WO2022184993A1 - Elément tubulaire fileté à segment - Google Patents

Elément tubulaire fileté à segment Download PDF

Info

Publication number
WO2022184993A1
WO2022184993A1 PCT/FR2022/050298 FR2022050298W WO2022184993A1 WO 2022184993 A1 WO2022184993 A1 WO 2022184993A1 FR 2022050298 W FR2022050298 W FR 2022050298W WO 2022184993 A1 WO2022184993 A1 WO 2022184993A1
Authority
WO
WIPO (PCT)
Prior art keywords
segment
tubular element
thread
level
ysl
Prior art date
Application number
PCT/FR2022/050298
Other languages
English (en)
Inventor
Pierre Martin
Nicolas BAUDET
Jean-Guillaume Besse
Original Assignee
Vallourec Oil And Gas France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vallourec Oil And Gas France filed Critical Vallourec Oil And Gas France
Publication of WO2022184993A1 publication Critical patent/WO2022184993A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/08Screw-threaded joints; Forms of screw-threads for such joints with supplementary elements
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/04Couplings; joints between rod or the like and bit or between rod and rod or the like
    • E21B17/042Threaded
    • E21B17/0423Threaded with plural threaded sections, e.g. with two-step threads

Definitions

  • the invention relates to the components, threaded tubular elements and seals resulting from the assembly of two threaded tubular elements present in the tubular components used in the field of oil and gas, geothermal energy, energy, and more particularly to a method of manufacturing such an element.
  • component means any tube or accessory used to drill or exploit a well and comprising at least one connection or connector or even a threaded tubular element, and intended to be assembled by threading to another component to constitute with this other component a tubular threaded joint.
  • the component may for example be a tube of relatively great length (in particular about ten meters in length), or else a tubular sleeve of a few tens of centimeters in length, or even an accessory of these tubular elements.
  • such an accessory can be a suspension device or "hanger”, a section change part or “cross-over”, a safety valve, a drill rod connector or “tool joint”, “ sub”, and the like...
  • the tubular joints therefore consist of at least two threaded tubular elements. These threaded tubular elements are complementary allowing the connection of two tubular elements - one male (“Pin”) and the other female (“Box”) - between them. There is therefore a male threaded tubular element and a female threaded tubular element.
  • the so-called premium or semi-premium threaded tubular elements generally comprise at least one abutment surface.
  • a first abutment can be formed by two abutment surfaces of two threaded tubular elements, oriented substantially radially and configured so as to be in contact with each other after the screwing of the threaded tubular elements between them, therefore in the assembled state or in the assembled state and during compressive stresses on the tubular joint.
  • a first abutment surface may be located on the distal end of a threaded tubular member, or on the side of the thread(s) located opposite the distal end of the threaded tubular member.
  • Intermediate abutments are also known on joints comprising at least two levels of threads, an intermediate abutment surface being between the two threads of an element.
  • the so-called "premium” connections include sealing surfaces called sealing surfaces, at least one on the pin, and at least one corresponding on the box, intended to be brought into interfering contact when the pin and box connections are assembled with each other, so as to form a seal having a seal against liquids and/or gases.
  • the sealing surfaces must maintain a seal preventing the passage of liquids and/or gases when the connections are assembled together and during the use of the tubes comprising these connections assembled in a column, for example an oil well column , that is to say that the sealing function must be maintained in the widest possible spectrum of use, including when the joint is subjected to internal pressure or to external pressure, to compressive stresses or tensile stresses, at room temperature or at high temperature, this spectrum corresponding to an operating range of the seal.
  • tubular components must offer a certain resistance to structural mechanical stresses. Also, the tubular components have a constrained outer diameter and inner diameter. Indeed, a tubular component is designed so as to have a limited size to be able to be located or passed through other equipment, then limiting the increase in the external diameter of the component. Furthermore, the component must be able to accommodate or allow other equipment to pass through its interior space, thus limiting the reduction of the interior diameter of the component. Thus, to increase the resistance to structural forces of a tubular component, it is not always possible to modify the internal or external diameters of said component. Furthermore, it would be possible to change the nature of the steel in which the tubular component is made, but this can pose cost problems, both in terms of material cost and machining cost. This is why there is a need for a solution which makes it possible to increase the structural mechanical resistance of a tubular component without modifying its external dimensions such as internal and external diameters.
  • the present invention aims to solve this problem with a tubular element comprising a body, the body comprising a first surface on which a thread is formed, a second surface radially opposite the first surface, a distal end, said body being in a steel having a first yield strength Ysl, the tubular member further comprising a segment extending radially from the second surface and extending axially at the thread said segment being in a steel having a second yield strength Ys2 greater than the first yield strength Ysl.
  • the section in line with the thread has improved rigidity, and the joint resulting from the assembly of such a tubular element with another tubular element has improved mechanical strength performance.
  • the second surface may include a recess and the segment be located in said recess.
  • the segment may be located entirely within the recess. This improves the rigidity of the wall without adding thickness and minimizing the volume occupied by the segment. [1 l] Thus, it is possible to avoid reducing an internal diameter of the connection or to avoid increasing an external diameter of the component.
  • the segment can be only partially in the recess.
  • the segment makes it possible to overcome the dimensional limitations linked to the methods of fattening and/or conification and/or expansion of the end of a tube.
  • the first surface can comprise at least two threads and the segment extends axially at the level of the two threads.
  • the connection may also include an intermediate abutment surface located axially between the two threads, and the segment extending axially at said intermediate abutment surface.
  • an intermediate stop can constitute a critical section of a connection with two levels of threads and the segment of greater elastic limit makes it possible to reinforce the intermediate critical section and the tensile strength of a connection comprising a intermediate stop.
  • the first surface may comprise at least one sealing surface and the segment may extend axially from the axial position of the thread to the axial level of at least one of said at least a sealing surface.
  • the material supporting the sealing surface has improved rigidity, and the seal resulting from the assembly of such a tubular element with another tubular element has improved sealing performance under stress.
  • the distal end may include an abutment surface, a sealing surface located radially on the first surface, the distal end extending axially beyond the opposite side sealing surface to the thread.
  • the first yield strength Ysl of the body and the second yield strength Ys2 of the segment have values denoted [Ysl][Ys2] such that [Ys2] > 1.15 x [Ysl] and preferentially [Ys2] >1.5 x [Ysl]
  • the segment can be attached to the body by additive manufacturing. This allows better control of the shape and adhesion of the segment to the body. This also makes it possible to dimensionally limit the heat-affected zone.
  • the segment has a radial thickness of at least 3 mm.
  • the segment may be located at a radial distance of at least 1.5 mm from the sealing surface. This ensures that the construction of the segment on the body does not influence the properties of the material adjacent to the sealing surface.
  • the segment may have an axial length of at least 8 mm.
  • the segment extends axially by at least 4 mm on either side of the base of the first tooth.
  • the segment does not include a recess arranged for the passage of fluid or gas, or a recess arranged to house a sensor.
  • the segment can be in a metal chosen from alloy steels, high alloy steels, cupro-nickel alloys, titanium alloys, ceramics, glass-ceramics, or copper, cupronickel, stellite, ferrochrome.
  • the segment can be of the same metal as the metal of the body. And is reported on the second surface by additive manufacturing. It is indeed possible to obtain different elastic limits with steels of the same nature, particularly with additive manufacturing processes.
  • the tubular element according to the invention is a sleeve for drilling, operating hydrocarbon wells or transporting oil and gas.
  • a sleeve has a total length of less than 3 meters.
  • a sleeve has two threaded ends. Most often a sleeve comprises two female threaded ends.
  • the invention is also a tubular threaded joint in which the segment can extend axially at an engaging tooth of the thread, more particularly an engaging tooth closest to a distal end. Indeed, a critical section of a threaded connection assembled in a threaded joint is at the level of the first tooth in engagement with the thread.
