EP4041592A1 - Dispositif electrique de gestion energetique - Google Patents

Dispositif electrique de gestion energetique

Info

Publication number
EP4041592A1
EP4041592A1 EP20781599.4A EP20781599A EP4041592A1 EP 4041592 A1 EP4041592 A1 EP 4041592A1 EP 20781599 A EP20781599 A EP 20781599A EP 4041592 A1 EP4041592 A1 EP 4041592A1
Authority
EP
European Patent Office
Prior art keywords
power
difference
electric
value
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20781599.4A
Other languages
German (de)
English (en)
Inventor
Ehsan EMAMI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qovoltis
Original Assignee
Qovoltis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qovoltis filed Critical Qovoltis
Publication of EP4041592A1 publication Critical patent/EP4041592A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • B60L53/665Methods related to measuring, billing or payment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the invention relates to the field of recharging batteries, in particular of electric vehicles.
  • the Applicant has designed an energy management device which makes it possible to optimize the operation of electric vehicle charging stations. This device is called "Qometer”.
  • Electric vehicle (EV) charging stations can be installed either behind a dedicated meter or an existing meter. In the case of installation behind an existing meter, the charging stations share the power available at the meter with other devices using the same electricity subscription.
  • a charging station at full power can trip the entire electrical installation for which the subscription is limited.
  • the maximum subscribed power is 12 kVA (kW).
  • charging station installers can act on 3 parameters:
  • the solution generally adopted by installers consists in increasing the power subscribed to the meter, delaying the EV recharging time until late at night when other devices reduce their consumption, and limiting the maximum power of the vehicle. charger.
  • Some modern meters make it possible to know, through access to a communication port, the instantaneous consumption of the meter. However, not all meters are equipped with this function and furthermore, when such a communication function exists, the communication standard differs from one meter model to another and from country to country.
  • the so-called “intelligent” meters communicate in Slave mode. This means that it is up to a third party device (Master) to launch a request to know the power of the meter.
  • Master third party device
  • the electrical energy management device comprises several modules:
  • this module calculates the instantaneous power by measuring the current and the voltage at the main meter without introducing a cut in the main electrical circuit and independently of the main meter.
  • this module uses a LAN type communication protocol (Ethernet, Wifi, HomePlug CPL, Bluetooth, etc.) to establish communication with the charging station.
  • a LAN type communication protocol Ethernet, Wifi, HomePlug CPL, Bluetooth, etc.
  • Control module made up of a micro-controller, this module interrogates (via an analogue-digital link) at a relatively high frequency the energy module (above) and transmits a new power value to the charging station (via the communication module) only if the variation in instantaneous power exceeds a certain threshold set by the system manager.
  • the modules can be implemented in software.
  • the electrical energy management device allows the charging station to automatically adapt its power as a function of: the power subscribed to at the level of the meter, the instantaneous cumulative power used by all the devices of the electrical network using this same meter, y including the charging station itself.
  • the electrical energy management device therefore makes it possible to optimize the power of the charging station, to minimize the charging time and to protect the main meter under various circumstances against a risk of tripping.
  • the electrical energy management device comprises a measuring device comprising a current sensor configured to measure an electrical current downstream of the power of a low-voltage electrical meter, a voltage sensor configured to measure an electrical voltage at the power output of the low voltage electric meter, and a power calculating unit receiving current information from the current sensor and voltage information from the voltage sensor, and being configured to calculate the electric power consumed at the output of power of the electric meter.
  • the electrical energy management device comprises a control unit receiving information on the electrical power consumed from the power calculation unit, calculating the difference between said information on electrical power consumed and a previous value, comparing the absolute value of said difference at a threshold, in the event of an absolute value of said difference below the threshold remaining at rest and in the event of an absolute value of said difference greater than the threshold sending a message containing a power value to an energy storage battery recharging terminal electrical, the charging station being remote from the measuring member and the control member, said previous value being said power value contained in the previous message.
  • the measuring member and the control member have a common housing.
  • the common box houses the control unit and a power calculation unit for the measuring unit.
  • control unit comprises a communication unit configured to establish an at least one-way connection to the charging station.
  • the charging station is configured to receive said message and adapt its energy consumption to the difference between a subscribed power and the power value contained in said message.
  • the difference between a subscribed power and the power value can also be calculated at the level of the control unit. In this case, it is the new power to which the charger is to operate transmitted to it. It is also possible that there is communication with a central server which controls the charger by default.
  • a slave charging station is controlled by said control member.
  • said threshold is greater than or equal to 1% of the subscribed power.
  • the frequency for comparing the absolute value of said difference to said threshold is less than or equal to 100 Hz.
  • said message is sent at a frequency at least 10 times lower than the frequency for comparing the absolute value of said difference with said threshold.
  • the calculation of the difference between a subscribed power and the power value is performed by the control unit, the new power at which the charger is to operate being transmitted to said charger.
  • said communication with a central server controlling the charger by default is established by the control unit.
  • control unit is configured to send a message containing a power value to each recharging terminal for an electric energy storage battery connected to said device, each recharging terminal being remote from the monitoring unit. measurement and the control unit, said previous value being said power value contained in the previous message.
  • the electrical energy management device and / or said server implements artificial intelligence functions to optimize the distribution of power in the case of simultaneous management of several charging stations.
  • the electrical energy management device comprises a load distribution member between phases of a three-phase low-voltage electricity meter.
  • the electrical energy management device does not have a communication link with the electricity meter.
  • FIG. 1 is a schematic view of a device according to one aspect of the invention.
  • Fig. 2 is a schematic view of a device according to another aspect of the invention.
  • FIG. 3 is a detail view of the housing.
  • the electrical energy management device is designed to be connected to an electrical installation, both existing and to be created.
  • the electrical installation can be a home or a small business installation.
  • the electrical installation includes an electric meter 4 connected to the low voltage sector providing power, for example 110 or 220 volts, 50 or 60 Hz, single or three-phase.
  • the electrical installation comprises a local power distribution network 10 supplying the consumer units with electrical wires, including an electrical energy storage battery recharging terminal.
