EP4035254A1 - Rotor a aimantation transitoire hybride - Google Patents

Rotor a aimantation transitoire hybride

Info

Publication number
EP4035254A1
EP4035254A1 EP20764429.5A EP20764429A EP4035254A1 EP 4035254 A1 EP4035254 A1 EP 4035254A1 EP 20764429 A EP20764429 A EP 20764429A EP 4035254 A1 EP4035254 A1 EP 4035254A1
Authority
EP
European Patent Office
Prior art keywords
rotor
compression
hollow shaft
compression device
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20764429.5A
Other languages
German (de)
English (en)
Inventor
Misa MILOSAVLJEVIC
Denis GROSJEAN
Fabrice LE BERR
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP4035254A1 publication Critical patent/EP4035254A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • F02B37/10Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump at least one pump being alternatively or simultaneously driven by exhaust and other drive, e.g. by pressurised fluid from a reservoir or an engine-driven pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2726Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of a single magnet or two or more axially juxtaposed single magnets
    • H02K1/2733Annular magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to the field of compression devices driven by an electric machine, in particular the invention relates to a turbocharger driven by an electric machine.
  • a gaseous fluid here air
  • the power delivered by an internal combustion engine is dependent on the quantity of air introduced into the combustion chamber of this engine, a quantity of air which is itself proportional to the density of that tune.
  • This operation can be carried out by any means, such as a single compressor driven electrically by an electric machine (electrified compressor), or by a compressor associated with a turbine and an electric machine to form an electrified turbocharger.
  • the electrical machine associated with the compressor can be of different types.
  • One of these types is an electrical machine with a small air gap and windings close to the rotor which allows optimal guidance of the magnetic flux and optimized efficiency.
  • This type of electric machine has the advantage of a certain compactness, which can sometimes become problematic for its cooling and which requires the use of a specific system to evacuate its losses.
  • this type of electric machine is conventionally positioned on the back of the compressor in the case of an electrified compressor, or between the compressor and the turbine in the case of an electrified compressor.
  • electrified turbocharger and this despite the presence of an unfavorable thermal environment in the latter because it is close to the turbine.
  • the connection between the compressor, the turbine and the electrical machine is rigid.
  • This type of machine can also be positioned on the compressor side but at a distance relatively far from the air inlet so as not to disturb the latter. The connection between the compressor and the machine is then rigid or made using a mechanical coupling.
  • Air Gap an electric machine with a large air gap
  • the air gap of which can sometimes measure several centimeters. in order to allow the working fluid to pass through this air gap, thus allowing an integration as close as possible to the compression systems, in a more favorable thermal environment.
  • a third type of electrical machine is the stator grid machine, which can be positioned upstream of the compressor, and for which the air passes through the stator.
  • Patent application FR3074622A1 details several structures of electric rotor and of mounting the rotor on the shaft of a turbocharger, by relating a rotor to a shaft opening on the compressor side.
  • This rotor is particularly interesting for electric machines with stator grid. These structures are interesting for integrating rotors on already produced turbochargers.
  • Another problem is the loss due to the magnetic coupling forces between the rotor and the stator (called no-load losses), more particularly during freewheeling phases, when the electric machine is not activated. Indeed, during phases of non-use of the assistance of the electric machine, the permanent magnet contained in the rotor causes resistance to the free rotation of the axis of the compressor.
  • no-load losses the loss due to the magnetic coupling forces between the rotor and the stator (called no-load losses), more particularly during freewheeling phases, when the electric machine is not activated.
  • no-load losses more particularly during freewheeling phases
  • the present invention relates to a device for compressing a fluid comprising an electrical machine, said electrical machine comprising a rotor and a stator, said compression device comprising a compression shaft on which at least one compression wheel is mounted, said rotor being connected to one end of said compression shaft, said rotor comprising a cylindrical permanent magnet and a hollow shaft, said hollow shaft comprising a hoop portion radially surrounding said cylindrical magnet, characterized in that said cylindrical permanent magnet is a solid piece coaxial with said rotor, said hollow shaft is made of a material with temporary or modular magnetization.
  • the thickness of the hoop is greater than the radius of the cylindrical permanent magnet.
  • said permanent magnet cylindrical is made from neodymium, such as NbFeBr, SmCo,
  • said hollow shaft is made of a steel alloy of the iron-chromium-cobalt, aluminum-nickel-cobalt AINiCo type, or any equivalent material.
  • the hollow shaft integrally comprises an annular cylindrical portion inserted in said at least one compression wheel, said annular cylindrical portion preferably connecting the compression shaft with play to said at least one compression wheel.
  • the rotor comprises handling means.
  • the rotor has an outside diameter less than or equal to the diameter of the nose of the compression wheel.
  • the compression device is a turbocharger combining a turbine and a compressor, in particular for an internal combustion engine.
  • the electric machine is arranged at the level of the gas inlet zone of said turbocharger.
  • the electric machine is a stator grid machine.
  • the electric machine is an electric generator.
  • the present invention also relates to a method for implementing the compression device in which the magnetization of said device is carried out.
  • the magnetization of said hollow shaft is reduced to change said rotor from an operating state in which the rotor is considered active to an initial state in which the rotor is considered inactive.
  • the magnetization and demagnetization (reduction of the magnetization) of said hollow shaft are carried out by applying a current pulse by means of an inverter controlling said electrical machine. , said current pulse having an amplitude greater than the normal operating pulses of the electrical machine.
  • the change between the active and inactive state is carried out according to the following transient modes:
  • Figure 1 illustrates an electric machine rotor according to one embodiment of the invention.
  • Figure 1 illustrates an electric machine rotor according to one embodiment of the invention.
  • Figure 2 illustrates a compression device driven by an electric machine according to one embodiment of the invention.
  • the present invention relates to a device for compressing a fluid, in particular a gas, driven, in a non-exclusive manner, by an electric machine.
  • the invention relates to the assembly formed by the electric machine and the compression device.
  • the compression device is provided for compressing air.
  • the present invention has the following functional interests: Create a magnetic rotor whose magnetization and the production of magnetic flux can be controlled, thus making it possible to have a magnetically active or passive rotor depending on the use,
  • Guarantee limited losses at the rotor and stator level so as to improve the efficiency of the electrical part but also to limit internal heating of the rotor and stator and simplify its cooling
  • FIG. 1 illustrates, schematically and in a nonlimiting manner, an embodiment of the invention.
  • Figure 1 is a sectional view of the rotor of the electric machine.
  • the present invention relates to a device for compressing a fluid comprising an electrical machine, said electrical machine comprising a rotor and a stator, said compression device comprising a compression shaft (3) on which at least one compression wheel is mounted. (2), said rotor being connected to one end of said compression shaft (3), said rotor comprising a cylindrical permanent magnet (5) and a hollow shaft (7), said hollow shaft (7) comprising a hoop portion (4) ) radially surrounding said cylindrical permanent magnet (5).
  • Said cylindrical permanent magnet (5) is a solid part coaxial with said rotor, said hollow shaft (7) is made of a material with temporary or modular magnetization.
  • a permanent magnet or simply magnet in everyday language, an object made of a hard magnetic material, that is to say one whose remanent magnetization and coercive field are large. This gives it particular properties linked to the existence of the magnetic field, such as that of exerting a force of attraction on any ferromagnetic material.
  • a material with temporary or modulable magnetization is called a ferromagnetic material having a weak coercive field. Such a material is referred to as a soft magnetic material. Such a material needs to be placed temporarily in a magnetic field to induce its magnetization. When the magnetic field to induce its magnetization is interrupted, the material with temporary or modulable magnetization loses its magnetization at the end of a characteristic time. The magnitude of the magnetization can be controlled by modulating the inverter over an interval between a minimum and a maximum.
  • FIG. 1 we can distinguish the hollow body (7) which comprises the hoop portion (4) and the annular cylindrical portion (6).
  • the cylindrical permanent magnet (5) is shown centered axially on the hollow body (7) and substantially on the left side of the hollow shaft, which should not be limiting since the magnet can be located anywhere desirable for carrying out the invention, for example in a more centered longitudinal manner or else completely to the right. It is also possible to envisage a magnet covering the entire hollow space, depending on the implementation requirements.
  • This figure shows a thread in the hollow body, for mounting on the compressor shaft. This mounting solution thus makes it possible to tighten the compressor wheel to preload the bearings of the turbocharger bearings. The angles, chamfers and other elements of geometry may vary depending on the embodiment of the device.
  • Figure 2 illustrates, schematically and in a non-limiting manner, one embodiment of the invention.
  • FIG. 2 is an isometric view of the rotor of the electric machine. We can distinguish the hollow body (7) and the cylindrical permanent magnet (5) before assembly.
  • FIG. 3 illustrates, schematically and in a nonlimiting manner, an embodiment of the invention.
  • Figure 3 is a sectional view of part of the compression device.
  • the optional turbine part of the turbocharger is not shown.
  • a distinction is made between the compression shaft (3) and the compression wheel (2).
  • the compression wheel (2) has, over part of its bore, an internal bore of larger diameter than the compression shaft (3).
  • This portion comprising a differential bore allows the hollow shaft (7) to have a longer centering length with the compression shaft (3).
  • the hollow shaft (7) has blind holes (13) intended for handling the rotor for its attachment to the compression shaft (3), in particular by means of operating tools (not shown).
  • the compression wheel (2) is in abutment against the hollow shaft (7).
  • the compression wheel (2) is in abutment against a guide system (9), for example the inner ring of a bearing, the bearing cage of which is shown.
