 cm et laisser durcir pendant 24 heures dans une enceinte avec une humidité relative de environ 100%,4) Pour the fresh composite into a mold with dimensions 9 * 3 * 2 cm and allow to harden for 24 hours in an enclosure with a relative humidity of about 100%,
5) Démouler et passer à une étape d’hydratation de 27 jours dans une enceinte climatique avec une humidité relative d’environ 100%. 5) Unmold and proceed to a 27-day hydration step in a climatic chamber with a relative humidity of approximately 100%.
Tableau 1 : Résumé des caractéristiques des composites 1 et 2. Table 1: Summary of the characteristics of composites 1 and 2.
[98] Exemple 3 : Mesure des capacités dépolluantes des composites 1 et 2. [98] Example 3: Measurement of the depolluting capacities of composites 1 and 2.
[99] Les capacités dépolluantes des matériaux ont été déterminés à l’échelle laboratoire avec des expériences de captage de CO2 dans des conditions dites « accélérées ». [99] The depolluting capacities of the materials were determined at the laboratory scale with experiments to capture CO2 under so-called "accelerated" conditions.
[100] Pour cela, les matériaux composites ont été placés dans un incubateur de CO2 conditionné dans une humidité relative d’environ 63%, une température ambiante d’environ 25°C et d’une concentration en CO2 avec un ordre de magnitude supérieur à ce que l’on peut trouver dans des zones urbaines hautement polluées. La concentration du CO2 dans l’air d’une grande ville comme Paris est d’environ 400-450 ppm tandis qu’elle peut atteindre plus de 1 000 ppm à la sortie d’un tunnel sur une route. La concentration choisie pour les expériences de captage de CO2 « accélérées » a été de 10000 ppm, soit 10 fois plus concentrées qu’à la sortie d’un tunnel par exemple. [100] For this, the composite materials were placed in a CO2 incubator conditioned in a relative humidity of about 63%, an ambient temperature of about 25 ° C and a CO2 concentration with an order of magnitude higher. to what can be found in highly polluted urban areas. The concentration of CO2 in the air of a large city like Paris is around 400-450 ppm while it can reach over 1000 ppm when exiting a tunnel on a road. The concentration chosen for the "accelerated" CO2 capture experiments was 10,000 ppm, or 10 times more concentrated than at the exit of a tunnel, for example.
[101] La Ligure 2 montre la quantité de CO2 captée pour les deux composites 1 et 2 (préparés aux exemples 1 et 2), en fonction du nombre de jours dans l’enceinte (jours de carbonatation). Dans cet exemple, le matériau composite selon l’invention contient 60% en volume d’agrégats de béton recyclé (d’un diamètre moyen d’environ 6 mm) et 40 % en volume des particules de carbone poreux (d’un diamètre moyen d’environ 6 mm, obtenues à partir de biomasse et avec une surface spécifique de 1300 m2/g) dans une matrice cimentière (ciment type CEM1). [101] Ligure 2 shows the quantity of CO2 captured for the two composites 1 and 2 (prepared in Examples 1 and 2), as a function of the number of days in the chamber (days of carbonation). In this example, the composite material according to the invention contains 60% by volume of recycled concrete aggregates (with an average diameter of about 6 mm) and 40% by volume of porous carbon particles (with an average diameter of about 6 mm, obtained from biomass and with a specific surface of 1300 m 2 / g) in a cement matrix (cement type CEM1).
[102] Pour montrer l’effet synergique du composite 1, on le compare au composite 2 (ne comprenant pas de carbone poreux). Les résultats présentés sur la Ligure 2 montrent que le composite 1 présente une capacité d’adsorption du CO2 nettement supérieure à celle du composite 2. [102] To show the synergistic effect of Composite 1, we compare it to Composite 2 (not including porous carbon). The results presented in Ligure 2 show that Composite 1 has a significantly higher CO2 adsorption capacity than Composite 2.
[103] En particulier, après 30 jours d'exposition au CO2, le composite 1 présente : [103] In particular, after 30 days of exposure to CO2, composite 1 exhibits:
- une capacité d’adsorption (pour une masse équivalente de matériau) supérieure de plus de 20% (Figure 2a), - a higher adsorption capacity (for an equivalent mass of material) by more by 20% (Figure 2a),
- une capacité d’adsorption (pour un volume équivalent de matériau) supérieure de plus de 30% (Figure 2b), et - an adsorption capacity (for an equivalent volume of material) greater than 30% (Figure 2b), and
- une capacité d’adsorption (pour une surface équivalente de matériau exposée au gaz polluant) supérieure de plus de 30 % (Figure 2c). - an adsorption capacity (for an equivalent surface area of material exposed to the polluting gas) greater than 30% (Figure 2c).
[104] On observe ainsi un effet synergique sur l’absorption des gaz polluants entre le composite 1 selon l’invention et le composite 2 hors invention. De manière surprenante, la capacité d’adsorption de CO2 du composite 1 est non seulement significativement supérieure (par masse, par volume et par surface exposée) mais également plus rapide que celle du composite 2. [104] A synergistic effect is thus observed on the absorption of polluting gases between the composite 1 according to the invention and the composite 2 outside the invention. Surprisingly, the CO2 adsorption capacity of Composite 1 is not only significantly higher (by mass, by volume and per exposed area) but also faster than that of Composite 2.
[105] Dans la Figure 3 (composite 2, Figure 3a et composite 1, Figure 3b) après 20 jours sous une atmosphère de 10 000 ppm de C02, on observe pour le composite 1, une carbonatation du matériau cimentaire (zones non colorées) autour des particules de carbone. Cela indique que dans le cas du composite 1, le CO2 gaz qui n’est pas adsorbé dans la porosité du carbone diffuse autour de la particule et atteint plus rapidement la totalité de la matrice que dans le cas du composite 2. [105] In Figure 3 (composite 2, Figure 3a and composite 1, Figure 3b) after 20 days under an atmosphere of 10,000 ppm C02, for composite 1, carbonation of the cementitious material is observed (unstained areas) around the carbon particles. This indicates that in the case of Composite 1, the CO2 gas which is not adsorbed in the porosity of the carbon diffuses around the particle and reaches the entire matrix faster than in the case of Composite 2.