  • the electrical energy management device 1 comprises a measuring device 2 adapted to the local network.
  • the measuring device 2 comprises a current sensor 3 configured to measure an electric current at the power output of a low voltage electric meter 4.
  • the current sensor 3 can include a measurement loop around the electric wires 5 at the output of the electric meter 4.
  • the current sensor 3 is placed near the electric meter 4 upstream of the connections, distribution boxes and consumer units.
  • the current sensor 3 is separate from the electric meter 4.
  • the electric energy management device 1 is separate from the electric meter 4.
  • the electric energy management device 1 has no communication with the electric meter 4.
  • the measuring device 2 comprises a voltage sensor 6 for measuring an electric voltage at the power output of the electric meter 4.
  • the voltage varies by a few percent around the nominal voltage. It is better to measure it with better accuracy than delivery accuracy.
  • the voltage sensor 6 is separate from the electric meter 4.
  • the measuring device 2 comprises a power calculation unit 7 receiving current information from the current sensor 3 and voltage information from the voltage sensor 6.
  • the power calculation unit 7 is configured to calculate the power. electric power consumed at the power output of the electric meter 4.
  • the power calculation unit 7 produces the product of the current value measured by the measured voltage value.
  • the measuring unit 2 comprises a control unit 8 receiving the value of electric power consumed coming from the power calculation unit 7.
  • the control unit 8 calculates the difference between said value of electric power consumed and a previous value.
  • the control member 8 compares the absolute value of said difference with a threshold, and in the event of an absolute value of said difference below the threshold remains at rest.
  • the control unit 8 sends a message containing a power value to the recharging terminal 11 of the electric energy storage battery.
  • Said previous value is said power value contained in the previous message.
  • the threshold can be set at 1% of the subscribed value of the subscription to the electricity supplier, or at a higher value.
  • the comparison of the absolute value of said difference with said threshold is carried out regularly.
  • the comparison of the absolute value of said difference with said threshold is carried out at predetermined intervals, for example at a frequency less than or equal to 100 Hz.
  • the transmission of said message by the control unit 8 is carried out at a frequency at least 10 times lower than the frequency of comparison of the absolute value of said difference to said threshold. Said message is sent less than 10 times per second.
  • the charging station 11 is remote from the measuring unit 2 and from the control unit 8. Said message can be sent over a LAN network 9.
  • the computing unit 7 and the control unit 8 can be produced. using a microcontroller.
  • the difference between a subscribed power and the power value can also be calculated at the level of the control unit 8. In this case, it is the new power at which the charger must operate which is transmitted to said charger. It is also possible to implement a communication with a central server which controls the charger by default.
  • a slave charging station can be controlled by said control member 8.
  • a charging station can be controlled by said control member 8 via another charging station.
  • FIG. 3 is illustrated an exemplary embodiment of the electrical energy management device 1.
  • the measuring member 2 is provided with a housing 12 housing and protecting the power computing unit 7 and the control member 8.
  • the current 3 and voltage 6 sensors are arranged outside the housing 12.
  • the measuring device 2 comprises, inside the housing 12, at least one connector 20, in particular a connector in the single-phase version and two connectors in the three-phase version, ensuring the connection with the sector for the supply of said housing 12, with the recharging terminal (s) 11 and with the current 3 and voltage sensors 6.
  • the measuring device 2 comprises a power supply transformer 21 connected via the connector 20 to the output wires of the electric meter 4.
  • the power supply transformer 21 can be of the 230/5 volts or 110/5 volts type.
  • the measuring device 2 comprises a rectifier 22 supplied by the supply transformer 21.
  • the rectifier 22 may comprise a diode bridge.
  • the measuring device 2 comprises a communication device 23 by power lines supplied by the rectifier 22 and connected to the output wires of the electric meter 4 so as to communicate with the recharging terminal (s) 11.
  • the communication device 23 establishes a at least one-way link to the charging station 11.
  • the link is at least one-way and preferably two-way link.
  • the recharging terminal 11 receives the message emitted by the control unit 8 and transmitted by the communication unit 23.
  • the recharging terminal 11 adapts its energy consumption to the difference between a subscribed power and the contained power value. in the message.
  • the communication from the measuring device 2 to the charging stations 11 can be carried out via a LAN network.
  • the measuring member 2 comprises a galvanic isolation member 24 mounted between the connector 20 connected to the output wires of the electric meter 4 and the communication member 23.
  • the galvanic isolation member 24 comprises, for example, a photodiode.
  • the measuring device 2 comprises a processor 25 connected to the connector 20 to receive the measurement information coming from the current 3 and voltage 6 sensors and to send at least one instruction, in particular in the form of a message, to at least one control terminal. recharge 11.
  • the processor 25 is preprogrammed to fulfill the functions of processing current and voltage measurements and of control.
  • the processor 25 is supplied by the rectifier 22.
  • the control unit can be configured to send a message containing a power value to each recharging terminal for an electric energy storage battery connected to the electric energy management device.
  • Each charging station is remote from the measuring unit and the control unit.
  • Said previous value is said power value contained in the previous message.
  • artificial intelligence functions are implemented by the electrical energy management device and / or by said server. The artificial intelligence functions are provided to optimize the power distribution in the case of simultaneous management of several charging stations, according to FIG. 2.
  • many low-voltage electricity meters are three-phase.
  • the electrical energy management device can include a load distribution member between the phases. This is all the more interesting as the distribution between the phases of a network downstream of a meter is often fixed and unsuitable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Dispositif électrique de gestion énergétique comprenant un organe de mesure comprenant un capteur de courant configuré pour mesurer un courant électrique à la sortie de puissance d'un compteur électrique basse tension, un capteur de tension configuré pour mesurer une tension électrique à la sortie de puissance du compteur électrique basse tension, et une unité de calcul de puissance recevant une information de courant provenant du capteur de courant et une information de tension provenant du capteur de tension, et étant configurée pour calculer la puissance électrique consommée à la sortie de puissance du compteur électrique; et un organe de contrôle recevant une information de puissance électrique consommée provenant de l'unité de calcul de puissance, calculant la différence entre ladite information de puissance électrique consommée et une valeur antérieure, comparant la valeur absolue de ladite différence à un seuil, en cas de valeur absolue de ladite différence inférieure au seuil restant au repos et en cas de valeur absolue de ladite différence supérieure au seuil émettant un message contenant une valeur de puissance vers une borne de recharge de batterie de stockage d'énergie électrique, la borne de recharge étant distante de l'organe de mesure et de l'organe de contrôle, ladite valeur antérieure étant ladite valeur de puissance contenue dans le message précédent.

