EP4034311A1 - Dispositif électroacoustique - Google Patents

Dispositif électroacoustique

Info

Publication number
EP4034311A1
EP4034311A1 EP20780191.1A EP20780191A EP4034311A1 EP 4034311 A1 EP4034311 A1 EP 4034311A1 EP 20780191 A EP20780191 A EP 20780191A EP 4034311 A1 EP4034311 A1 EP 4034311A1
Authority
EP
European Patent Office
Prior art keywords
support
transducer
wave
electrodes
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20780191.1A
Other languages
German (de)
English (en)
Inventor
Adrien PERET
Frederic Bretagnol
Michaël BAUDOIN
Olivier BOU MATAR - LACAZE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Valeo Systemes dEssuyage SAS
Universite Lille 2 Droit et Sante
Universite Polytechnique Hauts de France
Yncrea Hauts de France
Ecole Centrale de Lille
Original Assignee
Centre National de la Recherche Scientifique CNRS
Valeo Systemes dEssuyage SAS
Universite Lille 2 Droit et Sante
Universite Polytechnique Hauts de France
Yncrea Hauts de France
Ecole Centrale de Lille
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Valeo Systemes dEssuyage SAS, Universite Lille 2 Droit et Sante, Universite Polytechnique Hauts de France, Yncrea Hauts de France, Ecole Centrale de Lille filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP4034311A1 publication Critical patent/EP4034311A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0662Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
    • B06B1/067Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface which is used as, or combined with, an impedance matching layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B11/00Cleaning flexible or delicate articles by methods or apparatus specially adapted thereto
    • B08B11/04Cleaning flexible or delicate articles by methods or apparatus specially adapted thereto specially adapted for plate glass, e.g. prior to manufacture of windshields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • B08B17/02Preventing deposition of fouling or of dust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0064Cleaning by methods not provided for in a single other subclass or a single group in this subclass by temperature changes
    • B08B7/0071Cleaning by methods not provided for in a single other subclass or a single group in this subclass by temperature changes by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/02Cleaning by methods not provided for in a single other subclass or a single group in this subclass by distortion, beating, or vibration of the surface to be cleaned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/56Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/40Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups with testing, calibrating, safety devices, built-in protection, construction details

Definitions

  • the present invention relates to a device for generating an ultrasonic surface wave propagating in a support and a method implementing this device for melting a body disposed on the support and / or for moving a body in the liquid state on the support
  • modern motor vehicles generally include one or more driving assistance systems which use numerous sensors, for example optical sensors, such as a lidar to evaluate a distance between the vehicle and an object, or probes, for example a Pitot probe.
  • optical sensors such as a lidar
  • probes for example a Pitot probe.
  • a mechanical force on the drops cannot be easily applied to clean the surface of such a sensor, for lack of space available to have suitable mechanical means which could also damage the surface.
  • a known de-icing technique consists in blowing hot air on the face of the windshield opposite that on which a layer of frost and / or ice has deposited.
  • the defrost time required by such a technique is particularly high.
  • To defrost a rear window it is known practice to dispose therein, by mass or by volume, a metal filament following a path formed by regularly spaced lines.
  • the circulation of an electric current within the filament generates a heating by Joule effect, which results in a fusion of the layer of frost and / or ice near the filament in the form of a water film, then in the evaporation of the water film.
  • a filament limits the rear field of vision accessible to the driver of the vehicle.
  • the layer of frost and / or ice generally comprises particles which remain in contact with the support once the film of water has evaporated. It is then necessary to frequently clean the rear window, which is tedious.
  • the formation of frost and / or ice also disturbs the operation of the sensors of on-board driving systems.
  • the surfaces of such sensors can also be struck by external elements such as insects, dust particles, mud, at speeds of the order of that of the vehicle on which they are mounted.
  • a cleaning device for such a surface must therefore be robust enough to withstand such an environment.
  • an electroacoustic device comprising:
  • an ultrasonic wave transducer comprising a piezoelectric substrate and first and second electrodes in contact with the piezoelectric substrate, and
  • the transducer being fixed to the support and acoustically coupled with the support and the first and second electrodes being sandwiched, at least in part, between the piezoelectric substrate and the support, the device being configured to generate a wave of ultrasonic surface propagating in the remote transducer mount when an electric current passes through the first and second electrodes.
  • the device according to the invention is robust.
  • the first and second electrodes being protected by the support and by the piezoelectric substrate, their degradation is thus limited, for example when the transducer is brought into contact with external elements such as mentioned above.
  • the device according to the invention can advantageously be used to clean a surface covered with a body, for example with a liquid.
  • the transducer is configured to generate a guided wave which transforms into the ultrasonic surface wave in the holder remote from the transducer.
  • the ultrasonic “guided” wave propagates both in the support and in the transducer, near the respective faces of the substrate and of the support facing each other.
  • the guided wave can also propagate in the intermediate layer.
  • the ultrasonic guided wave can in particular be a Stoneley wave.
  • the first and second electrodes are disposed on the piezoelectric substrate. Preferably, they are in contact with the piezoelectric substrate.
  • the first and second electrodes are in contact with the support or are in contact with an intermediate layer, preferably formed of glue, placed on the support.
  • the generation of the ultrasonic surface wave is thus facilitated.
  • the intermediate layer preferably has a thickness less than the fundamental wavelength of the ultrasonic guided wave. In particular, it may have a thickness less than one tenth of said fundamental wavelength of the guided wave, in order to limit transmission losses through the intermediate layer.
  • the device can be configured so that the fundamental frequency of the ultrasonic guided wave is between 0.1 MHz and 1000 MHz, preferably between 10 MHz and 100 MHz, for example equal to 40 MHz.
  • the thickness of the piezoelectric substrate is greater than the fundamental wavelength of the ultrasound guided wave. This prevents the ultrasonic guided wave from reaching the face opposite to that coated by the first and second electrodes.
  • an additional member such as a protection member as described below, can be placed on said opposite face without the guided wave being able to reach G org ane.
  • a part of the first electrode, respectively of the second electrode, may protrude from the support.
  • the portion of the first electrode, respectively the second electrode, protruding from the holder may define a power supply connector.
  • the power supply connector may be configured to be electrically connected to a current generator.
