EP4041982A1 - Joint filete avec portee d'etancheite realisee par fabrication additive - Google Patents

Joint filete avec portee d'etancheite realisee par fabrication additive

Info

Publication number
EP4041982A1
EP4041982A1 EP20786531.2A EP20786531A EP4041982A1 EP 4041982 A1 EP4041982 A1 EP 4041982A1 EP 20786531 A EP20786531 A EP 20786531A EP 4041982 A1 EP4041982 A1 EP 4041982A1
Authority
EP
European Patent Office
Prior art keywords
tubular
sealing surface
threaded joint
value
added part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20786531.2A
Other languages
German (de)
English (en)
Inventor
Eric Verger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vallourec Oil and Gas France SAS
Original Assignee
Vallourec Oil and Gas France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vallourec Oil and Gas France SAS filed Critical Vallourec Oil and Gas France SAS
Publication of EP4041982A1 publication Critical patent/EP4041982A1/fr
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/001Screw-threaded joints; Forms of screw-threads for such joints with conical threads
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/04Couplings; joints between rod or the like and bit or between rod and rod or the like
    • E21B17/042Threaded
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • TITLE THREADED GASKET WITH SEALING REACH REALIZED BY
  • the invention relates to threaded tubular steel components and more particularly to a tubular threaded joint comprising a sealing surface produced by additive manufacturing, for drilling, operating hydrocarbon wells or for transporting oil and gas.
  • component is understood here to mean any element or accessory used to drill or operate a well and comprising at least one connection or connector or even threaded end, and intended to be assembled by a thread to another component in order to constitute with this other component a tubular threaded joint.
  • the component can be for example a tubular element of relatively great length (in particular about ten meters in length), for example a tube, or else a tubular sleeve of a few tens of centimeters in length, or else an accessory of these. tubular elements (suspension device or "hanger”, part for changing section or “cross-over”, safety valve, connector for drill rod or "tool joint", “sub”, and the like).
  • Tubular joints have threaded ends. These threaded ends are complementary allowing the connection of two male (“Pin”) and female (“Box”) tubular elements together. There is therefore a male threaded end and a female threaded end.
  • the so-called premium or semi-premium threaded ends generally have at least one abutment surface.
  • a first stop may be formed by two surfaces of two threaded ends, oriented substantially radially, configured so as to be in contact with each other after screwing the threaded ends together or during stresses from compression. Stops generally have negative angles to the main axis of the connections. Intermediate stops are also known on joints comprising at least two stages of threading.
  • the premium connections include sealing surfaces called sealing surfaces, at least one on the pin, and at least one corresponding on the box, intended to be brought into interfering contact when the pin and box connection are assembled together. 'other, so as to form a seal against liquids and / or gases.
  • the sealing surfaces must maintain a seal preventing the passage of liquids and / or gases when the connections are assembled and when using the tubes having these connections assembled in an oil well column, that is, say that the sealing function must be maintained in the widest possible spectrum of use, including when the connection is subjected to internal pressure or to external pressure, to compressive stresses or tensile stresses, at temperature ambient or at high temperature, this spectrum corresponding to an operating range of the connection.
  • Interfering sealing surfaces can cause seizing problems during screwing if their geometry is unsuitable. They can also pose a risk of leakage in service if the contact pressure and in particular the contact pressure integrated on the active width of the sealing surfaces is insufficient.
  • the contact pressure integrated over the contact length must remain greater than a certain value expressed in N / mm; this integrated contact pressure is a function of a given geometry of the relative positioning of the elements at the end of screwing and of the stresses in service.
  • frusto-conical is meant the shape of a truncated cone, that is to say the basal part of a solid cone or of a pyramid formed by cutting the top by a plane parallel to the base, and by toric the shape of a torus.
  • the sealing surfaces are designed to work in the elastic range of the material which constitutes them so as to maintain the sealing quality under various successive stresses.
  • the sealing surfaces must be assembled so as to create high contact pressures. It may happen, especially during assembly, when high performance is sought, that too high contact pressures are reached, with risks of plasticization, or even risks of seizing. Seizing is understood to mean cases where material is torn off: In the event of seizing, the sealing function is seriously compromised.
  • Sealing surfaces in a connection are therefore the result of many design compromises.
  • the paradigm of these compromises is based on the following axes: a high material thickness so as to be able to withstand the pressure, but a high thickness generates risks of galling due to too high a contact pressure.
  • the object of the present invention is to resolve the problems of the state of the art cited, by producing a part added by additive manufacturing.
  • the invention consists of a threaded tubular joint for drilling, operating hydrocarbon wells or transporting oil and gas comprising a male threaded tubular member and a female threaded tubular member, the female threaded tubular member comprising a female inner threaded portion and an unthreaded female portion, the male threaded tubular member comprising a male outer threaded portion and a male unthreaded portion, characterized in that at least one of the male or female tubular members comprises a body and a part added by additive manufacturing which includes at least a first sealing surface.
  • the tubular threaded joint is characterized in that the added part is produced by additive manufacturing by recharging, by electron beam melting, by laser melting on a bed of metal powder or "selective laser melting", by selective sintering by laser, by direct metal deposition or “Direct Energy Deposition”, by Binder Projection Deposition or Laser Projection Deposition, by arc-wire additive manufacturing deposition.
  • the tubular threaded joint comprising a second sealing surface on the other of the male or female elements corresponding to the first sealing surface is characterized in that one or the other of the first or second sealing surface is frusto-conical and the other toric.
  • the tubular threaded joint is characterized in that the added part has a hardness lower than the hardness of the body over at least 0.6 mm in depth.
  • the tubular threaded joint is characterized in that the added part has a length L greater than or equal to a minimum length Lmin such that:
  • R value of the radius of curvature of the toric sealing surface v value of the Poisson's ratio of the material of the toric sealing surface; D s value of the waterproofing diameter.
  • the tubular threaded joint is characterized in that the added part has a length L less than or equal to a maximum length Lmax such that:
  • the tubular threaded joint is characterized in that the added part has a length L greater than or equal to 4 mm.
  • the tubular threaded joint is characterized in that the added part has a thickness Ep greater than or equal to a minimum thickness Epmin such that: 160 xex intf x R x (l - u 2 )
  • Epmin 5.031 x 7G X Ds 2
  • R value of the radius of curvature of the toric sealing surface v value of the Poisson's ratio of the material of the toric sealing surface; D s value of the waterproofing diameter.
  • the tubular threaded joint is characterized in that the added part has a thickness Ep less than or equal to a maximum thickness Epmax such that:
  • Epmax 1.5 x EpmmU
  • the tubular threaded joint is characterized in that the added part has a thickness Ep greater than or equal to 0.6 mm.
  • the tubular threaded joint is characterized in that the added part has a coefficient of friction greater than the coefficient of friction of the body.
  • the threaded tubular joint is characterized in that the added part comprises a metal chosen from alloyed steels, highly alloyed, cupro-nickel alloy, titanium alloy, copper, cupronickel, glass ceramic.
  • the tubular threaded joint is characterized in that the added part comprises a material of Young's modulus between 110 GPa and 210 GPa, preferably between 110 GPa and 160 GPa.
  • the invention also comprises a process for producing the added part by additive manufacturing according to the following description:
  • a method for obtaining a tubular threaded joint in that the added part is produced by a method selected from hardfacing methods, beam melting methods electrons, laser fusion processes on a metal powder bed or "selective laser melting", selective laser sintering processes, direct metal deposition or “Direct Energy Deposition” processes, Binder Projection Deposition processes or Laser Projection Deposition, arc-wire additive manufacturing deposition processes.
  • tests have been carried out with materials such as titanium, Fero 55 and stellite alloys with a direct metal deposition process or by arc-wire additive manufacturing deposition.
  • the added part can be produced with ceramic and glass-ceramic type materials by a process of laser melting on a bed of metal powder or “selective laser melting”.
  • the added part can be made with materials of the cupro nickel alloy or microalloyed steel type, for example using an additive “Arc-wire” technique.
  • an added part (9) can be produced by additive manufacturing both on the male tubular element (2) and on the female tubular element (3).
  • FIG 1 describes schematically, in a longitudinal sectional view along an axis X of the tube, a tubular threaded joint according to a first embodiment in which the added part of the male tubular element is produced by additive manufacturing.
  • FIG 2 describes schematically, in a longitudinal sectional view along an X axis of the tube, a tubular threaded joint according to a variation of the first embodiment in which the added part of the female tubular element is produced by additive manufacturing .
  • FIG B describes the contact pressure curve of a connection according to the state of the art in comparison with the pressure curve corresponding to a sealing surface according to the invention.
  • FIG 4 describes a graph representing the contact pressure curve as a function of the distance from the axis of symmetry according to the state of the art.
  • FIG 5 describes a graph representing the contact pressure curve as a function of the distance from the axis of symmetry according to a variant of the invention.
  • FIG 6 describes a graph representing the distribution of stresses as a function of depth according to the state of the art.
  • FIG 7 describes a graph representing the distribution of stresses as a function of depth according to a connection comprising an added part produced by additive manufacturing.
  • Figure 1 depicts a tubular threaded joint (1) with an added part (9) on a male tubular member (2).
  • This added part (9) is produced by additive manufacturing and comprises a male sealing surface (10) establishing a metal-to-metal seal (15).
  • This metal-to-metal seal (15) provides a seal in the assembled state of the seal and during use of the seal in a wide spectrum of stresses exerted on the seal, such as internal pressure, external pressure, compressive forces, pressure forces. traction.
  • the tubular threaded joint (1) is shown in an axial or longitudinal view.
  • the added part (9) is produced by additive manufacturing so that the hardness is lower than that of the non-added part, that is to say the male body (4) or female at least 0.6 mm deep.
  • the added part (9) is produced by additive manufacturing so that the coefficient of friction is greater than that of the male or female body (4).
