EP4046205A1 - Contacts passivés transparents pour cellules solaires à base de silicium - Google Patents
Contacts passivés transparents pour cellules solaires à base de siliciumInfo
- Publication number
- EP4046205A1 EP4046205A1 EP20792762.5A EP20792762A EP4046205A1 EP 4046205 A1 EP4046205 A1 EP 4046205A1 EP 20792762 A EP20792762 A EP 20792762A EP 4046205 A1 EP4046205 A1 EP 4046205A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- solar cell
- doped
- cell according
- layers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 claims abstract description 25
- 125000005842 heteroatom Chemical group 0.000 claims abstract description 6
- 238000002161 passivation Methods 0.000 claims description 42
- 229910052751 metal Inorganic materials 0.000 claims description 29
- 239000002184 metal Substances 0.000 claims description 29
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 26
- 229910052710 silicon Inorganic materials 0.000 claims description 26
- 239000010703 silicon Substances 0.000 claims description 26
- 239000002019 doping agent Substances 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 19
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 18
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical group [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 12
- 230000004888 barrier function Effects 0.000 claims description 11
- 238000006388 chemical passivation reaction Methods 0.000 claims description 11
- 229910021419 crystalline silicon Inorganic materials 0.000 claims description 11
- -1 or 0 Inorganic materials 0.000 claims description 6
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 6
- 239000011787 zinc oxide Substances 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 5
- 230000008021 deposition Effects 0.000 claims description 5
- 229910052738 indium Inorganic materials 0.000 claims description 5
- 238000001465 metallisation Methods 0.000 claims description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 229910052787 antimony Inorganic materials 0.000 claims description 4
- 229910052785 arsenic Inorganic materials 0.000 claims description 4
- 229910052797 bismuth Inorganic materials 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 229910052733 gallium Inorganic materials 0.000 claims description 4
- 229910052744 lithium Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 229910004205 SiNX Inorganic materials 0.000 claims description 2
- 229910020776 SixNy Inorganic materials 0.000 claims description 2
- 230000004913 activation Effects 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 238000000137 annealing Methods 0.000 claims description 2
- CXKCTMHTOKXKQT-UHFFFAOYSA-N cadmium oxide Inorganic materials [Cd]=O CXKCTMHTOKXKQT-UHFFFAOYSA-N 0.000 claims description 2
- CFEAAQFZALKQPA-UHFFFAOYSA-N cadmium(2+);oxygen(2-) Chemical compound [O-2].[Cd+2] CFEAAQFZALKQPA-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 238000009792 diffusion process Methods 0.000 claims description 2
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 claims description 2
- 238000011066 ex-situ storage Methods 0.000 claims description 2
- 238000007667 floating Methods 0.000 claims description 2
- 229910001195 gallium oxide Inorganic materials 0.000 claims description 2
- 238000002513 implantation Methods 0.000 claims description 2
- 238000011065 in-situ storage Methods 0.000 claims description 2
- 239000007791 liquid phase Substances 0.000 claims description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 claims description 2
- 229910021424 microcrystalline silicon Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 238000007747 plating Methods 0.000 claims description 2
- 238000007650 screen-printing Methods 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 2
- 229910001887 tin oxide Inorganic materials 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 229940000425 combination drug Drugs 0.000 claims 1
- 230000002844 continuous effect Effects 0.000 claims 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims 1
- RGXCTRIQQODGIZ-UHFFFAOYSA-O isodesmosine Chemical compound OC(=O)C(N)CCCC[N+]1=CC(CCC(N)C(O)=O)=CC(CCC(N)C(O)=O)=C1CCCC(N)C(O)=O RGXCTRIQQODGIZ-UHFFFAOYSA-O 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 17
- 239000010410 layer Substances 0.000 description 99
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 8
- 238000013459 approach Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000000370 acceptor Substances 0.000 description 2
- 239000006117 anti-reflective coating Substances 0.000 description 2
- 239000002800 charge carrier Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 229910003930 SiCb Inorganic materials 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- QHGVXILFMXYDRS-UHFFFAOYSA-N pyraclofos Chemical compound C1=C(OP(=O)(OCC)SCCC)C=NN1C1=CC=C(Cl)C=C1 QHGVXILFMXYDRS-UHFFFAOYSA-N 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022466—Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/072—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention is in the field of a process for making solar cells, or photovoltaic (PV) cell, with transparent con tacts based on a contact stack of three layers, and solar cells with transparent contacts, typically front and/or rear contacted solar cells.