Claims

Revendications Claims
[Revendication 1] Composite frais comprenant au moins un agrégat de béton ayant une porosité supérieure ou égale à 12 %, du carbone poreux ayant un volume de micropores supérieur ou égal à 0,2 cm3/g et un volume de macropores supérieur ou égal à 0,2 cm3/g, un liant et optionnellement de l’eau. [Claim 1] Fresh composite comprising at least one concrete aggregate having a porosity greater than or equal to 12%, porous carbon having a volume of micropores greater than or equal to 0.2 cm 3 / g and a volume of macropores greater than or equal at 0.2 cm 3 / g, a binder and optionally water.
[Revendication 2] Composite frais selon la revendication 1 , dans lequel le ratio volumique agrégat de béton / carbone poreux est compris dans l’intervalle allant de 30:70 à 80:20, de préférence de 40:60 à 60:40. [Claim 2] A fresh composite according to claim 1, wherein the concrete aggregate / porous carbon volume ratio is in the range of 30:70 to 80:20, preferably 40:60 to 60:40.
[Revendication 3] Composite frais selon l’une quelconque des revendications précédentes, dans lequel le ratio surface externe agrégat de béton / surface externe carbone poreux est compris dans l’intervalle allant de 0,5 à 1,5. [Claim 3] A fresh composite according to any one of the preceding claims, wherein the ratio of concrete aggregate external surface area to porous carbon external surface is in the range of 0.5 to 1.5.
[Revendication 4] Composite frais selon l’une quelconque des revendications précédentes, dans lequel le ratio massique agrégat de béton / liant est compris dans un intervalle allant de 0,6 à 1. [Claim 4] A fresh composite according to any preceding claim, wherein the concrete aggregate / binder mass ratio is within a range of 0.6 to 1.
[Revendication 5] Composite frais selon l’une quelconque des revendications précédentes, dans lequel le ratio massique carbone poreux / liant est compris dans un intervalle allant de 0,03 à 0,1. [Claim 5] A fresh composite according to any preceding claim, wherein the porous carbon / binder mass ratio is in a range of 0.03 to 0.1.
[Revendication 6] Composite frais selon l’une quelconque des revendications précédentes, dans lequel le carbone poreux est composé essentiellement de carbone et a une surface spécifique allant de 500 à 3000 m2/g. [Claim 6] A fresh composite according to any one of the preceding claims, wherein the porous carbon is composed essentially of carbon and has a specific surface area ranging from 500 to 3000 m 2 / g.
[Revendication 7] Composite frais selon l’une quelconque des revendications précédentes, dans lequel l’agrégat de carbone poreux est fonctionnalisé, de préférence en surface avec au moins un hétéroatome choisi dans le groupe comprenant O, N, S et P. [Claim 7] A fresh composite according to any preceding claim, wherein the porous carbon aggregate is functionalized, preferably at the surface, with at least one heteroatom selected from the group consisting of O, N, S and P.
[Revendication 8] Composite frais selon l’une quelconque des revendications précédentes, dans lequel l’agrégat de carbone poreux a un diamètre moyen allant de 1 à 20 mm, de préférence de 3 à 15 et de manière encore préférée de 5 à 10 mm. [Claim 8] A fresh composite according to any one of the preceding claims, wherein the porous carbon aggregate has an average diameter ranging from 1 to 20 mm, preferably 3 to 15 and more preferably 5 to 10 mm. .
[Revendication 9] Composite frais selon l’une quelconque des revendications précédentes, dans lequel l’agrégat de béton est composé essentiellement de béton recyclé. [Claim 9] A fresh composite according to any preceding claim, wherein the concrete aggregate consists essentially of recycled concrete.
[Revendication 10] Composite frais selon l’une quelconque des revendications précédentes, dans lequel l’agrégat de béton a un diamètre moyen allant de 1 à 50 mm, de préférence de 1 à 20 et de manière encore préférée de 5 à 10 mm. [Claim 10] A fresh composite according to any one of the preceding claims, wherein the concrete aggregate has an average diameter ranging from 1 to 50mm, preferably 1 to 20, and more preferably 5 to 10mm.
