EP4037494A1 - Polyhalite enriched fish feed - Google Patents

Polyhalite enriched fish feed

Info

Publication number
EP4037494A1
EP4037494A1 EP20872707.3A EP20872707A EP4037494A1 EP 4037494 A1 EP4037494 A1 EP 4037494A1 EP 20872707 A EP20872707 A EP 20872707A EP 4037494 A1 EP4037494 A1 EP 4037494A1
Authority
EP
European Patent Office
Prior art keywords
fish
polyhalite
feed
growth
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20872707.3A
Other languages
German (de)
French (fr)
Other versions
EP4037494A4 (en
Inventor
Hillel MAGEN
Menachem Assaraf
Amir GERBER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ICL Europe Cooperatief UA
Original Assignee
ICL Europe Cooperatief UA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ICL Europe Cooperatief UA filed Critical ICL Europe Cooperatief UA
Publication of EP4037494A1 publication Critical patent/EP4037494A1/en
Publication of EP4037494A4 publication Critical patent/EP4037494A4/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/20Inorganic substances, e.g. oligoelements
    • A23K20/22Compounds of alkali metals
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/142Amino acids; Derivatives thereof
    • A23K20/147Polymeric derivatives, e.g. peptides or proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/158Fatty acids; Fats; Products containing oils or fats
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/20Inorganic substances, e.g. oligoelements
    • A23K20/24Compounds of alkaline earth metals, e.g. magnesium
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/20Inorganic substances, e.g. oligoelements
    • A23K20/26Compounds containing phosphorus
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/80Feeding-stuffs specially adapted for particular animals for aquatic animals, e.g. fish, crustaceans or molluscs