  • the rotor may include a flat surface which is in contact with an extremal flat surface of the compression wheel (2). In addition, this feature makes it possible to arrange the rotor as close as possible to the compression wheel (2).
  • the annular cylindrical portion (6) may have the length of the compression wheel (2), the annular cylindrical portion (6) may have a length greater than or equal to the length of the compression wheel (2), the hollow shaft (7) may not have an annular cylindrical portion (6), etc.
  • the cylindrical permanent magnet is a solid part.
  • the cylindrical permanent magnet is a solid cylinder with no holes, bores or holes, etc.
  • this solution does not require any machining operation (for example boring) of the cylindrical magnet, which makes it possible to simplify the manufacture of the compression device, and to increase the magnetic performance of the magnet (the volume of l (magnet is larger compared to a situation where the magnet is drilled for mounting on the driveshaft).
  • the positioning of the magnet coaxially in the center of the rotor makes it possible to guarantee the mechanical strength of the magnet, which is made of a material which does not benefit from good mechanical strength, in particular vis-à-vis the centrifugal forces which s 'apply when rotating.
  • the role of the hoop portion (4) is to contain the permanent magnet.
  • the name of this hoop portion alludes to a preferred method of manufacture, even though in practice the person skilled in the art could use any other desirable assembly technique such as for example screwing, gluing, welding, etc.
  • the hooping is the assembly of two parts by means of a tight fit.
  • the outer part (hollow shaft) is called “hoop”
  • the inner part (permanent magnet) is called "hoop”.
  • the assembly is carried out with machining tolerances which make it difficult or impossible to assemble it by hand or even by press. More precisely, the use of a friable material or at least one which does not benefit from favorable mechanical strength characteristics, does not make force-mounting desirable.
  • the simplest solution when it is possible without deterioration of the material, is to heat the hoop to expand it before threading it on the element that it is must be freighted.
  • the interior element can also be cooled with liquid nitrogen or dry ice to contract it and engage it in the hoop, even if these solutions are more expensive.
  • the hollow shaft is preferably a part of cylindrical revolution machined from an inexpensive, magnetically active material whose production of magnetic flux (or magnetization) to the rotor is not permanent (i.e. say temporary or modular) and which benefits from excellent mechanical strength.
  • materials with temporary or modular magnetization provide a considerable price argument both in terms of the material itself and in terms of machining costs.
  • Other embodiments of the hollow shaft can however be considered, for example forging, casting or 3D printing (additive manufacturing).
  • the simplification of the rotor also brings an increase in the performance of the electric machine, which can make it possible, for example, to reduce the dimensions of the electric machine, which is particularly advantageous in the case of positioning the electric machine in front of the compressor inlet.
  • the rotor according to the invention may preferably comprise at most the following elements in a radial section: cylindrical permanent magnet and temporary or modular magnetization hoop.
  • the thickness of the hoop (4) may be greater than the radius of the cylindrical permanent magnet (5). Indeed, the judicious relationship between the thickness of the hoop (4) and the radius of the cylindrical permanent magnet make it possible to produce a high-performance electrical machine. More precisely, we have already seen that it is desirable to limit the mass as much as possible (to avoid iron losses in freewheel rotation) and also the eccentricity (to ensure mechanical strength, in particular with respect to centrifugal forces that apply when rotating) of the permanent magnet while maintaining sufficient magnitude at the magnetic polarity to accurately determine the positioning of the rotating rotor.
  • the cylindrical permanent magnet can be reduced to its simplest shape and smallest dimensions as long as the magnetic field it maintains is sufficient for the detection of the position of the rotor by the stator coils or any other sensor. this effect.
  • the hoop or the modulable / temporary magnetization part is sized to produce the specified torque.
  • the permanent magnet is sized as described above to produce a signal which determines the inside diameter of the temporarily magnetized rotor portion.
  • the torque determines the diameter (also constrained by aerodynamics) and the length (constrained by the dynamics of the shaft line) of the rotor.
  • said cylindrical permanent magnet (5) can be made from neodymium NbFeBr, SmCo, Ferrite or any other hard magnetic material. Indeed, the magnet can be made from any magnetic material.
  • the diameter of the cylindrical permanent magnet (5) may be within a range preferably between 4mm and 12mm. However, the person skilled in the art may limit the diameter of the cylindrical permanent magnet (5) to an interval between
  • said hollow shaft (7) may be made of a steel alloy of the iron-chromium-cobalt, aluminum-nickel-chromium AINiCo type, etc. Indeed, the hollow shaft can be made from any material having a temporary or modulable magnetic characteristic (low cohercivity).
  • the outer radius of the hollow shaft (7) is at least 25% greater than the radius of the cylindrical permanent magnet (5). However, depending on the characteristics of the materials used, the outer radius of the hollow shaft (7) may also reach or be at least 200% larger than the radius of the cylindrical permanent magnet (5).
  • the hollow shaft (7) can integrally comprise an annular cylindrical portion (6) inserted in said at least one compression wheel (2), said annular cylindrical portion (6) connecting the shaft compression (3) to said at least one compression wheel (2).
  • This cylindrical portion surrounds the compression shaft and is inserted into the bore of the compression wheel.
  • This cylindrical portion provides long centering, preferably with clearance of the rotor relative to the compression shaft, which makes it possible to ensure better coaxiality of the compression shaft with the rotor.
  • the part cylindrical may have a reduced outside diameter relative to the outside diameter of the rotor.
  • the annular cylindrical portion (6) has an axial length which is greater than or equal to 1.5, for example 2 to 3 times the diameter of the compression shaft (3), in order to allow optimized long centering.
  • the annular cylindrical portion (6) has an axial length which corresponds substantially to the axial length of the compression wheel, in order to allow maximum long centering and to stiffen the compression wheel, in particularly for high rotational speeds.
  • This configuration makes it possible in particular to stiffen the portion of the shaft under the compressor wheel, which can be a critical point for certain bending modes.
  • a high level of concentricity is thus achieved between the electric rotor and the compressor shaft in order to obtain a complete mechanical system (compressor shaft with rotor of the electric machine) which can be balanced with minimum unbalance.
  • the compressor wheel is thus tightened in order to preload the bearings of the bearings or any other guiding system usually employed in turbochargers.
  • the rotor may include handling means.
  • the rotor may include gripping / handling means, for the purpose of rotating the rotor, and consequently for fixing with the compression shaft by threaded assembly or any other fixing means.
  • These gripping / handling means can in particular be holes for inserting tools, flaps to form a handling tip, etc.
  • the rotor in this case the hoop portion (4), may have an outside diameter less than or equal to the diameter of the nose of the compression wheel. In this way, the flow of gas entering the compression device is not impeded by the rotor shaft. Indeed, it is important to maintain high permeability qualities, especially when the electrical machine is located in front of the compressor inlet. A reduced rotor diameter favors the creation of large openings for the passage of fresh gases to the compressor, which ensures high performance of the compressor while ensuring sufficient cooling of the electrical machine.
  • the compression device may be a turbocharger combining a turbine and a compressor, in particular for an internal combustion engine of a vehicle. It is then a turbocharger driven by an electric machine.
  • the compression shaft corresponds to the turbocharger shaft that connects the turbocharger turbine to the turbocharger compressor.
  • the electric machine drives both the compressor and the turbine.
  • the electric machine can be arranged in the gas inlet (generally air) of the turbocharger system.
  • gas inlet generally air
  • This solution has a twofold advantage: the electrical machine can be cooled by the inlet gas flow, and conversely, the gas. intake is heated by the electric machine, which can be beneficial in certain modes of operation of the internal combustion engine, such as cold starting and warming up.
  • this solution avoids the location of the electric machine between the compressor and the turbine, an area where the temperatures are particularly high, which is problematic for the proper functioning of an electric machine.
  • the electric machine can be an electric machine with a stator grid, that is to say an electric machine having a stator comprising stator teeth around which coils are mounted, these stator teeth being of large dimensions to allow passage. air flow which guarantees excellent permittivity for the passage of fresh gases.
  • a stator grid machine is described in particular in patent applications WO17050577 A1 and FR 3048022.
  • the electric machine can be an electric generator and more particularly of which the operation and the calls for electric power in motor and generator modes can be very transient. Indeed, the appropriate management of the electric machine can make it possible to change its operating mode from a motor mode to a generator mode or, alternatively, to a freewheel mode, when the hollow shaft is magnetically made inactive.
  • the present invention also relates to a method of implementing the compression device by carrying out the magnetization of said hollow shaft (that is to say of the material with temporary or modulable magnetization) to make said rotor pass from one to the other. initial state in which the rotor is considered inactive to an operating state in which the rotor is considered active.
  • the magnetization of said hollow shaft (7) is reduced to cause said rotor to pass from an operating state in which the rotor is considered active to an initial state in which the rotor is considered inactive.
  • the magnetization and demagnetization (decrease in magnetization) of said hollow shaft (7) are carried out by applying a current pulse by means of an inverter controlling said electrical machine, said current pulse having an amplitude greater than the normal operating pulses of the electrical machine.
  • the change between the active and inactive state is carried out according to the following transient modes: a.
  • the active state is chosen when power is to be transmitted by the electrical machine, said power being modulated by the inverter over a range between a minimum and a maximum; b.
  • This temporary or modulable magnetization of the rotor possible on a material with temporary or modulable magnetization, such as FeCrCo, thanks to a current pulse is very relevant on an electrified turbocharger, whose operation and electrical power calls in engine and generator modes can be very transient.
  • the rotor magnetically inactive the rest of the time, offers the advantage to limit the magnetic losses ("iron” losses in particular) of the electrical system when the latter is not in use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