[Revendication 11] Composite frais l’une quelconque des revendications précédentes, dans lequel le ratio eau/ciment a une valeur allant de 0,3 à 0,6, de préférence de 0,45 à 0,5. [Claim 11] A fresh composite according to any preceding claim, wherein the water / cement ratio is from 0.3 to 0.6, preferably 0.45 to 0.5.
[Revendication 12] Composite frais selon la revendication précédente, dans lequel le liant comprend au moins un liant choisi parmi les ciments de catégories CEM I, CEM II, CEM III, CEM IV ou CEM V, les liants de type polymères, les résines ou les liants à base de carbone et leurs mélanges. [Claim 12] Fresh composite according to the preceding claim, in which the binder comprises at least one binder chosen from cements of categories CEM I, CEM II, CEM III, CEM IV or CEM V, binders of polymer type, resins or carbon-based binders and mixtures thereof.
[Revendication 13] Composite frais selon l’une quelconque des revendications précédentes, comprenant en outre au moins un adjuvant et/ou additif, de préférence en quantité inférieure ou égale à 2%. [Claim 13] Fresh composite according to any one of the preceding claims, further comprising at least one adjuvant and / or additive, preferably in an amount of less than or equal to 2%.
[Revendication 14] Composite comprenant au moins un agrégat de béton ayant une porosité supérieure ou égale à 12 %, du carbone poreux ayant un volume de micropores supérieur ou égal à 0,2 cm3/g et un volume de macropores supérieur ou égal à 0,2 cm3/g, un liant et optionnellement de l’eau. [Claim 14] Composite comprising at least one concrete aggregate having a porosity greater than or equal to 12%, porous carbon having a volume of micropores greater than or equal to 0.2 cm 3 / g and a volume of macropores greater than or equal to 0.2 cm 3 / g, a binder and optionally water.
[Revendication 15] Utilisation d’un composite selon la revendication précédente pour assainir l’air, de préférence pour absorber le CO2, le SO2, les NOx et les COV. [Claim 15] Use of a composite according to the preceding claim for cleaning the air, preferably for absorbing CO2, SO2, NOx and VOCs.
[Revendication 16] Procédé de fabrication d’un composite selon la revendication 14 comprenant les étapes : a) mélange d’au moins un agrégat de béton ayant une porosité supérieure ou égale à 12 %, de carbone poreux ayant un volume de micropores supérieur ou égale à 0,2 cm3/g et un volume de macropores supérieur ou égal à 0,2cm3/g , d’un liant, optionnellement d’eau et éventuellement d’additifs, d’adjuvants et/ou de granulats, et obtention d’un composite frais ; b) moulage et durcissement du composite frais obtenu à l’étape a) ; c) démoulage. [Claim 16] A method of manufacturing a composite according to claim 14 comprising the steps: a) mixing at least one concrete aggregate having a porosity greater than or equal to 12%, porous carbon having a greater micropore volume or equal to 0.2 cm 3 / g and a macropore volume of greater than or equal to 0.2 cm 3 / g, a binder, optionally water and optionally additives, auxiliaries and / or granulate, and obtaining a fresh composite; b) molding and curing of the fresh composite obtained in step a); c) demoulding.
EP20807072.2A 2019-10-22 2020-10-20 Composite materials comprising concrete aggregates and porous carbon, and use thereof for eliminating pollutant gases Pending EP4048644A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1911794A FR3102171B1 (en) 2019-10-22 2019-10-22 COMPOSITE MATERIALS CONTAINING CONCRETE AGGREGATES, POROUS CARBON AND THEIR USE FOR THE REMOVAL OF GAS POLLUTANTS
PCT/FR2020/051883 WO2021079052A1 (en) 2019-10-22 2020-10-20 Composite materials comprising concrete aggregates and porous carbon, and use thereof for eliminating pollutant gases