  • an acoustic device comprising: - an ultrasonic wave transducer comprising a piezoelectric substrate and first and second electrodes in contact with the piezoelectric substrate, and
  • the transducer being fixed to the support and acoustically coupled with the support, the transducer projecting from an edge of the support, the first and second electrodes coating a face of the substrate facing the support and being arranged on a portion of the support.
  • piezoelectric substrate not superimposed on the support the device being configured to generate an ultrasonic surface wave propagating in the support remote from the transducer, when an electric current passes through the first and second electrodes.
  • the first and second electrodes can thus be protected from external elements by the piezoelectric substrate, which limits their degradation. Furthermore, the electrodes being disposed projecting from the edge of the substrate, the area of the support coated by the transducer is reduced.
  • the specific arrangement of the first and second electrodes makes it possible to reduce heating of the device during the generation of the ultrasonic wave.
  • the heating of the support is thus limited by conduction of the heat produced by the electrodes.
  • the transducer is bonded to the support by means of a polymer adhesive, the risk of detachment between the transducer and the support which can result from excessive heating of the adhesive by conversion of dye is reduced. 'part of the energy of the ultrasonic wave that the latter has absorbed.
  • the transducer is preferably configured to generate a primary ultrasonic wave propagating in the substrate and which converts to the ultrasonic surface wave propagating in the medium remote from the transducer, when an electric current passes through the first and second electrodes.
  • the device according to any of its aspects may further have any of the following optional features.
  • the transducer can be attached to the bracket in various ways. It can be glued to the support, in particular by means of a polymeric adhesive.
  • the adhesive may be crosslinkable by illumination with ultraviolet radiation. It is for example an epoxy resin.
  • the transducer can be attached by molecular adhesion, or by means of a thin metallic layer ensuring adhesion between the support and the substrate.
  • the layer may be of a metal or of an alloy with a low melting point, ie having a melting point of less than 200 ° C., for example of an indium alloy.
  • the metallic layer may be made of a metal or of an alloy having a melting point of greater than 200 ° C., for example of an alloy of aluminum and / or gold.
  • the transducer can be fixed to the support by means of a method comprising a step of melting a portion of the substrate and / or a portion of the support followed by a step consisting in compressing the substrate together and the support, the respective molten portions of the support and the substrate being in contact with one another.
  • the transducer can be fixed to the support by means of a method comprising the deposition of tie layers of a low melting temperature alloy on a portion of the substrate and on a portion of the support respectively, the melting in less partial of said tie layers, then compressing the substrate with the support, the faces of the tie layers opposite the support and the substrate being brought into contact with each other during compression.
  • the tie layers can be deposited by cathodic sputtering, or by an evaporation technique implemented in the field of thin film deposition.
  • the substrate is preferably glued to the support.
  • the face of the substrate facing the support is preferably glued to the support, by means of an intermediate layer of adhesive which further acoustically couples the transducer to the support.
  • the thickness of the adhesive layer is less than the wavelength of the primary ultrasonic wave so that the latter can be transmitted efficiently from the transducer to the support, that is to say by limiting the dissipation in the layer. glue.
  • the device according to any of its aspects may have one of the following characteristics.
  • the device can be configured so that the fundamental frequency of the ultrasonic surface wave is between 0.1 MHz and 1000 MHz, preferably between 10 MHz and 100 MHz, for example equal to 40 MHz.
  • the ultrasonic surface wave can be a Rayleigh wave or a Lamb wave. In particular, it can be a Rayleigh wave when the support has a thickness greater than the wavelength of the ultrasonic surface wave.
  • a Rayleigh wave is preferred because a maximum proportion of the energy of the wave is concentrated on the face of the support on which it propagates, and can be transmitted to a body in contact with the support.
  • the device can be configured so that the amplitude of the surface ultrasonic wave is between 1 picometer and 500 nanometers.
  • the amplitude can depend on the frequency of the fundamental wave. In particular, the higher the frequency, the lower the amplitude can be.
  • the amplitude of the surface ultrasonic wave corresponds to the normal displacement of the face of the medium on which the ultrasonic surface wave propagates and can be measured by laser interferometry.
  • the support can be made of any material capable of propagating an ultrasonic surface wave.
  • the medium can be chosen so that the attenuation length of the surface wave in the medium is greater than the area to be insonified.
  • the support can be self-supporting, in the sense that it can deform, in particular elastically, without breaking under its own weight.
  • the face of the medium on which the longitudinal surface wave propagates may be planar. It can also be curved, provided that the radius of curvature of the face is greater than the wavelength of the ultrasonic surface wave.
  • the face may be rough.
  • the roughness will preferably be less than the fundamental wavelength of the ultrasonic surface wave, in order to avoid that they significantly affect their propagation.
  • the support can in particular be in the form of a flat or curved plate.
  • the thickness of the support can be less than 0.01 m.
  • the length of the support may be greater than 1 mm, or even greater than 1 cm, or even greater than 1 m.
  • the area of one face of the plate can be between 0.01 m 2 and 10 m 2 .
  • thickness of the support we consider the smallest dimension of the support measured in a direction perpendicular to the surface on which the ultrasonic wave propagates.
  • the support may be optically transparent, in particular to light in the visible or to radiation in the ultraviolet or in the infrared. The process is thus then particularly suitable for applications in which the improvement of the visual comfort of a user observing his environment through the support is sought.
  • the support can be made of a material chosen from piezoelectric materials, polymers, in particular thermoplastics, in particular polycarbonate, glasses, metals and ceramics.
  • the support is made of a material other than a piezoelectric material.
  • the support is chosen from the group formed by:
  • an automotive surface for example chosen from a windshield of a vehicle, a glazing of a rear-view mirror, or
  • a sensor for example an optical sensor, a thermal sensor, an acoustic sensor or a pressure or speed sensor, in particular a probe, for example a Pitot probe,
  • the optical device being for example chosen from a lens of a camera, a glass of a telescope, and
  • the support can be a laboratory-on-chip substrate, in particular intended for microfluidic applications.
  • the support can be an element of the structure of an aircraft, for example a wing, a fuselage or an empennage.
  • the support preferably has a thin shape.
  • the ratio of the length of the support to the thickness of the support can be greater than 10, or even greater than 100, or even greater than 1000.
  • the support can also be chosen from an element of a heat exchanger, a plumbing installation and an element of a ventilation system.