  • the tubular element may be a sleeve for drilling, operating hydrocarbon wells or transporting oil and gas according to any one of the preceding claims, comprising a first thread and a second thread, separated by a central portion, characterized in that the segment extends axially at the level of the first thread, the second thread and the central portion.
  • the tubular element can be a sleeve for drilling, operating hydrocarbon wells or transporting oil and gas according to any one of the preceding claims, comprising a first thread and a second thread separated by a central portion, characterized in that the segment extends at the level of the first thread over at least 20% of the axial length of the said first thread .
  • the tubular element may comprise a segment located axially at the level of a critical section of a thread, preferably at the level of the root of the first thread closest to the central portion of the tubular component .
  • the tubular element may comprise a first segment at the critical section of the first thread and a second segment at the critical section of the second thread.
  • the invention is also a method for obtaining a tubular element as described above, said method possibly comprising a step of producing the segment by a method chosen from among hardfacing methods, fusion methods by beam of electrons, laser melting processes on a metal powder bed or "selective laser melting", selective laser sintering processes, direct metal deposition processes or "Direct Energy Deposition”, Binder Projection Deposition or Deposition processes by Laser Projection, deposition processes by arc-wire additive manufacturing.
  • the body has a first Young El modulus
  • the segment has a second Young El modulus larger than the first Young El modulus
  • Figure 1 is a partial sectional view of one end of a tubular element according to a first embodiment of the invention and the tubular element being a sleeve;
  • Figure 2 is a partial sectional view of one end of a tubular element according to the invention in a variation, the tubular element being a sleeve;
  • Figure 3 is a partial sectional view of one end of a tubular element according to a second embodiment of the invention, the tubular end being an integral female connection to two portions of thread
  • Figure 4 is a partial sectional view of one end of a tubular element according to a variant of the second embodiment of the invention.
  • Figure 5 is a partial sectional view of one end of a tubular element according to another variant of the second embodiment of the invention
  • Figure 6 is a detail view in section of one end of a tubular element according to the first embodiment of the invention.
  • Figure 1 shows a preferred embodiment of the invention.
  • Figure 1 shows a partial sectional view of a tubular element (2) having a main axis (X), of the sleeve type, of length less than 3 meters, with two ends of the female type (3a, 3b).
  • a sleeve most often has two female ends, but it can happen that a sleeve has two male ends or a male end and a female end.
  • the sleeve (2) comprises a first surface (12), here an inner surface, on which are arranged a first and a second thread (5; 7), which here are external threads, the sleeve having two female ends. These two threads (5; 7) are separated by a central portion (6).
  • the central portion comprises an internal extension having abutment surfaces (9a; 9b).
  • a sleeve may not have these abutment surfaces and internal extension.
  • the sleeve (2) here comprises female sealing surfaces (10a, 10b), but a sleeve may not have such sealing surfaces.
  • connections can also comprise several stages of threading, for example two stages of threading. Connections may also include additional sealing surfaces, for example a sealing surface located on the side of the external thread (5) which is opposite the distal end (8), or even a sealing surface located between two levels of threads.
  • the connections can also include an abutment surface located axially between the two thread stages. The connections may have no abutment surface.
  • the tubular element or sleeve (2) comprises a body (4) in a first material, here a first steel having a first elastic limit Ysl.
  • the first and second threads (5; 7), the sealing surfaces (10a; 10b) and abutment surfaces (9a; 9b) are made in the body (4) and are therefore constituted by said first steel of first limit d elasticity Ysl.
  • the threads (5; 7), the sealing surfaces (10a; 10b) and abutment surfaces (9a; 9b) are generally obtained by machining in the body (4) of the tubular element (2).
  • the tubular element (2) of Figure 1 comprises a segment (11).
  • the segment (11) extends from a second surface (13) radially opposite the first surface (12).
  • the second surface here is an outer surface.
  • the axial location of the segment (11) is such that the segment (11) is located at least in line with a thread (5; 7).
  • the segment (11) extends both at the level of the threads (5; 7) and at the level of the central portion (6).
  • the segment (11) extends at least at the level of the critical sections (CCSa; CCSb) of the sleeve.
  • critical section is meant the section of the wall most stressed in axial tension, that is to say the section which must absorb the entire load in tension.
  • the notion of critical section is known to those skilled in the art, and is an important aspect of the performance of tubular connections and tubular joints resulting from the assembly of two tubular connections together.
  • the critical section of a connection is currently that under the first thread facing the first thread in engagement with the corresponding tubular element and closest to the distal end of the corresponding element.
  • the critical section is more particularly under the root of said first load thread, the last thread being on the side of the free end of the connection.
  • the critical section is therefore currently at the level of the base of the first thread in engagement.
  • the critical section of a threaded connection is more generally the section which must absorb the entire tension load.
  • a person skilled in the art is able to identify and define the critical section of a connection, the process of designing a connection being made in connection with the corresponding connection to form a joint. To do this, the person skilled in the art uses tools such as finite element calculations or FEA.
  • the segment (11) is in a steel with a second yield strength Ys2.
  • This elastic limit is advantageously greater than the first elastic limit Ysl. This makes it possible to increase the static tensile performance of the threaded joint with equivalent dimensions. As a corollary, this makes it possible to reduce the size of the joint while maintaining the same static performance in tension of the threaded joint.
  • the outer diameter can be reduced compared to a sleeve of the state of the art for the same tensile strength.
  • the body (4) of the tubular element (2) comprises a recess (14) formed on the second surface (13).
  • the segment (11) is located in the recess (14).
  • the segment (11) is an addition of material arranged to reinforce the structure of the sleeve (2).
  • the highest limit of the Ys2 elastic limit of the segment makes it possible to reduce the bulk volume of added material.
  • the presence of a recess (14) on the second surface (13) in the body (4) and the positioning of the segment (11), in part or in whole, makes it possible to further reduce the bulk, and even to not have no additional bulk.
  • such a sleeve can be made compatible for different connection models.
  • the segment (11) can be made of a steel having the same chemical composition as the steel of the body (4) and which has a second elastic limit Ys2 nevertheless higher than the first elastic limit Ysl of the body , due to a distinct crystalline structure. This distinct crystal structure is achieved by heat treatment.
  • the steel of the body (4) at the second surface has a first crystal structure
  • the steel of the segment has a second crystal structure distinct from the first crystal structure.
  • a satisfactory method to date is to deposit material from the segment by a known additive manufacturing method, which makes it possible to deposit drops of molten material which undergo rapid cooling during deposition, which creates a steel with a limit of elasticity greater than that of the steel of the body (4) which is shaped by methods resulting in a longer cooling cycle.
  • the segment (11) can be made of a second steel with a different chemical composition from that of the first steel of the body (4), the second steel of the segment inherently having a higher elastic limit than the first body steel (4).
  • the material of the segment (11) is also deposited by an additive manufacturing process.
  • such a steel can be chosen from a Ferro 55 alloy from the companies Boehler-Voestalpine, Deloro-Stellite-Kennametal, Carpenter, Erasteel, Hoganas.
  • the steel can be chosen from alloy steels, high alloys, cupro-nickel alloys, titanium alloys, ceramics, glass-ceramics, or copper, cupronickel, stellite, ferrochrome, having suitable elasticity limits for use on a tubular element.
  • the deposit, or assembly of the segment (11) on the body (4) is generally exothermic.
  • the tests carried out by the applicant have shown that when the segment (11) is located at a radial distance of at least 1.5 mm from a functional surface, said functional surface is not affected by the method of supplying material of the segment (11) on the body (4). This is why the segment (11) is located at a radial distance of at least 1.5 mm from a functional surface such as the thread, more particularly the base of the thread (5) at any point.
  • a segment must also be at a distance of at least 1.5mm of a sealing or abutment surface when such a functional surface is present on the connection.