Definitions

  • the present invention relates to a fish feed composition that comprises Polyhalite and a process for the preparation thereof.
  • Aquaculture is the fastest growing sector in agriculture with an annual growth rate of close to 10%. This is due to the fact that world fisheries have reached a plateau while the demand for fish is growing.
  • predatory species constitute a rapidly growing sector of aquaculture. This trend is based on the fact that these fish have stronger and firmer muscles (the main consumed part of the fish).
  • An example of a predatory fish is the Salmon with an annual production of 1.5 million tonnes, the Asian sea bass (Lates calcarifer) also known as barramundi is emerging as one of the predatory fish with a fastest growing market and many more.
  • the costs of marine feeds comprise a major portion of the expenses incurred in the farming of these animals. For example, in a typical aquaculture farm, fish feed represents about 50-60% of the total direct production expenses.
  • Fish utilize protein for energy purposes and therefore compared to terrestrial animal feeds, fish feeds are rich in proteins, often amounting to 40-50% of the feed.
  • the source of protein is fishmeal that is becoming a rare and expensive commodity.
  • the nitrogenous products (ammonia, nitrite and nitrate) and phosphorous stemming from either leftover food, or partially digested protein and food are harmful to the fish themselves, can lead to growth retardation and at high levels cause mortality.
  • a reduction in the amount of food wastage produced by the fish and especially those harmful to the environment will enable substantial saving on production of fish at high densities; concomitantly the effluents of the fish farms will not have an adverse impact on the environment.
  • Figure 1 depicts pictures of a Fish Rearing Facility, in accordance with some demonstrative embodiments.
  • a fish feed composition comprising Polyhalite in a concentration between 0.5%-5% w/w.
  • the fish may be a predatory fish.
  • the Polyhalite may be in a concentration between l%-3% w/w.
  • the composition may be fed to the fish and include Polyhalite in a concentration of 2% w/w.
  • the composition may be fed to the fish on a daily basis.
  • Polyhalite is an evaporite mineral, a hydrated Sulfate of Potassium, Calcium and
  • the addition of Polyhalite to the fish diets may provide a positive effect on feed utilization ⁇
  • the building blocks of protein are amino acids. Almost half the amino acids are essential (meaning that they cannot be synthesized by the fish). From all amino acids, the 2 main essential amino acids for fish growth are lysine and methionine. The latter has a sulphur terminal. According to some embodiments, some of the protein is catabolized by the fish for energy purposes as well as for meeting the body demand for sulphur. The protein containing fish feed may have lower levels of the essential amino acid methionine required by the fish for growth. This process causes wastage that can be eliminated by supplying an alternative source of sulphur. A reduction in the amount of food wastage produced by the fish and especially those harmful to the environment will enable substantial saving on production of fish at high densities.
  • Polyhalite may be added to the fish feed to be used as a food diluent, allowing for the use of reduced amounts of fish feed without harming or diminishing the growth of the fish.
  • the term "fish” as used herein may refer to any member of the marine (oceanic) or freshwater fish and the like.
  • the fish of the present invention may preferably be a predatory fish including, for example, Salmon, the Asian sea bass (Lates calcarifer) and the like.
  • a fish feed comprising polyhalite in a concentration of between 0.5-5% w/w of the weight of the fish feed, preferably, between 1-3% w/w, most preferably 2% w/w.
  • the composition may be fed to said animal on a daily basis.
  • a method for producing an fish feed comprising polyhalite comprising polyhalite, wherein said method comprises mixing polyhalite, e.g., in a pellet, granule, powder or dust form, with a fish feed.
  • a method for producing a fish feed comprising polyhalite comprising polyhalite, wherein said method comprises mixing polyhalite, e.g., in a pellet, granule, powder or dust form, preferably in powder form, with the feed.
  • modern fish feeds are made by grinding and mixing together ingredients such as fishmeal, vegetable proteins and binding agents such as wheat. Water may be added and the resulting paste is extruded through holes in a metal plate. The diameter of the holes sets the diameter of the pellets, which can range from less than a millimeter to over a centimeter. As the feed is extruded it is cut to form pellets of the required length. The pellets are dried and oils are added. Adjusting parameters such as temperature and pressure enables the manufacturers to make pellets that suit different fish farming methods, for example feeds that float or sink slowly and feeds suited to recirculation systems. The dry feed pellets are stable for relatively long periods, for convenient storage and distribution.