  • Such supports generally have surfaces which are difficult to access in order to evacuate the drops of liquid which settle there, for example by condensation, and which can solidify.
  • the support may be a food storage element, for example an internal wall of a refrigerator, or a wall exposed to the condensation of a liquid which may solidify.
  • a food storage element for example an internal wall of a refrigerator, or a wall exposed to the condensation of a liquid which may solidify.
  • the condensation of water drops and their solidification on a wall increases the heat exchange between the wall and the volume of fresh air in the refrigerator, reducing its efficiency.
  • the ratio between the area of the support covered by the transducer and the area of the face of the support on which the transducer is attached may be less than 15%.
  • the transducer preferably has a thin shape.
  • the ratio of the length of the transducer to the thickness of the transducer can be greater than 10, or even greater than 100, or even greater than 1000.
  • the transducer can be in the form of a plate, flat or curved.
  • the transducer can have a thickness between 10 picometers and 1 micrometer.
  • the transducer may have a length and / or a width of preferably between 1 millimeter and 20 cm.
  • the first and second electrodes form first and second interdigitated combs.
  • the first and second comb may preferably have a base from which extends a row of fingers, the fingers preferably being parallel to each other.
  • the fingers can have a width of between the fundamental wavelength of the ultrasonic wave divided by 8 and the fundamental wavelength of the ultrasonic wave divided by 2.
  • the width of the fingers partly determines the fundamental frequency of l ultrasonic surface wave.
  • a small finger width increases the electrical resistance of the transducer, which can result in heating which can contribute to the melting of a body which is in contact with the support or to maintaining the body in a liquid state.
  • the spacing between two consecutively adjacent fingers of a row of the first comb, respectively of the second comb may be between the fundamental wavelength of the ultrasonic wave divided by 8 and the fundamental wavelength of the ultrasonic wave divided by 2.
  • the number of interdigitated fingers can be increased to increase the quality factor of the transducer.
  • Each comb preferably comprises between 2 and 50 fingers.
  • the substrate can be a thin film deposited, for example by chemical vapor deposition or by physical vapor deposition, on the support.
  • the substrate can be self-supporting, that is to say sufficiently rigid not to bend under the effect of its own weight.
  • the self-supporting substrate can be fixed, for example glued, on the support.
  • the piezoelectric material can be selected from the group consisting of lithium niobate, aluminum nitride, lead titanozircanate, zinc oxide, and mixtures thereof.
  • the piezoelectric material can be opaque to light in the visible.
  • the support is formed from the piezoelectric material and the transducer includes the support.
  • the first and second combs are preferably placed in contact with the support.
  • the support is made of a material other than a piezoelectric material and the electrodes are arranged on the intermediate substrate.
  • the first and second electrodes can be deposited by photolithography on the support and / or on the substrate.
  • a body may be disposed on a face of the support remote from the transducer.
  • the portion of the body furthest from the transducer can be no more than 1 meter away.
  • the temperature of the support can be less than 0 ° C or even -10 ° C and the body can be aqueous.
  • the body may be in contact with the face of the support on which the transducer is fixed, or on the face opposite the face of the support on which the transducer is fixed.
  • the body can be in contact with the face of the support on which the transducer is fixed and another body can be in contact with the face on which the body is placed.
  • the body can have a solid part and a liquid part.
  • the body can be water and consist of a frosted, icy or snowy portion and a liquid portion in contact with the frosted, icy or snowy portion respectively.
  • the body in a liquid state can be in the form of at least one drop or at least one film.
  • film is meant a thin film formed on the support.
  • the film can be continuous or discontinuous.
  • the body can be watery. In particular, it can be rain water or dew water. Rainwater and / or dew water may in particular contain particles. Dew water forms a mist on the surface of a support. It results from condensation on the support, under ad hoc conditions of pressure and temperature, water in vapor form contained in the air. The body may have been deposited by condensation before solidifying on the support.
  • the solid state body can be selected from frost, ice and snow.
  • the body in the liquid state can be a slick or at least a drop, for example a mist.
  • a "frost” is formed by drops of water that have solidified before being placed on the support.
  • “Ice” is formed by drops of water that have condensed on the support and then solidified on the support.
  • the device preferably comprises a protection member superimposed on the piezoelectric substrate.
  • the transducer is housed in a chamber defined by the protection member and the support.
  • At least one, or even all of the surfaces of the substrate not coated by the first and second electrodes may be in contact with the protection member.
  • the protection member is preferably remote from the support, so as not to disturb the propagation of the surface ultrasonic wave.
  • the protective member may be in contact with a face of the transducer not coated by the first and second electrodes. It does not then interact with the guided wave or with the primary wave.
  • the protection member is in contact with the face of the transducer opposite to the face on which the first and second electrodes are deposited.
  • the protective member can be fixed, for example glued, on the transducer. The device is thus simplified to manufacture.
  • the device can be electrically connected to a current generator to supply the transducer electrically.
  • the current generator can be configured to deliver an electrical power supply preferably between 1 milliwatts and 500 watts.
  • the invention relates to a method of manufacturing the device according to the invention, comprising the following successive steps consisting in: a) forming first and second electrodes on one face of a piezoelectric substrate of so as to obtain a wave transducer, b) fixing the wave transducer on a support, to obtain said device.
  • the support and / or the wave transducer is coated with a layer of adhesive, then the support and / or the wave transducer thus coated are assembled.
  • the invention also relates to a first method comprising the synthesis, by means of an electroacoustic device according to the invention, of a surface ultrasonic wave propagating in the support to a liquid body disposed on one face of the support and distant transducer, the energy of the ultrasonic wave being sufficient to induce a displacement of the body on the support.
  • the body can move in the direction of propagation of the ultrasonic surface wave.
  • the invention also relates to a second method comprising:
  • the power supply of the wave transducer to synthesize a surface ultrasonic wave propagating in the support to a body arranged on one face of the support and remote from the transducer, at least part of the power supply energy being converted in the form of heat by the transducer, the electrical energy supplying the transducer being sufficient for the heat and the energy of the ultrasonic surface wave to induce:
  • the energy of the ultrasonic wave may be sufficient to induce the displacement of the molten or liquid body on the face.