  • Segment (11) in Figure 1 has a thickness of at least 3 mm.
  • thickness is meant the size of the profile of the segment measured radially with respect to the axis (X) of the tubular component.
  • the segment extends around the entire circumference of the tubular component, so the profile of the segment generates an annular shape.
  • the segment (11) of the sleeve (2) of Figure 1 extends at the level of the first thread (5) and the second thread (7) of the sleeve (2), and the segment (11) extends also at the level of the central portion (6). This configuration may be more suitable when the sleeve has symmetrical connections, i.e. the same characteristics.
  • the segment (11) has a length measured axially of at least 8 mm. Preferably, the segment extends axially over at least 4 mm on either side of the critical section, here the base of the first thread. This makes it possible to obtain a reinforcement effect of the wall of the tubular component at the level of a zone of stress concentration, particularly during the compression or traction stresses of the connection. It also allows to have a full effect on the cross section of a connection, when said cross section is shifted with respect to the first thread.
  • the tubular element (20) of Figure 2 is a sleeve similar to that of Figure 1, comprising a segment (21) located in line with a thread (5), said segment (21) differing from the first embodiment in that the segment (21) does not extend at the level of the two opposite threadings of the sleeve (20), nor at the level of the central portion (6) but the segment (21) extends radially at the level of the first thread (5).
  • the segment (21) extends over an axial length of at least 8 mm and at least 20% of the axial length of the thread (5).
  • the segment (21) is located in a recess (24) made in the second surface (33).
  • the segment (21) is completely contained within the recess (24).
  • the segment (21) can also be located partially outside the recess (24).
  • the threaded tubular element (30) of FIG. 3 has a main body (MB), partially shown, and an integral type female connection (31) connected to this main body.
  • the main body (MB) is a central portion of the threaded tubular element (30), separating two threaded connections.
  • the threaded tubular element (30) terminates in a distal end (EXT) opposite the main body (MB).
  • the threaded tubular element (30) and the female connection (31) comprise a body (34) in a material having a first elastic limit Ysl, the body (34) comprising a first thread (35), or internal thread, and a second thread (37), or end thread.
  • the first and second threads (35, 37) are made on a first surface (32) which here is an inner surface.
  • the threaded tubular element (30) comprises a second surface (33) opposite the first surface (32) which here is an outer surface.
  • the first thread (35) is separated from the second thread (37) by an unthreaded portion.
  • the unthreaded portion includes an abutment surface (36), oriented substantially radially.
  • such a threaded element may comprise one or more sealing surface(s). These sealing surfaces can be located on the non-threaded portion between the abutment surface (36) and the first and second threads (35, 37); or the sealing surface(s) may be located on the sides of the threads opposite the abutment surface (36).
  • the sealing surfaces have axial and radial dimensions. The sealing surfaces occupy radial space, a thickness that does not contribute to the tensile strength of the connection. Thus, this type of connection does not make it possible to achieve joints with 100% effective voltage. State-of-the-art seals make it possible to reach 50%, or even 70-80% for the most recent models but with complex architectures.
  • the female connection (31) has a CCS female critical section located at the root of a thread which is closest to the main body (MB) of the tubular component.
  • the critical section (CCS) is located in this case at the root of the first thread of the first thread or internal thread (35), the first thread being the thread closest to the main body (MB) of the threaded tubular element (30).
  • the CCS female critical section is subject to the full voltage which is transmitted across the threads of the female connection (31).
  • the female connection (31) also includes an MCCS intermediate critical section, located axially at the level of the root of a tooth closest to the main body MB on the second thread (37)
  • the MCCS intermediate female critical section is subject at least 50% of the total tension which is transmitted at the threads of the second thread (37).
  • the threaded tubular element (30) of Figure 3 comprises a segment (31) located axially at the level of the second thread (37).
  • the segment (31) is located axially at the level of the root of the thread closest to the main body (MB) in the second thread (37).
  • the segment (31) can extend axially at the level of the abutment surface (36).
  • the body (4) has a first elastic limit Ysl and the segment (31) has a second elastic limit Ys2 greater than the first elastic limit Ysl of the body (4).
  • the wall of the component one level of the second thread (35) is reinforced and the tensile performance improved.
  • the segment (31) is located in a recess (34) made in the second surface (33).
  • the segment (31) is completely contained within the recess (34).
  • the segment (31) can also be partially located outside the recess (34).
  • a threaded tubular component variant (40) is shown in Figure 4, the body (4) and main body (MB) of the threaded tubular component (40) being similar to those of Figure 3.
  • a segment (41) is located at the level of the first thread (35).
  • the segment (41) is located axially at the level of the CCS female critical section.
  • the segment (41) is located axially at the level of the root of the first thread of the first thread or internal thread (35), the first thread being the thread closest to the main body (MB) of the threaded tubular element (40).
  • the segment (41) is located in a recess (44) made in the second surface (33).
  • the segment (41) is completely contained within the recess (44).
  • the segment (41) can also be located partially outside the recess (44).
  • the body (4) has a first elastic limit Ysl and the segment (41) has a second elastic limit Ys2 greater than the first elastic limit Ysl of the body .
  • the component of Figure 4 has an enhanced maximum tensile strength.
  • FIG. 5 Another variant shown in Figure 5 shows a threaded tubular component (50) comprising a body (4) similar to those of Figures 3 and 4, and further comprising a first section (31) similar to that of Figure 3 , and a second section (41) similar to that of Figure 4.
  • the tubular component of Figure 5 has an increased and optimized tensile strength performance.
  • the first and second segments (31, 41) can be joined to form a single segment. The division into two disjoint segments allows optimization of manufacturing costs.
  • the segment may not include a recess to accommodate a sensor. These characteristics can apply to all the embodiments described in this application.
  • the invention also relates to a method for obtaining a threaded tubular element comprising a segment (11, 21, 31, 41).
  • This method comprises the step of choosing a tubular element with at least one thread, optionally making a recess on the surface opposite the surface on which the thread is located, then depositing material in the recess or on said opposite surface.
  • the deposition of material can be done according to a process chosen from reloading processes, electron beam fusion processes, laser fusion processes on a metal powder bed or "selective laser melting", selective laser sintering, direct metal deposition or “Direct Energy Deposition” processes, deposition processes by Binder Projection or Laser Projection Deposition, deposition processes by arc-wire additive manufacturing.
  • Figure 6 shows a detail view in section of a sleeve 67 similar to the sleeve (2) of Figure 1.
  • the sleeve (67) therefore comprises a body (64) in a steel with an elastic limit Ysl, a first inner surface (12) and a second outer surface (13), a segment (11) extending from the second surface 13, in a steel with an elastic limit Ys2.
  • a segment can have a connection section (111) between a bottom (112) and the second surface (13).
  • the connection section may have a curvature whose radius is preferably greater than 20 mm.
  • the connection section is shown curved, alternatively, the connection section may comprise a straight section extending from the second surface (13), and forming an angle of 45° or less with said second surface (13), in order to minimize stress concentrations.
  • the sleeve (67) of Figure 6 has a critical section CCS at the root of the first tooth of the thread (5).
  • the CCS critical section of the sleeve has a main thickness (61) of critical section, the latter being composed of a thickness (62) of critical section of body Sec, and of thickness (63) of critical section of segment Sci.
  • a sleeve according to the invention therefore develops an equivalent critical section Sceq such that
  • the Ys2/Ysl ratio is equal to 1.
  • the Ys2/Ysl ratio is at least equal to 1.15, preferably at least equal to 1.5. It is therefore agreed that for the same thickness, a sleeve according to the invention has a greater equivalent critical section than a sleeve of the state of the art. It emerges that a sleeve according to the invention has better tensile performance than a sleeve of the state of the art for the same thickness, that is to say the same critical section. This is set forth for illustrative purposes in the exemplary embodiment of Figure 6, but this reasoning is the same for all embodiments of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mutual Connection Of Rods And Tubes (AREA)
  • Dowels (AREA)
  • Earth Drilling (AREA)