- Said solar cells comprise at least one hetero junc tion and optionally two hetero junctions.
- a solar cell, or photovoltaic (PV) cell is an electrical de vice that converts energy of light, typically sun light (hence “solar”), directly into electricity by the so-called photovol taic effect.
- the solar cell may be considered a photoelectric cell, having electrical characteristics, such as current, volt age, resistance, and fill factor, which vary when exposed to light and which vary from type of cell to type.
- Solar cells are described as being photovoltaic irrespective of whether the source is sunlight or an artificial light. They may also be used as photo detector.
- a solar cell When a solar cell absorbs light it may generate either elec tron-hole pairs or excitons.
- charge carriers of opposite types are separated.
- the separated charge carriers are "extracted" to an external cir cuit, typically providing a DC-current.
- a DC- current may be transformed into an AC-current, e.g. by using a transformer .
- solar cells are grouped into an array of elements.
- Various elements may form a panel, and various panels may form a system.
- Wafer based c-Si solar cells contribute to more than 90% of the total PV market. According to recent predictions, this trend will remain for the upcoming years towards 2020 and many years beyond. Due to their simplified process, conventional c-Si solar cells dominate a large part of the market. As alternative to the industry to improve the power to cost ratio, the silicon heterojunction approach has become increasingly attractive for PV industry, even though the relatively complicated process to deploy the proper front layers, such as a thermal conductive ox ide (TCO) and an inherent low thermal budget of the cells limiting usage of existing production lines and thus result in a negligible market share so far.
- TCO thermal conductive ox ide
- a heterojunction is the inter face that occurs between two layers or regions of dissimilar crystalline semiconductors.
- a homojunction relates to a semiconductor interface formed by typically two layers of similar semiconductor material, wherein these semicon ductor materials have equal band gaps and typically have a dif ferent doping (either in concentration, in type, or both).
- a common example is a homojunction at the interface between an n- type layer and a p-type layer, which is referred to as a p-n junction.
- advanced techniques are used to precisely control a deposition thickness of layers involved and to create a lattice-matched abrupt interface.
- Three types of heterojunctions can be distinguished, a straddling gap, a stag gered gap, and a broken gap.
- a disadvantage of solar cells is that the conversion per se is not very efficient, typically, for Si-solar cells, limited to some 20%. Theoretically a single p-n junction crystalline sili con device has a maximum power efficiency of 33.7%. An infinite number of layers may reach a maximum power efficiency of 86%.
- the highest ratio achieved for a solar cell per se at present is about 44%.
- the record is about 25.6%.
- the front contacts may be moved to a rear or back side, eliminating shaded areas.
- thin silicon films were applied to the wafer.
- Solar cells also suffer from various imperfections, such as recombination losses, reflectance losses, heating during use, thermodynamic losses, shadow, internal resistance, such as shunt and series resistance, leakage, etc.
- a qualification of performance of a solar cell is the fill factor (FF).
- the fill factor may be de fined as a ratio of an actual maximum obtainable power to the product of the open circuit voltage and short circuit current.
- a typical advanced commercial solar cell has a fill fac tor > 0.75, whereas less advanced cells have a fill factor be tween 0.4 and 0.7.
- Cells with a high fill factor typically have a low equivalent series resistance and a high equivalent shunt resistance; in other words less internal losses occur. Efficiency is nevertheless improving gradually, so every rela tively small improvement is welcomed and of significant im portance.