La présente invention concerne un dispositif de compression comprenant une machine électrique ayant un rotor à aimantation hybride comprenant un aimant permanent cylindrique (5) et un arbre creux (7) réalisé en un matériau à aimantation temporaire ou modulable.

Description

ROTOR A AIMANTATION TRANSITOIRE HYBRIDE
Domaine technique
La présente invention concerne le domaine des dispositifs de compression entraînés par une machine électrique, en particulier l’invention concerne un turbocompresseur entraîné par une machine électrique.
Elle concerne notamment un dispositif pour comprimer un fluide gazeux, ici de l'air, par un compresseur, seul ou associé à une turbine pour former un turbocompresseur, pour ensuite l'envoyer vers tous appareils et plus particulièrement à l'admission d'un moteur à combustion interne. En effet, comme cela est largement connu, la puissance délivrée par un moteur à combustion interne est dépendante de la quantité d’air introduite dans la chambre de combustion de ce moteur, quantité d’air qui est elle-même proportionnelle à la densité de cet air.
Ainsi, il est habituel d'augmenter cette quantité d'air au moyen d’une compression de l’air extérieur avant qu'il ne soit admis dans cette chambre de combustion lors d'un besoin d’une forte puissance. Cette opération, appelée suralimentation, peut être réalisée par tous moyens, tel qu'un compresseur seul entraîné électriquement par une machine électrique (compresseur électrifié), ou par un compresseur associé à une turbine et à une machine électrique pour former un turbocompresseur électrifié.
Technique antérieure Dans les deux cas précités, la machine électrique associée au compresseur peut être de différents types.
L'un de ces types est une machine électrique à faible entrefer et bobinages proches du rotor qui permet un guidage optimal du flux magnétique et un rendement optimisé. Ce type de machine électrique présente l’avantage d’une certaine compacité, qui peut parfois devenir problématique pour son refroidissement et qui demande l’utilisation d’un système spécifique pour évacuer ses pertes.
Afin de ne pas être intrusif sur l’entrée d’air du compresseur, ce type de machine électrique est classiquement positionnée au dos du compresseur dans le cas d’un compresseur électrifié, ou entre le compresseur et la turbine dans le cas d’un turbocompresseur électrifié, et cela malgré la présence d’un environnement thermique défavorable dans ce dernier car proche de la turbine. Généralement, la liaison entre le compresseur, la turbine et la machine électrique est rigide. Ce type de machine peut aussi être positionné côté compresseur mais à une distance relativement éloignée de l’entrée d’air afin de ne pas perturber cette dernière. La liaison entre le compresseur et la machine est alors rigide ou réalisée à l’aide d’un accouplement mécanique.
Ce type de systèmes est mieux décrit dans les brevets US2014373532A, US2009056332A, US2010266430A, US2010247342A, US6449950B, US7360361 , EP0874953A1 ou EP0912821A1.
L'autre de ces types est une machine électrique à fort entrefer (appelée machine à « Air Gap »), dont l’entrefer peut parfois mesurer plusieurs centimètres afin de laisser passer le fluide de travail dans cet entrefer permettant ainsi une intégration au plus proche des systèmes de compression, dans un environnement thermique plus favorable.
Cette disposition de machine électrique présente néanmoins le désavantage de perturber et limiter le passage du flux magnétique entre le rotor et le stator au travers du grand entrefer, ce qui contribue à limiter le rendement intrinsèque de la machine électrique ainsi que ses performances spécifiques (puissance massique et volumique). Les pertes élevées sur ce type de concept obligent aussi à développer un refroidissement spécifique pour évacuer les calories du rotor et du stator ou à limiter les performances spécifiques. L’homme du métier est amené à compenser cet inconvénient notamment en mettant en œuvre des courants de commande très élevés, ce qui augmentent la coût de l’onduleur et provoque des pertes dans le stator.
Ce type de machine électrique est notamment décrit dans les brevets EP1995429A1 , US2013169074A ou US2013043745A.
Un troisième type de machine électrique est la machine à grille statorique, qui peut être positionnée en amont du compresseur, et pour laquelle l’air traverse le stator.
La demande de brevet FR3074622A1 détaille plusieurs structures de rotor électrique et de montage du rotor sur l’arbre d’un turbocompresseur, en rapportant un rotor sur un arbre débouchant côté compresseur. Ce rotor est particulièrement intéressant pour les machines électriques à grille statorique. Ces structures sont intéressantes pour intégrer des rotors sur des turbocompresseurs déjà réalisés.
Toutefois, ces structures sont la plupart du temps difficilement compatibles avec un procédé industriel de fabrication en grande série, étant donné les tolérances de fabrication et les opérations d’équilibrage nécessaires à réaliser sur le rotor pour arriver à un tel système. De plus, ces solutions peuvent nécessiter l’usinage d’un alésage au sein d’un aimant, ce qui est complexe et qui réduit les performances magnétiques de l’aimant. Alternativement, l’homme du métier peut également améliorer le montage en le simplifiant par l’utilisation d’un aimant plein.
Une des problématiques de l’électrification des compresseurs concerne les coûts de fabrication de la machine électrique et plus particulièrement du rotor. En effet, les contraintes dues au régime de rotation très élevé du turbocompresseur, d’environ 200.000 tours/min et plus, sont particulièrement éprouvantes pour la résistance mécanique de l’aimant du rotor, ce qui induit des coûts importants pour fabriquer un dispositif qui permet de garantir la bonne tenue du matériau magnétique.
Une autre problématique est la perte due aux forces de couplage magnétique entre le rotor et le stator (appelés pertes à vide), plus particulièrement lors des phases de roue libre, lorsque la machine électrique n’est pas activée. En effet, lors des phases de non utilisation de l’assistance de la machine électrique, l’aimant permanent contenu dans le rotor provoque une résistance à la libre rotation de l’axe du compresseur. Une solution à cette problématique est l’utilisation d’un matériau à magnétisation temporaire ou modulable. Dans le cas de la mise en œuvre d’un rotor réalisé uniquement ou principalement avec des matériaux à magnétisation temporaire ou modulable, il subsiste néanmoins un problème à surmonter, à savoir la difficulté de détecter le mouvement de rotation du rotor et plus particulièrement de détecter la position du rotor à cause de la magnétisation initiale du rotor inexistante ou trop faible pour être détectable et utilisable par l’onduleur. La présente invention surmonte ce problème en proposant un rotor hybride par l’introduction judicieuse d’un aimant permanent au sein d’un rotor réalisé dans un matériau à magnétisation temporaire ou modulable. Résumé de l’invention
La présente invention concerne un dispositif de compression d’un fluide comprenant une machine électrique, ladite machine électrique comprenant un rotor et un stator, ledit dispositif de de compression comprenant un arbre de compression sur lequel est montée au moins une roue de compression, ledit rotor étant relié à une extrémité dudit arbre de compression, ledit rotor comprenant un aimant permanent cylindrique et un arbre creux, ledit arbre creux comportant une portion de frette entourant radialement ledit aimant cylindrique, caractérisé en ce que ledit aimant permanent cylindrique est une pièce pleine coaxiale audit rotor, ledit arbre creux est réalisé en un matériau à aimantation temporaire ou modulable.