  • the invention also makes it possible to significantly increase the coefficient of friction between the part added by additive manufacturing and the material of the body of the corresponding tubular element, in comparison with the coefficient of friction of the bodies of the male and female tubular element between them.
  • An increase in the coefficient of friction is accompanied by an increase in the value of the screwing torque applicable when connecting two threaded tubular elements.
  • the hardness depends in particular on the type of material used, but the materials can be selected in such a way that the hardness is lower in the added part (9) compared to the male or female body (4).
  • the added part (9) comprises a metal chosen from alloy steels, highly alloyed, cupro-nickel alloys, titanium alloys, ceramics, glass-ceramics, or copper, cupronickel, stellite, fero 55.
  • additive manufacturing makes it possible to obtain a tubular element in the form of a two-component, (or even more components) with for example on one side a type of component or material for the body and on the other side one or more other different components for the added part.
  • a tubular element in the form of a two-component, (or even more components) with for example on one side a type of component or material for the body and on the other side one or more other different components for the added part.
  • tubular elements of the state of the art which are designed as a single component over the entire element.
  • the invention makes it possible to reduce costly machining operations.
  • the invention makes it possible to increase and improve the geometric complexity of the element obtained through a layer-by-layer construction method.
  • the length L is greater than or equal to a minimum length Lmin of the part added (9) by additive manufacturing and comprising the sealing surface.
  • the length L extends along the X axis of the tube.
  • This equation is applicable to a toric or torque-cone type sealing surface, that is to say having a radius of curvature R and the cone being either on the male tubular element (2) or on the element. female tubular (3). Respectively, the torus being either on the female tubular element (3) or on the male tubular element (2).
  • This minimum length also depends on the sealing diameter Ds, the interference intf, the thickness of the lip supporting the sealing surface e, the radius of the toric portion R as well as the Poisson's ratio of the material v .
  • the multiplier coefficient 12.8 is applied. This coefficient takes into account the relative movement between the male element during traction / compression type stresses. Indeed, by way of example, under tension, the non-threaded female part (6) that is to say the length of the female tubular element between the thread and the stopper, lengthens and therefore the contact will shift. Thus the coefficient of 12.8 takes into account these variations in order to ensure that when applying traction / compression or any other form of pressure, the sealing surface of the part produced by additive manufacturing remains in good condition. contact on the corresponding surface. We add +2 as a safety margin.
  • Lmin is such that:
  • R value of the radius of curvature of the toric sealing surface v value of the Poisson's ratio of the material of the toric sealing surface; D s value of the waterproofing diameter.
  • the added part (9) has a length L greater than or equal to 4mm.
  • the part added (9) by additive manufacturing and comprising the sealing surface has a thickness Ep greater than or equal to a minimum thickness Epmin.
  • This equation is applicable to a toric or torque-Cone type sealing surface, that is to say having a radius of curvature R.
  • This minimum thickness (or height) Epmin depends on the sealing diameter Ds, the interference intf, the thickness of the lip supporting the sealing surface e, the radius of the toric portion R as well as the Poisson's ratio of the material v.
  • the multiplier coefficient 5.031 is applied. This coefficient corresponds to the half-length of contact which multiplied by 0.7861 which makes it possible to calculate the depth for which the shear stress is maximum, that is to say (12.8 / 2) x 0.7861 “5.031. “0.7861” corresponds to the coefficient of the theory of Hz within the framework of a linear contact.
  • Epmin is such that:
  • Epmin 5.031 x px Ds 2
  • R value of the radius of curvature of the toric sealing surface v value of the Poisson's ratio of the material of the toric sealing surface; D s value of the waterproofing diameter.
  • the added part (9) has a thickness Ep greater than or equal to 0.6 mm.
  • the maximum length Lmax could be set at 1.5 times the minimum length, which makes it possible to ensure the operation of the part added by additive manufacturing without having to carry out too large a portion in additive manufacturing, and to ensure the operation of the part added by additive manufacturing. thus avoid unnecessary additional costs.
  • the maximum thickness Epmax of the part added by additive manufacturing can be set at 1.5 times the minimum thickness of the part added by additive manufacturing.
  • Figure 2 depicts, according to another variation of the invention, a tubular threaded joint (1) with an added part (9) on a female tubular element (3).
  • This added part (9) is carried out by additive manufacturing and includes a female sealing surface (11) establishing a metal-to-metal seal (15).
  • the added part (9) is produced by additive manufacturing so that the hardness is lower than that of the non-added part, that is to say the male body (4) or female at least 0.6 mm deep.
  • the added part (9) is produced by additive manufacturing so that the coefficient of friction is greater than that of the male or female body (4).
  • the length L is greater than or equal to a minimum length Lmin of the part added (9) by additive manufacturing and comprising the sealing surface.
  • This equation is applicable to a toric or torque-cone type sealing surface, that is to say having a radius of curvature R and the cone being either on the male tubular element (2) or on the element.
  • female tubular (S). Respectively, the torus being either on the female tubular element (S) or on the male tubular element (2).
  • This minimum length also depends on the sealing diameter Ds, the interference intf, the thickness of the lip supporting the sealing surface e, the radius of the toric portion R as well as the Poisson's ratio of the material v .
  • the multiplier coefficient 12.8 is applied.
  • This coefficient takes into account the relative movement between the male element during traction / compression type stresses. Indeed, by way of example, under tension, the non-threaded female part (6) that is to say the length of the female tubular element between the thread and the stopper, lengthens and therefore the contact will shift.
  • the coefficient of 12.8 takes into account these variations in order to ensure that when applying traction / compression or any other form of pressure, the sealing surface of the part produced by additive manufacturing remains in good condition. contact on the corresponding surface. We add +2 as a safety margin.
  • Lmin is such that:
  • R value of the radius of curvature of the toric sealing surface v value of the Poisson's ratio of the material of the toric sealing surface; D s value of the waterproofing diameter.
  • the added part (9) has a length L greater than or equal to 4mm.
  • the part added (9) by additive manufacturing and comprising the sealing surface has a thickness Ep greater than or equal to a minimum thickness Epmin.
  • This equation is applicable to a toric or torque-Cone type sealing surface, that is to say having a radius of curvature R.
  • This minimum thickness (or height) Epmin depends on the sealing diameter Ds, the interference intf, the thickness of the lip supporting the sealing surface e, the radius of the toric portion R as well as the Poisson's ratio of material v.
  • the multiplier coefficient 5.031 is applied. This coefficient corresponds to the half-length of contact which multiplied by 0.7861 which makes it possible to calculate the depth for which the shear stress is maximum, that is to say (12.8 / 2) x 0.7861 “5.031. “0.7861” corresponds to the coefficient of the theory of Hz within the framework of a linear contact. Epmin is such that:
  • Epmin 5.031 x px Ds 2
  • the added part (9) has a thickness Ep greater than or equal to 0.6 mm.
  • the maximum length Lmax could be set at 1.5 times the minimum length, which makes it possible to ensure the operation of the part added by additive manufacturing without having to carry out too large a portion in additive manufacturing, and to ensure the operation of the part added by additive manufacturing. thus avoid unnecessary additional costs.
  • the maximum thickness Epmax of the part added by additive manufacturing can be set at 1.5 times the minimum thickness of the part added by additive manufacturing.
  • FIG. 3 represents a contact pressure curve of a connection according to the state of the art and another curve corresponding to a sealing surface according to the invention.
  • the abscissa corresponds to the longitudinal position along a sealing surface.
  • the ordinate corresponds to the contact pressure.
  • Curve 21 corresponds to a representation of the contact pressure as a function of the longitudinal position along a sealing surface of a connection according to the state of the art.
  • Curve 22 corresponds to a representation of the contact pressure as a function of the longitudinal position along a sealing surface of a connection according to the invention, that is to say a connection comprising a portion produced by additive manufacturing, this portion comprising the sealing surface, and the material being of lower hardness than the base material of the connection.
  • the curve 21 showing the distribution of the contact pressure is generally a parabola, exhibiting a peak. This peak exceeds the threshold Pg corresponding to a pressure above which the risk of seizing is high.
  • Curve 22 shows that the contact pressure of a connection according to the invention is distributed over a greater width, and decreases the level of the contact pressure distribution tip, so that the threshold Pg is not reached. .
  • the surface of the curve 22 is larger than the surface of the curve 21. That is to say that the force of contact between the sealing surfaces is greater on a connection according to the invention than on a connection of the state of the art. With a connection according to the invention, it is therefore possible to increase the contact pressure between sealing surfaces while reducing the risk of the sealing surfaces seizing.
  • FIG. 4 represents the contact pressure as a function of the distance from the axis of symmetry according to the state of the art between two sealing surfaces.
  • the connection is made entirely of steel with a modulus of elasticity El with a value of 210,000 Mpa.
  • the sealing surface is subjected to a contact force of 70,000 N, and the radius of curvature of the O-ring sealing surface is 100mm. There is no part added by additive manufacturing according to the invention.
  • FIG. 5 represents the contact pressure as a function of the distance from the axis of symmetry according to the invention between two sealing surfaces.
  • the sealing surface is subjected to a contact force of 70,000 N, and the radius of curvature of the O-ring sealing surface is 100mm.
  • FIG. 6 represents the distribution of the stresses as a function of the depth according to the state of the art.
  • the different constraints are represented according to the curves oy (z), sc (z), oz (z) and tcz (z). It can be seen that as z increases, that is to say the further one moves away from the surface and the deeper one goes, the more the stresses decrease.
  • FIG. 7 represents the distribution of the stresses as a function of the depth according to a connection comprising an added part (9) produced by additive manufacturing.
  • the different constraints are represented according to the curves oy (z), sc (z), oz (z) and tcz (z). It can be seen that as z increases, that is to say the further one moves away from the surface and the deeper one goes, the more the stresses decrease.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
  • Earth Drilling (AREA)