Abstract

Elément tubulaire (2; 20, 30, 40, 50) comprenant un corps (4, 34), le corps (4, 34) comportant une première surface (12, 32) sur laquelle est ménagé un filetage (5; 7; 35; 37), une deuxième surface (13; 33) radialement opposée à la première surface (12; 32), ledit corps (4; 34) étant dans un acier ayant une première limite d'élasticité Ys1, l'élément tubulaire comprenant en outre un segment (11; 21; 31; 41) s'étendant radialement depuis la deuxième surface (13; 33) et s'étendant axialement au niveau du filetage (5; 7; 35; 37) ledit segment (11; 21; 3; 41) étant dans un acier ayant une deuxième limite d'élasticité Ys2 plus grande que la première limite d'élasticité Ys1.

Description

Description
Titre de l’invention : Elément tubulaire fileté à segment
Domaine technique
[1]L’invention concerne les composants, éléments tubulaires filetés et joints résultants de l’assemblage de deux éléments tubulaires filetés présents dans les composants tubulaires utilisés dans le domaine du pétrole et du gaz, de la géothermie, de énergie, et plus particulièrement à une méthode de fabrication d’un tel élément.
Arrière-plan technologique
[2] On entend ici par “composant” tout tube ou accessoire utilisé pour forer ou exploiter un puit et comprenant au moins une connexion ou connecteur ou encore élément tubulaire fileté, et destiné à être assemblé par un filetage à un autre composant pour constituer avec cet autre composant un joint fileté tubulaire. Le composant peut être par exemple un tube de relativement grande longueur (notamment d’environ une dizaine de mètres de longueur), ou bien un manchon tubulaire de quelques dizaines de centimètres de longueur, ou encore un accessoire de ces éléments tubulaires. De manière non limitative, un tel accessoire peut être un dispositif de suspension ou « hanger », une pièce de changement de section ou « cross-over », une vanne de sécurité, un connecteur pour tige de forage ou « tool joint », « sub », et analogues...
[3]Les joints tubulaires sont donc constitués d’au moins deux éléments tubulaires filetés. Ces éléments tubulaires filetés sont complémentaires permettant le raccordement de deux éléments tubulaires - l’un mâle (« Pin ») et l’autre femelle (« Box ») - entre eux. Il y a donc un élément tubulaire fileté mâle et un éléments tubulaire fileté femelle. Les éléments tubulaires filetés dits premium ou semi- premium comportent généralement au moins une surface de butée. Une première butée peut être formée par deux surfaces de butée de deux éléments tubulaires filetés, orientées de façon sensiblement radiale et configurées de façon à être en contact l’une avec l’autre à l’issue du vissage des éléments tubulaires filetés entre eux, donc à l’état assemblé ou à l’état assemblé et lors de sollicitations de compression sur le joint tubulaire. Les butées ont généralement des angles négatifs par rapport à l’axe principal des connexions. Une première surface de butée peut être située sur l’extrémité distale d’un élément tubulaire fileté, ou du côté du ou des filetages situés à l’opposé de l’extrémité distale de l’élément tubulaire fileté. On connaît également des butées intermédiaires sur des joints comportant au moins deux étages de filetages, une surface de butée intermédiaire se trouvant entre les deux filetages d’un élément.
[4]De manière générale, pour des raisons techniques et d’usinage, les différentes parties d’un même composant, qu’il s’agisse de l’élément tubulaire ou encore des extrémités filetées, sont conçus selon un seul et même type de matériau (alliage ou non).
[5]Les connexions dites « premium » comportent des surfaces d’étanchéité appelées portées d’étanchéité, au moins une sur le pin, et au moins une correspondante sur le box, destinées à être mises en contact interférant lorsque les connexions pin et box sont assemblées l’une avec l’autre, de manière à former un joint présentant une étanchéité aux liquides et/ou aux gaz. Les portées d’étanchéité doivent maintenir une étanchéité empêchant le passage de liquides et/ou de gaz lorsque les connexions sont assemblées entre elles et lors de l’utilisation des tubes comportant ces connexions assemblées dans une colonne, par exemple une colonne de puits de pétrole, c'est-à-dire que la fonction d’étanchéité doit être maintenue dans le plus large spectre d’utilisation possible, y compris lorsque le joint est soumis à une pression interne ou à une pression externe, à des sollicitations de compression ou des sollicitations de traction, à température ambiante ou à température élevée, ce spectre correspondant à un domaine de fonctionnement du joint.
[6]Les composants tubulaires doivent proposer une certaine résistance aux efforts mécaniques structurels. Aussi, les composants tubulaires possèdent un diamètre externe et un diamètre interne contraints. En effet, un composant tubulaire est conçu de manière à avoir un encombrement limité pour pouvoir être localisé ou passé au travers d’un autre équipement, limitant alors l’augmentation du diamètre extérieur du composant. Par ailleurs, le composant doit pouvoir accueillir ou laisser passer au travers de son espace intérieur un autre équipement, limitant alors la réduction du diamètre intérieur du composant. Ainsi, pour augmenter la résistance aux efforts structurels d’un composant tubulaire, il n’est pas toujours possible de modifier les diamètres interne ou externe dudit composant. Par ailleurs, il serait possible de changer la nature de l’acier dans lequel est réalisé le composant tubulaire, mais cela peut poser des problèmes de coût, à la fois en coût de matière et en coût d’usinage. C’est pourquoi il existe un besoin pour une solution qui permette d’augmenter la résistance mécanique structurelle d’un composant tubulaire sans modifier ses dimensions extérieures telles que diamètres interne et externe.
[7]Par exemple, on connaît par US20120043756 une connexion intégrale à deux filetages et avec butée intégrale. De type intégral, une telle connexion a une épaisseur de paroi limitée. Ainsi, des aménagements sont prévus pour augmenter le diamètre externe le plus grand, par exemple par expansion, ou diminuer le diamètre interne, ou encore mettre en place des caractéristiques liées aux filetages ou surfaces de butée et d’étanchéité pour optimiser la section critique, conditionnant les performances mécaniques dont la performance de résistance en traction. Il existe donc un besoin pour améliorer les performances mécaniques, dont la performance de résistance en traction.
[8]La présente invention vise à résoudre ce problème avec un élément tubulaire comprenant un corps, le corps comportant une première surface sur laquelle est ménagé un filetage, une deuxième surface radialement opposée à la première surface, une extrémité distale, ledit corps étant dans un acier ayant une première limite d’élasticité Ysl, l’élément tubulaire comprenant en outre un segment s’étendant radialement depuis la deuxième surface et s’étendant axialement au niveau du filetage ledit segment étant dans un acier ayant une deuxième limite d’élasticité Ys2 plus grande que la première limite d’élasticité Ysl.
Ainsi, la section au droit du filetage a une rigidité améliorée, et le joint résultant de l’assemblage d’un tel élément tubulaire avec un autre élément tubulaire a des performances en résistance mécanique améliorées.
[9] L’invention permet également d’augmenter l’espace libre inter annulaire
(« clearance » dans le métier) pour une même capacité de résistance en traction.
[10] La deuxième surface peut comporter un renfoncement et le segment être situé dans ledit renfoncement. Le segment peut être entièrement situé dans le renfoncement. Ceci permet d’améliorer la rigidité de la paroi sans ajouter d’épaisseur et en minimisant le volume occupé par le segment. [1 l]Ainsi, il est possible d’éviter de réduire un diamètre interne de la connexion ou éviter d’augmenter un diamètre externe du composant. Le segment peut être partiellement seulement dans le renfoncement.
[12] Aussi, le segment permet de pallier des limitations dimensionnelles liées aux méthodes de rengraissement et/ou de conification et/ou d’expansion de l’extrémité d’un tube.
[13] Selon un autre aspect, la première surface peut comprendre au moins deux filetages et le segment s’étend axialement au niveau des deux filetages. La connexion peut aussi comprendre une surface de butée intermédiaire située axialement entre les deux filetages, et le segment s’étendre axialement au niveau de ladite surface de butée intermédiaire.
[14] En effet, une butée intermédiaire peut constituer une section critique d’une connexion à deux étages de filetages et le segment de plus grande limite élastique permet de renforcer la section critique intermédiaire et la résistance à la traction d’une connexion comportant une butée intermédiaire.