  • the Polyhalite may be added to the fish feed (bone ash, proteins, etc.) and may be extruded, to get a pellet shaped particle feed.
  • the Polyhalite may be dissolved in an aqueous environment in a continuous release manner, and this may have an impact of the uptake of the nutrients by the fish.
  • a Standard grade of polyhalite may be used for incorporation into an the fish feed, however, in accordance with some other embodiments, other Polyhalite products and/or appearances may be used, including, for example, the Granular (up to 5 mm particles) and the Mini-Granular (up to 2 mm particles), and their mixtures in various percentages.
  • polyhalite may be added at the grinding and/or mixing stage.
  • the polyhalite may be added to fish food, especially to feed juvenile fish since in these fish the results would be more pronounced.
  • the polyhalite may be added on top of the regular diet components leading to a proportional reduction in all the other ingredients of the diet.
  • this may enable replacing expensive fish diet ingredients with polyhlite, which is considered a much cheaper ingredient, e.g., especially since the addition of polyhalite to the diet resulted in a positive effect (better growth and FCR) when added at a 0.75%-3% concentration, preferably at a 1-2% concentration.
  • a fish feed comprising at least 30% protein w/w; 2% fat w/w; 3% fiber w/w; 0.5% phosphorous w/w; 0.5% calcium w/w; and 1% Polyhalite w/w
  • the fish feed composition may include 35% protein w/w; 4% fat w/w; 5% fiber w/w; 1.2% phosphorous w/w; 1.2% calcium w/w; and 2% Polyhalite w/w
  • the fish were reared in this system for a period of one month at a temperature of 26 ⁇ 1°C. During this period, they were fed twice daily (7 days a week). In order to monitor the effect of Polyhalite on feed consumption and growth the fish were hand fed twice a day ad libitum from a pre weighed container for each aquarium and at the end of each day, the amount of feed consumed was registered.
  • the results of this experiment showed that the addition of Polyhalite had no negative effect on food consumption and the fish receiving the Polyhalite at a level of 2% exhibited better growth (Table 1) and better FCR (Table 2).
  • the Feed Conversion Ratio (FCR) is the amount of feed (in kg) consumed by an animal leading to a gain of one kg live weight.
  • control commercial feed was manufactured by the European company
  • the diet contained 50.7% protein; 15% fat; 9.7% ash; 1.61% calcium; 1.5% fiber; 1.22% phosphorous; 0.49 sodium.
  • the pellet diameter was 1.9 mm - suitable for fish of this size. This feed was then enhanced by the addition of Polyhalite at a concentration of 2%. Thus, the addition of the Poly halite proportionally reduced the other components in the diet.
  • the fish were fed to satiation (until the fish stopped to consume) and the level of food consumed in each meal was recorded.
  • the test feed used as control was a commercial extruded feed that is currently being used by farmers of this fish, as mentioned hereinabove. To this control feed, polyhalite was added to prepare the test feed. Each of the dietary treatments was tested in 6 replicates. Due to excessive mortality in 4 tanks the number of replicates for each treatment was 4.
  • the experiment was conducted with juvenile fish since in these fish, if the material were to exhibit positive results, the differences in growth results would be more pronounced.
  • the fish quadrupled their weight in the course of the experiment showing that the weight gain is based on the experimental diets.
  • the exceptional good feed conversion ratio obtained is due to the fact that the fish were hand fed till satiation (no wasted food that was not consumed) and the composition of the food which was the best commercial food for these fish containing a very high level of protein (over 50%). During the experimental period the fish were not exposed to any stress though the survival rate in some tanks was reduced due to the cannibalism that exists in these fish, especially in the early developmental stages.
  • the Aquaculture holding facility is situated within an insulated building and has a set of experimental round plastic tanks of 250 liters each, every 6 tanks are connected to a central biofilter with a capacity of 350 liters.
  • fish can be held and monitored while they are acclimatized to the laboratory conditions in many glass aquariums. Growing conditions are carefully monitored and the fish are provided with optimal rearing conditions that include proper aeration, heating and water quality regulation. Depending on the size of the fish and their species, it is possible to hold a few thousand fish at one time in the facility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Birds (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Insects & Arthropods (AREA)
  • Fodder In General (AREA)
  • Feed For Specific Animals (AREA)