Abstract

L'invention porte sur un joint fileté tubulaire (1) pour le forage, l'exploitation des puits d'hydrocarbures ou le transport de pétrole et de gaz comprenant un élément tubulaire fileté mâle (2) et un élément tubulaire fileté femelle (3), l'élément tubulaire fileté femelle comprenant une partie filetée intérieure femelle (5) et une partie non filetée femelle (6), l'élément tubulaire fileté mâle comprenant une partie filetée extérieure mâle (7) et une partie non filetée mâle (8), caractérisé en ce que au moins l'élément tubulaire mâle (2) ou femelle (3) comprend un corps (4) et une partie ajoutée (9) par fabrication additive qui comprend au moins une première surface de butée.

Description

DESCRIPTION
TITRE : JOINT FILETE AVEC PORTEE D’ETANCHEITE REALISEE PAR
FABRICATION ADDITIVE
L'invention concerne les composants filetés tubulaires en acier et plus particulièrement un joint fileté tubulaire comprenant une portée d'étanchéité réalisée par fabrication additive, pour le forage, l'exploitation des puits d'hydrocarbures ou pour le transport de pétrole et de gaz.
On entend ici par "composant" tout élément ou accessoire utilisé pour forer ou exploiter un puit et comprenant au moins une connexion ou connecteur ou encore extrémité filetée, et destiné à être assemblé par un filetage à un autre composant pour constituer avec cet autre composant un joint fileté tubulaire. Le composant peut être par exemple un élément tubulaire de relativement grande longueur (notamment d'environ une dizaine de mètres de longueur), par exemple un tube, ou bien un manchon tubulaire de quelques dizaines de centimètres de longueur, ou encore un accessoire de ces éléments tubulaires (dispositif de suspension ou « hanger », pièce de changement de section ou « cross-over », vanne de sécurité, connecteur pour tige de forage ou « tool joint », « sub », et analogues).
Les joints tubulaires sont dotés d'extrémités filetées. Ces extrémités filetées sont complémentaires permettant le raccordement de deux éléments tubulaires mâle (« Pin ») et femelle (« Box ») entre eux. Il y a donc une extrémité filetée male et une extrémité filetée femelle. Les extrémités filetées dites premium ou semi-premium comportent généralement au moins une surface de butée. Une première butée peut être formée par deux surfaces de deux extrémités filetées, orientées de façon sensiblement radiale, configurées de façon à être en contact l'une avec l'autre à l'issue du vissage des extrémités filetées entre elles ou lors de sollicitations de compression. Les butées ont généralement des angles négatifs par rapport à l'axe principal des connexions. On connaît également des butées intermédiaires sur des joints comportant au moins deux étages de filetage.
De manière générale, pour des raisons techniques et d'usinage, les différentes parties d'un même composant, qu'il s'agisse de l'élément tubulaire ou encore des extrémités filetées, sont conçus selon un seul et même type de matériau (alliage ou non). Les connexions premium comportent des surfaces d'étanchéité appelées portées d'étanchéité, au moins une sur le pin, et au moins une correspondante sur le box, destinées à être mises en contact interférant lorsque connexion pin et box sont assemblées l'une avec l'autre, de manière à former une étanchéité aux liquides et/ou aux gaz. Les portées d'étanchéité doivent maintenir une étanchéité empêchant le passage de liquides et/ou de gaz lorsque les connexions sont assemblées et lors de l'utilisation des tubes comportant ces connexions assemblées dans une colonne de puits de pétrole, c'est-à-dire que la fonction d'étanchéité doit être maintenue dans le plus large spectre d'utilisation possible, y compris lorsque la connexion est soumise à une pression interne ou à une pression externe, à des sollicitations de compression ou des sollicitations de traction, à température ambiante ou à température élevée, ce spectre correspondant à un domaine de fonctionnement de la connexion.
Les portées d'étanchéités mâles et femelles correspondantes présentent alors une interférence radiale génératrice d'une pression de contact et les flancs de filet dits "porteurs" situés sur le filet du côté opposé à l'extrémité libre de l'élément fileté sont en contact sous pression de contact, mettant ainsi sous compression axiale la lèvre.
Les portées d'étanchéités interfé rentes peuvent poser des problèmes de grippage au cours du vissage si leur géométrie est inadaptée. Elles peuvent aussi poser des risques de fuite en service si la pression de contact et notamment la pression de contact intégrée sur la largeur active des portées d'étanchéité est insuffisante.
Pour éviter le risque de fuite il est nécessaire que la pression de contact intégrée sur la longueurde contact reste supérieure à une certaine valeur exprimée en N/mm ; cette pression de contact intégrée est fonction d'une géométrie donnée du positionnement relatif des éléments en fin de vissage et des sollicitations en service.
L'interférence est le résultat de la différence de diamètre entre portée mâle (Dm) et femelle (Df) dans la zone de pression d'étanchéité. La différence Dm - Df étant positive le diamètre mâle est supérieurau diamètre femelle, Ainsi, à l'interface 11 (voir figures 1 et 2) des pressions de contact sont générées On entend par frusto-conique la forme d'un tronc de cône c'est-à-dire la partie basale d'un cône solide ou d'une pyramide formée en coupant le sommet par un plan parallèle à la base, et par torique la forme d'un tore.
En général, les portées d'étanchéité sont conçues pour travailler dans le domaine élastique du matériau qui les constitue de façon à maintenir la qualité d'étanchéité sous diverses sollicitations successives.
Cependant, pour assurer une bonne étanchéité, les portées d'étanchéité doivent être assemblées de manière à créer de grandes pressions de contact. Il peut arriver, notamment en cours d'assemblage, lorsque l'on recherche des performances élevées, que des pressions de contact trop fortes soient atteintes, avec des risques de plastification, ou encore des risques de grippage. On entend par grippage des cas où de la matière est arrachée : En cas de grippage, la fonction d'étanchéité est fortement compromise.
En général dans l'état de l'art, soit pour réduire le pic de pression de contact on augmente le rayon de contact, mais ceci a pour conséquence que le contact bouge beaucoup et devient instable. Soit on réduit l'interférence ce qui a pour effet de réduire l'aire sous la courbe de pression de contact en fonction de la distance à l'axe de symétrie (Fig. 4) et donc la performance d'étanchéité.
C'est pourquoi il y a un besoin pour améliorer les portées d'étanchéité de manière à diminuer les risques de grippage, à répartir les pressions de contact, ou à résister à des pressions de contact transitoires élevées pendant l'assemblage de deux connexions. En effet, une diminution de la dureté du matériau implique une répartition des pressions de contact, ce qui permet d'éviter lors d'un vissage d'aller jusqu'à la limite élastique du matériau, et par conséquent d'éviter également une déformation plastique du matériau.
Les surfaces d'étanchéités dans une connexion sont donc le résultat de nombreux compromis de conception. De manière générale, le paradigme de ces compromis repose sur les axes suivants : une épaisseur de matière élevée de manière à pouvoir résister à la pression, mais une épaisseur élevée génère des risques de grippage dus à une pression de contact trop élevée.
On connaît dans l'état de l'art la solution d'élargir la surface de contact, par US3870351, avec des géométries de surface d'étanchéité de type torique. Cette solution permet d'améliorer la répétabilité de la répartition d'efforts de contact entre des surfaces d'étanchéité lors de l'assemblage de deux connexions. Cependant, cette géométrie connaît des limitations dans le compromis exposé ci-dessus.
On connaît dans l'art antérieur la solution proposée par le document US2005248153 concernant des portées d'étanchéité aménagées sur des lèvres allongées de manière à donner de la flexibilité de mouvement à la portée d'étanchéité durant l'assemblage. Il en ressort de ce document l'utilisation uniforme d'un même type de matériau pour l'ensemble du tube, par exemple répondant aux standards API de type P110.