[15]Dans le composant tubulaire selon l’invention, la première surface peut comprendre au moins une surface d’étanchéité et le segment s’étendre axialement depuis la position axiale du filetage jusqu’au niveau axial d’une au moins desdites au moins une surface d’étanchéité. Ainsi, la matière supportant la surface d’ étanchéité a une rigidité améliorée, et le joint résultant de assemblage d’ un tel élément tubulaire avec un autre élément tubulaire a des performances en étanchéité sous sollicitations améliorées.
[16] Selon un aspect, l’extrémité distale peut comprendre une surface de butée, une surface d’étanchéité située radialement sur la première surface, l’extrémité distale s’étendant axialement au-delà de la surface d’étanchéité du côté opposé au filetage.
[17]Selon un aspect, la première limite d’élasticité Ysl du corps et la deuxième limite d’élasticité Ys2 du segment ont des valeurs notées [Ysl] [Ys2] telles que [Ys2] > 1,15 x [Ysl] et préférentiellement [Ys2] >1,5 x [Ysl]
[18]Selon un aspect, le segment peut être rapporté sur le corps par fabrication additive. Ceci permet un meilleur contrôle de la forme et de l’adhésion du segment sur le corps. Ceci permet également de limiter dimensionnellement la zone affectée thermiquement.
[19]Selon un aspect, le segment a une épaisseur radiale d’au moins 3 mm. [20] Selon un aspect, le segment peut être situé à une distance radiale d’au moins 1,5 mm de la surface d’étanchéité. Ceci permet de s’assurer que la réalisation du segment sur le corps n’influe pas sur les propriétés de la matière adjacente à la surface d’étanchéité.
[21] Selon un aspect, le segment peut avoir une longueur axiale d’au moins 8 mm.
[22] Préférentiellement, le segment s’étend axialement d’au moins 4 mm de part et d’autre de la base de la première dent.
[23]Selon un autre aspect, le segment ne comprend pas d’évidement agencé pour le passage de fluide ou gaz, ou d’évidement agencé pour abriter un capteur.
[24] Le segment peut être dans un métal choisi parmi les aciers alliés, fortement alliés, alliages cupro-nickel, alliages de titane, céramiques, vitrocéramiques, ou cuivre, cupronickel, stellite, ferrochrome.
[25] Alternativement, le segment peut être dans le même métal que le métal du corps. Et est rapporté sur la deuxième surface par fabrication additive. Il est en effet possible d’obtenir des limites élastiques différentes avec des aciers de même nature, particulièrement avec les procédés de fabrication additive.
[26]Selon une variante, l’élément tubulaire selon l’invention est un manchon pour le forage, l’exploitation des puits d’hydrocarbures ou le transport de pétrole et de gaz. Un manchon à une longueur totale inférieure à 3 mètres. Un manchon comprend deux extrémités filetées. Le plus souvent un manchon comprend deux extrémités filetées femelles.
[27]L’invention est aussi un joint fileté tubulaire dans lequel le segment peut s’étendre axialement au niveau d’une dent en prise du filetage, plus particulièrement une dent en prise la plus proche d’une extrémité distale. En effet, une section critique d’une connexion filetée assemblée dans un joint fileté se situe au niveau de la première dent en prise du filetage.
[28]Selon un mode de réalisation, l’élément tubulaire peut être un manchon pour le forage, l’exploitation des puits d’hydrocarbures ou le transport de pétrole et de gaz selon l’une quelconque des revendications précédentes, comprenant un premier filetage et un deuxième filetage, séparés par une portion centrale, caractérisé en ce que le segment s’étend axialement au niveau du premier filetage, du deuxième filetage et de la portion centrale.
[29]Selon un mode de réalisation, l’élément tubulaire peut être un manchon pour le forage, l’exploitation des puits d’hydrocarbures ou le transport de pétrole et de gaz selon l’une quelconque des revendications précédentes, comprenant un premier filetage et un deuxième filetage séparés par une portion centrale, caractérisé en ce que le segment s’étend au niveau du premier filetage sur au moins 20% de la longueur axiale dudit premier filetage.
[30]Selon un mode de réalisation, l’élément tubulaire peut comprendre un segment situé axialement au niveau d’une section critique d’un filetage, préférentiellement au niveau de la racine du premier filet le plus près de la portion centrale du composant tubulaire.
[31]Selon un mode de réalisation, l’élément tubulaire peut comprendre un premier segment au niveau de la section critique du premier filetage et un deuxième segment au niveau de la section critique du deuxième filetage.
[32]Enfin, l’invention est aussi un procédé pour obtenir un élément tubulaire tel que décrit précédemment, ledit procédé pouvant comprendre une étape de réalisation du segment par un procédé choisi parmi les procédés de rechargement, les procédés de fusion par faisceau d’ électrons, les procédés de fusion laser sur lit de poudre métallique ou « sélective laser melting », les procédés de frittage sélectif par laser, les procédés de dépôt métallique direct ou « Direct Energy Déposition », les procédés de Dépôt par Projection de Liant ou Dépôt par Projection Laser, les procédés de dépôt par fabrication additive arc-fil.
[33] Selon un mode de réalisation, le corps a un premier module d’Young El, et le segment a un deuxième module d’Young E2 plus grand que le premier module d’Young El
Brève description des figures
[34] L’invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l’invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
[35] [Fig.1] La figure 1 est une vue en coupe partielle d’une extrémité d’un élément tubulaire selon un premier mode de l’invention et l’élément tubulaire étant un manchon ; [36][Fig.2] La figure 2 est une vue en coupe partielle d’une extrémité d’un élément tubulaire selon l’invention dans une variation, l’élément tubulaire étant un manchon ;
[37] [Fig.3] La figure 3 est une vue en coupe partielle d’une extrémité d’un élément tubulaire selon un deuxième mode de réalisation de l’invention, l’extrémité tubulaire étant une connexion intégrale femelle à deux portions de filetage
[38][Fig.4] La figure 4 est une vue en coupe partielle d’ une extrémité d’un élément tubulaire selon une variante du deuxième mode de réalisation de l’invention ;
[39] [Fig.5] La figure 5 est une vue en coupe partielle d’ une extrémité d’un élément tubulaire selon une autre variante du deuxième mode de réalisation de l’invention
[40] [Fig.6] La figure 6 est une vue de détail en coupe d’ une extrémité d’un élément tubulaire selon le premier mode de réalisation de l’invention.
Description des modes de réalisation
[41]La figure 1 montre un mode de réalisation préféré de l’invention. La figure 1 montre une vue partielle en coupe d’un élément tubulaire (2) ayant un axe principal (X), de type manchon, de longueur inférieure à 3 mètres, avec deux extrémités de type femelle (3a, 3b). Un manchon a le plus souvent deux extrémités femelles, mais il peut arriver qu’un manchon comporte deux extrémités mâles ou une extrémité mâle et une extrémité femelle. Le manchon (2) comprend une première surface (12), ici une surface intérieure, sur laquelle sont ménagés un premier et un deuxième filetage (5 ; 7), qui sont ici des filetages externes, le manchon ayant deux extrémités femelles. Ces deux filetages (5 ; 7) sont séparés par une portion centrale (6). Dans le manchon de la figure 1, la portion centrale comprend une extension interne ayant des surfaces de butées (9a ; 9b). Un manchon peut ne pas comporter ces surfaces de butée et extension interne. Le manchon (2) comprend ici des surfaces d’étanchéité femelles (10a, 10b), mais un manchon peut ne pas comporter de telles surfaces d’étanchéité.
[42] Les connexions peuvent également comprendre plusieurs étages de filetage, par exemple deux étages de filetage. Des connexions peuvent aussi comprendre des surfaces d’étanchéité supplémentaires, par exemple une surface d’étanchéité située du côté du filetage externe (5) qui est opposé à l’extrémité distale (8), ou encore une surface d’étanchéité située entre deux étages de filetages. Les connexions peuvent aussi comprendre une surface de butée située axialement entre les deux étages de filetage. Les connexions peuvent être dépourvues de surface de butée.
[43]L’ élément tubulaire ou manchon (2) comprend un corps (4) dans une première matière, ici un premier acier présentant une première limite d’élasticité Ysl. Les premier et deuxième filetages (5 ; 7), les surfaces d’étanchéité (10a ; 10b) et surfaces de butée (9a ; 9b) sont réalisés dans le corps (4) et sont donc constitués par ledit premier acier de première limite d’élasticité Ysl. Les filetages (5 ; 7), les surfaces d’étanchéité (10a ; 10b) et surfaces de butée (9a ; 9b) sont généralement obtenus par usinage dans le corps (4) de l’élément tubulaire (2).
[44] L’élément tubulaire (2) de la figure 1 comprend un segment (11). Le segment (11) s’étend depuis une deuxième surface (13) radialement opposée à la première surface (12). La deuxième surface est ici une surface externe. La localisation axiale du segment (11) est telle que le segment (11) se situe au moins au droit d’un filetage (5 ; 7). Ici, le segment (11) s’étend à la fois au niveau des filetages (5 ; 7) et au niveau de la portion centrale (6).