  • the invention also relates to a third method comprising:
  • a device comprising: an ultrasonic wave transducer comprising a piezoelectric substrate, first and second electrodes in contact with the piezoelectric substrate and a support, the transducer being fixed on the support and acoustically coupled with the support, the first and second electrodes being sandwiched, at least in part, between the piezoelectric substrate and the holder, the device being configured to generate an ultrasonic surface wave propagating in the holder remote from the transducer, when an electric current is passed through the first and second electrodes, the transducer being configured to generate a guided wave which transforms into the ultrasonic surface wave in the remote transducer holder,
  • diameter of the body is understood to mean the diameter of the smallest sphere circumscribed on the body. The diameter of the body is determined prior to the synthesis of the ultrasonic wave.
  • the first method and / or the second method and / or the third method may have the following characteristics.
  • the body can exhibit any of the above characteristics.
  • the body can be a tablecloth.
  • the web may extend over the support over an area greater than or equal to 2 cm 2 , or even greater than or equal to 5 cm 2 , or even greater than or equal to 10 cm 2 , or even greater than or equal to 100 cm 2 , or even greater or equal to 500 cm 2 .
  • the thickness of the web may be between 10 ⁇ m and 10 mm, or even between 50 ⁇ m and 5 mm.
  • the body may be a drop having a diameter less than or equal to 5 mm.
  • the drop may have a diameter less than or equal to 1 mm, or even less than or equal to 0.1 mm.
  • the drop may have a diameter of between 2 mm and 5 mm. It may have a diameter of between 0.1 mm and 2 mm.
  • the body can move in the direction of propagation of the ultrasonic surface wave.
  • the body can be moved along the face of the support on which it is placed.
  • the temperature of the support may be lower than 0 ° C, and the body is preferably aqueous.
  • the invention relates to the use of the device according to the invention, for cleaning and / or demisting and / or defrosting one face of a support, in particular an automobile surface.
  • the invention may be better understood on reading the detailed description which follows, of non-limiting examples of implementation thereof, and on examining the appended drawing, in which:
  • Figure 1 shows schematically, and in cross section, an example of an electroacoustic device according to the invention
  • FIG2 shows in perspective the wave transducer of the electroacoustic device shown in Figure 1
  • Figure 3 shows another example of an electroacoustic device according to the invention.
  • FIG 4 shows yet another example of an electroacoustic device according to the invention.
  • FIG. 1 illustrates a first example of an electroacoustic device 5 according to the first aspect of the invention.
  • It comprises a support 10 on which is fixed a transducer 15, by means of a layer of glue 20.
  • the layer of glue acoustically couples the support to the transducer.
  • the transducer has a substrate 25 and first 30 and second electrodes 35 which coat one face 40 of the substrate.
  • the substrate is made of a piezoelectric material, for example lithium niobate, 128 ° Y cut. It has the shape of a plate whose thickness e is greater than the wavelength of the wave generated by the transducer. Thus, the wave generated by the transducer is transmitted directly into the support and does not reach the face 45 of the substrate opposite to that on which the support is mounted.
  • a piezoelectric material for example lithium niobate, 128 ° Y cut. It has the shape of a plate whose thickness e is greater than the wavelength of the wave generated by the transducer.
  • the first and second electrodes are sandwiched between the support and the substrate and are connected to a voltage generator 50 which supplies them electrically. They are thus arranged opposite the support, and are protected by the support, the substrate and the adhesive layer.
  • the support is in the example illustrated in the form of a plate and has an upper face 55 in contact with the external environment 60.
  • a body 65 in the form of a film of water.
  • the body 65 can be a drop or a slick.
  • the sheet is formed by the agglomeration of drops, for example of rain, on the support.
  • the first and second electrodes can be formed by an evaporation or sputtering process and shaped by photolithography. They can be chrome, or aluminum, or a combination of a bond layer such as titanium and a conductive layer such as gold. The substrate thus covered can then be bonded to the substrate. In order to facilitate the bonding operation, a self-supporting substrate is preferred.
  • the first 30 and second 35 electrodes form first 70 and second 75 combs.
  • Each comb has a base 80, 85 and a row of fingers 90, 95, extending parallel to each other from the base.
  • the first and second combs are interdigitated.
  • Each of the fingers of the first comb, respectively of the second comb has a width 1 equal to the fundamental wavelength of the surface ultrasonic wave divided by 4 and the spacing S between two consecutive fingers of a comb is equal to the fundamental wavelength of the ultrasonic surface wave divided by 4.
  • the spacing between the fingers determines the resonant frequency of the transducer which one skilled in the art can easily determine.
  • AC voltage is applied by generator 50 and can be amplified so that the transducer generates an ultrasonic surface wave.
  • the alternating electrical voltage of the first and second electrodes induces a mechanical response of the piezoelectric material, which results in the generation of a guided surface wave G which propagates in the support in a direction of propagation P, in particular towards the disposed body. on the support.
  • determining the energy generated by the transducer sufficient to move or melt the body and / or maintain it in a liquid state is easy for those skilled in the art.
  • those skilled in the art know how to relate the fundamental frequency of the ultrasonic guided wave to the frequency of the electrical signal in order to generate the wave. He then knows how to vary the amplitude of the electrical signal so as to determine the sufficient electrical energy to be supplied to the transducer.
  • the transducer When the transducer is electrically powered by the voltage generator, it generates an ultrasonic wave.
  • the G wave generated by the transducer is guided and propagates at the interface between the support and the substrate, defined by the face of the substrate coated by the electrodes. and by the face of the support facing the electrodes.
  • the guided wave reaches the lateral end 98 of the substrate along its direction of propagation, it is transmitted into the medium in the form of an ultrasonic surface wave W which propagates on the surface of the medium.
  • the transformation of the guided wave into a surface wave results from the absence of an interface between two solids in the portion of the support not covered by the transducer.
  • the surface wave then interacts with the body covering the medium.
  • a transducer synthesizing a surface wave of fundamental frequency between 0.1 MHz and 1000 MHz, preferably between 10 MHz and 100 MHz, for example equal to 40 MHz, is well suited to ensure the displacement of d 'a film of water.
  • the water film is in the form of ice or frost, it is also well suited to causing the water film to melt, by supplying the energy of the ultrasonic surface wave and by the transfer of the heat that it generates, in particular by resistive heating of the electrodes.