Abstract

There is provided a fish feed composition comprising Polyhalite in a concentration between 0.5%-5% w/w.

Description

POLYHALITE ENRICHED FISH FEED
FIELD OF THE INVENTION
The present invention relates to a fish feed composition that comprises Polyhalite and a process for the preparation thereof.
BACKGROUND OF THE INVENTION
Aquaculture is the fastest growing sector in agriculture with an annual growth rate of close to 10%. This is due to the fact that world fisheries have reached a plateau while the demand for fish is growing. Of the edible fish, predatory species constitute a rapidly growing sector of aquaculture. This trend is based on the fact that these fish have stronger and firmer muscles (the main consumed part of the fish). An example of a predatory fish is the Salmon with an annual production of 1.5 million tonnes, the Asian sea bass (Lates calcarifer) also known as barramundi is emerging as one of the predatory fish with a fastest growing market and many more. The costs of marine feeds comprise a major portion of the expenses incurred in the farming of these animals. For example, in a typical aquaculture farm, fish feed represents about 50-60% of the total direct production expenses.
Since the cost of feed is the major expense in the fish production unit, any change that will lead to more efficient utilization of the feed will have a substantial impact on the profitability of these production systems. This, in addition to the beneficial environmental effects stemming from less pollution discharge to the water. Fish utilize protein for energy purposes and therefore compared to terrestrial animal feeds, fish feeds are rich in proteins, often amounting to 40-50% of the feed.
Usually the source of protein is fishmeal that is becoming a rare and expensive commodity. The nitrogenous products (ammonia, nitrite and nitrate) and phosphorous coming from either leftover food, or partially digested protein and food are harmful to the fish themselves, can lead to growth retardation and at high levels cause mortality.
Fish utilize protein for energy purposes and therefore compared to terrestrial animal feeds, fish feeds are rich in proteins, often amounting to 40-50% of the feed. Usually the source of protein is fishmeal that is becoming a rare and expensive commodity. The nitrogenous products (ammonia, nitrite and nitrate) and phosphorous stemming from either leftover food, or partially digested protein and food are harmful to the fish themselves, can lead to growth retardation and at high levels cause mortality. A reduction in the amount of food wastage produced by the fish and especially those harmful to the environment will enable substantial saving on production of fish at high densities; concomitantly the effluents of the fish farms will not have an adverse impact on the environment.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will become fully understood from the detailed description given herein below and the accompanying drawings, which are given by way of illustration and example only, and thus not limiting in any way, wherein:
Figure 1 depicts pictures of a Fish Rearing Facility, in accordance with some demonstrative embodiments. SUMMARY OF THE INVENTION
According to some demonstrative embodiments, there is provided herein a fish feed composition comprising Polyhalite in a concentration between 0.5%-5% w/w.
According to some embodiments, the fish may be a predatory fish. According to some embodiments, the Polyhalite may be in a concentration between l%-3% w/w.
According to some embodiments, the composition may be fed to the fish and include Polyhalite in a concentration of 2% w/w.
According to some embodiments, the composition may be fed to the fish on a daily basis.
DETAILED DESCRIPTION OF THE INVENTION
According to some demonstrative embodiments, there is provided herein a fish feed enriched with Polyhalite. Polyhalite is an evaporite mineral, a hydrated Sulfate of Potassium, Calcium and
Magnesium with formula: K2Ca2Mg(S04)4-2H20.
According to some embodiments, the addition of Polyhalite to the fish diets may provide a positive effect on feed utilization·
The building blocks of protein are amino acids. Almost half the amino acids are essential (meaning that they cannot be synthesized by the fish). From all amino acids, the 2 main essential amino acids for fish growth are lysine and methionine. The latter has a sulphur terminal. According to some embodiments, some of the protein is catabolized by the fish for energy purposes as well as for meeting the body demand for sulphur. The protein containing fish feed may have lower levels of the essential amino acid methionine required by the fish for growth. This process causes wastage that can be eliminated by supplying an alternative source of sulphur. A reduction in the amount of food wastage produced by the fish and especially those harmful to the environment will enable substantial saving on production of fish at high densities. This will concomitantly reduce the adverse impact on the environment due to effluents from the fish farms. According to some embodiments, Polyhalite may be added to the fish feed to be used as a food diluent, allowing for the use of reduced amounts of fish feed without harming or diminishing the growth of the fish.
According to some demonstrative embodiments, the term "fish" as used herein may refer to any member of the marine (oceanic) or freshwater fish and the like. According to some preferred embodiments, the fish of the present invention may preferably be a predatory fish including, for example, Salmon, the Asian sea bass (Lates calcarifer) and the like.
According to some demonstrative embodiments, there is provided herein a fish feed comprising polyhalite in a concentration of between 0.5-5% w/w of the weight of the fish feed, preferably, between 1-3% w/w, most preferably 2% w/w.
According to some embodiments, the composition may be fed to said animal on a daily basis. According to some demonstrative examples, there is provided a method for producing an fish feed comprising polyhalite, wherein said method comprises mixing polyhalite, e.g., in a pellet, granule, powder or dust form, with a fish feed.
According to some demonstrative examples, there is provided a method for producing a fish feed comprising polyhalite, wherein said method comprises mixing polyhalite, e.g., in a pellet, granule, powder or dust form, preferably in powder form, with the feed.