On connaît de l'art antérieur la solution proposée par le brevet US 2010/0301603 Al concernant une invention dans le domaine des joints filetés tubulaires supérieurs utilisés pour connecter les tubes en acier, tels que des tubes de forage, par exemple intérieur ou extérieur. Il est divulgué notamment que l'étanchéité aux fluides (liquides ou gaz) sous forte pression résulte d'un serrage radial mutuel des portées d'étanchéité. L'intensité du serrage radial est fonction du positionnement axial relatif des éléments filetés mâle et femelle et est donc définie par la mise en butée de ces éléments par des butées de vissage. Ce document a pour but d'améliorer l'étanchéité du joint fileté tubulaire, et notamment du joint fileté tubulaire dans sa structure prête à l'emploi.
La présente invention a pour but de résoudre les problèmes de l'état de l'art cité, en réalisant une partie ajoutée par fabrication additive.
L'invention consiste en un joint fileté tubulaire pour le forage, l'exploitation des puits d'hydrocarbures ou le transport de pétrole et de gaz comprenant un élément tubulaire fileté mâle et un élément tubulaire fileté femelle, l'élément tubulaire fileté femelle comprenant une partie filetée intérieure femelle et une partie non filetée femelle, l'élément tubulaire fileté mâle comprenant une partie filetée extérieure mâle et une partie non filetée mâle, caractérisé en ce que au moins l'un des éléments tubulaires mâle ou femelle comprend un corps et une partie ajoutée par fabrication additive qui comprend au moins une première surface d'étanchéité.
Selon un mode de réalisation, le joint fileté tubulaire est caractérisé en ce que la partie ajoutée est réalisée par fabrication additive par rechargement, par fusion par faisceau d'électrons, par fusion laser sur lit de poudre métallique ou « sélective laser melting », par frittage sélectif par laser, par dépôt métallique direct ou « Direct Energy Déposition », par Dépôt par Projection de Liant ou Dépôt par Projection Laser, par dépôt par fabrication additive arc-fil.
Selon un mode de réalisation, le joint fileté tubulaire comprenant une deuxième surface d'étanchéité sur l'autre des éléments mâle ou femelle correspondante à la première surface d'étanchéité est caractérisé en ce que l'une ou l'autre de la première ou deuxième surface d'étanchéité est frusto-conique et l'autre torique.
Selon un mode de réalisation le joint fileté tubulaire est caractérisé en ce que la partie ajoutée présente une dureté inférieure à la dureté du corps sur au moins 0.6 mm de profondeur.
Selon un mode de réalisation, le joint fileté tubulaire est caractérisé en ce que la partie ajoutée a une longueur L supérieure ou égale à une longueur minimale Lmin telle que :
160 x e x intf x R x(l — u2)
Lmin = 12,8 x + 2 p x Ds 2
Où : e valeur de l’épaisseur d’une lèvre supportant la surface d’étanchéité torique; intf valeur de l’interférence ;
R valeur du rayon de courbure de la surface d’étanchéité torique ; v valeur du coefficient de Poisson du matériau de la surface d’étanchéité torique; D s val eur du di amètre d ’ étanchéité .
Selon un mode de réalisation le joint fileté tubulaire est caractérisé en ce que la partie ajoutée a une longueur L inférieure ou égale à une longueur maximale Lmax telle que :
Lmax = 1,5 xlmm
Selon un mode de réalisation le joint fileté tubulaire est caractérisé en ce que la partie ajoutée a une longueur L supérieure ou égale à 4 mm.
Selon un mode de réalisation le joint fileté tubulaire est caractérisé en ce que la partie ajoutée a une épaisseur Ep supérieure ou égale à une épaisseur minimale Epmin telle que : 160 x e x intf x R x(l — u2)
Epmin = 5,031 x 7G X Ds 2
Où : e valeur de l’épaisseur d’une lèvre supportant la surface d’étanchéité torique; intf valeur de l’interférence ;
R valeur du rayon de courbure de la surface d’étanchéité torique ; v valeur du coefficient de Poisson du matériau de la surface d’étanchéité torique; D s val eur du di amètre d ’ étanchéité .
Selon un mode de réalisation, le joint fileté tubulaire est caractérisé en ce que la partie ajoutée a une épaisseur Ep inférieure ou égale à une épaisseur maximale Epmax telle que :
Epmax = 1,5 x EpmmU
Selon un mode de réalisation, le joint fileté tubulaire est caractérisé en ce que la partie ajoutée a une épaisseur Ep supérieure ou égale à 0.6 mm.
Selon un mode de réalisation, le joint fileté tubulaire est caractérisé en ce que la partie ajoutée présente un coefficient de frottement supérieur au coefficient de frottement du corps.
Selon un mode de réalisation, le joint fileté tubulaire est caractérisé en ce que la partie ajoutée comprend un métal choisi parmi les aciers alliés, fortement alliés, alliage cupro-nickel, alliage de titane, cuivre, cupronickel, vitrocéramique.
Selon un mode de réalisation, le joint fileté tubulaire est caractérisé en ce que la partie ajoutée comprends un matériau de module de Young entre 110 GPa et 210 GPa, de préférence entre 110 GPa et 160 GPa.
L'invention comprend également un procédé de réalisation de la partie ajoutée parfabrication additive selon la description suivante :
Un procédé pour obtenir un joint fileté tubulaire en ce que la partie ajoutée est réalisée par un procédé choisi parmi les procédés de rechargement, les procédés de fusion par faisceau d'électrons, les procédés de fusion laser sur lit de poudre métallique ou « sélective laser melting », les procédés de frittage sélectif par laser, les procédés de dépôt métallique direct ou « Direct Energy Déposition », les procédés de Dépôt par Projection de Liant ou Dépôt par Projection Laser, les procédés de dépôt par fabrication additive arc-fil. Par exemple des essais ont été réalisés avec des matériaux de type, alliages titane, Fero 55 et stellite avec un procédé de dépôt métallique direct ou par dépôt par fabrication additive arc- fil.
Alternativement on peut réaliser la partie ajoutée avec des matériaux de type céramiques et vitrocéramiques par procédé de fusion laser sur lit de poudre métallique ou « sélective laser melting ».
Alternativement on peut réaliser la partie ajoutée avec des matériaux de type alliage cupro nickel ou acier micro-allié en utilisant par exemple une technique additive « Arc -fil ».
Alternativement on peut réaliser une partie ajoutée (9) par fabrication additive à la fois sur l'élément tubulaire mâle (2) et sur l'élément tubulaire femelle (3).
D'autres caractéristiques et avantages de l'invention apparaîtront à l'examen de la description détaillée ci-après, et des dessins annexés.
[Fig 1] décrit de façon schématique, dans une vue de coupe longitudinale selon un axe X du tube, un joint fileté tubulaire selon un premier mode de réalisation dans lequel la partie ajoutée de l'élément tubulaire mâle est réalisée par fabrication additive.
[Fig 2] décrit de façon schématique, dans une vue de coupe longitudinale selon un axe X du tube, un joint fileté tubulaire selon une variation du premier mode de réalisation dans lequel la partie ajoutée de l'élément tubulaire femelle est réalisée par fabrication additive.
[Fig B] décrit la courbe de pression de contact d'une connexion selon l'état de l'art en comparaison avec la courbe de pression correspondant à une surface d'étanchéité selon l'invention.
[Fig 4] décrit un graphique représentant la courbe de pression de contact en fonction de la distance à l'axe de symétrie selon l'état de l'art. [Fig 5] décrit un graphique représentant la courbe de pression de contact en fonction de la distance à l'axe de symétrie selon une variante de l'invention.
[Fig 6] décrit un graphique représentant la répartition des contraintes en fonction de la profondeur selon l'état de l'art. [Fig 7] décrit un graphique représentant la répartition des contraintes en fonction de la profondeur selon une connexion comprenant une partie ajoutée réalisée par fabrication additive.
Les dessins annexés pourront non seulement servir à compléter l'invention, mais aussi contribuer à sa définition, le cas échéant. Ils ne sont pas limitatifs quant à la portée de l'invention.
La figure 1 décrit un joint fileté tubulaire (1) avec une partie ajoutée (9) sur un élément tubulaire mâle (2). Cette partie ajoutée (9) est réalisée par fabrication additive et comprends une surface d'étanchéité mâle (10) établissant une étanchéité métal-métal (15). Cette étanchéité métal-métal (15) assure une étanchéité à l'état monté du joint et pendant l'utilisation du joint dans un large spectre de contraintes exercées sur le joint, telles que pression intérieure, pression extérieure, efforts de compression, efforts de traction.
