EP4041590A1 - Batterieladevorrichtung zum laden einer stark entladenen batterie und batterieladesystem und verfahren - Google Patents

Batterieladevorrichtung zum laden einer stark entladenen batterie und batterieladesystem und verfahren

Info

Publication number
EP4041590A1
EP4041590A1 EP20875608.0A EP20875608A EP4041590A1 EP 4041590 A1 EP4041590 A1 EP 4041590A1 EP 20875608 A EP20875608 A EP 20875608A EP 4041590 A1 EP4041590 A1 EP 4041590A1
Authority
EP
European Patent Office
Prior art keywords
battery
deeply discharged
charging
charging device
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20875608.0A
Other languages
English (en)
French (fr)
Other versions
EP4041590A4 (de
Inventor
James P. Mcbride
James Richard Stanfield
Derek Michael Underhill
Jonathan Lewis Nook
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noco Co
Original Assignee
Noco Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noco Co filed Critical Noco Co
Priority claimed from PCT/US2020/054581 external-priority patent/WO2021071949A1/en
Publication of EP4041590A1 publication Critical patent/EP4041590A1/de
Publication of EP4041590A4 publication Critical patent/EP4041590A4/de
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/12Starting of engines by means of mobile, e.g. portable, starting sets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/14Starting of engines by means of electric starters with external current supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/06Parameters used for control of starting apparatus said parameters being related to the power supply or driving circuits for the starter
    • F02N2200/063Battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0034Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using reverse polarity correcting or protecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the battery charging device (e.g. smart battery charger) according to the present invention, for example, can be a portable and automatic battery charger for use with both 12V and 24V lead-acid batteries (e.g. wet, gel, MF, EFB, AGM batteries) and/or lithium ion batteries.
  • the smart battery charging device for example, is structured and arranged for charging cars, boats, RVs, SUVs, diesel trucks, motorcycles, ATVs, snowmobiles, personal watercraft, lawn mowers, and other vehicles or equipment. It also can be used, for example, as a battery maintainer to keep both starter batteries and deep-cycle batteries fully charged. It also can monitor battery activity, for example, for safe and efficient charging without any overcharge.
  • the Force Mode feature allows the battery charging device to enter a battery charging mode when the battery voltage of the deeply discharged battery (e.g. deeply discharged vehicle battery) is below a minimum threshold.
  • the purpose is to allow the battery charging device to be able to charge, for example, a deeply discharged lead-acid battery, and to reset the battery management system (BMS) in an over-discharged lithium ion battery of the battery charging device.
  • BMS battery management system
  • the battery charging device After the Force Mode is terminated due to expiration of the designated Force Mode time, the battery charging device will check the battery voltage. If the battery voltage is above the normal starting voltage threshold, the battery charging device will begin charging in its normal mode. If the battery voltage is still too low, the battery charging device will return to its standby or off mode.
  • the user interface will require explicit selection of the mode, and provide user feedback that they are in this mode.
  • the battery charging device for jump starting a deeply discharged vehicle battery, including: an internal power supply; an optional output port having positive and negative polarity outputs; a vehicle battery isolation sensor connected in circuit with the positive and negative polarity outputs, configured to detect presence of a vehicle battery connected between the positive and negative polarity outputs; a reverse polarity sensor connected in circuit with the positive and negative polarity outputs, configured to detect polarity of a vehicle battery connected between the positive and negative polarity outputs; a power FET switch connected between the internal power supply and the output port; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power FET switch, such that the power FET switch is turned on to connect the internal power supply to the output port in response to signals from the sensors indicating the presence of a vehicle battery at the output port and proper polarity connection of positive and negative terminals of the vehicle battery with the positive and negative polarity outputs.
  • the internal power supply is a rechargeable lithium ion battery pack.
  • the presently described subject matter is directed to a method of charging a deeply discharged battery, the method comprising or consisting of measuring the output voltage of the deeply discharged battery; and if the output voltage is at or near zero (0) volts, charging the deeply discharged battery in a Force Mode.
  • the presently described subject matter is directed to a method of charging a deeply discharged battery, the method comprising or consisting of measuring the output voltage of the deeply discharged battery; and if the output voltage is at or near zero (0) volts, charging the deeply discharged battery in a Force Mode, wherein the deeply discharged battery is charged in the forced mode for a predetermined amount of time.