[45]Plus particulièrement, le segment (11) s’étend au moins au niveau des sections critiques (CCSa ; CCSb) du manchon. On entend par section critique la section de la paroi la plus sollicitée en traction axiale, c’est-à-dire la section qui doit absorber la totalité de la charge en traction. La notion de section critique est connue de l’homme du métier, et est un aspect important des performances des connexions tubulaires et joints tubulaires résultant de l’assemblage de deux connexions tubulaires entre elles. Sur un manchon, la section critique d’une connexion est couramment celle sous le premier filet en vis-à-vis du premier filet en prise de l’élément tubulaire correspondant et le plus proche de l’extrémité distale de l’élément correspondant. La section critique est plus particulièrement sous la racine dudit premier filet en charge, le dernier filet étant du côté de l’extrémité libre de la connexion. La section critique est donc couramment au niveau de la base du premier filet en prise. La section critique d’une connexion filetée est plus généralement la section qui doit absorber la totalité de la charge en traction. L’homme du métier est capable d’identifier et de définir la section critique d’une connexion, le processus de conception d’une connexion se faisant en lien avec la connexion correspondante pour former un joint. Pour ce faire, l’homme du métier utilise des outils tels que des calculs à éléments finis ou FEA.
[46] Le segment (11) est dans un acier présentant une deuxième limite d’élasticité Ys2. Cette limite d’élasticité est avantageusement plus grande que la première limite d’élasticité Ysl. Ceci permet d’augmenter les performances statiques en traction du joint fileté à encombrement équivalent. En corollaire, ceci permet de réduire l’encombrement du joint tout en conservant les mêmes performances statiques en traction du joint fileté. En particulier sur le manchon (2), le diamètre externe peut être réduit par rapport à un manchon de l’état de l’art pour la même résistance en traction.
[47]Avantageusement, le corps (4) de l’élément tubulaire (2) comprend un renfoncement (14) pratiqué sur la deuxième surface (13). Le segment (11) se situe dans le renfoncement (14).
[48]Le segment (11) est un ajout de matière agencé de manière à renforcer la structure du manchon (2). La plus haute limite de la limite d’élasticité Ys2 du segment permet de réduire le volume d’encombrement de matière ajoutée. La présence d’un renfoncement (14) sur la deuxième surface (13) dans le corps (4) et le positionnement du segment (11), en partie ou en totalité, permet de réduire encore l’encombrement, et même de n’avoir aucun encombrement supplémentaire. De plus, un tel manchon peut être rendu compatible pour différents modèles de connexion. En effet, pour une dimension nominale donnée, par exemple un diamètre nominal de de 177,80 mm (7 pouces), et pour un même acier, il y a une gamme de modèles déclinée selon la résistance en tension recherchée, et un paramètre de variation important entre les différents modèles est le diamètre extérieur du manchon. Avec la solution selon l’invention, il est possible d’avoir un manchon avec un seul diamètre extérieur compatible d’au moins deux modèles distincts, ce qui permet donc de rationaliser la gamme avec moins de modèles de manchon comparativement aux modèles de connexions correspondants.
[49]Des tests menés ont permis de constater qu’une différence de limite d’élasticité telle que la seconde limite d’élasticité Ys2 du segment (11) est supérieure ou égale à 1,15 fois la première limite d’élasticité du corps Ysl permet d’obtenir une amélioration significative. Lorsque la seconde limite d’élasticité Ys2 du segment (11) est supérieure ou égale à 1,5 fois la première limite d’élasticité du corps Ysl, la performance obtenue est encore meilleure.
[50]Le segment (11) peut être réalisé dans un acier présentant la même composition chimique que l’acier du corps (4) et qui présente une deuxième limite d’élasticité Ys2 néanmoins supérieure à la première limite d’élasticité Ysl du corps, du fait d’une structure cristalline distincte. Cette structure cristalline distincte est obtenue par un traitement thermique. Ainsi, l’acier du corps (4) au niveau de la deuxième surface présente une première structure cristalline, et l’acier du segment présente une deuxième structure cristalline distincte de la première structure cristalline. Une méthode satisfaisante à ce jour est d’effectuer un dépôt de matière du segment par une méthode de fabrication additive connue, qui permet de déposer des gouttes de matière en fusion qui subissent un refroidissement rapide lors du dépôt, ce qui crée un acier à limite d’élasticité supérieure à celle de l’acier du corps (4) qui est mis en forme par des méthodes entraînant un cycle de refroidissement plus long.
[51] Alternativement, le segment (11) peut être réalisé dans un deuxième acier de composition chimique distincte de celle du premier acier du corps (4), le deuxième acier du segment présentant de manière inhérente une limite d’élasticité plus élevée que le premier acier du corps (4). Dans ce cas, la matière du segment (11) est également déposée par un procédé de fabrication additive. Par exemple, un tel acier peut être choisi parmi un alliage Ferro 55 des sociétés Boehler-Voestalpine, Deloro-Stellite-Kennametal, Carpenter, Erasteel, Hoganas. L’acier peut être choisi les aciers alliés, fortement alliés, alliages cupro-nickel, alliages de titane, céramiques, vitrocéramiques, ou cuivre, cupronickel, stellite, ferrochrome, ayant des limites d’élasticités convenables pour une utilisation sur un élément tubulaire.
[52]Le dépôt, ou assemblage du segment (11) sur le corps (4) est généralement exothermique. Les essais effectués par la demanderesse ont montré que lorsque le segment (11) est situé à une distance radiale d’au moins 1,5 mm d’une surface fonctionnelle, ladite surface fonctionnelle n’est pas affectée par le procédé d’apport de matière du segment (11) sur le corps (4). C’est pourquoi le segment (11) est situé à une distance radiale d’au moins 1,5 mm d’une surface fonctionnelle telle que le filetage, plus particulièrement la base du filetage (5) en tout point. Un tel segment doit aussi se trouver à une distance d’au moins 1,5mm d’une surface d’étanchéité ou de butée quand une telle surface fonctionnelle est présente sur la connexion.
[53]Le segment (11) de la figure 1 présente une épaisseur d’au moins 3 mm. On entend par épaisseur la taille du profil du segment mesurée radialement par rapport à l’axe (X) du composant tubulaire. Le segment s’étend sur toute la circonférence du composant tubulaire, le profil du segment génère donc une forme annulaire.
[54] Le segment (11) du manchon (2) de la figure 1 s’étend au niveau du premier filetage (5) et du deuxième filetage (7) du manchon (2), et le segment (11) s’étend aussi au niveau de la portion centrale (6). Cette configuration peut être plus adaptée lorsque le manchon a des connexions symétriques, c’est-à-dire de mêmes caractéristiques.
[55]Le segment (11) a une longueur mesurée axialement d’au moins 8 mm. Préférentiellement, le segment s’étend axialement sur au moins 4 mm de part et d’autre de la section critique, ici la base du premier filet. Ceci permet d’obtenir un effet de renforcement de la paroi du composant tubulaire au niveau d’une zone de concentration de contraintes, particulièrement lors des sollicitations de compression ou traction de la connexion. Cela permet également d’avoir un plein effet sur la section efficace d’une connexion, quand ladite section efficace est décalée par rapport au premier filet.
[56]L’ élément tubulaire (20) de la figure 2 est un manchon similaire à celui de la figure 1, comprenant un segment (21) situé au droit d’un filetage (5), ledit segment (21) différant du premier mode de réalisation en ce que le segment (21) ne s’étend pas au niveau des deux filetages opposés du manchon (20), ni au niveau de la portion centrale (6) mais le segment (21) s’étend radialement au niveau du premier filetage (5). Le segment (21) s’étend sur une longueur axiale d’au moins 8 mm et d’au moins 20% de la longueur axiale du filetage (5).
[57]Le segment (21) est situé dans un renfoncement (24) réalisé dans la deuxième surface (33). Le segment (21) est complètement contenu dans le renfoncement (24). Alternativement, le segment (21) peut aussi être partiellement situé hors du renfoncement (24).