- a design of contacts may be complex or complex to manufacture, and manufacture thereof may involve surplus of ma terial.
- solar cells with full area passivating contacts for both po larizations are now attracting industry interest.
- the solar cells featuring passivating contacts are designed to de couple the carrier collection via deposited layers that can in Jerusalem absorber bulk carrier separation by themselves (SHJ case) or with the support of doping region (poly-Si alloys).
- doped deposited layers perform as charge collecting layer. If the layer is not conductive enough, the structure de mands the use of TCO to support the lateral transport of the charge.
- Doped layers unfortunately limit the amount of generated carriers by increasing parasitic absorption losses.
- the use of different materials and interfaces make the fabrica tion process more complex and sensitive to variability.
- US 2015/122329 A1 recites a photovoltaic device including a single junction solar cell provided by an absorption layer of a type IV semiconductor mate rial having a first conductivity, and an emitter layer of a type III-V semiconductor material having a second conductivity, wherein the type III-V semiconductor material has a thickness that is no greater than 50 nm.
- WO 2018/108403 A2 recites a solar cell comprising a heterojunction photoelectric device comprising, a front electrode layer, a back electrode layer comprising a metallic contact layer, a light-absorbing silicon layer ar ranged between said front electrode and said back electrode lay ers and a doped silicon-based layer arranged between said light absorbing silicon layer and said back electrode layer, charac terized in that said heterojunction photoelectric device further comprises a wide band gap material layer having an electronic band gap greater than 1.4eV, said wide band gap material layer being applied on a surface of the light- absorbing silicon layer between said light-absorbing silicon layer and said doped sili con-based layer.
- the present heterojunction layer or stack of layers is compatible with thermal annealing and firing processes at T above 600 °C.
- the present invention relates to an increased efficiency het- ero junction solar cell and various aspects thereof and a sim plified process for manufacturing the solar cell which overcomes one or more of the above disadvantages, without jeopardizing functionality and advantages.
- the present invention relates in a first aspect to a front and/or rear contacted solar cell according to claim 1, and in a second aspect to a process for making such a solar cell accord ing to claim 25.
- ref erence can be made to WO2019/066648 Al, which publication and its contents are incorporated by reference.
- the present stack combines a high conductivity and high transparency for carrier selective contacts. It combines highly doped regions with donors or acceptors, typically close to a silicon bulk interface, a thin passivation layer, and a transparent conductive oxide (TCO) layer, with a contact, typically a metal contact.
- TCO transparent conductive oxide
- the transpar ent conductive oxide layer (21) has a thickness of > 25 nm, preferably > 40 nm, such as 50-100 nm, a carrier concentration of >5*10 19 /cm 3 , preferably >8*10 19 /cm 3 , more preferably >l*10 2 °/cm 3 , such as >2*10 20 /cm 3 , and preferably ⁇ l*10 21 /cm 3 .
- the contact stack has three layers 21,22,23, the stack comprising a transparent conductive oxide layer 21 in contact with a chemical dielectric passivation layer 22, the chemical dielectric pas sivation layer in contact with a field passivation layer and/or field passivation region 23.
- a cost-effective TCO is enough to support charge collection.
- the present invention provides a simplified fabrication process wherein solar cell precursors can be fin ished within a couple of steps, and which is a low cost and high throughput process, using compatible industrial standard metallization steps, solar cells featuring a high V oc (>710 mV) due to the full passivated contacts, solar cells featur ing a high J sc (> 39 mA/cm 2 ) & V oc ( >710 mV)due to the high transparency of the passivating contacts, solar cells featur ing a relatively high fill factor (FF) (>79%) due to improved transport inside a bulk, such as c-Si, and wherein the design is applicable to both a front/rear contacted conventional so lar cell architecture, a bifacial solar cell architecture and for both n-type and p-type bulk material.
- FF fill factor
- the present invention relates in a first aspect to front and/or rear contacted solar cell according to claim 1, and in a second aspect to a process for making such a solar cell according to claim 26.