According to some embodiments, modern fish feeds are made by grinding and mixing together ingredients such as fishmeal, vegetable proteins and binding agents such as wheat. Water may be added and the resulting paste is extruded through holes in a metal plate. The diameter of the holes sets the diameter of the pellets, which can range from less than a millimeter to over a centimeter. As the feed is extruded it is cut to form pellets of the required length. The pellets are dried and oils are added. Adjusting parameters such as temperature and pressure enables the manufacturers to make pellets that suit different fish farming methods, for example feeds that float or sink slowly and feeds suited to recirculation systems. The dry feed pellets are stable for relatively long periods, for convenient storage and distribution.
According to some other embodiments, with regard to fish feed, the Polyhalite may be added to the fish feed (bone ash, proteins, etc.) and may be extruded, to get a pellet shaped particle feed.
According to some embodiments, the Polyhalite may be dissolved in an aqueous environment in a continuous release manner, and this may have an impact of the uptake of the nutrients by the fish. According to some embodiments a Standard grade of polyhalite may be used for incorporation into an the fish feed, however, in accordance with some other embodiments, other Polyhalite products and/or appearances may be used, including, for example, the Granular (up to 5 mm particles) and the Mini-Granular (up to 2 mm particles), and their mixtures in various percentages.
According to some embodiments, polyhalite may be added at the grinding and/or mixing stage.
According to some embodiments, the polyhalite may be added to fish food, especially to feed juvenile fish since in these fish the results would be more pronounced. According to some embodiments the polyhalite may be added on top of the regular diet components leading to a proportional reduction in all the other ingredients of the diet.
According to these embodiments, this may enable replacing expensive fish diet ingredients with polyhlite, which is considered a much cheaper ingredient, e.g., especially since the addition of polyhalite to the diet resulted in a positive effect (better growth and FCR) when added at a 0.75%-3% concentration, preferably at a 1-2% concentration.
According to some demonstrative embodiments, there is provided herein a fish feed comprising at least 30% protein w/w; 2% fat w/w; 3% fiber w/w; 0.5% phosphorous w/w; 0.5% calcium w/w; and 1% Polyhalite w/w According to some embodiments, the fish feed composition may include 35% protein w/w; 4% fat w/w; 5% fiber w/w; 1.2% phosphorous w/w; 1.2% calcium w/w; and 2% Polyhalite w/w
Examples Example 1 - Experimental design
Fish
Growth and feed utilization study was conducted with juvenile male Nile tilapia (Oreochromis niloticus) fish.
An initial experiment was conducted in order to assess the effect of Polyhalite addition to the diet on feed consumption and growth. In this experiment, the fish were housed individually in glass aquariums each containing 40 liters that were all connected to a central biofilter. A total of 22 aquariums were employed. 11 received the control feed with no addition of Polyhalite and 11 received the control commercial feed manufactured by Zemach Feed Mill diet number 4622 containing 35% protein; 4% fat; 5% fiber; 1.2% phosphorous; 1.2% calcium. This feed was then enhanced with the addition of Polyhalite at a level of 2%.
The fish were reared in this system for a period of one month at a temperature of 26 ± 1°C. During this period, they were fed twice daily (7 days a week). In order to monitor the effect of Polyhalite on feed consumption and growth the fish were hand fed twice a day ad libitum from a pre weighed container for each aquarium and at the end of each day, the amount of feed consumed was registered.
The results of this experiment showed that the addition of Polyhalite had no negative effect on food consumption and the fish receiving the Polyhalite at a level of 2% exhibited better growth (Table 1) and better FCR (Table 2). The Feed Conversion Ratio (FCR) is the amount of feed (in kg) consumed by an animal leading to a gain of one kg live weight. Following the initial experiment that showed positive results, we moved to the large experiment in which different levels of Polyhalite were added to the diet of the fish.
Experimental setup One thousand experimental fish were brought to our lab and maintained for 2 weeks to acclimatize them to the lab conditions. Fish were then randomly housed at a density of 15 fish/tank each tank contained a total of 250 liters of water. Every six tanks were connected to a central biofilter through which the water was constantly circulated and purified circulation rate was equivalent to total tank volume replacement every 1.5 hours. The test feed used as control was a commercial extruded feed that is currently being used by fish farmers (for details see above). To this control feed (C) we added 1%, 2%, 3%, 4% and 5% Polyhalite (Standard grade). Each of the diets was tested in 6 replicates - a total of 36 tanks were used. Prior to the beginning of the experiment, the experimental fish were weighed and the very small or large fish were removed. Fish were then randomly stocked in the experimental tanks.
All the fish in each tank were weighed every 2 weeks in order to follow their growth rate as well as update the feeding level, set at 5% of the body mass per day. Food consumption level was recorded. Levels of ammonia and nitrate in the rearing water were monitored twice a week and water quality maintained. Water temperature was 26 ± 1°C. The fish were kept under optimal growing conditions throughout the experimental growth period, which lasted 6 weeks.
The growth results of this experiment (mean average weight and specific growth rate) are presented in Tables 3 and 4. FCR calculated for all treatments is presented in
Table 5. Table 1
Individual growth rate (% per day) of fish fed a control feed and feed with the addition of 2% Polyhalite
Feed with the addition Control feed with no of 2% Polyhalite addition of Polyhalite
0.991 0.761
0.803 0.867
1.373 0.788
1.753 0.662
1.141 0.759
1.642 1.098
0.849 0.568
1.076 0.532
0.986 1.204
1.048 0.781
Average 1.166 0.802
The obtained difference in growth rate was highly significant (P<0.00786)
Table 1
Table 2
Individual Feed Conversion Ratio of fish fed a control feed and feed with the addition of 2% Polyhalite