  • the presently described subject matter is directed to a method of charging a deeply discharged battery, the method comprising or consisting of measuring the output voltage of the deeply discharged battery; and if the output voltage is at or near zero (0) volts, charging the deeply discharged battery in a Force Mode, wherein the deeply discharged battery is charged in the forced mode for a predetermined amount of time, and, wherein the predetermined amount of time is five (5) minutes.
  • the presently described subject matter is directed to a method of charging a deeply discharged battery, the method comprising or consisting of measuring the output voltage of the deeply discharged battery; and if the output voltage is at or near zero (0) volts, charging the deeply discharged battery in a Force Mode, wherein the deeply discharged battery is charged in the forced mode for a predetermined amount of time, and, wherein the charging of the deeply discharged battery in Force Mode is terminated upon reaching the predetermined amount of time.
  • the presently described subject matter is directed to a method of charging a deeply discharged battery, the method comprising or consisting of measuring the output voltage of the deeply discharged battery; and if the output voltage is at or near zero (0) volts, charging the deeply discharged battery in a Force Mode, wherein the deeply discharged battery is charged in the forced mode for a predetermined amount of time, and wherein the charging of the deeply discharged battery in Force Mode is terminated upon reaching the predetermined amount of time, further comprising measuring the deeply discharged battery after the Force Mode is terminated, wherein if the deeply discharged battery is above a normal starting voltage threshold after the Force Mode is terminated and the deeply discharged battery output voltage is measured, the rechargeable battery charging device will begin charging in a normal mode, and wherein if the deeply discharged battery voltage is too low after the Force Mode is terminated and the deeply discharged battery output voltage is measured, then the rechargeable battery charging device will return to a standby or off mode.
  • the presently described subject matter is directed to a method of charging a deeply discharged battery, the method comprising or consisting of measuring the output voltage of the deeply discharged battery; and if the output voltage is at or near zero (0) volts, charging the deeply discharged battery in a Force Mode, wherein the deeply discharged battery is a lead-acid battery.
  • the presently described subject matter is directed to a rechargeable battery charging device for charging a deeply discharged battery, the device comprising or consisting of: a rechargeable battery having a positive terminal and a negative terminal; a positive battery cable connected or connectable to the positive terminal of the rechargeable battery; a negative battery cable connected or connectable to the negative terminal of the rechargeable battery; a detector for measuring an output voltage of the deeply discharged battery; a programmable microcontroller unit (MCI) connected to one or more components or parts of the rechargeable battery charging device, the MCI structured and arranged to control operation of the rechargeable battery charging device; a user interface connected to the MCI, the user interface structured and arranged to display one or more functions or modes of the rechargeable battery charging device; and a controller structured and arranged to control the charging of the deeply discharged battery, the controller having a Force Mode for charging the deeply discharge battery even if a battery voltage is near 0 volts, wherein the Force Mode is configured to operate for a predetermined period of time.
  • MCI programm
  • the presently described subject matter is directed to a rechargeable battery charging device for charging a deeply discharged battery, the device comprising or consisting of: a rechargeable battery having a positive terminal and a negative terminal; a positive battery cable connected or connectable to the positive terminal of the rechargeable battery; a negative battery cable connected or connectable to the negative terminal of the rechargeable battery; a detector for measuring an output voltage of the deeply discharged battery; a programmable microcontroller unit (MCI) connected to one or more components or parts of the rechargeable battery charging device, the MCI structured and arranged to control operation of the rechargeable battery charging device; a user interface connected to the MCI, the user interface structured and arranged to display one or more functions or modes of the rechargeable battery charging device; and a controller structured and arranged to control the charging of the deeply discharged battery, the controller having a Force Mode for charging the deeply discharge battery even if a battery voltage is near 0 volts, wherein the Force Mode is configured to operate for a predetermined period of time, and wherein the predetermined
  • the presently described subject matter is directed to a rechargeable battery charging device for charging a deeply discharged battery, the device comprising or consisting of: a rechargeable battery having a positive terminal and a negative terminal; a positive battery cable connected or connectable to the positive terminal of the rechargeable battery; a negative battery cable connected or connectable to the negative terminal of the rechargeable battery; a detector for measuring an output voltage of the deeply discharged battery; a programmable microcontroller unit (MCI) connected to one or more components or parts of the rechargeable battery charging device, the MCI structured and arranged to control operation of the rechargeable battery charging device; a user interface connected to the MCI, the user interface structured and arranged to display one or more functions or modes of the rechargeable battery charging device; and a controller structured and arranged to control the charging of the deeply discharged battery, the controller having a Force Mode for charging the deeply discharge battery even if a battery voltage is near 0 volts, wherein the Force Mode is configured to operate for a predetermined period of time, and wherein after the Force