Description

Dispositif électrique de gestion énergétique
L’invention concerne le domaine de la recharge des batteries, notamment de véhicules électriques.
La recharge des véhicules électriques, plus généralement des batteries stationnaires ou mobiles, sollicite fortement les réseaux électriques. En amont des compteurs électriques, des renforcements de réseaux peuvent être prévus en zone dense. En aval des compteurs électriques, la question se pose de l’alimentation des différents consommateurs d’énergie électrique.
La Demanderesse cherche à répondre au besoin de commande améliorée de l’aval d’un compteur électrique.
La Demanderesse a conçu un appareil de gestion énergétique qui permet d’optimiser le fonctionnement des bornes de recharge de véhicules électriques. Cet appareil est nommé « Qometer ».
Les bornes de recharge de véhicule électrique (VE) peuvent être installées aussi bien derrière un compteur dédié qu’un compteur existant. Dans le cas d’une installation derrière un compteur existant, les bornes de recharge partagent la puissance disponible au niveau du compteur avec les autres appareils utilisant le même abonnement électrique.
Il se pose alors un problème fondamental lié à la puissance d’une borne de recharge qui peut atteindre très facilement :
7,4 kW (32A x 230V) dans le cas d’une installation monophasée 22 kW (32 x 230V x 3) dans le cas d’une installation triphasée
Or une borne de recharge à pleine puissance peut faire disjoncter l’ensemble de l’installation électrique dont l’abonnement souscrit est limité. A titre d’exemple, en France, dans une maison individuelle alimentée en monophasée, la puissance maximale souscrite est de 12 kVA (kW). Afin d’éviter que la borne de recharge fasse disjoncter l’installation électrique, les installateurs de bornes de recharge peuvent agir sur 3 paramètres :
1 . La puissance souscrite au niveau du compteur
2. Le créneau horaire de recharge
3. La puissance maximale de la borne de recharge
Ces trois paramètres sont indépendants mais aucun d’eux ne peut garantir à 100% le bon fonctionnement de la borne de recharge dans toutes les circonstances.
La solution globalement adoptée par les installateurs consiste en effet à augmenter la puissance souscrite au niveau du compteur, à retarder l’heure de rechargement du VE à des heures tardives de nuit où les autres appareils diminuent leurs consommations, et à brider la puissance maximale du chargeur.
Toutes ces modifications sont des changements statiques. Ce qui signifie qu’en cas de changement (même temporaire) des habitudes du consommateur ou de l’ajout de nouveaux appareils électriques, la recharge du VE peut entraîner la disjonction du compteur.
Certains compteurs modernes permettent de connaître, moyennant l’accès à un port de communication, la consommation instantanée du compteur. Toutefois, tous les compteurs ne sont pas équipés de cette fonction et de plus, quand une telle fonction de communication existe, la norme de communication diffère d’un modèle de compteur à l’autre et d’un pays à l’autre.
Par ailleurs, les compteurs, dits « intelligents », communiquent en mode Esclave. Ce qui signifie qu’il appartient à un appareil tiers (Maître) de lancer une requête pour connaître la puissance du compteur.
Si tant est qu’une borne de recharge puisse se connecter au port de communication d’un compteur, si la borne de recharge souhaite adapter sa puissance en fonction de la puissance restante au niveau du compteur, la borne de recharge devra interroger régulièrement le compteur. Si, entre deux interrogations, la puissance du compteur augmente brusquement, la puissance maximale souscrite peut en pratique être dépassée. Ce qui signifie que, pour un bon fonctionnement, la borne de recharge doit interroger le compteur à une fréquence élevée. Cette solution présente deux inconvénients :
1 . Tout d’abord, il n’est pas certain que le compteur (même dit intelligent) puisse supporter une fréquence d’interrogation trop importante.
2. De plus, une fréquence d’interrogation trop élevée crée un volume de communication élevé, pas forcément compatible avec la capacité du lien de communication.
En tout état de cause, c’est pour répondre à ce besoin fondamental d’adaptation automatique de la puissance de la borne de recharge à la puissance disponible au niveau du compteur que le dispositif électrique de gestion énergétique a été créé.
Le dispositif électrique de gestion énergétique comprend plusieurs modules :
Module de mesure d’énergie : ce module calcule la puissance instantanée en mesurant l’intensité et la tension au niveau du compteur principal sans introduction de coupure au niveau du circuit électrique principal et indépendamment du compteur principal.
Module de communication : ce module utilise un protocole de communication de type LAN (Ethernet, Wifi, HomePlug CPL, Bluetooth, ...) pour établir une communication avec la borne de recharge.