[58]De manière analogue à la solution de la figure 1, le corps (4) présente une première limite élastique Ysl et le segment (21) présente une deuxième limite d’élasticité Ys2 supérieure à la première limite d’élasticité Ysl du corps. [59]L’élément tubulaire fileté (30) de la figure 3 a un corps principal (MB), partiellement représenté, et une connexion femelle (31) de type intégral relié à ce corps principal. Le corps principal (MB) est une portion centrale de l’élément tubulaire fileté (30), séparant deux connexions filetées. L’élément tubulaire fileté (30) se termine par une extrémité distale (EXT) opposée au corps principal (MB). L’élément tubulaire fileté (30) et la connexion femelle (31) comprennent un corps (34) dans un matériau présentant une première limite élastique Ysl, le corps (34) comprenant un premier filetage (35), ou filetage intérieur, et un deuxième filetage (37), ou filetage d’extrémité. Les premier et deuxième filetage (35, 37) sont réalisés sur une première surface (32) qui est ici une surface intérieure. L’élément tubulaire fileté (30) comprend une deuxième surface (33) opposée à la première surface (32) qui est ici une surface externe. Le premier filetage (35) est séparé du deuxième filetage (37) par une portion non filetée. La portion non filetée comprend une surface de butée (36), orientée de façon essentiellement radiale.
[60] De manière générale, un tel élément fileté peut comporter une ou plusieurs surface(s) d’étanchéité(s). Ces surfaces d’étanchéité peuvent être situées sur la portion non filetée entre la surface de butée (36) et les premier et deuxième filetages (35, 37) ; ou bien le ou les surfaces d’étanchéité peuvent être situées sur les côtés des filetages opposés à la surface de butée (36). Les surfaces d’étanchéité ont des dimensions axiales et radiales. Les surfaces d’étanchéités occupent un espace radial, une épaisseur qui ne contribue pas à la résistance en traction de la connexion. Ainsi, ce type de connexion ne permet pas d’atteindre des joints avec 100% de tension efficace. Les joints de l’état de l’art permettent d’atteindre 50%, voire 70-80% pour les modèles les plus récents mais avec des architectures complexes.
[61] La connexion femelle (31) a une section critique femelle CCS située à la racine d’un filet qui est le plus proche du corps principal (MB) du composant tubulaire. Ainsi, la section critique (CCS) est située dans ce cas à la racine du premier filet du premier filetage ou filetage intérieur (35), le premier filet étant le filet le plus proche du corps principal (MB) de l’élément tubulaire fileté (30). La section critique femelle CCS est soumise à la totalité de la tension qui est transmise au niveau des filets de la connexion femelle (31). [62] La connexion femelle (31) comprend également une section critique intermédiaire MCCS, située axialement au niveau de la racine d’une dent la plus proche du corps principal MB sur le deuxième filetage (37) La section critique femelle intermédiaire MCCS est soumise à au moins 50% de la totalité de la tension qui est transmise au niveau des filets du deuxième filetage (37).
[63]L’ élément tubulaire fileté (30) de la figure 3 comprend un segment (31) située axialement au niveau du deuxième filetage (37). Préférentiellement, le segment (31) est situé axialement au niveau de la racine du filet le plus proche du corps principal (MB) dans le deuxième filetage (37). Préférentiellement encore, le segment (31) peut s’étendre axialement au niveau de la surface de butée (36). Ainsi, la rigidité de la zone est améliorée pour une meilleure performance en flexion.
[64] De manière analogue à la solution de la figure 1 ou 2, le corps (4) présente une première limite élastique Ysl et le segment (31) présente une deuxième limite d’élasticité Ys2 supérieure à la première limite d’élasticité Ysl du corps (4). Ainsi, la paroi du composant un niveau du deuxième filetage (35) est renforcée et la performance en traction améliorée.
[65]Le segment (31) est situé dans un renfoncement (34) réalisé dans la deuxième surface (33). Le segment (31) est complètement contenu dans le renfoncement (34). Alternativement, le segment (31) peut aussi être partiellement situé hors du renfoncement (34).
[66]Une variante de composant tubulaire fileté (40) est représentée en figure 4, les corps (4) et corps principal (MB) du composant tubulaire fileté (40) étant semblables à ceux de la figure 3. Dans cette variante, un segment (41) est localisé au niveau du premier filetage (35). De préférence, le segment (41) est situé axialement au niveau de la section critique femelle CCS. De préférence, le segment (41) est situé axialement au niveau de la racine du premier filet du premier filetage ou filetage intérieur (35), le premier filet étant le filet le plus proche du corps principal (MB) de l’élément tubulaire fileté (40).
[67]Le segment (41) est situé dans un renfoncement (44) réalisé dans la deuxième surface (33). Le segment (41) est complètement contenu dans le renfoncement (44). Alternativement, le segment (41) peut aussi être partiellement situé hors du renfoncement (44). [68]De manière analogue aux solutions des figures 1 à 3, le corps (4) présente une première limite élastique Ysl et le segment (41) présente une deuxième limite d’élasticité Ys2 supérieure à la première limite d’élasticité Ysl du corps. Ainsi, le composant de la figure 4 a une résistance maximale à la traction renforcée.
[69]Une autre variante représentée en figure 5 montre un composant tubulaire fileté (50) comprenant un corps (4) similaire à ceux des figures 3 et 4, et comprenant en outre une première section (31) similaire à celle de la figure 3, et une deuxième section (41) similaire à celle de la figure 4. Le composant tubulaire de la figure 5 a une performance en résistance à la traction augmentée et optimisée. Les premier et deuxième segments (31, 41) peuvent être reliés pour ne former qu’un seul segment. Le découpage en deux segments disjoints permet une optimisation des coûts de fabrication.
[70] Pour tous les modes de réalisation, le segment peut ne pas comprendre d’évidement pour loger un capteur. Ces caractéristiques peuvent s’appliquer à tous les modes de réalisation décrits dans la présente demande.
[71]Les modes de réalisation exposés ci-avant le sont sur des connexions femelles pour la clarté de l’exposé, cependant, les caractéristiques décrites s’appliquent également sur une connexion mâle, à la différence que la première surface (12, 32) est une surface extérieure et la deuxième surface (13, 33) est une surface intérieure. L’invention s’applique donc à des connexions mâles qui font ainsi partie du périmètre de l’invention.
[72] Selon un autre aspect, l’invention porte également sur un procédé pour obtenir un élément tubulaire fileté comprenant un segment (11, 21, 31, 41). Ce procédé comprend l’étape de choix d’un élément tubulaire avec au moins un filetage, la réalisation optionnelle d’un évidement sur la surface opposée à la surface sur laquelle est situé le filetage, puis le dépôt de matière dans l’évidement ou sur ladite surface opposée.
[73]Le dépôt de matière peut se faire selon un procédé choisi parmi les procédés de rechargement, les procédés de fusion par faisceau d’électrons, les procédés de fusion laser sur lit de poudre métallique ou « sélective laser melting », les procédés de frittage sélectif par laser, les procédés de dépôt métallique direct ou « Direct Energy Déposition », les procédés de Dépôt par Projection de Liant ou Dépôt par Projection Laser, les procédés de dépôt par fabrication additive arc-fil. [74] La figure 6 représente une vue de détail en coupe d’un manchon 67 semblable au manchon (2) de la figure 1. Le manchon (67) comprend donc un corps (64) dans un acier avec une limite élastique Ysl, une première surface intérieure (12) et une deuxième surface extérieure (13), un segment (11) s’étendant depuis la deuxième surface 13, dans un acier avec une limite élastique Ys2. Dans la figure 6 est rendue visible qu’un segment peut avoir une section de raccordement (111) entre un fond (112) et la deuxième surface (13). La section de raccordement peut présenter une courbure dont le rayon est de préférence supérieur à 20 mm. La section de raccordement est représentée courbe, alternativement, la section de raccordement peut comprendre une section droite s’étendant depuis la deuxième surface (13), et faisant un angle de 45° ou moins avec ladite deuxième surface (13), afin de minimiser les concentrations de contraintes.
[75]Le manchon (67) de la figure 6 présente une section critique CCS au niveau de la racine de la première dent du filetage (5). La section critique CCS du manchon a une épaisseur principale (61) de section critique, cette dernière étant composée d’une épaisseur (62) de section critique de corps Sec, et d’une épaisseur (63) de section critique de segment Sci. Un manchon selon l’invention développe donc une section critique équivalente Sceq telle que
Sceq = Sec + Sci * (Ys2 / Ysl)
Dans un manchon selon l’état de l’art, le rapport Ys2/Ysl est égal à 1. Dans un manchon selon l’invention, le rapport Ys2/Ysl est au moins égal à 1,15, de préférence au moins égal à 1,5. On convient donc que pour une même épaisseur, un manchon selon l’invention présente une section critique équivalente plus importante qu’un manchon de l’état de l’art. Il en ressort qu’un manchon selon l’invention possède de meilleures performances en traction qu’un manchon de l’état de l’art pour une même épaisseur, c’est-à-dire une même section critique. Ceci est exposé à titre illustratif à l’exemple de mode de réalisation de la figure 6, mais ce raisonnement est le même pour l’ensemble des modes de réalisation de l’invention.