Selon un mode de réalisation l’épaisseur de la frette est supérieure au rayon de l’aimant permanent cylindrique. Selon un mode de réalisation ledit aimant permanent cylindrique est réalisé à base de néodyme, comme par exemple NbFeBr, SmCo,
Ferrite ou tout autre matériau magnétique dur. Selon un mode de réalisation ledit arbre creux est réalisé dans un alliage acier du type fer-chrome-cobalt, aluminium- nickel-cobalt AINiCo, ou tout matériaux équivalent. Selon un mode de réalisation, l’arbre creux comporte de façon intégrale une portion cylindrique annulaire insérée dans ladite au moins une roue de compression, ladite portion cylindrique annulaire reliant préférablement avec du jeu l’arbre de compression à ladite au moins une roue de compression.
Selon un mode de réalisation le rotor comporte des moyens de manipulation. Selon un mode de réalisation le rotor a un diamètre extérieur inférieur ou égal au diamètre du nez de la roue de compression. Selon un mode de réalisation le dispositif de compression est un turbocompresseur associant une turbine et un compresseur, notamment pour un moteur à combustion interne.
Selon un mode de réalisation la machine électrique est agencée au niveau de la zone d’admission du gaz dudit turbocompresseur.
Selon un mode de réalisation la machine électrique est une machine à grille statorique.
Selon un mode de réalisation la machine électrique est un générateur électrique.
Par ailleurs, la présente invention concerne également un procédé de mise en œuvre du dispositif de compression dans lequel on réalise la magnétisation dudit arbre creux pour faire passer ledit rotor d’un état initial dans lequel le rotor est considéré inactif à un état de fonctionnement dans lequel le rotor est considéré actif.
Selon un mode de réalisation du procédé de mise en œuvre du dispositif de compression, on réduit la magnétisation dudit arbre creux pour faire passer ledit rotor d’un état de fonctionnement dans lequel le rotor est considéré actif à un état de initial dans lequel le rotor est considéré inactif.
Selon un mode de réalisation du procédé de mise en œuvre du dispositif de compression, la magnétisation et la démagnétisation (réduction de la magnétisation) dudit arbre creux sont réalisées par application d’une impulsion de courant au moyen d’un onduleur pilotant ladite machine électrique, ladite impulsion de courant ayant une amplitude supérieure aux impulsions de fonctionnement normal de la machine électrique.
Selon un mode de réalisation du procédé de mise en œuvre du dispositif de compression, le changement entre l’état actif et inactif est réalisé suivant les modes transitoires suivants :
1. On choisit l’état actif lorsqu’on veut transmettre de la puissance par la machine électrique, ladite puissance étant modulée par l’onduleur sur une plage entre un minimum et un maximum, et
2. On choisit l’état inactif lorsqu’on veut réduire le couple magnétique entre le rotor et le stator. D'autres caractéristiques et avantages du procédé selon l'invention, apparaîtront à la lecture de la description ci-après d'exemples non limitatifs de réalisations, en se référant aux figures annexées et décrites ci-après. Figures
La figure 1 illustre un rotor de machine électrique selon un mode de réalisation de l’invention.
La figure 1 illustre un rotor de machine électrique selon un mode de réalisation de l’invention.
La figure 2 illustre un dispositif de compression entraîné par une machine électrique selon un mode de réalisation de l’invention.
Description des modes de réalisation
La présente invention concerne un dispositif de compression d’un fluide, notamment d’un gaz, entraîné, de manière non exclusive, par une machine électrique. En d’autres termes, l’invention concerne l’ensemble formé par la machine électrique et le dispositif de compression. De préférence, le dispositif de compression est prévu pour comprimer de l’air.
La présente invention présente les intérêts fonctionnels suivants : Créer un rotor magnétique dont la magnétisation et la production de flux magnétique est contrôlable, permettant ainsi de disposer d’un rotor magnétiquement actif ou passif suivant les usages,
Assurer la tenue mécanique de l’ensemble rotor, notamment vis-à-vis des forces centrifuges qui s’appliquent lors de la mise en rotation,
Garantir des pertes limitées au niveau du rotor et du stator, de façon à améliorer le rendement de la partie électrique mais aussi limiter réchauffement interne du rotor et du stator et simplifier son refroidissement,
Réaliser un haut niveau de concentricité entre le rotor électrique et l’arbre du turbocompresseur afin d’obtenir un système mécanique complet (arbre turbocompresseur avec rotor de la machine électrique) équilibrable avec minimum de balourd,
Présenter une structure compatible avec l’assemblage de la roue compresseur sur l’arbre turbocompresseur dans le cas d’un positionnement du rotor dans le flux d’air côté compresseur (machine à grille statorique par exemple),
Réaliser le serrage de la roue compresseur et précharger les roulements des paliers turbocompresseur ou le montage avec des paliers lisses,
Réduire le nombre de composants du système.
La figure 1 illustre, schématiquement et de manière non limitative, un mode de réalisation de l’invention. La figure 1 est une vue en coupe du rotor de la machine électrique. La présente invention concerne un dispositif de compression d’un fluide comprenant une machine électrique, ladite machine électrique comprenant un rotor et un stator, ledit dispositif de de compression comprenant un arbre de compression (3) sur lequel est montée au moins une roue de compression (2), ledit rotor étant relié à une extrémité dudit arbre de compression (3), ledit rotor comprenant un aimant permanent cylindrique (5) et un arbre creux (7), ledit arbre creux (7) comportant une portion de frette (4) entourant radialement ledit aimant permanent cylindrique (5). Ledit aimant permanent cylindrique (5) est une pièce pleine coaxiale audit rotor, ledit arbre creux (7) est réalisé en un matériau à aimantation temporaire ou modulable.
On appelle aimant permanent, ou simplement aimant dans le langage courant, un objet fabriqué dans un matériau magnétique dur, c’est-à-dire dont l'aimantation rémanente et le champ coercitif sont grands. Cela lui donne des propriétés particulières liées à l'existence du champ magnétique, comme celle d'exercer une force d'attraction sur tout matériau ferromagnétique.
On appelle matériau à aimantation temporaire ou modulable un matériau ferromagnétique possédant un champ coercitif faible. Un tel matériau est qualifié de matériau magnétique doux. Un tel matériau nécessite d’être placé temporairement dans un champ magnétique pour induire son aimantation. Lorsque le champ magnétique pour induire son aimantation est interrompu, le matériau à aimantation temporaire ou modulable perd son aimantation à l’issue d’un temps caractéristique. L’amplitude de l’aimantation peut être pilotée par modulation de l’onduleur sur un intervalle entre un minimum et un maximum.
Sur la figure 1 , on peut y distinguer le corps creux (7) qui comprend la portion de frette (4) et la portion cylindrique annulaire (6). De plus, l’aimant permanent cylindrique (5) est représenté centré axialement au corps creux (7) et sensiblement sur le côté gauche de l’arbre creux, ce qui ne doit pas être limitatif puisque l’aimant peut se situer à tout endroit souhaitable pour réaliser l’invention, par exemple de manière longitudinale plus centré ou bien complètement à droite. On peut également envisager un aimant couvrant tout l’espace creux, suivant les nécessités de mise en œuvre. On peut reconnaître sur cette figure un taraudage dans le corps creux, en vue de son montage sur l’arbre du compresseur. Cette solution de montage permet d’effectuer ainsi le serrage de la roue compresseur pour précharger les roulements des paliers turbocompresseur. Les angles, chanfreins et autres éléments de géométrie peuvent varier suivant le mode de réalisation du dispositif. La figure 2 illustre, schématiquement et de manière non limitative, un mode de réalisation de l’invention. La figure 2 est une vue en perspective cavalière du rotor de la machine électrique. On peut y distinguer le corps creux (7) et l’aimant permanent cylindrique (5) avant montage.