  • the device illustrated in Figure 3 differs from that illustrated in Figure 1 in that it further comprises a protection member 100 which is superimposed on the support and the transducer. It defines together with the support a chamber 105 in which the transducer is housed.
  • the transducer, and more particularly the substrate, is thus protected from external elements, such as precipitation and dust.
  • the protection member is fixed to the face 45 of the uncoated substrate by the first and second electrodes. Since the substrate is thicker than the wavelength of the guided wave, the shield member does not interact with the guided wave.
  • the protective member may be made of an impact resistant material, such as a metal or a thermoplastic. In the example illustrated, the protection member is remote from the support. Thus, it does not obstruct the propagation of the ultrasonic surface wave in the medium.
  • the device illustrated in FIG. 4 differs from the device illustrated in FIG. 1 in that it comprises a portion projecting from the edge of the support, and that the first and second electrodes are arranged on a portion 108 of the non-superimposed piezoelectric substrate. to the support.
  • the first and second electrodes being distant from the support, it is easy to connect them electrically to the voltage generator.
  • the device When the substrate is electrically powered, the device generates a primary Q wave which propagates on the surface of the substrate then at the interface 110 between the substrate and the support.
  • the primary wave reaches the lateral end 98 of the substrate along its direction of propagation, it is transmitted into the medium in the form of an ultrasonic surface wave which propagates on the surface of the medium.
  • the ultrasonic surface wave can induce the displacement of a liquid on the support.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Special Spraying Apparatus (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

Dispositif électroacoustique Dispositif électroacoustique (5) comportant : - un transducteur (15) d'onde ultrasonore comportant un substrat (10) piézoélectrique et des première (30) et deuxième (35) électrodes en contact avec le substrat piézoélectrique, et - un support (10), le transducteur étant fixé sur le support et couplé acoustiquement avec le support, et les première et deuxième électrodes étant prises en sandwich, au moins en partie, entre le substrat piézoélectrique et le support, le dispositif étant configuré pour générer une onde de surface ultrasonore (W) se propageant dans le support à distance du transducteur, lorsqu'un courant électrique parcourt les première et deuxième électrodes.

Description

Description
Titre : Dispositif électroacoustique
La présente invention concerne un dispositif pour générer une onde de surface ultrasonore se propageant dans un support et un procédé mettant en œuvre ce dispositif pour fondre un corps disposé sur le support et/ou pour déplacer un corps à l’état liquide sur le support
Dans des domaines variés, il est nécessaire de s’affranchir des effets liés à l’accumulation d’un liquide sur une surface, et à la solidification de ce liquide lorsque la température de l’environnement et/ou la température de la surface est inférieure à la température de solidification du liquide.
Pour évacuer les gouttes de liquide accumulées sur une surface, il est bien connu d’appliquer un effort mécanique sur les gouttes, par exemple au moyen d’un essuie-glace sur un pare-brise d’un véhicule automobile. Toutefois, un essuie-glace limite le champ de vision accessible au conducteur. Il étale en outre les particules grasses déposées en surface du pare-brise. De plus, il est nécessaire de renouveler les garnitures de l’essuie-glace régulièrement.
Par ailleurs, les véhicules automobiles modernes comportent généralement un ou plusieurs systèmes d’aide à la conduite qui mettent en œuvre de nombreux capteurs, par exemple des capteurs optiques, tel qu’un lidar pour évaluer une distance entre le véhicule et un objet, ou des sondes, par exemple une sonde Pitot. Or, un effort mécanique sur les gouttes ne peut pas être aisément appliqué pour nettoyer la surface d’un tel capteur, par manque d’espace disponible pour disposer des moyens mécaniques adaptés qui pourraient de plus endommager la surface.
Par exemple, dans le domaine automobile, en conditions hivernales, il est nécessaire de dégivrer le miroir d’un rétroviseur, un pare-brise ou une lunette arrière d’un véhicule pour assurer une conduite sûre. Une technique de dégivrage connue consiste à souffler de l’air chaud sur la face du pare-brise opposée à celle sur laquelle une couche de givre et/ou de glace s’est déposée. Cependant, le temps de dégivrage requis par une telle technique est particulièrement élevé. Pour dégivrer une lunette arrière, il est connu d’y disposer, en masse ou en volume, un filament métallique suivant un trajet formé de lignes régulièrement espacées. La circulation d’un courant électrique au sein du filament génère un échauffement par effet Joule, qui résulte en une fusion de la couche de givre et/ou de glace à proximité du filament sous forme d’un film d’eau, puis en l’évaporation du film d’eau. Cependant, un tel filament limite le champ de vision arrière accessible au conducteur du véhicule. En outre, la couche de givre et/ou de glace comporte généralement des particules qui restent au contact du support une fois le film d’eau évaporé. Il est alors nécessaire de procéder fréquemment au nettoyage de la lunette arrière, ce qui s’avère fastidieux. En outre, la formation de givre et/ou de glace perturbe aussi le fonctionnement des capteurs des systèmes de conduite embarqués.
Par ailleurs, en usage, les surfaces de tels capteurs peuvent aussi être percutées par des éléments extérieurs tels que des insectes, des particules de poussière, de la boue, à des vitesses de l’ordre de celle du véhicule sur lequel elles sont montées. Un dispositif de nettoyage d’une telle surface doit donc être suffisamment robuste pour résister dans un tel environnement.
Il existe donc un besoin pour un dispositif répondant à ces inconvénients. L’invention propose, selon un premier de ses aspects, un dispositif électroacoustique comportant :
- un transducteur d’onde ultrasonore comportant un substrat piézoélectrique et des première et deuxième électrodes en contact avec le substrat piézoélectrique, et
- un support, le transducteur étant fixé sur le support et couplé acoustiquement avec le support et les première et deuxième électrodes étant prises en sandwich, au moins en partie, entre le substrat piézoélectrique et le support, le dispositif étant configuré pour générer une onde de surface ultrasonore se propageant dans le support à distance du transducteur, lorsqu’un courant électrique parcourt les première et deuxième électrodes.
Le dispositif selon l’invention est robuste. Les première et deuxième électrodes étant protégées par le support et par le substrat piézoélectrique, leur dégradation est ainsi limitée, par exemple lorsque le transducteur est mis en contact avec des éléments extérieurs tels que mentionnés ci-dessus.