Le joint fileté tubulaire (1) est représenté selon une vue axiale ou longitudinale.
Selon une variante de l'invention, la partie ajoutée (9) est réalisée par fabrication additive de telle manière à ce que la dureté est inférieure à celle de la partie non ajoutée, c'est-à-dire le corps (4) mâle ou femelle sur au moins 0.6 mm de profondeur.
Selon une autre variante de l'invention, la partie ajoutée (9) est réalisée par fabrication additive de telle manière à ce que le coefficient de frottement est supérieur à celui du le corps (4) mâle ou femelle.
L'invention permet également d'augmenter significativement le coefficient de frottement entre la partie ajoutée par fabrication additive et le matériau du corps de l'élément tubulaire correspondant, en comparaison avec le coefficient de frottement des corps de l'élément tubulaire mâle et femelle entre eux. Une augmentation du coefficient de frottement s'accompagne par une augmentation la valeur de couple de vissage applicable lors d'une connexion de deux éléments tubulaires filetés.
La dureté dépend notamment du type de matériau utilisé, mais les matériaux peuvent être sélectionnés de telle manière à ce que la dureté est inférieure dans la partie ajoutée (9) par rapport au corps (4) mâle ou femelle.
Selon un aspect de l'invention, la partie ajoutée (9) comprend un métal choisi parmi les aciers alliés, fortement alliés, alliages cupro-nickel, alliages de titane, céramiques, vitrocéramiques, ou cuivre, cupronickel, stellite, fero 55.
Avantageusement la fabrication additive permet d'obtenir un élément tubulaire sous forme d'un bi composant, (voire davantage de composants) avec par exemple d'un côté un type de composant ou matériau pour le corps et de l'autre côté un ou plusieurs autres composants différents pour la partie ajoutée. Contrairement aux éléments tubulaires de l'état de l'art qui sont conçus selon un monocomposant sur l'ensemble de l'élément.
Avantageusement l'invention permet de diminuer des opérations d'usinage coûteuses.
Avantageusement l'invention permet d'augmenter et d'améliorer la complexité géométrique de l'élément obtenu à travers un mode de construction couche par couche.
Avantageusement plusieurs parties différentes, par exemple avec une dimension, une complexité, un ou des matériaux différents, peuvent être construites ensemble et en même temps, ou alors ajoutées pendant la construction.
Avantageusement plusieurs fonctionnalités peuvent être ajoutées en regard d'un haut niveau de personnalisation.
Selon un aspect de l'invention, la longueur L est supérieure ou égale à une longueur minimale Lmin de la partie ajoutée (9) par fabrication additive et comprenant la surface d'étanchéité. La longueur L s'étend selon l'axe X du tube. Cette équation est applicable à une surface d'étanchéité torique ou de type torque-Cône, c'est-à-dire présentant un rayon de courbure R et le cône étant soit sur l'élément tubulaire mâle (2) soit sur l'élément tubulaire femelle (3). Respectivement, le tore étant soit sur l'élément tubulaire femelle (3) soit sur l'élément tubulaire mâle (2). Cette longueur minimale dépend par ailleurs du diamètre d'étanchéité Ds, de l'interférence intf, de l'épaisseur de la lèvre supportant la surface d'étanchéité e, le rayon de la portion torique R ainsi que du coefficient de Poisson du matériau v. Le coefficient multiplicateur 12,8 est appliqué. Ce coefficient prend en compte le mouvement relatif entre l'élément mâle lors de sollicitations de type traction/compression. En effet, à titre d'exemple, sous tension, la partie non fileté femelle (6) c'est-à-dire la longueur de l'élément tubulaire femelle entre le filetage et la butée, s'allonge et donc le contact va se décaler. Ainsi le coefficient de 12.8 prend en compte ces variations afin que l'on s'assure que lorsque l'on applique une traction/compression ou toute autre forme de pression, la surface d'étanchéité de la partie réalisée par fabrication additive reste bien en contact sur la surface correspondante. On ajoute +2 à titre de marge de sécurité.
Lmin est telle que :
160 x e x intf x R x(l — v2)
Lmin = 12,8 x + 2 p x Ds2
Où : e valeur de l’épaisseur d’une lèvre supportant la surface d’étanchéité torique; intf valeur de l’interférence ;
R valeur du rayon de courbure de la surface d’étanchéité torique ; v valeur du coefficient de Poisson du matériau de la surface d’étanchéité torique; D s val eur du di amètre d ’ étanchéité .
Selon une variante de l'invention la partie ajoutée (9) a une longueur L supérieure ou égale à 4mm.
Selon un autre aspect, la partie ajoutée (9) par fabrication additive et comprenant la surface d'étanchéité a une épaisseur Ep supérieure ou égale à une épaisseur minimale Epmin. Cette équation est applicable à une surface d'étanchéité torique ou de type torque-Cône, c'est-à- dire présentant un rayon de courbure R.
Cette épaisseur (ou hauteur) minimale Epmin dépend du diamètre d'étanchéité Ds, de l'interférence intf, de l'épaisseur de la lèvre supportant la surface d'étanchéité e, le rayon de la portion torique R ainsi que du coefficient de Poisson du matériau v. Le coefficient multiplicateur 5,031 est appliqué. Ce coefficient correspond à la demi-longueur de contact qui multiplié par 0.7861 qui permet de calculer la profondeur pour laquelle la contrainte de cisaillement est maximale c'est-à-dire (12.8/2) x 0.7861 « 5.031. « 0.7861 » correspond au coefficient de la théorie d'hertz dans le cadre d'un contact linéique.
Epmin est telle que :
160 x e x intf x R x(l — v2)
Epmin = 5,031 x p x Ds2
Où : e valeur de l’épaisseur d’une lèvre supportant la surface d’étanchéité torique; intf valeur de l’interférence ;
R valeur du rayon de courbure de la surface d’étanchéité torique ; v valeur du coefficient de Poisson du matériau de la surface d’étanchéité torique; D s val eur du di amètre d ’ étanchéité .
Selon une variante de l'invention la partie ajoutée (9) a une épaisseur Ep supérieure ou égale à 0.6 mm.
Il a été constaté que la longueur maximale Lmax pouvait être fixée à 1,5 fois la longueur minimale, ce qui permet d'assurer le fonctionnement de la partie ajoutée par fabrication additive sans devoir réaliser une trop grande portion en fabrication additive, et d'éviter ainsi des coûts supplémentaires inutiles.
De la même manière, l'épaisseur maximale Epmax de la partie ajoutée par fabrication additive peut être fixée à 1, 5 fois l'épaisseur minimale de la partie ajoutée par fabrication additive.
La figure et le dimensionnement pour la partie ajoutée (9) du joint fileté tubulaire (1) ont été sélectionnés à titre de représentation schématique.
La figure 2 décrit, selon une autre variation de l'invention, un joint fileté tubulaire (1) avec une partie ajoutée (9) sur un élément tubulaire femelle (3). Cette partie ajoutée (9) est réalisée par fabrication additive et comprends une surface d'étanchéité femelle (11) établissant une étanchéité métal-métal (15). Selon une variante de l'invention, la partie ajoutée (9) est réalisée par fabrication additive de telle manière à ce que la dureté est inférieure à celle de la partie non ajoutée, c'est-à-dire le corps (4) mâle ou femelle sur au moins 0.6 mm de profondeur.
Selon une autre variante de l'invention, la partie ajoutée (9) est réalisée par fabrication additive de telle manière à ce que le coefficient de frottement est supérieur à celui du le corps (4) mâle ou femelle.
Selon un aspect de l'invention, la longueur L est supérieure ou égale à une longueur minimale Lmin de la partie ajoutée (9) par fabrication additive et comprenant la surface d'étanchéité. Cette équation est applicable à une surface d'étanchéité torique ou de type torque-Cône, c'est-à-dire présentant un rayon de courbure R et le cône étant soit sur l'élément tubulaire mâle (2) soit sur l'élément tubulaire femelle (S). Respectivement, le tore étant soit sur l'élément tubulaire femelle (S) soit sur l'élément tubulaire mâle (2). Cette longueur minimale dépend par ailleurs du diamètre d'étanchéité Ds, de l'interférence intf, de l'épaisseur de la lèvre supportant la surface d'étanchéité e, le rayon de la portion torique R ainsi que du coefficient de Poisson du matériau v. Le coefficient multiplicateur 12,8 est appliqué. Ce coefficient prend en compte le mouvement relatif entre l'élément mâle lors de sollicitations de type traction/compression. En effet, à titre d'exemple, sous tension, la partie non fileté femelle (6) c'est-à-dire la longueur de l'élément tubulaire femelle entre le filetage et la butée, s'allonge et donc le contact va se décaler. Ainsi le coefficient de 12.8 prend en compte ces variations afin que l'on s'assure que lorsque l'on applique une traction/compression ou toute autre forme de pression, la surface d'étanchéité de la partie réalisée par fabrication additive reste bien en contact sur la surface correspondante. On ajoute +2 à titre de marge de sécurité.