  • the presently described subject matter is directed to a rechargeable battery charging device for charging a deeply discharged battery, the device comprising or consisting of: a rechargeable battery having a positive terminal and a negative terminal; a positive battery cable connected or connectable to the positive terminal of the rechargeable battery; a negative battery cable connected or connectable to the negative terminal of the rechargeable battery; a detector for measuring an output voltage of the deeply discharged battery; a programmable microcontroller unit (MCI) connected to one or more components or parts of the rechargeable battery charging device, the MCI structured and arranged to control operation of the rechargeable battery charging device; a user interface connected to the MCI, the user interface structured and arranged to display one or more functions or modes of the rechargeable battery charging device; and a controller structured and arranged to control the charging of the deeply discharged battery, the controller having a Force Mode for charging the deeply discharge battery even if a battery voltage is near 0 volts, wherein the Force Mode is configured to operate for a predetermined period of time, and wherein after the Force
  • the presently described subject matter is directed to a rechargeable battery charging device for charging a deeply discharged battery, the device comprising or consisting of: a rechargeable battery having a positive terminal and a negative terminal; a positive battery cable connected or connectable to the positive terminal of the rechargeable battery; a negative battery cable connected or connectable to the negative terminal of the rechargeable battery; a detector for measuring an output voltage of the deeply discharged battery; a programmable microcontroller unit (MCI) connected to one or more components or parts of the rechargeable battery charging device, the MCI structured and arranged to control operation of the rechargeable battery charging device; a user interface connected to the MCI, the user interface structured and arranged to display one or more functions or modes of the rechargeable battery charging device; and a controller structured and arranged to control the charging of the deeply discharged battery, the controller having a Force Mode for charging the deeply discharge battery even if a battery voltage is near 0 volts, wherein the user interface is structured and arranged to allow a user to select the Force Mode.
  • the presently described subject matter is directed to a rechargeable battery charging device for charging a deeply discharged battery, the device comprising or consisting of: a rechargeable battery having a positive terminal and a negative terminal; a positive battery cable connected or connectable to the positive terminal of the rechargeable battery; a negative battery cable connected or connectable to the negative terminal of the rechargeable battery; a detector for measuring an output voltage of the deeply discharged battery; a programmable microcontroller unit (MCI) connected to one or more components or parts of the rechargeable battery charging device, the MCI structured and arranged to control operation of the rechargeable battery charging device; a user interface connected to the MCI, the user interface structured and arranged to display one or more functions or modes of the rechargeable battery charging device; and a controller structured and arranged to control the charging of the deeply discharged battery, the controller having a Force Mode for charging the deeply discharge battery even if a battery voltage is near 0 volts, wherein the user interface is structured and arranged to allow a user to select the Force Mode, and wherein
  • the presently described subject matter is directed to a rechargeable battery charging device for charging a deeply discharged battery, the device comprising or consisting of: a rechargeable battery having a positive terminal and a negative terminal; a positive battery cable connected or connectable to the positive terminal of the rechargeable battery; a negative battery cable connected or connectable to the negative terminal of the rechargeable battery; a detector for measuring an output voltage of the deeply discharged battery; a programmable microcontroller unit (MCI) connected to one or more components or parts of the rechargeable battery charging device, the MCI structured and arranged to control operation of the rechargeable battery charging device; a user interface connected to the MCI, the user interface structured and arranged to display one or more functions or modes of the rechargeable battery charging device; and a controller structured and arranged to control the charging of the deeply discharged battery, the controller having a Force Mode for charging the deeply discharge battery even if a battery voltage is near 0 volts, wherein the user interface is structured and arranged to allow a user to select the Force Mode, wherein the