Module de contrôle : constitué d’un micro-contrôleur, ce module interroge (via une liaison anal ogi que-numérique) à une fréquence relativement élevée le module d’énergie (ci- dessus) et ne transmet une nouvelle valeur de puissance à la borne de recharge (via le module de communication) que si la variation de la puissance instantanée dépasse un certain seuil fixé par le gestionnaire du système.
Les modules peuvent être réalisés de façon logicielle.
Ainsi, le dispositif électrique de gestion énergétique permet à la borne de recharge d’adapter automatiquement sa puissance en fonction de : la puissance souscrite au niveau du compteur, la puissance cumulée instantanée utilisée par tous les appareils du réseau électrique utilisant ce même compteur, y compris la borne de recharge elle-même. Le dispositif électrique de gestion énergétique permet donc d’optimiser la puissance de la borne de recharge, de minimiser le temps de chargement et de protéger en des circonstances variées le compteur principal contre un risque de disjonction.
De manière générale, le dispositif électrique de gestion énergétique comprend un organe de mesure comprenant un capteur de courant configuré pour mesurer un courant électrique en aval de puissance d’un compteur électrique basse tension, un capteur de tension configuré pour mesurer une tension électrique à la sortie de puissance du compteur électrique basse tension, et une unité de calcul de puissance recevant une information de courant provenant du capteur de courant et une information de tension provenant du capteur de tension, et étant configurée pour calculer la puissance électrique consommée à la sortie de puissance du compteur électrique. Le dispositif électrique de gestion énergétique comprend un organe de contrôle recevant une information de puissance électrique consommée provenant de l’unité de calcul de puissance, calculant la différence entre ladite information de puissance électrique consommée et une valeur antérieure, comparant la valeur absolue de ladite différence à un seuil, en cas de valeur absolue de ladite différence inférieure au seuil restant au repos et en cas de valeur absolue de ladite différence supérieure au seuil émettant un message contenant une valeur de puissance vers une borne de recharge de batterie de stockage d’énergie électrique, la borne de recharge étant distante de l’organe de mesure et de l’organe de contrôle, ladite valeur antérieure étant ladite valeur de puissance contenue dans le message précédent.
Dans un mode de réalisation, l’organe de mesure et l’organe de contrôle disposent d’un boîtier commun. Le boîtier commun loge l’organe de contrôle une unité de calcul de puissance de l’organe de mesure.
Dans un mode de réalisation, l’organe de contrôle comprend un organe de communication configuré pour établir une liaison au moins monodirectionnelle vers la borne de recharge.
Dans un mode de réalisation, la borne de recharge est configurée pour recevoir ledit message et adapter sa consommation d’énergie à la différence entre une puissance souscrite et la valeur de puissance contenue dans ledit message.
Le calcul de la différence entre une puissance souscrite et la valeur de puissance peut également se faire au niveau de l’organe de contrôle. Dans ce cas, c’est la nouvelle puissance à laquelle le chargeur doit fonctionner qui lui est transmise. Il est également possible qu’il y ait communication avec un serveur central qui contrôle par défaut le chargeur.
Dans un mode de réalisation, une borne de recharge esclave est commandée par ledit organe de contrôle.
Dans un mode de réalisation, ledit seuil est supérieur ou égal à 1% de la puissance souscrite.
Dans un mode de réalisation, la fréquence de comparaison de la valeur absolue de ladite différence audit seuil est inférieure ou égale à 100 Hz.
Dans un mode de réalisation, ledit message est émis à une fréquence au moins 10 fois inférieure à la fréquence de comparaison de la valeur absolue de ladite différence audit seuil.
Dans un mode de réalisation, le calcul de la différence entre une puissance souscrite et la valeur de puissance est effectué par l’organe de contrôle, la nouvelle puissance à laquelle le chargeur doit fonctionner étant transmise audit chargeur.
Dans un mode de réalisation, ladite communication avec un serveur central commandant par défaut le chargeur est établie par l’organe de contrôle.
Dans un mode de réalisation, l’organe de contrôle est configuré pour émettre un message contenant une valeur de puissance vers chaque borne de recharge de batterie de stockage d’énergie électrique reliée audit dispositif, chaque borne de recharge étant distante de l’organe de mesure et de l’organe de contrôle, ladite valeur antérieure étant ladite valeur de puissance contenue dans le message précédent.