Lmin est telle que :
160 x e x intf x R x(l — u2)
Lmin = 12,8 x + 2 p x Ds2
Où : e valeur de l’épaisseur d’une lèvre supportant la surface d’étanchéité torique; intf valeur de l’interférence ;
R valeur du rayon de courbure de la surface d’étanchéité torique ; v valeur du coefficient de Poisson du matériau de la surface d’étanchéité torique; D s val eur du di amètre d ’ étanchéité .
Selon une variante de l'invention la partie ajoutée (9) a une longueur L supérieure ou égale à 4mm.
Selon un autre aspect, la partie ajoutée (9) par fabrication additive et comprenant la surface d'étanchéité a une épaisseur Ep supérieure ou égale à une épaisseur minimale Epmin. Cette équation est applicable à une surface d'étanchéité torique ou de type torque-Cône, c'est-à- dire présentant un rayon de courbure R.
Cette épaisseur (ou hauteur) minimale Epmin dépend du diamètre d'étanchéité Ds, de l'interférence intf, de l'épaisseur de la lèvre supportant la surface d'étanchéité e, le rayon de la portion torique R ainsi que du coefficient de Poisson du matériau v. Le coefficient multiplicateur 5,031 est appliqué. Ce coefficient correspond à la demi-longueur de contact qui multiplié par 0.7861 qui permet de calculer la profondeur pour laquelle la contrainte de cisaillement est maximale c'est-à-dire (12.8/2) x 0.7861 « 5.031. « 0.7861 » correspond au coefficient de la théorie d'hertz dans le cadre d'un contact linéique. Epmin est telle que :
160 x e x intf x R x(l — v2)
Epmin = 5,031 x p x Ds2
Où : e valeur de l’épaisseur d’une lèvre supportant la surface d’étanchéité torique; intf valeur de l’interférence ;
R valeur du rayon de courbure de la surface d’étanchéité torique ; v valeur du coefficient de Poisson du matériau de la surface d’étanchéité torique; D s val eur du di amètre d ’ étanchéité . Selon une variante de l'invention la partie ajoutée (9) a une épaisseur Ep supérieure ou égale à 0.6 mm.
Il a été constaté que la longueur maximale Lmax pouvait être fixée à 1,5 fois la longueur minimale, ce qui permet d'assurer le fonctionnement de la partie ajoutée par fabrication additive sans devoir réaliser une trop grande portion en fabrication additive, et d'éviter ainsi des coûts supplémentaires inutiles.
De la même manière, l'épaisseur maximale Epmax de la partie ajoutée par fabrication additive peut être fixée à 1, 5 fois l'épaisseur minimale de la partie ajoutée par fabrication additive.
La figure et le dimensionnement pour la partie ajoutée (9) du joint fileté tubulaire (1) a été sélectionné à titre de représentation schématique.
La figure 3 représente une courbe de pression de contact d'une connexion selon l'état de l'art et une autre courbe correspondant à une surface d'étanchéité selon l'invention. L'abscisse correspond à la position longitudinale le long d'une surface d'étanchéité. L'ordonnée correspond à la pression de contact.
La courbe 21 correspond à une représentation de la pression de contact en fonction de la position longitudinale le long d'une surface d'étanchéité d'une connexion selon l'état de l'art. La courbe 22 correspond à une représentation de la pression de contact en fonction de la position longitudinale le long d'une surface d'étanchéité d'une connexion selon l'invention, c'est-à-dire une connexion comprenant une portion réalisée par fabrication additive, cette portion comprenant la surface d'étanchéité, et le matériau étant de dureté moins élevée que le matériau de base de la connexion.
La courbe 21 montrant la répartition de la pression de contact est généralement une parabole, présentant un pic. Ce pic dépasse le seuil Pg correspondant à une pression à partir de laquelle le risque de grippage est élevé.
La courbe 22 montre que la pression de contact d'une connexion selon l'invention est répartie sur une largeur plus grande, et diminue le niveau de la pointe de répartition de pression de contact, de sorte que le seuil Pg n'est pas atteint. On remarque aussi que la surface de la courbe 22 est plus importante que la surface de la courbe 21. C'est-à-dire que la force de contact entre les surfaces d'étanchéité est plus grande sur une connexion selon l'invention que sur une connexion de l'état de l'art. Avec une connexion selon l'invention, il est donc possible d'augmenter la pression de contact entre des surfaces d'étanchéité tout en diminuant le risque de grippage des surfaces d'étanchéité.
La figure 4 représente la pression de contact en fonction de la distance à l'axe de symétrie selon l'état de l'art entre deux surfaces d'étanchéité. La connexion est entièrement réalisée en acier de module d'élasticité El d'une valeur de 210000 Mpa. La surface d'étanchéité est soumise à une force de contact de 70000 N et le rayon de courbure de la surface d'étanchéité torique est de 100mm. Il n'y a pas de partie ajoutée par fabrication additive selon l'invention.
La figure 5 représente la pression de contact en fonction de la distance à l'axe de symétrie selon l'invention entre deux surfaces d'étanchéité. La connexion est réalisée d'un côté avec le corps (4) en acier de module d'élasticité El d'une valeur de 210000 Mpa et de l'autre côté avec la partie ajoutée (9) comprenant une surface d'étanchéité torique, réalisée avec un acier de module d'élasticité E2 = 140000 Mpa. La surface d'étanchéité est soumise à une force de contact de 70000 N et le rayon de courbure de la surface d'étanchéité torique est de 100mm.
En comparant la figure 4 et 5, seule la présence d'une partie ajoutée (9) par fabrication additive d'un matériau différent et de module de Young moindre et comprenant la surface d'étanchéité torique distingue les deux connexions.
La comparaison montre ainsi clairement que l'ajout d'une partie ajoutée (9) selon l'invention présente par rapport à l'état de l'art, un pic de pression de contact diminué passant d'environ 710 Mpa sur la figure 4 à 640 Mpa sur la figure 5. D'un autre côté, la distance à l'axe de symétrie augmente en passant de 1.25 mm à 1.45 mm. Ainsi on constate que la largeur de pression de contact est augmentée, passant de 2.5 mm à 2.9 mm alors que la valeur du pic de pression de contact passe en même temps d'environ 710 Mpa à 640 Mpa. Par ailleurs en prenant en considération les paramètres de la figure 4 on a une demi-aire de surface de 596 soit une aire sous la courbe égale à 1192. En prenant en considération les paramètres de la figure 5, on a une demi-aire de surface de 618 soit une aire sous la courbe de 1236. Une augmentation de l'aire sous la courbe se traduit par une amélioration des performances d'étanchéités. L'invention permet donc par rapport à l'état de l'art non seulement de diminuer le pic de pression de contact, d'augmenter la répartition de la de pression de contact tout en augmentant l'aire sous la courbe, c'est-à-dire tout en augmentant les performances d'étanchéité. La figure 6 représente la répartition des contraintes en fonction de la profondeur selon l'état de l'art. Les différentes contraintes sont représentées selon les courbes oy(z), sc(z), oz(z) et tcz(z). On constate qu'au fur et à mesure que z augmente, c'est-à-dire plus on s'éloigne de la surface et plus on va en profondeur plus les contraintes diminuent.
La figure 7 représente la répartition des contraintes en fonction de la profondeur selon une connexion comprenant une partie ajoutée (9) réalisée par fabrication additive. Les différentes contraintes sont représentées selon les courbes oy(z), sc(z), oz(z) et tcz(z). On constate qu'au fur et à mesure que z augmente, c'est-à-dire plus on s'éloigne de la surface et plus on va en profondeur plus les contraintes diminuent.
En comparant le résultat des figures 6 et 7, les contraintes selon l'invention sont nettement plus réduites par rapport aux contraintes selon l'état de l'art que ce soit en surface (z = 0), ou en profondeur (z=4 par exemple).
Cela montre qu'avec une connexion selon l'invention, il est possible d'augmenter l'interférence sans augmenter les risques de grippage.