  • the presently described subject matter is directed to a rechargeable battery charging device for charging a deeply discharged battery, the device comprising or consisting of: a rechargeable battery having a positive terminal and a negative terminal; a positive battery cable connected or connectable to the positive terminal of the rechargeable battery; a negative battery cable connected or connectable to the negative terminal of the rechargeable battery; a detector for measuring an output voltage of the deeply discharged battery; a programmable microcontroller unit (MCI) connected to one or more components or parts of the rechargeable battery charging device, the MCI structured and arranged to control operation of the rechargeable battery charging device; a user interface connected to the MCI, the user interface structured and arranged to display one or more functions or modes of the rechargeable battery charging device; and a controller structured and arranged to control the charging of the deeply discharged battery, the controller having a Force Mode for charging the deeply discharge battery even if a battery voltage is near 0 volts, wherein the deeply discharged battery is a lead-acid battery.
  • MCI programmable micro
  • the presently described subject matter is directed to a rechargeable battery charging device for charging a deeply discharged battery, the device comprising or consisting of: a rechargeable battery having a positive terminal and a negative terminal; a positive battery cable connected or connectable to the positive terminal of the rechargeable battery; a negative battery cable connected or connectable to the negative terminal of the rechargeable battery; a detector for measuring an output voltage of the deeply discharged battery; a programmable microcontroller unit (MCI) connected to one or more components or parts of the rechargeable battery charging device, the MCI structured and arranged to control operation of the rechargeable battery charging device; a user interface connected to the MCI, the user interface structured and arranged to display one or more functions or modes of the rechargeable battery charging device; and a controller structured and arranged to control the charging of the deeply discharged battery, the controller having a Force Mode for charging the deeply discharge battery even if a battery voltage is near 0 volts, wherein the deeply discharged battery is an over-discharge lithium ion battery with an open battery management
  • FIG. l is a perspective view of a battery charging device according to the present invention.
  • FIG. 2 is a front elevational view showing the battery charging device shown in FIG. 1.
  • FIG. 3 is a front view showing the battery charging device shown in FIGS. 1 and 2 showing the power cord assembly and battery charging cable assembly with battery cables and battery clamps.
  • FIG. 4 is a front view of an alternative battery charging cable assembly with positive and negative eyelet connectors for attachment to positive and negative battery clamps or directly to positive and negative terminals of a deeply discharged battery.
  • FIG. 6 is a perspective view of another battery charging device according to the present invention with power cord and battery charging cable assembly detached.
  • FIG. 7 is a front elevational view showing the battery charging device of FIG. 6 with battery charging cable assembly with battery clamps attached.
  • FIG. 8 is a functional block diagram of the battery charging device shown in FIG. 6.
  • FIG. 9 is schematic circuit diagrams of an exemplary embodiment of the battery charging device shown in FIG. 6.
  • FIG. 10 is a perspective view of the battery charging device shown in FIG. 6 showing the various features of the display 114.
  • FIG. 11 is a top planar view of a battery cable assembly for use with the battery charging device shown in FIGS. 6-10.
  • a battery charging device 310 according to the present invention is shown in FIGS. 1-3.
  • the battery charging device 310 comprises a housing or casing 312 containing the electronic components of the battery charging device 310, an electronic display 314 (i.e. graphic user interface (GUI)), an A/C inlet port 316 for accommodating an A/C power cord 318 having an inlet plug 320 and an A/C plug 322, an outlet port 324 for accommodating a battery cable assembly 326 having an outlet plug 328 and a male plug connector 330.
  • GUI graphic user interface
  • Another battery cable assembly 332 is shown in FIG. 3 having a female plug connector 334 located at one end and a positive battery clamp 336 and negative battery clamp 338 located at an opposite end thereof.
  • the male plug connector 330 of the battery cable assembly 326 releasably connects to the female plug connector 334 of the battery cable assembly 332.
  • the battery cable assembly 332' (FIG. 4) is provided with the female plug connector 334’ located at one end and a positive battery cable eyelet connector 336 and a negative battery cable eyelet connector 338 located at an opposite end thereof.
  • the positive battery cable eyelet connector 336 can be connected to a positive battery clamp or directly to the positive terminal of the deeply discharged battery.
  • the negative battery cable eyelet connector 338 can be connected to a negative battery clamp or directly to the negative terminal of the deeply discharged battery.
  • This eyelet connectors 336 and 338 provide a more permanent type of connection with the deeply discharged battery compared to the set of battery clamps.
  • the electronic display 314 comprises the following features or indicators:
  • a special charging mode feature and method designated “Force Mode” allows the user to force the charger to start charging even if the battery voltage is near 0V. This allows the charger to be used to charge severely discharged lead-acid batteries, and recover over-discharged lithium batteries with an open BMS.
  • Force Mode operates as a normal charge mode except it is limited to a short period of time for safety reasons.