Dans un mode de réalisation, le dispositif électrique de gestion énergétique et/ou ledit serveur met en œuvre des fonctions d’intelligence artificielle pour optimiser la répartition des puissances dans le cas de gestion simultanée de plusieurs bornes de recharge.
Dans un mode de réalisation, le dispositif électrique de gestion énergétique comprend un organe de répartition de charge entre des phases d’un compteur électrique basse tension triphasé.
Dans un mode de réalisation, le dispositif électrique de gestion énergétique est dépourvu de liaison de communication avec le compteur électrique.
D'autres caractéristiques et avantages de l'invention seront exposés en détail dans la description ci-après, faite en référence aux dessins annexés, sur lesquels :
[Fig. 1] est une vue schématique d’un dispositif selon un aspect de l’invention. Fig. 2] est une vue schématique d’un dispositif selon un autre aspect de l’invention.
[Fig. 3] est une vue de détail du boîtier.
Les dessins annexés contiennent, pour l'essentiel, des éléments de caractère certain. Ils pourront donc non seulement servir à mieux faire comprendre la présente invention, mais aussi contribuer à sa définition, le cas échéant.
Comme illustré sur la figure 1, le dispositif électrique de gestion énergétique est prévu pour venir se connecter sur une installation électrique, aussi bien existante qu’à créer. L’installation électrique peut être une installation domestique ou de petite entreprise. L’installation électrique comprend un compteur électrique 4 relié au secteur basse tension assurant l’alimentation, par exemple en 110 ou 220 volts, 50 ou 60 Hz, mono ou triphasé. L’installation électrique comprend un réseau local de distribution 10 de puissance alimentant les organes consommateurs par des fils électriques, y compris une borne de recharge de batterie de stockage d’énergie électrique.
Le dispositif électrique de gestion énergétique 1 comprend un organe de mesure 2 adapté au réseau local. L’organe de mesure 2 comprend un capteur de courant 3 configuré pour mesurer un courant électrique à la sortie de puissance d’un compteur électrique 4 basse tension. Le capteur de courant 3 peut comprendre une boucle de mesure autour des fils électriques 5 de sortie du compteur électrique 4. Le capteur de courant 3 est disposé à proximité du compteur électrique 4 en amont des branchements, boîtiers de distribution et organes consommateurs. Le capteur de courant 3 est distinct du compteur électrique 4. Le dispositif électrique de gestion énergétique 1 est distinct du compteur électrique 4. Le dispositif électrique de gestion énergétique 1 est dépourvu de communication avec le compteur électrique 4.
L’organe de mesure 2 comprend un capteur de tension 6 pour mesurer une tension électrique à la sortie de puissance du compteur électrique 4. La tension varie de quelques pour cent autour de la tension nominale. Il est préférable de la mesurer avec une précision meilleure que la précision de livraison. Le capteur de tension 6 est distinct du compteur électrique 4.
L’organe de mesure 2 comprend une unité de calcul de puissance 7 recevant une information de courant provenant du capteur de courant 3 et une information de tension provenant du capteur de tension 6. L’unité de calcul de puissance 7 est configurée pour calculer la puissance électrique consommée à la sortie de puissance du compteur électrique 4. L’unité de calcul de puissance 7 effectue le produit de la valeur de courant mesurée par la valeur de tension mesurée. L’organe de mesure 2 comprend un organe de contrôle 8 recevant la valeur de puissance électrique consommée provenant de l’unité de calcul de puissance 7. L’organe de contrôle 8 calcule la différence entre ladite valeur de puissance électrique consommée et une valeur antérieure. L’organe de contrôle 8 compare la valeur absolue de ladite différence à un seuil, et en cas de valeur absolue de ladite différence inférieure au seuil reste au repos. En cas de valeur absolue de ladite différence supérieure au seuil, l’organe de contrôle 8 émet un message contenant une valeur de puissance vers la borne de recharge 11 de batterie de stockage d’énergie électrique. Ladite valeur antérieure est ladite valeur de puissance contenue dans le message précédent. Le seuil peut être fixé à 1% de la valeur souscrite de l’abonnement au fournisseur d’énergie électrique, ou à une valeur supérieure. La comparaison de la valeur absolue de ladite différence audit seuil est effectuée régulièrement. La comparaison de la valeur absolue de ladite différence audit seuil est effectuée à intervalles prédéterminés, par exemple à une fréquence inférieure ou égale à 100 Hz.