Par ailleurs, comme cela apparaîtra plus clairement par la suite, le dispositif selon l’invention peut avantageusement être mis en œuvre pour nettoyer une surface recouverte d’un corps, par exemple d’un liquide. De préférence, le transducteur est configuré pour générer une onde guidée qui se transforme en l’onde de surface ultrasonore dans le support à distance du transducteur. L’onde « guidée » ultrasonore se propage à la fois dans le support et dans le transducteur, auprès des faces respectives du substrat et du support en regard l’une de l’autre. Dans une variante, qui sera décrite par la suite, où le dispositif comporte une couche intermédiaire comprise entre le support et le transducteur, l’onde guidée peut en outre se propager dans la couche intermédiaire. L’onde guidée ultrasonore peut notamment être une onde de Stoneley.
De préférence, les première et deuxième électrodes sont disposées sur le substrat piézoélectrique. De préférence, elles sont au contact du substrat piézoélectrique.
De préférence, les première et deuxième électrodes sont au contact du support ou sont au contact d’une couche intermédiaire, de préférence formée de colle, disposée sur le support. La génération de l’onde de surface ultrasonore est ainsi facilitée. La couche intermédiaire présente de préférence une épaisseur inférieure à la longueur d’onde fondamentale de l’onde guidée ultrasonore. En particulier, elle peut présenter une épaisseur inférieure à un dixième de ladite longueur d’onde fondamentale de l’onde guidée, afin de limiter les pertes par transmission à travers la couche intermédiaire.
Le dispositif peut être configuré pour que la fréquence fondamentale de l’onde guidée ultrasonore soit comprise entre 0,1 MHz et 1000 MHz, de préférence comprise entre 10 MHz et 100 MHz, par exemple égale à 40 MHz.
De préférence, l’épaisseur du substrat piézoélectrique est supérieure à la longueur d’onde fondamentale de l’onde guidée ultrasonore. On évite ainsi que l’onde guidée ultrasonore atteigne la face opposée à celle revêtue par les première et deuxième électrodes. Avantageusement, un organe additionnel, tel qu’un organe de protection comme décrit par la suite, peut être disposé sur ladite face opposée sans que l’onde guidée ne puisse atteindre G org ane .
Une partie de la première électrode, respectivement de la deuxième électrode, peut faire saillie du support. La partie de la première électrode, respectivement de la deuxième électrode, faisant saillie du support peut définir un connecteur d’alimentation électrique. Le connecteur d’alimentation électrique peut être conformé pour être relié électriquement à un générateur de courant.
Par ailleurs, l’invention propose, selon un deuxième de ses aspects, un dispositif acoustique comportant : - un transducteur d’onde ultrasonore comportant un substrat piézoélectrique et des première et deuxième électrodes en contact avec le substrat piézoélectrique, et
- un support, le transducteur étant fixé sur le support et couplé acoustiquement avec le support, le transducteur faisant saillie d’un bord du support, les première et deuxième électrodes revêtant une face du substrat en regard du support et étant disposées sur une portion du substrat piézoélectrique non superposée au support, le dispositif étant configuré pour générer une onde de surface ultrasonore se propageant dans le support à distance du transducteur, lorsqu’un courant électrique parcourt les première et deuxième électrodes.
Les première et deuxième électrodes peuvent ainsi être protégées des éléments extérieurs par le substrat piézoélectrique, ce qui limite leur dégradation. Par ailleurs, les électrodes étant disposées en saillie du bord du substrat, l’aire du support revêtue par le transducteur est réduite.
En outre, la disposition spécifique des première et deuxième électrodes permet de réduire réchauffement du dispositif lors de la génération de l’onde ultrasonore. En particulier, les électrodes n’étant pas disposées sur le support, on limite ainsi réchauffement du support par conduction de la chaleur produite par les électrodes.
De plus, dans une variante selon laquelle le transducteur est collé sur le support au moyen d’un adhésif polymère, on réduit le risque de décollement entre le transducteur et le support qui peut résulter d’un échauffement excessif de l’adhésif par conversion d’une partie de l’énergie de l’onde ultrasonore que ce dernier a absorbée.
Le transducteur est de préférence configuré pour générer une onde ultrasonore primaire se propageant dans le substrat et qui se transforme en l’onde de surface ultrasonore se propageant dans le support à distance du transducteur, lorsqu’un courant électrique parcourt les première et deuxième électrodes.
Le dispositif selon l’un quelconque de ses aspects peut en outre présenter l’une quelconque des caractéristiques optionnelles suivantes.
Le transducteur peut être fixé sur le support de différentes façons. Il peut être collé sur le support, notamment au moyen d’un adhésif polymérique. L’adhésif peut être réticulable par illumination au moyen d’un rayonnement ultraviolet. Il est par exemple une résine époxy. Le transducteur peut être fixé par adhérence moléculaire, ou au moyen d’une couche fine métallique assurant l’adhérence entre le support et le substrat. La couche peut être en un métal ou en alliage à basse température de fusion, i.e. présentant une température de fusion inférieure à 200 °C, par exemple en un alliage d’indium. En variante, la couche métallique peut être en un métal ou en un alliage présentant une température de fusion supérieure à 200 °C, par exemple en un alliage d’aluminium et/ou d’or.
Un exemple de fixation par adhérence moléculaire est décrit dans « Glass-on- LiNbO heterostructure formed via a two-step plasma activated low -température direct bonding method », J. Xu et al., Applied Surface Science 459 (2018) 621-629, doi : 10.1016/j. apsusc.2018.08.031. Selon une autre variante, le transducteur peut être fixé sur le support au moyen d’un procédé comportant une étape de fusion d’une portion du substrat et/ou d’une portion du support suivie par une étape consistant à comprimer ensemble le substrat et le support, les portions respectives en fusion du support et substrat étant en contact l’une de l’autre. Selon une autre variante, le transducteur peut être fixé sur le support au moyen d’un procédé comportant le dépôt de couches de liaison en un alliage à basse température de fusion sur une portion du substrat et sur une portion du support respectivement, la fusion au moins partielle desdites couches de liaison, puis la compression du substrat avec le support, les faces des couches de liaison opposées au support et au substrat étant mises en contact l’une avec l’autre au cours de la compression. Les couches de liaison peuvent être déposées par pulvérisation cathodique, ou par une technique d’évaporation mise en œuvre dans le domaine du dépôt de couches minces. Le substrat est de préférence collé sur le support. La face du substrat en regard du support est de préférence collée sur le support, au moyen d’une couche intermédiaire de colle qui en outre couple acoustiquement le transducteur au support. De préférence, l’épaisseur de la couche de colle est inférieure à la longueur d’onde de l’onde ultrasonore primaire afin que cette dernière puisse être transmise efficacement du transducteur au support, c’est à dire en limitant la dissipation dans la couche de colle.