  • the timeout period for Force mode may be 5 minutes, or could be longer or shorter depending on the application and type and size of battery that is being charged.
  • the charger After Force mode is terminated due to expiration of the designated Force Mode time, the charger will check the battery voltage. If the battery voltage is above the normal starting voltage threshold, the charger will begin charging in its normal mode. If the battery voltage is still too low, the charger will return to its standby or off mode.
  • the Force Mode feature and method can be applied to the battery charging device 310.
  • the display 314 can be provided with an LED 314A (FIG. 1) to indicate when the Force Mode feature is “on.”
  • the battery charging device 310 can be configured to automatically turn “on” and “off’ the Force Mode feature (e.g. Force Mode feature automatically turned on when the battery charging device 310 is properly connected to a deeply discharged battery and the battery charging device 310 is turned “on”.
  • the battery charging device 310 can be provided with a switch (e.g. button on display 314) to manually turn “on” and “off’ the Force Mode feature.
  • FIG. 7 A flow diagram of an exemplary Force Mode for initially charging a deeply discharged battery is shown in FIG. 7. The flow diagram shows:
  • IV (volt). The deeply discharged battery voltage is detected to determine if less than IV.
  • Process 330 Force Mode Starts AND Live voltage at the (battery) clamps (even if they are unplugged AND Fuel Gauge LEDs chase AND Timeout 5 min (minutes).
  • the battery charging device 110 comprises a housing or casing 112 containing the electronic components of the battery charging device 110, an electronic display 114 (i.e. graphic user interface (GUI)), a positive battery cable 116 with a positive battery clamp 118 (FIG. 2), and a negative battery cable 120 with a negative battery clamp 122 (FIG. 2).
  • GUI graphic user interface
  • FIG. 3 shows a functional block diagram of a battery charging device (e.g. handheld battery booster) according to one aspect of the invention.
  • a battery charging device e.g. handheld battery booster
  • a lithium polymer battery pack 32 which stores sufficient energy to jump start a vehicle engine served by a conventional 12 volt lead-acid or valve regulated lead-acid battery.
  • a high-surge lithium polymer battery pack includes three 3.7V, 2666 mAh lithium polymer batteries in a 35 IP configuration.
  • the resulting battery pack provides 11. IV, 2666Ah (8000Ah at 3.7V, 29.6Wh). Continuous discharge current is 25C (or 200 amps), and burst discharge current is 50C (or 400 amps).
  • the maximum charging current of the battery pack is 8000mA (8 amps).
  • a programmable microcontroller unit (MCU) 1 receives various inputs and produces informational as well as control outputs.
  • the programmable MCU 1 further provides flexibility to the system by allowing updates in functionality and system parameters, without requiring any change in hardware.
  • an 8 bit microcontroller with 2K x 15 bits of flash memory is used to control the system.
  • One such microcontroller is the HT67F30, which is commercially available from Holtek Semiconductor Inc.
  • a car battery reverse sensor 10 monitors the polarity of the vehicle battery 72 when the handheld battery booster device is connected to the vehicle's electric system. As explained below, the booster device prevents the lithium battery pack from being connected to the vehicle battery 72 when the terminals of the battery 72 are connected to the wrong terminals of the booster device.
  • a car battery isolation sensor 12 detects whether or not a vehicle battery 72 is connected to the booster device, and prevents the lithium battery pack from being connected to the output terminals of the booster device unless there is a good (e.g. chargeable) battery connected to the output terminals.
  • a smart switch FET circuit 15 electrically switches the handheld battery booster lithium battery to the vehicle's electric system only when the vehicle battery is determined by the MCU 1 to be present (in response to a detection signal provided by isolation sensor 12) and connected with the correct polarity (in response to a detection signal provided by reverse sensor 10).
  • a lithium battery temperature sensor 20 monitors the temperature of the lithium battery pack 32 to detect overheating due to high ambient temperature conditions and overextended current draw during jump starting.
  • a lithium battery voltage measurement circuit 24 monitors the voltage of the lithium battery pack 32 to prevent the voltage potential from rising too high during a charging operation and from dropping too low during a discharge operation.
  • Lithium battery back-charge protection diodes 28 prevent any charge current being delivered to the vehicle battery 72 from flowing back to the lithium battery pack 32 from the vehicle's electrical system.
  • Flashlight LED circuit 36 is provided to furnish a flashlight function for enhancing light under a vehicle's hood in dark conditions, as well as providing SOS and strobe lighting functions for safety purposes when a vehicle may be disabled in a potentially dangerous location.
  • Voltage regulator 42 provides regulation of internal operating voltage for the microcontroller and sensors.
  • On/Off manual mode and flashlight switches 46 allow the user to control power-on for the handheld battery booster device, to control manual override operation if the vehicle has no battery, and to control the flashlight function. The manual button functions only when the booster device is powered on.
  • This button allows the user to jump-start vehicles that have either a missing battery, or the battery voltage is so low that automatic detection by the MCU is not possible.