L’émission dudit message par l’organe de contrôle 8 est effectuée à une fréquence au moins 10 fois inférieure à la fréquence de comparaison de la valeur absolue de ladite différence audit seuil. Ledit message est émis moins de 10 fois par seconde.
La borne de recharge 11 est distante de l’organe de mesure 2 et de l’organe de contrôle 8. Ledit message peut être envoyé sur un réseau LAN 9. L’unité de calcul 7 et l’organe de contrôle 8 peuvent être réalisés à l’aide d’un microcontrôleur.
Le calcul de la différence entre une puissance souscrite et la valeur de puissance peut également se faire au niveau de l’organe de contrôle 8. Dans ce cas, c’est la nouvelle puissance à laquelle le chargeur doit fonctionner qui est transmise audit chargeur. Il est également possible de mettre en œuvre une communication avec un serveur central qui contrôle par défaut le chargeur.
Dans le mode de réalisation de la figure 2, plusieurs bornes de recharge 11 sont alimentées à partir du même compteur électrique 4.
Une borne de recharge, esclave, peut être commandée par ledit organe de contrôle 8. En variante, une borne de recharge peut être commandée par ledit organe de contrôle 8 via une autre borne de recharge.
Sur la figure 3 est illustré un exemple de réalisation du dispositif électrique de gestion énergétique 1. L’organe de mesure 2 est muni d’un boîtier 12 logeant et protégeant l’unité de calcul de puissance 7 et l’organe de contrôle 8. Les capteurs de courant 3 et de tension 6 sont disposés à l’extérieur du boîtier 12. L’organe de mesure 2 comprend, à l’intérieur du boîtier 12, au moins un connecteur 20, notamment un connecteur en version monophasée et deux connecteurs en version triphasée, assurant la liaison avec le secteur pour l’alimentation dudit boîtier 12, avec la ou les bornes de recharge 11 et avec les capteurs de courant 3 et de tension 6. L’organe de mesure 2 comprend un transformateur d’alimentation 21 relié par l’intermédiaire du connecteur 20 aux fils de sortie du compteur électrique 4. Le transformateur d’alimentation 21 peut être de type 230/5 volts ou 110/5 volts. L’organe de mesure 2 comprend un redresseur 22 alimenté par le transformateur d’alimentation 21. Le redresseur 22 peut comprendre un pont de diodes.
L’organe de mesure 2 comprend un organe de communication 23 par courants porteurs alimenté par le redresseur 22 et relié aux fils de sortie du compteur électrique 4 pour ainsi communiquer avec la ou les bornes de recharge 11. L’organe de communication 23 établit une liaison au moins monodirectionnelle vers la borne de recharge 11. La liaison est une liaison au moins monodirectionnelle et de préférence bidirectionnelle. La borne de recharge 11 reçoit le message émis par l’organe de contrôle 8 et transmis par l’organe de communication 23. La borne de recharge 11 adapte sa consommation d’énergie à la différence entre une puissance souscrite et la valeur de puissance contenue dans le message. Alternativement, la communication de l’organe de mesure 2 vers les bornes de recharge 11 peuvent être effectuée par un réseau LAN. L’organe de mesure 2 comprend un organe d’isolation galvanique 24 monté entre le connecteur 20 relié aux fils de sortie du compteur électrique 4 et l’organe de communication 23. L’organe d’isolation galvanique 24 comprend, par exemple, une photodiode.
L’organe de mesure 2 comprend un processeur 25 relié au connecteur 20 pour recevoir les informations de mesure provenant des capteurs de courant 3 et de tension 6 et pour émettre au moins une consigne, notamment sous forme de message, vers au moins une borne de recharge 11. Le processeur 25 est préprogrammé pour remplir les fonctions de traitement des mesures de courant et de tension et de contrôle. Le processeur 25 est alimenté par le redresseur 22.
L’organe de contrôle peut être configuré pour émettre un message contenant une valeur de puissance vers chaque borne de recharge de batterie de stockage d’énergie électrique reliée au dispositif électrique de gestion énergétique. Chaque borne de recharge est distante de l’organe de mesure et de l’organe de contrôle. Ladite valeur antérieure est ladite valeur de puissance contenue dans le message précédent. Dans un mode de réalisation, des fonctions d’intelligence artificielle sont mises en œuvre par le dispositif électrique de gestion énergétique et/ou par ledit serveur. Les fonctions d’intelligence artificielle sont prévues pour optimiser la répartition des puissances dans le cas de gestion simultanée de plusieurs bornes de recharge, selon la figure 2. Par ailleurs, de nombreux compteurs électriques basse tension sont triphasés. Dans ce cas, le dispositif électrique de gestion énergétique peut comprendre un organe de répartition de charge entre les phases. Ceci est d’autant plus intéressant que la répartition entre les phases d’un réseau en aval d’un compteur est souvent fixe et inadapté.