Publications (1)

Publication Number Publication Date
EP4048644A1 true EP4048644A1 (en) 2022-08-31

Family

ID=69190984

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20807072.2A Pending EP4048644A1 (en) 2019-10-22 2020-10-20 Composite materials comprising concrete aggregates and porous carbon, and use thereof for eliminating pollutant gases

Country Status (4)

Country Link
US (1) US20220370980A1 (en)
EP (1) EP4048644A1 (en)
FR (1) FR3102171B1 (en)
WO (1) WO2021079052A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115321861B (en) * 2022-08-10 2023-08-15 香港理工大学 Method for absorbing and fixing carbon by utilizing concrete porous aggregate and concrete
GB2623583A (en) * 2022-10-21 2024-04-24 Adaptavate Ltd Construction product

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11180756A (en) * 1997-12-22 1999-07-06 Taiheiyo Cement Corp Cement composition using regenerated aggregate
KR100547608B1 (en) * 2004-02-06 2006-01-31 강성순 Improved high performance pitched concrete
GB2550170B (en) * 2016-05-11 2022-10-05 Carbon8 Systems Ltd Improved production of aggregates

Also Published As

Publication number Publication date
US20220370980A1 (en) 2022-11-24
FR3102171B1 (en) 2021-10-15
FR3102171A1 (en) 2021-04-23
WO2021079052A1 (en) 2021-04-29

Similar Documents

Publication Publication Date Title
EP2488279B1 (en) Use of an element based on concrete for the removal of no2
EP4048644A1 (en) Composite materials comprising concrete aggregates and porous carbon, and use thereof for eliminating pollutant gases
EP2401239B1 (en) Powder insulating mortar, and layered insulating mortar
FR2983472A1 (en) STRUCTURAL LIGHT MORTAR OR CONCRETE, PROCESS FOR PRODUCING THE SAME, AND USE THEREOF AS SELF-PLACING CONCRETE
EP3172177B1 (en) Mortar composition for an interior coating or lining
JP4676265B2 (en) Concrete composition for forming carbon dioxide fixed molded body, carbon dioxide fixed molded body comprising the composition, and method for producing the same
FR2946640A1 (en) CONSTRUCTION COMPOSITE MATERIAL INCORPORATING HEMP.
FR2997394A1 (en) AGROSOURCE LIGHT CONCRETE AND ITS USE
WO2014009613A1 (en) Method for stabilizing and solidifying urban and/or industrial and/or marine waste
Moses et al. Prospective benefits of using activated carbon in cement composites-An overview
BE1022191B1 (en) CEMENT MATERIAL FOR GROUT, MORTAR OR LIGHT CONCRETE, CEMENTITIOUS COMPOSITIONS INCLUDING SUCH A MATRIX AND THEIR USES FOR STRUCTURAL LIGHT MIXTURES
JP4643374B2 (en) Concrete composition for forming carbon dioxide fixed molded body, carbon dioxide fixed molded body comprising the composition, and method for producing the same
FR2464239A1 (en) METHOD FOR MANUFACTURING LIGHTWEIGHT AGGREGATE PELLETS FROM INDUSTRIAL RESIDUES
FR2777274A1 (en) Road and civil engineering infrastructures, such as bed and foundation layers
CH685558A5 (en) Method of manufacturing aggregates and adhesive composition for its implementation.
FR3059319B1 (en) COMPOSITIONS, INTERMEDIATES AND METHODS FOR MAKING MORTARS AND CONCRETES, PRODUCTS OBTAINED AND USES THEREOF
WO2015184559A1 (en) Method for producing a calcium hydroxide-based construction material and resulting construction material
FR3040701A1 (en) TEXTILE CONCRETE, METHOD FOR MANUFACTURING SUCH CONCRETE AND ANTI-NOISE SCREEN COMPRISING SUCH CONCRETE
RU84372U1 (en) BUILDING CONSTRUCTION FROM SILVER CONCRETE MIX
WO2020053513A1 (en) Method for processing recycled aggregates, and use of the aggregates thus processed
EP3006416A1 (en) Improved method for producing an eco-friendly concrete and eco-friendly concrete composition
FR2507592A1 (en) METHOD FOR MANUFACTURING LIGHTWEIGHT CONSTRUCTION MATERIAL
EP3877082B1 (en) Mortar or coating for an inner covering
EP0590210A1 (en) High performance mortar or concrete
EP4367079A1 (en) Cementitious composition comprising biochar carbonate

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220517

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)