Claims

REVENDICATIONS
1. Joint fileté tubulaire (1) pour le forage, l’exploitation des puits d’hydrocarbures ou le transport de pétrole et de gaz comprenant un élément tubulaire fileté mâle (2) et un élément tubulaire fileté femelle (3), l’élément tubulaire fileté femelle (3) comprenant une partie filetée intérieure femelle (5) et une partie non filetée femelle (6), l’élément tubulaire fileté mâle comprenant une partie filetée extérieure mâle (7) et une partie non filetée mâle (8), caractérisé en ce que au moins l’un des éléments tubulaires mâle (2) ou femelle (3) comprend un corps (4) et une partie ajoutée (9) par fabrication additive qui comprend au moins une première surface d’étanchéité.
2. Joint fileté tubulaire (1) selon la revendication 1 caractérisé en ce que la partie ajoutée (9) est réalisée par fabrication additive par rechargement, par fusion par faisceau d’électrons, par fusion laser sur lit de poudre métallique ou « sélective laser melting », par frittage sélectif par laser, par dépôt métallique direct ou « Direct Energy Déposition », par Dépôt par Proj ection de Liant ou Dépôt par Proj ection Laser, par dépôt par fabrication additive arc-fil.
3. Joint fileté tubulaire (1) selon l’une des revendications précédentes comprenant une deuxième surface d’étanchéité sur l’autre des éléments mâle (2) ou femelle (3) correspondante à la première surface d’étanchéité caractérisé en ce que l’une ou l’autre de la première ou deuxième surface d’étanchéité est frusto-conique et l’autre surface d’étanchéité est torique.
4. Joint fileté tubulaire (1) selon l’une des revendications précédentes caractérisé en ce que la partie ajoutée présente une dureté inférieure à la dureté du corps (4) sur au moins 0.6 mm de profondeur.
5. Joint fileté tubulaire (1) selon la revendication 3 et l’une quelconques des revendications 1, 2 et 4 caractérisé en ce que la partie ajoutée (9) a une longueur L supérieure ou égale à une longueur minimale Lmin telle que :
160 x e x intf x R x(l — u2)
Lmin = 12,8 x + 2 p x Ds2
Où : e valeur de l’épaisseur d’une lèvre supportant la surface d’étanchéité torique; intf valeur de l’interférence ;
R valeur du rayon de courbure de la surface d’étanchéité torique ; v valeur du coefficient de Poisson du matériau de la surface d’étanchéité torique; D s val eur du di amètre d ’ étanchéité .
6. Joint fileté tubulaire (1) selon la revendication 5 caractérisé en ce que la partie ajoutée (9) a une longueur L inférieure ou égale à une longueur maximale Lmax telle que :
Lmax = 1,5 xLminJI
7. Joint fileté tubulaire (1) selon l’une des revendications précédentes caractérisé en ce que la partie ajoutée (9) a une longueur L supérieure ou égale à 4 mm.
8. Joint fileté tubulaire (1) selon la revendication 3 caractérisé en ce que la partie ajoutée (9) a une épaisseur Ep supérieure ou égale à une épaisseur minimale Epmin telle que :
160 x e x intf x R x(l — v2)
Epmin = 5,031 x p x Ds2
Où : e valeur de l’épaisseur d’une lèvre supportant la surface d’étanchéité torique; intf valeur de l’interférence ;
R valeur du rayon de courbure de la surface d’étanchéité torique ; v valeur du coefficient de Poisson du matériau de la surface d’étanchéité torique; D s val eur du di amètre d ’ étanchéité .
9. Joint fileté tubulaire (1) selon la revendication 8 caractérisé en ce que la partie ajoutée (9) a une épaisseur Ep inférieure ou égale à une épaisseur maximale Epmax telle que :
Epmax = 1,5 x Epminll
10. Joint fileté tubulaire (1) selon l’une des revendications précédentes caractérisé en ce que la partie ajoutée (9) a une épaisseur Ep supérieure ou égale à 0.6 mm.
11. Joint fileté tubulaire (1) selon l’une des revendications précédentes caractérisé en ce que la partie ajoutée (9) présente un coefficient de frottement supérieur au coefficient de frottement du corps (4).
12. Joint fileté tubulaire (1) selon l’une des revendications précédentes caractérisé en ce que la partie ajoutée (9) comprend un métal choisi parmi les aciers alliés, fortement alliés, alliages cupronickel, alliages de titane, céramiques, vitrocéramiques, ou cuivre, cupronickel, stellite, fero 55.
13. Joint fileté tubulaire (1) selon l’une des revendications précédentes caractérisé en ce que la partie ajoutée (9) comprends un matériau de module de Young entre 110 GPa et 210 GPa, de préférence entre 110 GPa et 160 GPa.
14. Un procédé pour obtenir un joint fileté tubulaire caractérisé en ce que la partie ajoutée (9) est réalisée par un procédé choisi parmi les procédés de rechargement, les procédés de fusion par faisceau d’électrons, les procédés de fusion laser sur lit de poudre métallique ou « sélective laser melting », les procédés de frittage sélectif par laser, les procédés de dépôt métallique direct ou « Direct Energy Déposition », les procédés de Dépôt par Projection de Liant ou Dépôt par Projection Laser, les procédés de dépôt par fabrication additive arc-fil.
EP20786531.2A 2019-10-08 2020-10-06 Joint filete avec portee d'etancheite realisee par fabrication additive Pending EP4041982A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1911148A FR3101659B1 (fr) 2019-10-08 2019-10-08 Joint filete avec portee d’etancheite realisee par fabrication additive
PCT/EP2020/077921 WO2021069402A1 (fr) 2019-10-08 2020-10-06 Joint filete avec portee d'etancheite realisee par fabrication additive