Claims

Revendications
[Revendication 1] Elément tubulaire (2 ; 20, 30, 40, 50) comprenant un corps (4 ;
34), le corps (4 ; 34) comportant une première surface (12 ; 32) sur laquelle est ménagé un filetage (5 ; 7 ; 35 ; 37), une deuxième surface (13 ; 33) radialement opposée à la première surface (12 ; 32), ledit corps (4 ; 34) étant dans un acier ayant une première limite d’élasticité Ysl, l’élément tubulaire comprenant en outre un segment (11 ; 21 ; 31 ; 41) s’étendant radialement depuis la deuxième surface (13 ; 33) et s’étendant axialement au niveau du filetage (5 ; 7 ; 35 ; 37) ledit segment (11 ; 21 ; 31 ; 41) étant dans un acier ayant une deuxième limite d’élasticité Ys2 plus grande que la première limite d’élasticité Ysl.
[Revendication 2] Elément tubulaire (2 ; 20, 30, 40, 50) selon la revendication 1 dans lequel la deuxième surface comporte un renfoncement (14 ; 34 ; 44) et le segment (11 ; 21 ; 31 ; 41) est situé dans ledit renfoncement.
[Revendication 3] Elément tubulaire (2 ; 20, 30, 40, 50) selon la revendication lou 2 dans lequel la première surface comprend au moins deux filetages (5 ; 7 ; 35 ; 37) et le segment (11 ; 21 ; 31 ; 41) s’étend axialement au niveau des deux filetages.
[Revendication 4] Elément tubulaire (2 ; 20, 30, 40, 50) selon la revendication précédente comprenant une butée intermédiaire située axialement entre deux filetages (5 ; 7 ; 35 ; 37) et le segment (11 ; 21 ; 31 ; 41) s’étend axialement au niveau de ladite butée intermédiaire.
[Revendication 5] Elément tubulaire (2 ; 20, 30, 40, 50) selon l’une des revendications précédentes dans lequel la première limite d’élasticité Ysl et la deuxième limite d’élasticité Ys2 ont des valeurs notées [Ysl] [Ys2] telles que [Ys2] > 1,15 x [Ysl] et préférentiellement [Ys2] > 1,5 x [Ysl]
[Revendication 6] Elément tubulaire (2 ; 20, 30, 40, 50) selon l’une des revendications précédentes dans lequel le corps (4, 34) a un premier module d’Young El, et le segment (11 ; 21, 31, 41) a un deuxième module d’Young E2 plus grand que le premier module d’Young El.
[Revendication 7] Elément tubulaire (2 ; 20, 30, 40, 50) selon l’une des revendications précédentes dans lequel le segment (11 ; 21 ; 31 ; 41) a une épaisseur radiale d’au moins 3 mm.
[Revendication 8] Elément tubulaire (2 ; 20, 30, 40, 50) selon l’une des revendications précédentes dans lequel le segment (11 ; 21 ; 31 ; 41) a une longueur axiale d’au moins 8 mm.
[Revendication 9] Elément tubulaire (2 ; 20, 30, 40, 50) selon l’une des revendications précédentes dans lequel le segment (11 ; 21 ; 31 ; 41) est rapporté sur le corps (4, 34) par fabrication additive.
[Revendication 10] Elément tubulaire (2 ; 20, 30, 40, 50) selon l’une des revendications précédentes dans lequel le segment (11) est dans un métal choisi parmi les aciers alliés, fortement alliés, alliages cupro-nickel, alliages de titane, céramiques, vitrocéramiques, ou cuivre, cupronickel, stellite, ferrochrome.
[Revendication 11] Elément tubulaire (2 ; 20, 30, 40, 50) selon l’une des revendications précédentes dans lequel le segment (11 ; 21 ; 31 ; 41) est dans le même métal que le métal du corps (4), le segment (11 ; 21 ; 31 ; 41) étant rapporté par fabrication additive sur la deuxième surface (13 ; 33).
[Revendication 12] Elément tubulaire (2) selon l’une des revendications précédentes caractérisé en ce que l’élément tubulaire est un manchon pour le forage, l’exploitation des puits d’hydrocarbures ou le transport de pétrole et de gaz selon l’une quelconque des revendications précédentes, comprenant un premier filetage (5) et un deuxième filetage (7) séparés par une portion centrale (6), caractérisé en ce que le segment (11) s’étend axialement au niveau du premier filetage (5), du deuxième filetage (7) et de la portion centrale (6).
[Revendication 13] Elément tubulaire (20) selon l’une des revendications 1 à 11 caractérisé en ce que l’élément tubulaire est un manchon pour le forage, l’exploitation des puits d’hydrocarbures ou le transport de pétrole et de gaz selon l’une quelconque des revendications précédentes, comprenant un premier filetage (5) et un deuxième filetage (7) séparés par une portion centrale (6), caractérisé en ce que le segment (21) s’étend au niveau du premier filetage ( 21) sur au moins 20% de la longueur axiale dudit premier filetage (5)
[Revendication 14] Elément tubulaire (2 ; 20, 30, 40, 50) selon l’une des revendications 1 à 12, caractérisé en ce que le segment (11, 21, 31, 41) est situé axialement au niveau d’une section critique (CCS, MCCS) d’un filetage, préférentiellement au niveau de la racine du premier filet le plus près de la portion centrale (6, MB) du composant tubulaire.
[Revendication 15] Elément tubulaire (50) selon l’une des revendications 1 à 11, comprenant un premier segment (41) au niveau de la section critique (CCS) du premier filetage (35) et un deuxième segment (31) au niveau de la section critique (MCCS) du deuxième filetage (37)
[Revendication 16] Procédé pour obtenir l’élément tubulaire (2 ; 20, 30, 40, 50) de l’une des revendications précédentes caractérisé en ce qu’il comprend une étape de réalisation du segment (11 ; 21 ; 31 ; 41) par un procédé choisi parmi les procédés de rechargement, les procédés de fusion par faisceau d’électrons, les procédés de fusion laser sur lit de poudre métallique ou « sélective laser melting », les procédés de frittage sélectif par laser, les procédés de dépôt métallique direct ou « Direct Energy Déposition », les procédés de Dépôt par Projection de Liant ou Dépôt par Projection Laser, les procédés de dépôt par fabrication additive arc-fil.
PCT/FR2022/050298 2021-03-03 2022-02-18 Elément tubulaire fileté à segment WO2022184993A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2102049A FR3120415A1 (fr) 2021-03-03 2021-03-03 Elément tubulaire fileté à segment
FRFR2102049 2021-03-03

Publications (1)

Publication Number Publication Date
WO2022184993A1 true WO2022184993A1 (fr) 2022-09-09

Family

ID=75278283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/050298 WO2022184993A1 (fr) 2021-03-03 2022-02-18 Elément tubulaire fileté à segment

Country Status (3)

Country Link
AR (1) AR126320A1 (fr)
FR (1) FR3120415A1 (fr)
WO (1) WO2022184993A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3268275A (en) * 1965-05-11 1966-08-23 William N Laghlin Drill string protector and system
WO2000025029A1 (fr) * 1998-10-27 2000-05-04 Grant Prideco, Inc. Raccord de tiges et tige de sondage constituee de celui-ci
US20120043756A1 (en) 2010-08-23 2012-02-23 Vallourec Mannesmann Oil & Gas France Tubular threaded connection
US20120128444A1 (en) * 2010-11-11 2012-05-24 Richard Podesser Anchor Module for Mining and Tunneling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3268275A (en) * 1965-05-11 1966-08-23 William N Laghlin Drill string protector and system
WO2000025029A1 (fr) * 1998-10-27 2000-05-04 Grant Prideco, Inc. Raccord de tiges et tige de sondage constituee de celui-ci
US20120043756A1 (en) 2010-08-23 2012-02-23 Vallourec Mannesmann Oil & Gas France Tubular threaded connection
US20120128444A1 (en) * 2010-11-11 2012-05-24 Richard Podesser Anchor Module for Mining and Tunneling

Also Published As

Publication number Publication date
AR126320A1 (es) 2023-10-04
FR3120415A1 (fr) 2022-09-09

Similar Documents

Publication Publication Date Title
CA2400820C (fr) Element filete tubulaire delarde resistant a la fatigue
EP1358421B1 (fr) Joint filete tubulaire a filets trapezoidaux avec face de filet bombee convexe
EP1121553B1 (fr) Assemblage filete integral de deux tubes metalliques
CA2848011C (fr) Ensemble pour la realisation d'un joint filete pour le forage et l'exploitation des puits d'hydrocarbures et joint filete resultant
CA2439977C (fr) Element filete pour joint filete tubulaire resistant a la fatigue
FR2953272A1 (fr) Joint filete
CA2794246C (fr) Tube de degazage d'un turboreacteur, procede de montage d'un tel tube et turboreacteur avec un tel tube
FR2923283A1 (fr) Joint filete comprenant au moins un element filete avec levre d'extremite pour tube metallique.
CA2547031C (fr) Realisation, par expansion plastique, d'un joint tubulaire etanche avec surepaisseur(s) de matiere locale(s) et initiale(s)
FR2981394A1 (fr) Composant tubulaire de garniture de forage muni d'une gaine de transmission fixee par filetages et procede de montage d'un tel composant
CA2547027C (fr) Realisation, par expansion plastique, d'un joint tubulaire etanche avec surface(s) de butee inclinee(s)
EP2344802B1 (fr) Composant pour le forage et l'exploitation des puits d'hydrocarbures
FR2969738A1 (fr) Joint filete pour le forage et l'exploitation des puits d'hydrocarbures
EP3994382A1 (fr) Joint filete avec epaulement realise par fabrication additive
EP3555412B1 (fr) Joint fileté pour composant tubulaire
FR2863031A1 (fr) Realisation, par expansion plastique, d'un assemblage de deux joints tubulaires filetes etanches avec une sous-epaisseur de matiere locale et initiale
WO2022184993A1 (fr) Elément tubulaire fileté à segment
FR2957973A1 (fr) Tube de degazage d'un turboreacteur, procede de montage d'un tel tube et turboreacteur avec un tel tube
WO2022184991A1 (fr) Elément tubulaire fileté à segment
WO2022184992A1 (fr) Elément tubulaire fileté à segment
FR2863030A1 (fr) Realisation, par expansion plastique, d'un joint tubulaire etanche avec surface(s) de butee inclinee(s)
WO2021069402A1 (fr) Joint filete avec portee d'etancheite realisee par fabrication additive
BE1022119B1 (fr) Arbre de transmission et son procede de fabrication
FR3109543A1 (fr) Insert precisement integre dans un corps brut realise par fabrication additive.
WO2023180375A1 (fr) Joint fileté tubulaire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22710660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22710660

Country of ref document: EP

Kind code of ref document: A1