La figure 3 illustre, schématiquement et de manière non limitative, un mode de réalisation de l’invention. La figure 3 est une vue en coupe d’une partie du dispositif de compression. La partie turbine du turbocompresseur, facultative, n’est pas représentée. On distingue l’arbre de compression (3) et la roue de compression (2). On peut noter l’utilisation d’un manchon tubulaire (9) entre l’arbre de compression (3) et la roue de compression (2). Pour ce mode de réalisation, la roue de compression (2) comporte, sur une partie de son alésage, un alésage interne de diamètre plus élevé que l’arbre de compression (3). Cette portion comportant un alésage différentiel permet à l’arbre creux (7) de disposer d’une longueur de centrage avec l’arbre de compression (3) plus importante. De plus, l’arbre creux (7) comporte des orifices borgnes (13) destinés à la manipulation du rotor pour sa fixation avec l’arbre de compression (3), notamment au moyen d’outils de manœuvre (non représentés). D’un côté, la roue de compression (2) est en butée contre l’arbre creux (7). De l’autre côté, la roue de compression (2) est en butée contre un système de guidage (9), par exemple la bague intérieure d’un roulement, dont la cage de roulement est représentée. Afin de favoriser le montage et le positionnement des pièces, le rotor peut comporter une surface plane qui est en contact avec une surface plane extrémale de la roue de compression (2). De plus, cette caractéristique permet d’agencer le rotor au plus près de la roue de compression (2).
Des variantes de réalisation de ce mode de réalisation illustré peuvent être envisagées ; par exemple la portion cylindrique annulaire (6) peut avoir la longueur de la roue de compression (2), la portion cylindrique annulaire (6) peut avoir une longueur supérieure ou égale à la longueur de la roue de compression (2), l’arbre creux (7) peut ne pas comporter de portion cylindrique annulaire (6), etc.
Selon l’invention, l’aimant permanent cylindrique est une pièce pleine. En d’autres termes, l’aimant permanent cylindrique est un cylindre plein sans trous, alésages ou perçages, etc. Ainsi, cette solution ne nécessite aucune opération d’usinage (par exemple alésage) de l’aimant cylindrique, ce qui permet de simplifier la fabrication du dispositif de compression, et d’augmenter les performances magnétiques de l’aimant (le volume de l’aimant est plus important par rapport à une situation dans laquelle l’aimant est percé pour des raisons de montage sur l’arbre de transmission).
Le positionnement de l’aimant coaxialement au centre du rotor permet de garantir la tenue mécanique de l’aimant, qui est réalisé dans un matériau qui ne bénéficie pas d’une bonne tenue mécanique, notamment vis-à-vis des forces centrifuges qui s’appliquent lors de la mise en rotation.
La portion de frette (4) a pour rôle de contenir l’aimant permanent. La dénomination de cette portion de frette fait allusion à un mode de fabrication préféré, même si en pratique l’homme du métier pourra utiliser toute autre technique de montage souhaitable comme par exemple vissage, collage, soudage, etc. Le frettage est l’assemblage de deux pièces grâce à un ajustement serré. La pièce extérieure (arbre creux) est appelée « frette », la pièce intérieure (aimant permanent) est dite « frettée ». L'assemblage est réalisé avec des tolérances d'usinage qui rendent difficiles ou impossible son montage à la main ou même à la presse. Plus précisément, l’emploi d’un matériau friable ou tout du moins qui ne bénéficie pas de caractéristiques favorables de tenue mécanique, ne rend pas souhaitable le montage en force. La solution la plus simple, quand elle est possible sans détérioration du matériau, est de chauffer la frette pour la dilater avant de l'enfiler sur l'élément qu'il faut fretter. On peut également refroidir l'élément intérieur à l'azote liquide ou à la glace carbonique pour le contracter et l'engager dans la frette, même si ces solutions sont plus onéreuses.
Pour réaliser l’invention, l’arbre creux est préférablement une pièce de révolution cylindrique usiné dans un matériau peu onéreux, magnétiquement actif dont la production de flux magnétique (ou magnétisation) au rotor n’est pas permanente (c’est-à-dire temporaire ou modulable) et qui bénéficie d’une excellente tenue mécanique.
En effet, les matériaux à aimantation temporaire ou modulable apportent un argument de prix considérable aussi bien au niveau du matériau lui-même que des coûts de l’usinage. D’autres modes de réalisation de l’arbre creux peuvent toutefois être envisagés, par exemple le forgeage, le moulage ou l’impression 3D (fabrication additive).
La simplification du rotor apporte également une augmentation des performances de la machine électrique, ce qui peut permettre par exemple de réduire les dimensions de la machine électrique, ce qui est particulièrement intéressant dans le cas du positionnement de la machine électrique devant l’admission du compresseur. Le rotor selon l’invention peut comporter préférablement au maximum les éléments suivants dans une coupe radiale : aimant permanent cylindrique et frette à aimantation temporaire ou modulable.
Selon un mode de réalisation, l’épaisseur de la frette (4) peut être supérieure au rayon de l’aimant permanent cylindrique (5). En effet, le rapport judicieux entre l’épaisseur de la frette (4) et le rayon de l’aimant permanent cylindrique permet de réaliser une machine électrique performante. Plus précisément, on a déjà vu qu’il est souhaitable de limiter autant que possible la masse (pour éviter les pertes ferriques en rotation de roue libre) et également l’excentricité (pour assurer la tenue mécanique, notamment vis-à-vis des forces centrifuges qui s’appliquent lors de la mise en rotation) de l’aimant permanent tout en préservant suffisamment d’amplitude à la polarité magnétique pour déterminer avec précision le positionnement du rotor en rotation. Par conséquent, l’aimant permanent cylindrique peut être réduit à sa plus simple forme et ses plus faibles dimensions tant que le champ magnétique qu’il entretient est suffisant pour la détection de la position du rotor par les bobines du stator ou tout autre capteur à cet effet. En d’autres termes, sur le rotor hybride, la frette ou la partie à aimantation modulable/temporaire est dimensionnée pour produire le couple spécifié. L’aimant permanent est dimensionné comme décrit ci- dessus pour produire un signal ce qui détermine le diamètre intérieur de la partie rotor à aimantation temporaire.
Le couple détermine le diamètre (contraint également par l’aérodynamique) et la longueur (contrainte par la dynamique de la ligne d’arbre) du rotor.
Selon un mode de réalisation, ledit aimant permanent cylindrique (5) peut être réalisé à base de néodyme NbFeBr, SmCo, Ferrite ou tout autre matériau magnétique dur. En effet, l’aimant peut être réalisé à base de tout matériau magnétique. Le diamètre de l’aimant permanent cylindrique (5) peut être situé dans un intervalle préférablement entre 4mm et 12mm. Cependant l’homme du métier pourra limiter le diamètre de l’aimant permanent cylindrique (5) à un intervalle entre