Publications (1)

Publication Number Publication Date
EP4041982A1 true EP4041982A1 (fr) 2022-08-17

Family

ID=69468733

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20786531.2A Pending EP4041982A1 (fr) 2019-10-08 2020-10-06 Joint filete avec portee d'etancheite realisee par fabrication additive

Country Status (9)

Country Link
US (1) US20220381380A1 (fr)
EP (1) EP4041982A1 (fr)
CN (1) CN114945730A (fr)
AR (1) AR120177A1 (fr)
AU (1) AU2020362925A1 (fr)
BR (1) BR112022006042A2 (fr)
FR (1) FR3101659B1 (fr)
MX (1) MX2022004275A (fr)
WO (1) WO2021069402A1 (fr)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211765B2 (fr) 1972-03-31 1977-04-02
FR2725773B1 (fr) * 1994-10-13 1996-11-29 Vallourec Oil & Gas Assemblage filete pour tubes
FR2761450B1 (fr) * 1997-03-27 1999-05-07 Vallourec Mannesmann Oil & Gas Joint filete pour tubes
US6863313B1 (en) * 1998-02-25 2005-03-08 Grant Prideco, L.P. Threaded connection for internally clad pipe
FR2776746B1 (fr) * 1998-03-26 2000-04-28 Vallourec Mannesmann Oil & Gas Assemblage filete de tubes metalliques destines a contenir un fluide
FR2800150B1 (fr) * 1999-10-21 2001-12-07 Vallourec Mannesmann Oil & Gas Joint tubulaire filette etanche a la pression exterieure
FR2833335B1 (fr) * 2001-12-07 2007-05-18 Vallourec Mannesmann Oil & Gas Joint filete tubulaire superieur contenant au moins un element filete avec levre d'extremite
UA82694C2 (uk) 2003-06-06 2008-05-12 Sumitomo Metal Ind Нарізне з'єднання для сталевих труб
CA2552722C (fr) * 2004-01-12 2012-08-07 Shell Oil Company Raccord expansible
RU2324857C1 (ru) * 2006-10-11 2008-05-20 Темлюкс Холдинг Лимитед С.А. Резьбовое соединение насосно-компрессорной трубы
FR2923283B1 (fr) 2007-11-07 2012-10-05 Vallourec Mannesmann Oil & Gas Joint filete comprenant au moins un element filete avec levre d'extremite pour tube metallique.
FR2939490B1 (fr) * 2008-12-10 2013-01-18 Vallourec Mannesmann Oil & Gas Joint tubulaire etanche utilise dans l'industrie du petrole et procede de realisation d'un tel joint
US9677179B2 (en) * 2012-12-20 2017-06-13 Shell Oil Company Pipe connector and method
FR3030668B1 (fr) * 2014-12-19 2016-12-16 Vallourec Oil & Gas France Joint filete
FR3035476B1 (fr) * 2015-04-23 2017-04-28 Vallourec Oil & Gas France Joint filete tubulaire dote d'un revetement metallique sur le filetage et la portee d'etancheite
CA3026557C (fr) * 2016-09-16 2020-12-22 Nippon Steel & Sumitomo Metal Corporation Joint filete

Also Published As

Publication number Publication date
FR3101659A1 (fr) 2021-04-09
US20220381380A1 (en) 2022-12-01
MX2022004275A (es) 2022-05-06
WO2021069402A1 (fr) 2021-04-15
BR112022006042A2 (pt) 2022-07-12
CN114945730A (zh) 2022-08-26
AR120177A1 (es) 2022-02-02
FR3101659B1 (fr) 2022-01-21
AU2020362925A1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
EP1461560B2 (fr) Joint filete tubulaire superieur comprenant au moins un element filete avec levre d extremite
EP1295007B1 (fr) Joint filete tubulaire avec butee renforcee
EP1532388B1 (fr) Joint filete tubulaire etanche vis-a-vis du milieu exterieur
WO2000022339A1 (fr) Assemblage filete integral de deux tubes metalliques
EP2344802B1 (fr) Composant pour le forage et l'exploitation des puits d'hydrocarbures
FR2953272A1 (fr) Joint filete
EP3994382A1 (fr) Joint filete avec epaulement realise par fabrication additive
FR2848282A1 (fr) Procede de realisation d'un joint filete tubulaire etanche vis-a-vis de l'exterieur
FR2834046A1 (fr) Structure de liaison d'un raccord de derivation a un conteneur accumulateur de combustible sous pression
EP1692421B1 (fr) Realisation, par expansion plastique, d un joint tubulaire etanche avec surface(s) de butee inclinee(s)
EP3600747B1 (fr) Procédé de chemisage d'une conduite en acier pour le transport sous-marin de fluides
FR2863029A1 (fr) Realisation, par expansion plastique, d'un joint tubulaire etanche avec surepaisseur(s) de matiere locale(s) initiale(s)
FR2935624A1 (fr) Procede de fabrication d'une piece thermomecanique de revolution circulaire comportant un substrat porteur a base de titane revetu d'acier ou superalliage, carter de compresseur de turbomachine resistant au feu de titane
WO2005064218A1 (fr) Réalisation, par expansion plastique, d'un assemblage de deux joints tubulaires filetés étanches avec une sous-épaisseur de matière locale et initiale
FR2480400A1 (fr) Raccord filete etanche aux gaz, notamment pour conduites de puits de forage de petrole ou de gaz
WO2021069402A1 (fr) Joint filete avec portee d'etancheite realisee par fabrication additive
WO2022184991A1 (fr) Elément tubulaire fileté à segment
WO2022184992A1 (fr) Elément tubulaire fileté à segment
WO2022184993A1 (fr) Elément tubulaire fileté à segment
FR2863030A1 (fr) Realisation, par expansion plastique, d'un joint tubulaire etanche avec surface(s) de butee inclinee(s)
EP1043092B1 (fr) Procédé d'assemblage de deux pièces, pièces destinées à être assemblées grâce à ce procédé et assemblage de deux telles pièces
FR3109543A1 (fr) Insert precisement integre dans un corps brut realise par fabrication additive.
FR2818728A1 (fr) Joint filete tubulaire avec butee renforcee
WO2021130253A1 (fr) Tube revêtu résistant à l'usure de cuvelage
FR3133897A1 (fr) Joint fileté tubulaire

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220329

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230424

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240307