  • the manual override button for a predetermined period time (such as three seconds) to prevent inadvertent actuation of the manual mode, the internal lithium ion battery power is switched to the vehicle battery connect port.
  • a predetermined period time such as three seconds
  • USB charge circuit 52 converts power from any USB charger power source, to charge voltage and current for charging the lithium battery pack 32.
  • USB output 56 provides a USB portable charger for charging smartphones, tablets, and other rechargeable electronic devices.
  • Operation indicator LEDs 60 provide visual indication of lithium battery capacity status as well as an indication of smart switch activation status (indicating that power is being provided to the vehicle's electrical system). Detailed operation of the handheld booster device will now be described with reference to the schematic diagrams of Figs. 2A-2C. As shown in Fig. 2A, the microcontroller unit 1 is the center of all inputs and outputs.
  • the reverse battery sensor 10 comprises an optically coupled isolator phototransistor (4N27) connected to the terminals of vehicle battery 72 at input pins 1 and 2 with a diode D8 in the lead conductor of pin 1 (associated with the negative terminal CB-), such that if the battery 72 is connected to the terminals of the booster device with the correct polarity, the optocoupler LED 11 will not conduct current, and is therefore turned off, providing a “1” or high output signal to the MCU 1.
  • 4N27 optically coupled isolator phototransistor
  • the car battery isolation sensor 12 comprises an optically coupled isolator phototransistor (4N27) connected to the terminals of vehicle battery 72 at input pins 1 and 2 with a diode D7 in the lead conductor of pin 1 (associated with the positive terminal CB+), such that if the battery 72 is connected to the terminals of the booster device with the correct polarity, the optocoupler LED 11 A will conduct current, and is therefore turned on, providing a “0” or low output signal to the MCU, indicating the presence of a battery across the jumper output terminals of the handheld booster device.
  • 4N27 optically coupled isolator phototransistor
  • the optocoupler LED 11 of the reverse sensor 10 will conduct current, providing a “0” or low signal to microcontroller unit 1. Further, if no battery is connected to the handheld booster device, the optocoupler LED 11 A of the isolation sensor 12 will not conduct current, and is therefore turned off, providing a “1” or high output signal to the MCU, indicating the absence of any battery connected to the handheld booster device.
  • the microcontroller software of MCU 1 can determine when it is safe to turn on the smart switch FET 15, thereby connecting the lithium battery pack to the jumper terminals of the booster device. Consequently, if the car battery 72 either is not connected to the booster device at all, or is connected with reverse polarity, the MCU 1 can keep the smart switch FET 15 from being turned on, thus prevent sparking/short circuiting of the lithium battery pack.
  • the FET smart switch 15 is driven by an output of the microcontroller 1.
  • the FET smart switch 15 includes three FETs (Q15, Q18, and Q 19) in parallel, which spreads the distribution of power from the lithium battery pack over the FETs.
  • FETs 16 are all in a high resistance state, therefore not allowing current to flow from the internal lithium battery negative contact 17 to the car battery 72 negative contact.
  • the FETs 16 are in a low resistant state, allowing current to flow freely from the internal lithium battery pack negative contact 17 (LB-) to the car battery 72 negative contact (CB-).
  • the microcontroller software controls the connection of the internal lithium battery pack 32 to the vehicle battery 72 for jumpstarting the car engine.
  • the internal lithium battery pack voltage can be accurately measured using circuit 24 and one of the analog-to-digital inputs of the microcontroller 1.
  • Circuit 24 is designed to sense when the main 3.3V regulator 42 voltage is on, and to turn on transistor 23 when the voltage of regulator 42 is on. When transistor 23 is conducting, it turns on FET 22, thereby providing positive contact (LB+) of the internal lithium battery a conductive path to voltage divider 21 allowing a lower voltage range to be brought to the microcontroller to be read.
  • the microcontroller software can determine if the lithium battery voltage is too low during discharge operation or too high during charge operation, and take appropriate action to prevent damage to electronic components.
  • the temperature of the internal lithium battery pack 32 can be accurately measured by two negative temperature coefficient (NTC) devices 20. These are devices that reduce their resistance when their temperature rises.
  • the circuit is a voltage divider that brings the result to two analog-to-digital (A/D) inputs on the microcontroller 1.
  • the microcontroller software can then determine when the internal lithium battery is too hot to allow jumpstarting, adding safety to the design.
  • the main voltage regulator circuit 42 is designed to convert internal lithium battery voltage to a regulated 3.3 volts that is utilized by the microcontroller 1 as well as by other components of the booster device for internal operating power.
  • Three lithium battery back charge protection diodes 28 see Fig.
  • the main power on switch 46 (Fig. 2A) is a combination that allows for double pole, double throw operation so that with one push, the product can be turned on if it is in the off state, or turned off if it is in the on state.