- the field passivation layer or region may have a ⁇ 400 meV activation energy, such as ⁇ 300 meV, and is preferably a continuous layer (apart from possible contacts).
- the field passivation material may be selected from a doped sub-re gion, such as by adding an acceptor or donor, such as by implan tation, and diffusion, from a supra-region, such as layers, which may be in-situ or ex-situ doped, wherein layers are pro vided by Epitaxial growth, Poly-Si alloys deposition, PECVD, and LT PECVD.
- a dopant concentration of the field passivation layer may be >5*10 19 /cm 3 , preferably >8*10 19 /cm 3 , more preferably >l*10 2 °/cm 3 , such as >2*10 20 /cm 3
- a junction depth may be ⁇ 200 pm, preferably 10-100 pm
- a thickness may be ⁇ 500 nm, preferably 50- 200 nm, and combinations thereof.
- the chemical passivation layer may comprise a wide band gap mate rial.
- the chemical passivation layer material may be a-SiH, wherein a-SiH may comprise N, C, or 0, SiO x , Si x N y , A10 x , HfO x .
- the chemical passivation layer may have a thickness of 0.1-20 nm, such as 0.2-10 nm, and combinations thereof, and is preferably a continuous layer (apart from possible contacts).
- the bulk substrate material may be selected from Micro-crystalline Silicon, Multi-crystalline Silicon, Czochralski Silicon, Float ing zone Silicon, Epitaxial Silicon, Ribbon Silicon, Liquid phase Silicon.
- the bulk substrate may be selected from n-type, p-type, intrinsic, and combinations thereof.
- the solar cell may be an IBC solar cell, and wherein the solar cell may comprise an n-doped field passivation region and a p-doped field passivation region at one side of the solar cell.
- the solar cell may be a front- and rear-contacted solar cell, and may comprise a stack of three layers at the front and at the rear.
- the solar cell may be a bifacial solar cell, and wherein at the front the field passivation region may comprise n-type dopants and wherein at the back the field passivation region may com prise p-type dopants.
- the transparent conductive oxide may selected from zinc oxide, in dium oxide, tin oxide, cadmium oxide, gallium oxide, doped ox ides, such as doped with F, and combinations thereof.
- At least one contact may comprise a stack of layers, which stack comprises a first layer of > 10 nm thickness, such as an n- doped or p-doped poly SiOx layer, a second layer of 100 nm-5000 nm thickness, such as a n-doped or p-doped crystalline Si layer , wherein the first and layer are both p-doped or are both n- doped, and in between said layers a dielectric barrier layer (15) of thickness of 0 ⁇ tdiei ⁇ 2.5 nm, wherein said layers cover one and another, wherein the ratio of doping of first layer /second layer at the dielectric barrier layer is > 2, preferably > 5, more preferably > 10, even more preferably > 10 2 .
- the contact stack 18b,18f may be a carrier selective passivating contact .
- the contact 18b,18f may be transparent.
- the present solar cell may com prise a single sided or double sided textured substrate 10.
- the present solar cell may com prise a 5*10 14 -0.5*10 19 dopants/cm 3 n- or p-type doped crystalline Si layer , wherein a doping concentration is preferably spa tially constant, wherein n-type dopants may be selected from P, As, Bi, Sb and Li, and wherein p-type dopants may be selected from B, Ga, and In.
- the present solar cell may com prise a dielectric passivation layer or dielectric passivation stack on the cell.
- the present solar cell may com prise a 10 14 —10 17 dopants/cm 3 n- or p-type doped substrate 10.
- the present solar cell may com prise at least one of a metal layer on a back side 18b, metal contacts on a front side 18f and/or on a back side 18b, and a transparent conductive layer.
- the present solar cell may com prise at least one dielectric barrier layer each independently of thickness of 0.1 nm-1.4 nm, wherein the dielectric barrier layer independently may comprise at least one material selected from SiCb, HfCt, and W 2 O 5 .
- the material of the transparent conductive layer may be selected from ITO, IOH, ZnO or doped ZnO, and IWO.