Claims

Revendications
[Revendication 1] Dispositif électrique de gestion énergétique comprenant un organe de mesure comprenant un capteur de courant configuré pour mesurer un courant électrique à en aval d’un compteur électrique basse tension, un capteur de tension configuré pour mesurer une tension électrique à la sortie de puissance du compteur électrique basse tension, et une unité de calcul de puissance recevant une information de courant provenant du capteur de courant et une information de tension provenant du capteur de tension, et étant configurée pour calculer la puissance électrique consommée à la sortie de puissance du compteur électrique ; et un organe de contrôle recevant une information de puissance électrique consommée provenant de l’unité de calcul de puissance, calculant la différence entre ladite information de puissance électrique consommée et une valeur antérieure, comparant la valeur absolue de ladite différence à un seuil, en cas de valeur absolue de ladite différence inférieure au seuil restant au repos et en cas de valeur absolue de ladite différence supérieure au seuil émettant un message contenant une valeur de puissance vers une borne de recharge de batterie de stockage d’énergie électrique, la borne de recharge étant distante de l’organe de mesure et de l’organe de contrôle, ladite valeur antérieure étant ladite valeur de puissance contenue dans le message précédent.
[Revendication 2] Dispositif selon la revendication 1, dans lequel l’organe de mesure et l’organe de contrôle disposent d’un boîtier commun.
[Revendication 3] Dispositif selon la revendication 1 ou 2, dans lequel l’organe de contrôle comprend un organe de communication configuré pour établir une liaison au moins monodirectionnelle vers la borne de recharge.
[Revendication 4] Dispositif selon l’une des revendications précédentes, dans lequel la borne de recharge est configurée pour recevoir ledit message et adapter sa consommation d’énergie à la différence entre une puissance souscrite et la valeur de puissance contenue dans ledit message.
[Revendication 5] Dispositif selon la revendication 4, dans lequel une borne de recharge esclave est commandée par ledit organe de contrôle.
[Revendication 6] Dispositif selon l’une des revendications précédentes, dans lequel ledit seuil est supérieur ou égal à 1% de la puissance souscrite.
[Revendication 7] Dispositif selon l’une des revendications précédentes, dans lequel la fréquence de comparaison de la valeur absolue de ladite différence audit seuil est inférieure ou égale à 100 Hz.
[Revendication 8] Dispositif selon l’une des revendications précédentes, dans lequel ledit message est émis à une fréquence au moins 10 fois inférieure à la fréquence de comparaison de la valeur absolue de ladite différence audit seuil.
[Revendication 9] Dispositif selon l’une des revendications précédentes, dans lequel le calcul de la différence entre une puissance souscrite et la valeur de puissance est effectué par l’organe de contrôle, la nouvelle puissance à laquelle le chargeur doit fonctionner étant transmise audit chargeur.
[Revendication 10] Dispositif selon l’une des revendications précédentes, dans lequel une communication avec un serveur central commandant par défaut le chargeur est établie par l’organe de contrôle.
[Revendication 11] Dispositif selon l’une des revendications précédentes, dans lequel l’organe de contrôle est configuré pour émettre un message contenant une valeur de puissance vers chaque borne de recharge de batterie de stockage d’énergie électrique reliée audit dispositif, chaque borne de recharge étant distante de l’organe de mesure et de l’organe de contrôle, ladite valeur antérieure étant ladite valeur de puissance contenue dans le message précédent.
[Revendication 12] Dispositif selon l’une des revendications précédentes, dans lequel le dispositif électrique de gestion énergétique met en œuvre des fonctions d’intelligence artificielle configurées pour optimiser la répartition des puissances dans le cas de gestion simultanée de plusieurs bornes de recharge.
[Revendication 13] Dispositif selon l’une des revendications précédentes, dans lequel le dispositif électrique de gestion énergétique comprend un organe de répartition de charge entre des phases d’un compteur électrique basse tension triphasé.
[Revendication 14] Dispositif selon l’une des revendications précédentes, dans lequel le dispositif électrique de gestion énergétique est dépourvu de liaison de communication avec le compteur électrique.
EP20781599.4A 2019-10-07 2020-10-07 Dispositif electrique de gestion energetique Pending EP4041592A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1911083A FR3101580A1 (fr) 2019-10-07 2019-10-07 Dispositif électrique de gestion énergétique
PCT/EP2020/078147 WO2021069509A1 (fr) 2019-10-07 2020-10-07 Dispositif electrique de gestion energetique