Feed with the addition Control feed with no of 2% Polyhalite addition of Polyhalite
1.023 1.325
1.050 1.083
0.952 1.130
0.726 1.557
0.943 1.625
0.771 1.120
1.431 1.769 1.335 2.289
1.538 0.917
1.055 1.276
Average 1.082 1.409
The obtained difference in FCR was significant at P<0.0494
Table 2
Table 3
Mean average weight at the end of the experiment (initial weight 2.6 gr) Table 3
Table 4
Mean specific growth weight (SGR) at the end of the experiment
Table 4 Table 5
Mean Feed Conversion Rate (FCR) at the end of the experiment
Table 5 Conclusions
The results of the experiments show that when Polyhalite is added to the fish diet at levels of 1-2% the growth results were better and the FCR was lower, meaning that less food is required in order to obtain the same growth. Addition of 3 or 4% resulted in slight retardation in growth but this was not significant. Adding 5% Polyhalite to the diet resulted in substantial growth retardation.
Example 2
Throughout the experiment, the fish were hand fed to satiation in order to better control the feed intake and monitor the animal behavior. Food was provided twice daily - early morning and afternoon. The polyhalite particle size for this experiments was 300-
500 pm.
Fish
Growth and feed utilization study was conducted with juvenile Asian seabass fish (Lates calcarifer) fish initial average weight was 8.45 ±0.17 gr. The fish were reared in the system for a period of 7 weeks at a temperature of 27 ± 1°C. During this period, they were hand fed twice daily - morning and afternoon (7 days a week).
Feed The control commercial feed was manufactured by the European company
BioMar, the diet contained 50.7% protein; 15% fat; 9.7% ash; 1.61% calcium; 1.5% fiber; 1.22% phosphorous; 0.49 sodium. The pellet diameter was 1.9 mm - suitable for fish of this size. This feed was then enhanced by the addition of Polyhalite at a concentration of 2%. Thus, the addition of the Poly halite proportionally reduced the other components in the diet.
The fish were fed to satiation (until the fish stopped to consume) and the level of food consumed in each meal was recorded.
Experimental setup
Experimental fish were brought to the lab and maintained for 2 weeks to acclimatize them to the lab conditions. Prior to the beginning of the experiment, the experimental fish were weighed and the very small or large fish were removed. Thus, selected fish weighing within a limited range were then randomly housed at a density of 20 fish/tank each tank contained a total of 250 liters of water. Every six tanks were connected to a central biofilter through which the water was constantly circulated and purified. Circulation rate was equivalent to total tank volume replacement every 1.5 hours. The test feed used as control was a commercial extruded feed that is currently being used by farmers of this fish, as mentioned hereinabove. To this control feed, polyhalite was added to prepare the test feed. Each of the dietary treatments was tested in 6 replicates. Due to excessive mortality in 4 tanks the number of replicates for each treatment was 4.
All the fish in each tank were weighed every 2 weeks in order to follow their growth rate. Food consumption level was recorded daily. Levels of ammonia and nitrate in the rearing water were monitored twice a week and water quality maintained. Water temperature was 27 ± 1°C. The fish were kept under optimal growing conditions throughout the experimental growth period, which lasted for just under 2 months. The fish readily accepted all the experimental diets and there was no reduction in food consumption. The growth results of this experiment as mean average weight attained is presented in Table 6.
Food Conversion Rate (FCR) of the fish is presented in Table 7. The lower the value the better the conversion rate. Table 6
Mean average final weight of the fish in the control (no Polyhalite addition) compared to the addition at a 2% level (initial average weight 8.45 ±0.17 gr)
Table 7
Mean Food Conversion ratio (FCR) at the end of the experiment
General remarks
The experiment was conducted with juvenile fish since in these fish, if the material were to exhibit positive results, the differences in growth results would be more pronounced. The fish quadrupled their weight in the course of the experiment showing that the weight gain is based on the experimental diets.
The exceptional good feed conversion ratio obtained is due to the fact that the fish were hand fed till satiation (no wasted food that was not consumed) and the composition of the food which was the best commercial food for these fish containing a very high level of protein (over 50%). During the experimental period the fish were not exposed to any stress though the survival rate in some tanks was reduced due to the cannibalism that exists in these fish, especially in the early developmental stages. Conclusions
The results of the experiments clearly show that there was no significant difference in the final weight attained and feed conversion ratio between the fish reared on the control diet and those reared on the same diet containing an addition of 2% Polyhalite The results of this experiment indicate that polyahlite may be used to significantly reduce the costs of fish feed whilst not diminishing the growth of the fish feed. Reference is now made to figure 1, which depicts a Fish Rearing Facility (also referred to herein as the " Aquaculture holding facility"), in accordance with some demonstrative embodiments.
According to some embodiments, the Aquaculture holding facility is situated within an insulated building and has a set of experimental round plastic tanks of 250 liters each, every 6 tanks are connected to a central biofilter with a capacity of 350 liters.
In addition, fish can be held and monitored while they are acclimatized to the laboratory conditions in many glass aquariums. Growing conditions are carefully monitored and the fish are provided with optimal rearing conditions that include proper aeration, heating and water quality regulation. Depending on the size of the fish and their species, it is possible to hold a few thousand fish at one time in the facility.
While this invention has been described in terms of some specific examples, many modifications and variations are possible. It is therefore understood that within the scope of the appended claims, the invention may be realized otherwise than as specifically described.