  • This circuit also uses a microcontroller output 47 to “keep alive” the power when it is activated by the on switch. When the switch is pressed the microcontroller turns this output to a high logic level to keep power on when the switch is released.
  • the microcontroller maintains control of when the power is turned off when the on/off switch is activated again or when the lithium battery voltage is getting too low.
  • the microcontroller software also includes a timer that turns the power off after a predefined period of time, (such as, e.g. 8 hours) if not used.
  • the flashlight LED circuit 45 shown in Fig. 2B controls the operation of flashlight LEDs. Two outputs from the microcontroller 1 are dedicated to two separate LEDs. Thus, the LEDs can be independently software-controlled for strobe and SOS patterns, providing yet another safety feature to the booster device. LED indicators provide the feedback the operator needs to understand what is happening with the product.
  • Four separate LEDs 61 (Fig. 2A) are controlled by corresponding individual outputs of microcontroller 1 to provide indication of the remaining capacity of the internal lithium battery. These LEDs are controlled in a “fuel gauge” type format with 25%,
  • An LED indicator 63 (Fig. 2B) provides a visual warning to the user when the vehicle battery 72 has been connected in reverse polarity.
  • “Boost” and on/off LEDs 62 provide visual indications when the booster device is provide jump-start power, and when the booster device is turned on, respectively.
  • a USB output 56 circuit (Fig. 2C) is included to provide a USB output for charging portable electronic devices such as smartphones from the internal lithium battery pack 32.
  • Control circuit 57 from the microcontroller 1 allows the USB Out 56 to be turned on and off by software control to prevent the internal lithium battery getting too low in capacity.
  • the USB output is brought to the outside of the device on a standard USB connector 58, which includes the standard voltage divider required for enabling charge to certain smartphones that require it.
  • the USB charge circuit 52 allows the internal lithium battery pack 32 to be charged using a standard USB charger. This charge input uses a standard micro-USB connector 48 allowing standard cables to be used.
  • the 5V potential provided from standard USB chargers is up- converted to the 12.4VDC voltage required for charging the internal lithium battery pack using a DC-DC converter 49.
  • the DC-DC converter 49 can be turned on and off via circuit 53 by an output from the microcontroller 1.
  • the microcontroller software can turn the charge off if the battery voltage is measured to be too high by the A/D input 22. Additional safety is provided for helping to eliminate overcharge to the internal lithium battery using a lithium battery charge controller 50 that provides charge balance to the internal lithium battery cells 51. This controller also provides safety redundancy for eliminating over discharge of the internal lithium battery.
  • Fig. 5 shows a handheld device 110 in accordance with an exemplary embodiment of the invention.
  • 112 is a casing.
  • 114 is a display.
  • 114A is a power on switch.
  • 114B is an LED “fuel gauge” indicators.
  • 114C is a “boost on” indicator for showing that power is being provided to the 12V output port 122.
  • 114D is a “reverse” indicator for showing that the vehicle battery is improperly connected with respect to polarity.
  • 114E is a “power on” indicator for showing that the device is powered up for operation.
  • 118 is a USB input port for charging the internal lithium ion battery.
  • 118A is a removable cover for the USB input port 118.
  • 120 is a USB output port for providing power from the internal lithium ion battery to other portable devices such as a smart phone, tablet, music player, and other electronic devices.
  • 120A is a removable cover for the USB output port 120.
  • 122 is a 12V output port connectable to a cable device 210 described below.
  • Fig. 6 shows a jumper cable device 210 specifically designed for use with the handheld device 110.
  • the device 210 has a plug 212 configured to plug into the 12V output port 122 of the handheld device 110.
  • a positive battery cable 214 and a negative battery cable 218 are integrated with the plug 212, and are connected, respectively, to the positive battery clamp 216 and negative battery clamp 220 via ring connectors 216A and 220 A, respectively.
  • the 12V outlet port 122 and plug 212 are dimensioned so that the plug 212 will only fit into the 12V outlet port 122 in a specific orientation, thus ensuring that positive battery clamp 216 will correspond to positive polarity, and the negative battery clamp 220 will correspond to negative polarity, as indicated thereon.
  • the ring terminals 216A and 216B allows the battery clamps 216 and 229 to be disconnected from the battery cables 214 and 218, and then removably connected directly to the terminals of a vehicle battery. This feature may be useful, for example, to permanently attach the battery cables 214 and 218302b to the battery of the vehicle.
  • the handheld booster device 110 can be properly connected to the depleted or discharged vehicle battery very simply by plugging in the plug 212 into the 12V outlet port 122.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
EP20875608.0A 2019-10-09 2020-10-07 Batterieladevorrichtung zum laden einer stark entladenen batterie und batterieladesystem und verfahren Pending EP4041590A4 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962913079P 2019-10-09 2019-10-09
PCT/US2020/054581 WO2021071949A1 (en) 2019-10-09 2020-10-07 Battery charging device for charging a deeply discharged battery, and battery charging system and method