2mm et 4mm dans le cadre de la miniaturisation ou de l’utilisation de matériaux pour la réalisation de l’aimant permanent cylindrique (5) et respectivement pour la frette ayant des caractéristiques spécifiques. Selon un mode de réalisation, ledit arbre creux (7) peut être réalisé dans un alliage acier du type fer-chrome-cobalt, aluminium-nickel-chrome AINiCo, etc. En effet, l’arbre creux peut être réalisé à base de tout matériau ayant une caractéristique magnétique temporaire ou modulable (faible cohércivité). Dans ce mode de réalisation, le rayon extérieur de arbre creux (7) est au moins 25% plus grand que le rayon de l’aimant permanent cylindrique (5). Cependant, suivant les caractéristiques des matériaux employés, le rayon extérieur de arbre creux (7) peut également atteindre ou être d’au moins 200% plus grand que le rayon de l’aimant permanent cylindrique (5).
Selon un mode de réalisation, l’arbre creux (7) peut comporter de façon intégrale une portion cylindrique annulaire (6) insérée dans ladite au moins une roue de compression (2), ladite portion cylindrique annulaire (6) reliant de l’arbre de compression (3) à ladite au moins une roue de compression (2). Cette portion cylindrique entoure l’arbre de compression et est insérée dans l’alésage de la roue de compression. Cette portion cylindrique assure un centrage long préférablement avec du jeu du rotor par rapport à l’arbre de compression, ce qui permet d’assurer une meilleure coaxialité de l’arbre de compression avec le rotor. La portion cylindrique peut avoir un diamètre extérieur réduit par rapport au diamètre extérieur du rotor.
Avantageusement, la portion cylindrique annulaire (6) a une longueur axiale qui est supérieure ou égale à 1.5, par exemple 2 à 3 fois le diamètre de l’arbre de compression (3), afin de permettre un centrage long optimisé.
Selon une première variante de ce mode de réalisation, la portion cylindrique annulaire (6) a une longueur axiale qui correspond sensiblement à la longueur axiale de la roue de compression, afin de permettre un centrage long maximal et de rigidifier la roue de compression, en particulier pour les grandes vitesses de rotation. Cette configuration permet notamment de rigidifier la portion de l’arbre sous la roue compresseur qui peut être un point critique pour certains modes de flexion. On réalise ainsi un haut niveau de concentricité entre le rotor électrique et l’arbre du compresseur afin d’obtenir un système mécanique complet (arbre compresseur avec rotor de la machine électrique) équilibrable avec minimum de balourd. De plus, on réalise ainsi le serrage de la roue compresseur pour précharger les roulements des paliers ou tout autre système de guidage habituellement employé dans les turbocompresseurs.
Selon un mode de réalisation le rotor peut comporter des moyens de manipulation. Pour ce mode de réalisation, le rotor peut comporter des moyens de préhension/manipulation, dans le but de faire tourner le rotor, et par conséquent pour réaliser la fixation avec l’arbre de compression par assemblage fileté ou tout autre moyen de fixation. Ces moyens de préhension/manipulation peuvent être notamment des orifices pour l’insertion d’outils, des pans pour former un embout de manipulation, etc.
Selon un mode de réalisation de l’invention, le rotor, en l’occurrence la portion de frette (4), peut avoir un diamètre extérieur inférieur ou égal au diamètre du nez de la roue de compression. De cette manière, le flux de gaz en entrée du dispositif de compression n’est pas entravé par l’arbre de rotor. En effet, il est important de préserver des qualités élevées de perméabilité, spécialement lorsque la machine électrique se situe devant l’admission du compresseur. Un diamètre de rotor réduit favorise la création de lumières de taille importante pour le passage des gaz frais vers le compresseur, ce qui assure un rendement performant du compresseur tout en assurant un refroidissement suffisant de la machine électrique.
Conformément à une mise en œuvre de l’invention, le dispositif de compression peut être un turbocompresseur associant une turbine et un compresseur, notamment pour un moteur à combustion interne d’un véhicule. Il s’agit alors d’un turbocompresseur entraîné par une machine électrique. Dans ce cas, l’arbre de compression correspond à l’arbre du turbocompresseur qui lie la turbine du turbocompresseur au compresseur du turbocompresseur. Ainsi la machine électrique entraîne à la fois le compresseur et la turbine.
Selon une variante de cette mise en œuvre de l’invention, la machine électrique peut être agencée dans l’admission du gaz (généralement de l’air) du système du turbocompresseur. Cette solution présente un avantage double : la machine électrique peut être refroidie par le flux de gaz d’admission, et inversement, le gaz d’admission est chauffé par la machine électrique, ce qui peut être favorable dans certains modes de fonctionnement du moteur à combustion interne, comme le démarrage à froid et la montée en température. De plus cette solution évite l’emplacement de la machine électrique entre le compresseur et la turbine, une zone où les températures sont particulièrement élevées, ce qui est problématique pour le bon fonctionnement d’une machine électrique.
De préférence, la machine électrique peut être une machine électrique à grille statorique, c’est-à-dire une machine électrique ayant un stator comportant des dents statoriques autour desquelles sont montées des bobines, ces dents statoriques étant de grandes dimensions pour permettre un passage du flux d’air qui garantit une excellente permittivité pour le passage des gaz frais. Une telle machine à grille statorique est décrite notamment dans les demandes de brevet W017050577 A1 et FR 3048022.
Selon un mode de réalisation la machine électrique peut être un générateur électrique et plus particulièrement dont le fonctionnement et les appels de puissance électriques en modes moteur et générateur peuvent être très transitoires. En effet, la gestion appropriée de la machine électrique peut permettre de changer son mode de fonctionnement d’un mode moteur à un mode générateur ou alternativement, à un mode de roue libre, lorsque l’arbre creux est rendu inactif magnétiquement. La présente invention concerne également un procédé de mise en œuvre du dispositif de compression en réalisant la magnétisation dudit arbre creux (c’est-à-dire du matériau à aimantation temporaire ou modulable) pour faire passer ledit rotor d’un état initial dans lequel le rotor est considéré inactif à un état de fonctionnement dans lequel le rotor est considéré actif. Préférablement on réduit la magnétisation dudit arbre creux (7) pour faire passer ledit rotor d’un état de fonctionnement dans lequel le rotor est considéré actif à un état de initial dans lequel le rotor est considéré inactif. Selon un mode de réalisation du procédé, la magnétisation et la démagnétisation (diminution de la magnétisation) dudit arbre creux (7) sont réalisées par application d’une impulsion de courant au moyen d’un onduleur pilotant ladite machine électrique, ladite impulsion de courant ayant une amplitude supérieure aux impulsions de fonctionnement normal de la machine électrique. Selon un mode de réalisation du procédé, le changement entre l’état actif et inactif est réalisé suivant les modes transitoires suivants: a. On choisit l’état actif lorsqu’on veut transmettre de la puissance par la machine électrique, ladite puissance étant modulée par l’onduleur sur une plage entre un minimum et un maximum ; b. On choisit l’état inactif lorsqu’on veut réduire le couple magnétique entre le rotor et le stator.
Cette magnétisation temporaire ou modulable du rotor, possible sur un matériau à aimantation temporaire ou modulable, comme le FeCrCo, grâce à une impulsion de courant est très pertinente sur un turbocompresseur électrifié, dont le fonctionnement et les appels de puissance électriques en modes moteur et générateur peuvent être très transitoires. Le rotor, inactif magnétiquement le reste du temps, offre l’avantage de limiter les pertes magnétiques (pertes « fer » notamment) du système électrique lorsque ce dernier n’est pas utilisé.