Claims

What is claimed is:
1. A fish feed composition comprising Polyhalite in a concentration between 0.5%- 5% w/w.
2. The composition of claim 1, wherein said fish is a predatory fish.
3. The composition of claim 1, wherein said Polyhalite is in a concentration between l%-3% w/w.
4. The composition of claim 3, wherein said composition is fed to fish and includes Polyhalite in a concentration of 2% w/w.
5. The composition of claim 1, wherein said composition is fed to said fish on a daily basis.
6. A fish feed comprising at least 30% protein w/w;
2% fat w/w;
3% fiber w/w;
0.5% phosphorous w/w;
0.5% calcium w/w; and 1% Polyhalite w/w
7. The fish feed of claim 6, comprising 35% protein w/w;
4% fat w/w;
5% fiber w/w;
1.2% phosphorous w/w;
1.2% calcium w/w; and 2% Polyhalite w/w
8. A method for producing a fish feed comprising polyhalite, wherein said method comprises mixing polyhalite with said feed.
9. The method of claim 8, wherein said polyhalite is in a form selected from the group including, pellet, granule, powder or dust form.
10. The method of claim 9, wherein said polyhalite is in powder form.
EP20872707.3A 2019-10-02 2020-08-24 Polyhalite enriched fish feed Pending EP4037494A4 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962909283P 2019-10-02 2019-10-02
PCT/IL2020/050923 WO2021064720A1 (en) 2019-10-02 2020-08-24 Polyhalite enriched fish feed