- a thickness of the transparent conductive layer may be ⁇ 100 nm, such as 10-40 nm.
- the refractive index of the transparent conductive layer may be ⁇ 2.2.
- the layer such as the n-doped or p-doped poly SiOx layer
- the layer such as the n-doped or p-doped crystalline Si layer
- the dielectric barrier layer may be each independently in full contact with one and another over an area of >50% of a surface of the largest of two contacting sur faces.
- the present solar cell may com prise at least one textured surface , wherein the textured sur face may have an aspect ratio height:depth of a textured struc ture of 2-10.
- the present solar cell may have n-doped or p-doped poly SiOx layer independently of 10 nm- 5000 nm thickness, and may comprise 1*10 19 -5*10 22 n- or p-type dopants/cm 3 , wherein a doping profile is preferably substantially constant over the thickness of the layer , wherein n-type do pants may be selected from P, As, Bi, Sb and Li, and wherein p-type dopants may be selected from B, Ga, and In.
- the present solar cell may comprise at least one dielectric layer each independently of thickness of 10 nm-2000 nm, wherein the dielectric layer inde pendently may comprise at least one material selected from SiN x , AIOc, SiO x , a n-type or p-type doped or un-doped transparent con ductive oxide.
- the metal of the metal layers 18b and metal contacts 18f inde pendent may comprise at least one of Cu, Al, W, Ti, Ni, and Ag, wherein a thickness of said metal 18b,18f may be 200-5000 nm.
- the n- doped or p-doped poly SiOx layer may be provided by PECVD, or LPCVD, wherein dopants may be constantly provided during deposi tion.
- metal contacts and/or metal layers 18b,18f may be provided by metal deposition and lift off of non-contact areas, screen printing, and electrical plating.
- dopants in the poly SiOx layer may be activated.
- Figures 1-5 show a schematic representation of examples of the present solar cell.
- Figures 1-5 show the present a contact stack of three layers 21,22,23 encircled.
- Figure 1 shows a contact stack with Si based bulk 10, a field passivation region 23, a chemical passivation layer 22, a TCO 21, and a metal contact 18b or 18f.
- Figure 2 shows a front and rear contacted, monofacial, solar cell with bulk silicon 10, with two stacks with a field pas sivation region 23, a chemical passivation layer 22, a TCO 21, and a metal contact 18b or 18f, at either side.
- Figure 3 shows an IBC monofacial solar cell with bulk silicon 10, with two stacks (left and right) with a field passivation region 23, a chemical passivation layer 22, a TCO 21, and a metal contact 18b, at either side, wherein the right field pas sivation region 23p is positively charged and wherein the left field passivation region 23n is negatively charged. Further an antireflective coating layer 19 is provided.
- Figure 4 shows an IBC bifacial solar cell with bulk silicon 10, with two stacks (left and right) with a field passivation region 23, a chemical passivation layer 22, a TCO 21, and a metal contact 18b, at either side, wherein the right field pas sivation region 23p is positively charged and wherein the left field passivation region 23n is negatively charged. Further an antireflective coating layer 19 is provided.
- Figure 5 shows a front and rear contacted, bifacial, solar cell with bulk silicon 10, with two stacks with a field pas sivation region 23, a chemical passivation layer 22, a TCO 21, and a metal contact 18b or 18f, at either side, wherein the top field passivation region 23p is positively charged and wherein the bottom field passivation region 23n is negatively charged.
- results of the present solar cells are found to be good. For instance, an excellent surface passivation is achieved.
- the V oc and fill factor FF of the cells are found to be sensitive to the transparent conductive oxide application process.
- the p-type solar cell Jo of 23 fA/cm 2 and implied V 0c as high as 700 mV is obtained.