Claims

Revendications
1. Dispositif de compression d’un fluide comprenant une machine électrique, ladite machine électrique comprenant un rotor et un stator, ledit dispositif de compression comprenant un arbre de compression (3) sur lequel est montée au moins une roue de compression (2), ledit rotor étant relié à une extrémité dudit arbre de compression (3), ledit rotor comprenant un aimant permanent cylindrique (5) et un arbre creux (7), ledit arbre creux (7) comportant une portion de frette (4) entourant radialement ledit aimant permanent cylindrique (5), caractérisé en ce que ledit aimant permanent cylindrique (5) est une pièce pleine coaxiale audit rotor, ledit arbre creux (7) est réalisé en un matériau à aimantation temporaire ou modulable (à modulation du flux).
2. Dispositif de compression selon la revendication 1, dans lequel l’épaisseur de la frette (4) est supérieure au rayon de l’aimant permanent cylindrique (5).
3. Dispositif de compression selon l’une des revendication précédentes, dans lequel ledit aimant permanent cylindrique (5) est réalisé à base de néodyme, NbFeBr, SmCo, Ferrite ou tout autre matériau magnétique dur.
4. Dispositif de compression selon l’une des revendication précédentes, dans lequel ledit arbre creux (7) est réalisé dans un alliage type acier fer-chrome-cobalt, aluminium-nickel-chromme AINiCo ou tout autre matériau magnétique souple.
5. Dispositif de compression selon l’une des revendication précédentes, dans lequel l’arbre creux (7) comporte de façon intégrale une portion cylindrique annulaire (6) insérée dans ladite au moins une roue de compression (2), ladite portion cylindrique annulaire (6) reliant axialement l’arbre de compression (3) à ladite au moins une roue de compression (2).
6. Dispositif de compression selon l’une des revendication précédentes, dans lequel le rotor comporte des moyens de manipulation (13).
7. Dispositif de compression selon l’une des revendication précédentes, dans lequel le rotor a un diamètre extérieur inférieur ou égal au diamètre du nez de la roue de compression.
8. Dispositif de compression selon l’une des revendication précédentes, dans lequel le dispositif de compression est un turbocompresseur associant une turbine et un compresseur, notamment pour un moteur à combustion interne.
9. Dispositif de compression selon la revendication 7, dans lequel la machine électrique est agencée au niveau de la zone d’admission du gaz dudit turbocompresseur.
10. Dispositif de compression selon l’une des revendication précédentes, dans lequel la machine électrique est une machine à grille statorique.
11. Dispositif de compression selon l’une des revendication précédentes, dans lequel la machine électrique est un générateur électrique.
12. Procédé de mise en œuvre du dispositif selon l’une des revendications 1 à 11 dans lequel on réalise la magnétisation dudit arbre creux pour faire passer ledit rotor d’un état initial dans lequel le rotor est considéré inactif à un état de fonctionnement dans lequel le rotor est considéré actif.
13. Procédé de mise en œuvre du dispositif selon l’une des revendications 1 à 11 dans lequel on réduit la magnétisation dudit arbre creux (7) pour faire passer ledit rotor d’un état de fonctionnement dans lequel le rotor est considéré actif à un état de initial dans lequel le rotor est considéré inactif.
14. Procédé de mise en œuvre du dispositif selon les revendications 12 ou 13 dans lequel la magnétisation et la réduction de la magnétisation dudit arbre creux (7) sont réalisées par application d’une impulsion de courant au moyen d’un onduleur pilotant ladite machine électrique, ladite impulsion de courant ayant une amplitude supérieure aux impulsions de fonctionnement normal de la machine électrique.
15. Procédé de mise en œuvre du dispositif selon la revendication précédente dans lequel le changement entre l’état actif et inactif est réalisé suivant les modes transitoires suivants : a) On choisit l’état actif lorsqu’on veut transmettre de la puissance par la machine électrique, ladite puissance étant modulée par l’onduleur sur une plage entre un minimum et un maximum ; b) On choisit l’état inactif lorsqu’on veut réduire le couple magnétique entre le rotor et le stator.
EP20764429.5A 2019-09-23 2020-09-04 Rotor a aimantation transitoire hybride Pending EP4035254A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1910457A FR3101208B1 (fr) 2019-09-23 2019-09-23 Rotor à aimantation transitoire hybride
PCT/EP2020/074841 WO2021058267A1 (fr) 2019-09-23 2020-09-04 Rotor a aimantation transitoire hybride