Publications (2)

Publication Number Publication Date
EP4037494A1 true EP4037494A1 (en) 2022-08-10
EP4037494A4 EP4037494A4 (en) 2023-05-24

Family

ID=75336892

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20872707.3A Pending EP4037494A4 (en) 2019-10-02 2020-08-24 Polyhalite enriched fish feed

Country Status (4)

Country Link
EP (1) EP4037494A4 (en)
IL (1) IL291518A (en)
MX (1) MX2022003949A (en)
WO (1) WO2021064720A1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112020016976A2 (en) * 2018-05-08 2021-01-19 Dead Sea Works Ltd. ANIMAL FEED ENRICHED WITH POLYHALITE

Also Published As

Publication number Publication date
WO2021064720A1 (en) 2021-04-08
MX2022003949A (en) 2022-04-25
EP4037494A4 (en) 2023-05-24
IL291518A (en) 2022-05-01

Similar Documents

Publication Publication Date Title
Cho et al. Rainbow trout, Oncorhynchus mykiss
Stickney et al. The effects of substituting selected oilseed protein concentrates for fish meal in rainbow trout Oncorhynchus mykiss diets
Dupree et al. Amino acids essential for the growth of channel catfish, Ictalurus punctatus
US11864568B2 (en) Polyhalite enriched animal feed
CN1076958C (en) Stress regulator for animals
Arai Eel, Anguilla spp.
CN102715375A (en) Feed for grass carps
Nwanna et al. Effect of protein deficient diets on the growth and carcass protein ash ratio of African catfish Clarias gariepinus (Burchell 1822)
WO2020019029A1 (en) Method of feeding fish
US20220386650A1 (en) Polyhalite enriched fish feed
Omar et al. Studies on feeding of mirror carp (Cyprinus carpio L.) in intensive culture 1: 1. Effect of type of feed and level of feeding
EP4037494A1 (en) Polyhalite enriched fish feed
RU2650398C1 (en) Fodder for feeding malk of african catfish
JP2000083597A (en) Swine raising and feed therefor
GB2120521A (en) Feedstuff for swine
Aliu et al. Effect of dietary methionine on growth and utilization of Clarias gariepenius fingerlings
Altaff et al. Growth and survival of fingerlings of black molly (Poecilia sphenops) with different animal protein based formulated diets
Baroi et al. Effect of dietary vitamin C on growth and survival of GIFT Tilapia
JP2010142128A (en) Mixed feed for puffer and method for culturing puffer
Raghav et al. Effect Of Dietary Supplementation Of Biofloc Meal With Tryptophan &Lysine On Growth And Survival Of Mono Sex Tilpa
JPS5971651A (en) Feed for fish farming
RU2621136C1 (en) Method for producing functional expanded aquafodder for carp fish
Filipiak et al. Comparison of the effects of cage rearing of african catfish (Clarias gariepinus) and nile tilapia (Oreochromis nilotica) in cooling water
Grubišić et al. Importance of zooplankton as live feed for carp larvae
CN117158516A (en) Low-protein ration for improving egg laying performance of white feather breeder chickens and production performance of offspring of white feather breeder chickens and application of low-protein ration

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220325

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20230421

RIC1 Information provided on ipc code assigned before grant

Ipc: A23K 50/80 20160101ALI20230417BHEP

Ipc: A23K 50/75 20160101ALI20230417BHEP

Ipc: A23K 20/00 20160101ALI20230417BHEP

Ipc: A23K 20/20 20160101ALI20230417BHEP

Ipc: A23K 20/24 20160101AFI20230417BHEP