Le dispositif selon l’un quelconque de ses aspects peut présenter une des caractéristiques suivantes.
Le dispositif peut être configuré pour que la fréquence fondamentale de l’onde de surface ultrasonore soit comprise entre 0,1 MHz et 1000 MHz, de préférence comprise entre 10 MHz et 100 MHz, par exemple égale à 40 MHz. L’onde de surface ultrasonore peut être une onde de Rayleigh ou une onde de Lamb. En particulier, elle peut être une onde de Rayleigh lorsque le support présente une épaisseur supérieure à la longueur d’onde de l’onde de surface ultrasonore. Une onde de Rayleigh est privilégiée car une proportion maximale de l’énergie de l’onde est concentrée sur la face du support sur laquelle elle se propage, et peut être transmise à un corps au contact du support.
Le dispositif peut être configuré pour que l’amplitude de l’onde ultrasonore de surface soit comprise entre 1 picomètre et 500 nanomètres. L’amplitude peut dépendre de la fréquence de l’onde fondamentale. Notamment, plus la fréquence est élevée, plus l’amplitude peut être faible. L’amplitude de l’onde ultrasonore de surface correspond au déplacement normal de la face du support sur laquelle se propage l’onde de surface ultrasonore et peut être mesurée par interférométrie laser.
Le support peut être en tout matériau apte à propager une onde de surface ultrasonore. Le support peut être choisi pour que la longueur d’atténuation de l’onde de surface dans le support soit supérieure à la zone à insonifier.
Le support peut être autoporteur, au sens où il peut se déformer, notamment élastiquement, sans rompre sous son propre poids.
La face du support sur laquelle l’onde de surface longitudinale se propage peut être plane. Elle peut aussi être courbe, sous réserve que le rayon de courbure de la face soit supérieur à la longueur d’onde de l’onde de surface ultrasonore.
La face peut être rugueuse. Les rugosités seront de préférence inférieures à la longueur d’onde fondamentale de l’onde de surface ultrasonore, afin d’éviter qu’elles n’affectent significativement leur propagation.
Le support peut notamment se présenter sous la forme d’une plaque plane ou courbe. L’épaisseur du support peut être inférieure à 0,01 m. La longueur du support peut être supérieure à 1 mm, voire supérieure à 1 cm, voire même supérieure à 1 m.
L’aire d’une face de la plaque peut être comprise entre 0,01 m2 et 10 m2.
Par « épaisseur du support », on considère la plus petite dimension du support mesurée selon une direction perpendiculaire à la surface sur laquelle se propage l’onde ultrasonore.
Le support peut être optiquement transparent, notamment à la lumière dans le visible ou à un rayonnement dans l’ultraviolet ou dans l’infrarouge. Le procédé est ainsi alors particulièrement adapté aux applications dans lesquelles l’amélioration du confort visuel d’un utilisateur observant son environnement à travers le support est recherchée.
Le support peut être en un matériau choisi parmi les matériaux piézoélectriques, les polymères, en particulier les thermoplastiques, notamment le polycarbonate, les verres, les métaux et les céramiques.
De préférence, le support est en matériau différent d’un matériau piézoélectrique.
De préférence, le support est choisi dans le groupe formé par :
- une surface automobile, par exemple choisie parmi un pare-brise d’un véhicule, un vitrage d’un rétroviseur, ou
- une visière d’un casque,
- une vitre d’un bâtiment,
- un capteur, par exemple un capteur optique, un capteur thermique, un capteur acoustique ou un capteur de pression ou de vitesse, notamment une sonde, par exemple une sonde de Pitot,
- une surface d’un dispositif optique, le dispositif optique étant par exemple choisi parmi un objectif d’une caméra, un verre d’une lunette de vue, et
- un élément de protection d’un tel capteur.
D’autres types de support sont envisageables. Notamment, le support peut être un substrat d’un laboratoire sur puce, notamment destiné à des applications microfluidiques.
Le support peut être un élément de la structure d’un aéronef, par exemple une aile, un fuselage ou un empennage.
Le support présente de préférence une forme mince. Le rapport entre la longueur du support sur l’épaisseur du support peut être supérieur à 10, voire supérieur à 100, voire supérieur à 1000.
Le support peut encore être choisi parmi un élément d’un échangeur de chaleur, une installation de plomberie et un élément d’un système de ventilation. De tels supports présentent généralement des surfaces auxquelles il est difficile d’accéder pour évacuer les gouttes de liquide qui s’y déposent, par exemple par condensation, et qui peuvent se solidifier.
Le support peut être un élément de stockage de nourriture, par exemple une paroi interne d’un réfrigérateur, ou une paroi exposée à la condensation d’un liquide pouvant solidifier. Par exemple, dans un réfrigérateur, la condensation des gouttes d’eau et leur solidification sur une paroi augmente l’échange thermique entre la paroi et le volume d’air frais du réfrigérateur, réduisant son rendement.
Le rapport entre l’aire du support couverte par le transducteur et l’aire de la face du support sur laquelle est fixé le transducteur peut être inférieure à 15%.
Le transducteur présente de préférence une forme mince. Le rapport entre la longueur du transducteur sur l’épaisseur du transducteur peut être supérieur à 10, voire supérieur à 100, voire supérieur à 1000.
Le transducteur peut se présenter sous la forme d’une plaque, plane ou courbe.
Le transducteur peut présenter une épaisseur comprise entre 10 picomètres et 1 micromètre. Le transducteur peut présenter une longueur et/ou une largeur de préférence comprises entre 1 millimètres et 20 cm.
De préférence, les première et deuxième électrodes forment des premier et deuxième peignes interdigités.