Publications (2)

Publication Number Publication Date
EP4041590A1 true EP4041590A1 (de) 2022-08-17
EP4041590A4 EP4041590A4 (de) 2023-12-27

Family

ID=81259295

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20875608.0A Pending EP4041590A4 (de) 2019-10-09 2020-10-07 Batterieladevorrichtung zum laden einer stark entladenen batterie und batterieladesystem und verfahren

Country Status (7)

Country Link
US (1) US20230344261A1 (de)
EP (1) EP4041590A4 (de)
JP (2) JP7451693B2 (de)
CN (1) CN114616124A (de)
AU (2) AU2020362203B2 (de)
GB (1) GB2603407B (de)
MX (1) MX2022004391A (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217753686U (zh) * 2022-07-12 2022-11-08 浙江安伴汽车安全急救技术股份有限公司 一种车辆启动电源
CN116231125B (zh) * 2023-01-09 2024-03-12 铅锂智行(北京)科技有限公司 一种充电器的充电方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07298504A (ja) * 1994-04-27 1995-11-10 Sanyo Electric Co Ltd 二次電池の充電方法
US6262560B1 (en) * 2000-07-17 2001-07-17 Snap-On Technologies, Inc. Battery pack discharge recovery circuit
DE10153083B4 (de) * 2001-10-30 2006-08-10 Fahrzeugausrüstung Berlin GmbH Ladeeinrichtung
US20040227490A1 (en) 2003-05-12 2004-11-18 Dell Products L.P. Notebook computer smart battery recovery and reconditioning mechanism
US7518341B2 (en) * 2004-12-23 2009-04-14 Dell Product L.P. Method for verifying smart battery failures by measuring input charging voltage and associated systems
US7605568B2 (en) * 2006-03-10 2009-10-20 Atmel Corporation Deep under voltage recovery in a battery pack
JP4398489B2 (ja) * 2007-05-29 2010-01-13 レノボ・シンガポール・プライベート・リミテッド 電池パック、機器、および充電制御方法
US9263907B2 (en) * 2008-01-03 2016-02-16 F.D. Richardson Enterprises, Inc. Method and apparatus for providing supplemental power to an engine
GB2462467B (en) * 2008-08-08 2013-03-13 P G Drives Technology Ltd A cell management system
GB2472051B (en) * 2009-07-22 2012-10-10 Wolfson Microelectronics Plc Power management apparatus and methods
JP5678915B2 (ja) 2012-04-11 2015-03-04 トヨタ自動車株式会社 バッテリ充電制御装置
SG2013019005A (en) 2013-03-14 2014-10-30 Ev World Pte Ltd Portable battery pack
JP5803965B2 (ja) * 2013-03-25 2015-11-04 トヨタ自動車株式会社 車両
JP2015115979A (ja) 2013-12-09 2015-06-22 Sfj株式会社 車両用補助給電装置
US9358899B2 (en) * 2014-06-19 2016-06-07 Ford Global Technologies, Llc Method for revitalizing and increasing lithium ion battery capacity
WO2016003471A1 (en) * 2014-07-03 2016-01-07 The Noco Company Portable vehicle battery jump start apparatus with safety protection
US11458851B2 (en) * 2014-07-03 2022-10-04 The Noco Company Jump starting apparatus
ES2860923T3 (es) * 2014-08-14 2021-10-05 Schumacher Electric Corp Reforzador de batería multifuncional compacto
US10141755B2 (en) 2014-09-09 2018-11-27 Halo International SEZC Ltd. Multi-functional portable power charger
DE202017007295U1 (de) 2016-02-11 2020-10-22 The Noco Company Batterieverbindungsvorrichtung für eine Batteriestarthilfevorrichtung
DE112016007604B3 (de) 2016-02-11 2022-12-15 The Noco Company Batterieanordnungsvorrichtung
WO2017167210A1 (zh) 2016-03-30 2017-10-05 南京德朔实业有限公司 用于汽车蓄电池的充电系统、转换装置和充电方法
EP3642474A4 (de) 2017-08-30 2020-05-06 The Noco Company Tragbare wiederaufladbare batteriestarthilfevorrichtung

Also Published As

Publication number Publication date
GB202205216D0 (en) 2022-05-25
EP4041590A4 (de) 2023-12-27
AU2020362203B2 (en) 2024-03-14
GB2603407A (en) 2022-08-03
US20230344261A1 (en) 2023-10-26
JP7451693B2 (ja) 2024-03-18
MX2022004391A (es) 2022-05-06
JP2024063190A (ja) 2024-05-10
AU2020362203A1 (en) 2022-04-28
JP2022551513A (ja) 2022-12-09
CN114616124A (zh) 2022-06-10
GB2603407B (en) 2023-07-12
AU2024202784A1 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
US11787297B2 (en) Battery charging device for charging a deeply discharged battery, and battery charging system and method
US11447023B2 (en) Portable vehicle battery jump start apparatus with safety protection and jumper cable device thereof
AU2022204065B2 (en) Portable vehicle battery jump start apparatus with safety protection
AU2024202784A1 (en) Battery charging device for charging a deeply discharged battery, and battery charging system and method
JP2024057036A (ja) 充電中に温度補償を提供するための温度センサを有するバッテリ充電装置、およびバッテリ充電装置の充電を補償するために消耗又は放電したバッテリの温度を測定する方法。
WO2021071949A1 (en) Battery charging device for charging a deeply discharged battery, and battery charging system and method
WO2022076971A1 (en) Battery charging device for charging a deeply discharged battery, and battery charging system and method

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220408

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20231129

RIC1 Information provided on ipc code assigned before grant

Ipc: H02J 7/00 20060101ALI20231123BHEP

Ipc: H01M 10/48 20060101ALI20231123BHEP

Ipc: H01M 10/44 20060101ALI20231123BHEP

Ipc: F02N 11/14 20060101ALI20231123BHEP

Ipc: F02N 11/12 20060101ALI20231123BHEP

Ipc: B60L 13/00 20060101AFI20231123BHEP