Publications (1)

Publication Number Publication Date
EP4041592A1 true EP4041592A1 (fr) 2022-08-17

Family

ID=71111454

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20781599.4A Pending EP4041592A1 (fr) 2019-10-07 2020-10-07 Dispositif electrique de gestion energetique

Country Status (5)

Country Link
US (1) US20220410749A1 (fr)
EP (1) EP4041592A1 (fr)
CN (1) CN114728599A (fr)
FR (1) FR3101580A1 (fr)
WO (1) WO2021069509A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2603110B (en) * 2021-01-06 2023-09-27 Cloudfm Integrated Services Ltd Monitoring electrical parameters
CN114137297B (zh) * 2021-11-29 2024-01-23 国网北京市电力公司 信号处理装置
FR3139250A1 (fr) * 2022-08-30 2024-03-01 Delta Dore Procede et dispositif de pilotage d’une borne de recharge d’un vehicule electrique

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8013570B2 (en) * 2009-07-23 2011-09-06 Coulomb Technologies, Inc. Electrical circuit sharing for electric vehicle charging stations
JP2013225971A (ja) * 2012-04-20 2013-10-31 Panasonic Corp 充電制御装置及び車両充電システム
US10065519B1 (en) * 2015-09-30 2018-09-04 Evercharge, Inc. Location power monitoring and charge distribution using intelligent electric vehicle supply equipment
CN206697991U (zh) * 2017-05-24 2017-12-01 乐山一拉得电网自动化有限公司 一种新型电动汽车充电系统
DE102017116886A1 (de) * 2017-07-26 2019-01-31 Wobben Properties Gmbh Ladestation mit dynamischer Ladestromverteilung

Also Published As

Publication number Publication date
CN114728599A (zh) 2022-07-08
WO2021069509A1 (fr) 2021-04-15
US20220410749A1 (en) 2022-12-29
FR3101580A1 (fr) 2021-04-09

Similar Documents

Publication Publication Date Title
EP4041592A1 (fr) Dispositif electrique de gestion energetique
US11625734B2 (en) Managing grid interaction with interconnect socket adapter configured for an energy storage device
EP2571130B1 (fr) Appareil de régulation d'énergie électrique et système de connexion au réseau le comprenant
US11086346B2 (en) Managing power source interaction through an interconnect socket adapter configured with an energy storage source/sink
US10132838B2 (en) Managing power source interaction through an interconnect socket adapter configured with an energy storage source/sink
US9276408B2 (en) Automatic transfer switch responsive to serial communication message and power system including the same
US20190288512A1 (en) Electric power supply system and electric power supply control method
FR3068530B1 (fr) Procede de distribution d'une energie electrique issue d'une energie solaire a une pluralite de groupes d'au moins une installation electrique
EP3394923A1 (fr) Système et procédé de pilotage d'un dispositif de stockage d'énergie
WO2019034324A1 (fr) Systeme comprenant un compteur electrique et un disjoncteur
EP2294670A1 (fr) Procedes et dispositifs de controle de la puissance electrique consommee a chaque instant
EP2533391B1 (fr) Système de gestion multi-sources de générateurs électriques
FR3030142A1 (fr) Procede et dispositif de reglage d'une puissance de charge d'une batterie de vehicule automobile electrique
EP4066340B1 (fr) Micro-réseau résilient d'appareils de chauffage de type radiateur électrique
EP3070802B1 (fr) Procédé et système de gestion d'énergie
FR2991823A1 (fr) Dispositif et procede de repartition de la puissance electrique issue de differentes sources d'electricite
EP2639968B1 (fr) Procédé de localisation de points consommateurs de courant dans un système de distribution de courant électrique, dispositif de traitement et système de distribution de courant électrique associés.
WO2021132672A1 (fr) Système de gestion d'énergie électrique et procédé de gestion d'énergie électrique
WO2023031538A1 (fr) Dispositif de gestion de la mise en œuvre d'une limitation du courant destiné à alimenter un objet connecté
FR3104843A1 (fr) Micro-réseau à équilibre perfectionné entre consommation et production
EP2738734A1 (fr) Tableau électrique intelligent à courant faible continu
EP4002634A1 (fr) Commande optimisée en puissance d'une batterie participant au réglage primaire de fréquence
OA18517A (fr) Kit d'électrification solaire connectée.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220502

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)