Publications (1)

Publication Number Publication Date
EP4035254A1 true EP4035254A1 (fr) 2022-08-03

Family

ID=70613812

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20764429.5A Pending EP4035254A1 (fr) 2019-09-23 2020-09-04 Rotor a aimantation transitoire hybride

Country Status (3)

Country Link
EP (1) EP4035254A1 (fr)
FR (1) FR3101208B1 (fr)
WO (1) WO2021058267A1 (fr)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5906098A (en) 1996-07-16 1999-05-25 Turbodyne Systems, Inc. Motor-generator assisted turbocharging systems for use with internal combustion engines and control method therefor
US5870894A (en) 1996-07-16 1999-02-16 Turbodyne Systems, Inc. Motor-assisted supercharging devices for internal combustion engines
JPH11234975A (ja) * 1998-02-18 1999-08-27 Mitsubishi Motors Corp 発電機の回転子の組み付け方法
US6449950B1 (en) 2000-09-12 2002-09-17 Honeywell International Inc. Rotor and bearing system for electrically assisted turbocharger
AU2002224477A1 (en) * 2000-11-02 2002-05-15 Dinyu Qin Rotor shield for magnetic rotary machine
US7360361B2 (en) 2005-04-09 2008-04-22 Advanced Propulsion Technologies, Inc. Turbocharger
KR101153309B1 (ko) 2006-03-23 2012-06-05 가부시키가이샤 아이에이치아이 과급기의 고속 회전축
EP2053213A4 (fr) 2006-08-18 2013-04-03 Ihi Corp Compresseur volumétrique électrique
ATE498060T1 (de) 2007-05-24 2011-02-15 Lindenmaier Gmbh Turbolader
JP2009013966A (ja) 2007-07-09 2009-01-22 Ihi Corp 電動機付き過給機
US20130043745A1 (en) 2011-08-16 2013-02-21 Sheikh Nayyer Hussain Synchronous reluctance motor for conducting media
US20130169074A1 (en) 2011-12-31 2013-07-04 Sheikh Nayyer Hussain Synchronous relcutance motor for conducting media
CN104040145B (zh) 2012-01-06 2017-12-15 博格华纳公司 电辅助涡轮增压器
FR3041831B1 (fr) 2015-09-25 2019-04-19 IFP Energies Nouvelles Machine electrique tournante comportant un rotor et un stator pour le passage d'un fluide.
FR3048022B1 (fr) 2016-02-19 2019-10-11 IFP Energies Nouvelles Dispositif de compression a assistance electrique d'un fluide de travail, tel qu'un fluide liquide ou un fluide gazeux, et turbocompresseur comprenant un tel dispositif de compression.
FR3055677B1 (fr) * 2016-09-02 2020-05-29 Danfoss A/S Arbre de turbocompresseur modulaire
DE102017207532A1 (de) * 2017-05-04 2018-11-08 Bosch Mahle Turbo Systems Gmbh & Co. Kg Elektrische Medienspaltmaschine für einen Verdichter und/oder eine Turbine, Turbolader und/oder Turbine
FR3074622B1 (fr) 2017-12-04 2021-07-30 Ifp Energies Now Dispositif de compression d'un fluide entraine par une machine electrique avec un arbre de rotor ayant une frette amagnetique

Also Published As

Publication number Publication date
WO2021058267A1 (fr) 2021-04-01
FR3101208B1 (fr) 2023-06-30
FR3101208A1 (fr) 2021-03-26

Similar Documents

Publication Publication Date Title
FR3034460B1 (fr) Ensemble rotor et turbomachine tournant a tres grandes vitesses comportant un tel ensemble rotor
EP3493373B1 (fr) Dispositif de compression d'un fluide entraine par une machine electrique avec un arbre de rotor ayant une frette amagnetique
EP0161194B1 (fr) Coupleur-réducteur épicycloidal à induction pour machines à très grande vitesse de rotation
FR2944838A1 (fr) Amelioration structurelle d'une pompe a rotor noye
EP3645903B1 (fr) Ensemble d'entrainement d'une machine electrique tournante pour un vehicule automobile
FR2670629A1 (fr) Actionneur electromagnetique monophase rotatif.
EP4035254A1 (fr) Rotor a aimantation transitoire hybride
FR2831345A1 (fr) Machine electrique a defluxage mecanique
FR3025950A1 (fr) Generateur electrique torique
FR2726949A1 (fr) Generateur de charge pour vehicule
EP3229348B1 (fr) Rotor pour machine électrique tournante
FR2974954A1 (fr) Machine electrique et vehicule automobile comprenant une telle machine electrique
EP3921547B1 (fr) Dispositif de compression d'un fluide entraine par une machine electrique avec rotor equipe d'un aimant cylindrique plein
FR2815671A1 (fr) Turbocompresseur a assistance electrique
EP3921922B1 (fr) Dispositif de compression d'un fluide entraine par une machine electrique avec arbre de compression traversant le rotor
EP3726081B1 (fr) Système mécanique et motocompresseur associé
EP3895290A1 (fr) Rotor comprenant un detecteur magnetique de parametre de rotation du rotor
FR3123519A1 (fr) Machine electrique tournante à configuration co-axiale
FR3089363A1 (fr) Compresseur electrique
WO2016079426A2 (fr) Machine electrique
EP3292327A1 (fr) Système d'étanchéité amélioré pour arbre tournant
FR2855579A1 (fr) Dispositif d'amortissement d'oscillations de rotation
FR2861909A1 (fr) Dispositif de stockage d'energie a volant d'inertie.
EP4241366A1 (fr) Rotor de machine electrique avec masque d'obturation dans une barriere de flux
EP4322376A1 (fr) Rotor de machine électrique avec canal de refroidissement

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220425

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)