- the calculated solar cell pre sents an efficiency of 24%, a FF up to 83.5%, and J Sc up to 41 mA/cm 2 with a double side textured surface.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL2024024A NL2024024B1 (en) | 2019-10-16 | 2019-10-16 | Transparent passivated contacts for Si solar cells |
PCT/NL2020/050617 WO2021075956A1 (fr) | 2019-10-16 | 2020-10-06 | Contacts passivés transparents pour cellules solaires à base de silicium |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4046205A1 true EP4046205A1 (fr) | 2022-08-24 |
Family
ID=68582310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20792762.5A Pending EP4046205A1 (fr) | 2019-10-16 | 2020-10-06 | Contacts passivés transparents pour cellules solaires à base de silicium |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4046205A1 (fr) |
NL (1) | NL2024024B1 (fr) |
WO (1) | WO2021075956A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115188837B (zh) * | 2022-06-27 | 2023-08-04 | 隆基绿能科技股份有限公司 | 一种背接触太阳能电池及制备方法、电池组件 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150122329A1 (en) * | 2011-11-07 | 2015-05-07 | International Business Machines Corporation | Silicon heterojunction photovoltaic device with non-crystalline wide band gap emitter |
US11257974B2 (en) * | 2016-12-12 | 2022-02-22 | Ecole polytechnique fédérale de Lausanne (EPFL) | Silicon heterojunction solar cells and methods of manufacture |
NL2019634B1 (en) | 2017-09-27 | 2019-04-03 | Univ Delft Tech | Solar cells with transparent contacts based on poly-silicon-oxide |
-
2019
- 2019-10-16 NL NL2024024A patent/NL2024024B1/en active
-
2020
- 2020-10-06 EP EP20792762.5A patent/EP4046205A1/fr active Pending
- 2020-10-06 WO PCT/NL2020/050617 patent/WO2021075956A1/fr unknown
Also Published As
Publication number | Publication date |
---|---|
NL2024024B1 (en) | 2021-06-17 |
WO2021075956A1 (fr) | 2021-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101139443B1 (ko) | 이종접합 태양전지와 그 제조방법 | |
KR101626248B1 (ko) | 실리콘 태양전지 및 이의 제조 방법 | |
US20110139249A1 (en) | High Power Efficiency Polycrystalline CdTe Thin Film Semiconductor Photovoltaic Cell Structures for Use in Solar Electricity Generation | |
US20090314337A1 (en) | Photovoltaic devices | |
US20100243042A1 (en) | High-efficiency photovoltaic cells | |
KR100850641B1 (ko) | 고효율 결정질 실리콘 태양전지 및 그 제조방법 | |
KR101918737B1 (ko) | 태양 전지 | |
KR20120084104A (ko) | 태양전지 | |
KR101886818B1 (ko) | 이종 접합 실리콘 태양 전지의 제조 방법 | |
EP3688819B1 (fr) | Cellules solaires à contacts transparents à base d'oxyde de polysilicium | |
KR100990864B1 (ko) | 태양전지 및 그 제조 방법 | |
KR20160029501A (ko) | 태양 전지 | |
WO2021075956A1 (fr) | Contacts passivés transparents pour cellules solaires à base de silicium | |
KR20180101679A (ko) | 실리콘 태양전지 및 이를 제조하는 방법 | |
AU2011204838A1 (en) | Photovoltaic device | |
EP0248953A1 (fr) | Piles solaires en cascade | |
KR101898996B1 (ko) | 전하 선택 접합 실리콘 태양 전지 | |
KR20130036454A (ko) | 박막 태양전지 모듈 | |
KR20110003787A (ko) | 태양 전지 및 그 제조 방법 | |
KR101098813B1 (ko) | 태양 전지 | |
KR101130193B1 (ko) | 태양 전지 | |
Mil'Shtein et al. | Design and fabrication steps of silicon heterostructured piin solar cell with corrugated surface | |
CN104037242A (zh) | 光伏元件及其制造方法 | |
JP7248856B1 (ja) | 太陽電池および太陽電池の製造方法、光起電力モジュール | |
KR101640815B1 (ko) | 박막 태양전지 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220407 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230525 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20240503 |