Les premier et deuxième peigne peuvent comporter de préférence une base à partir de laquelle s’étend une rangée de doigts, les doigts étant de préférence parallèle les uns aux autres. Les doigts peuvent présenter une largeur comprise entre la longueur d’onde fondamentale de l’onde ultrasonore divisée par 8 et la longueur d’onde fondamentale de l’onde ultrasonore divisée par 2. La largeur des doigts détermine en partie la fréquence fondamentale de l’onde de surface ultrasonore. Par ailleurs, une faible largeur de doigt augmente la résistance électrique du transducteur, qui peut se traduire par un échauffement qui peut participer à la fusion d’un corps qui est au contact du support ou au maintien du corps à l’état liquide.
Par ailleurs, l’espacement entre deux doigts consécutivement adjacents d’une rangée du premier peigne, respectivement du deuxième peigne, peut être comprise entre la longueur d’onde fondamentale de l’onde ultrasonore divisée par 8 et la longueur d’onde fondamentale de l’onde ultrasonore divisée par 2.
Le nombre de doigts interdigités peut être augmenté pour accroître le facteur de qualité du transducteur.
Chaque peigne comporte préférentiellement entre 2 et 50 doigts.
Le substrat peut être une couche mince déposée, par exemple par dépôt chimique en phase vapeur ou par dépôt physique en phase vapeur, sur le support. En variante, le substrat peut être autoporteur, c’est-à-dire suffisamment rigide pour ne pas fléchir sous l’effet de son propre poids. Le substrat autoporteur peut être fixé, par exemple collé, sur le support.
Le matériau piézoélectrique peut être choisi dans le groupe formé par le niobate de lithium, le nitrure d’aluminium, le titano-zircanate de plomb, l’oxyde de zinc, et leurs mélanges. Le matériau piézoélectrique peut être opaque à la lumière dans le visible.
Dans une variante, le support est formé du matériau piézoélectrique et le transducteur comporte le support. Les premier et deuxième peignes sont de préférence disposés au contact du support.
Dans une autre variante, le support est en un matériau différent d’un matériau piézoélectrique et les électrodes sont disposées sur le substrat intermédiaire.
Les première et deuxième électrodes peuvent être déposées par photolithographie sur le support et/ou sur le substrat.
Un corps peut être disposé sur une face du support à distance du transducteur.
La portion du corps la plus éloignée du transducteur peut être à une distance au plus de 1 mètre.
La température du support peut être inférieure à 0 °C, voire à -10 °C et le corps peut être aqueux.
Le corps peut être en contact de la face du support sur laquelle le transducteur est fixé, ou sur la face opposée à la face du support sur laquelle le transducteur est fixé. Le corps peut être en contact de la face du support sur laquelle le transducteur est fixé et un autre corps peut être en contact de la face sur laquelle est disposée le corps.
Le corps peut comporter une partie à l’état solide et une partie à l’état liquide. Par exemple, le corps peut être de l’eau et être formé d’une portion givrée, glacée ou enneigée et d’une portion liquide au contact de la portion givrée, glacée ou enneigée respectivement.
Le corps à l’état liquide peut se présenter sous la forme d’au moins une goutte ou d’au moins un film. Par « film », on entend une pellicule mince formée sur le support. Le film peut être continu ou discontinu.
Le corps peut être aqueux. En particulier, il peut être de l’eau de pluie ou de l’eau de rosée. L’eau de pluie et/ou l’eau de rosée peut notamment contenir des particules. Une eau de rosée forme une buée en surface d’un support. Elle résulte de la condensation sur le support, dans des conditions ad hoc de pression et de température, de l’eau sous forme vapeur contenue dans l’air. Le corps peut avoir été déposé par condensation avant de solidifier sur le support.
Le corps à l’état solide peut être choisi parmi un givre, de la glace et de la neige. Le corps à l’état liquide peut être une nappe ou au moins une goutte, par exemple une buée. Un « givre » est formé de gouttes d’eau ayant solidifiées avant d’avoir été déposées sur le support. La « glace » est formée de gouttes d’eau ayant condensé sur le support puis ayant solidifié sur le support.
Par ailleurs, afin de protéger le transducteur, notamment des éléments extérieurs tels que mentionnés ci-dessus, le dispositif comporte de préférence un organe de protection superposé au substrat piézoélectrique.
De préférence, le transducteur est logé dans une chambre définie par l’organe de protection et le support.
En particulier, dans le dispositif selon le premier aspect de l’invention, au moins une, voire toutes les faces du substrat non revêtues par les première et deuxième électrodes peuvent être en contact avec l’organe de protection.
L’organe de protection est de préférence distant du support, de manière à ne pas perturber la propagation de l’onde ultrasonore de surface.
L’organe de protection peut être au contact d’une face du transducteur non revêtue par les première et deuxième électrodes. Il n’interagit alors pas avec l’onde guidée ou avec l’onde primaire. De préférence, l’organe de protection est au contact de la face du transducteur opposée à la face sur laquelle les première et deuxième électrodes sont déposées. En particulier l’organe de protection peut être fixé, par exemple collé, sur le transducteur. Le dispositif est ainsi de fabrication simplifié.
Par ailleurs, le dispositif peut être relié électriquement à une générateur de courant pour alimenter électriquement le transducteur. Le générateur de courant peut être configuré pour délivrer une puissance d’alimentation électrique préférentiellement comprise entre 1 milliwatts et 500 watts.
Par ailleurs, l’invention concerne un procédé de fabrication du dispositif selon l’invention, comportant les étapes successives suivantes consistant à : a) former des première et deuxième électrodes sur une face d’un substrat piézoélectrique de manière à obtenir un transducteur d’ondes, b) fixer le transducteur d’ondes sur un support, pour obtenir ledit dispositif.
De préférence, on revêt le support et/ou le transducteur d’onde d’une couche de colle, puis le support et/ou le transducteur d’onde ainsi revêtues sont assemblés.
L’invention concerne encore une première méthode comportant la synthèse, au moyen d’un dispositif électroacoustique selon l’invention, d’une onde ultrasonore de surface se propageant dans le support jusqu’à un corps liquide disposé sur une face du support et distant du transducteur, l’énergie de l’onde ultrasonore étant suffisante pour induire un déplacement du corps sur le support.
Le corps peut se déplacer dans le sens de propagation de l’onde de surface ultrasonore.
L’invention concerne aussi une deuxième méthode comportant :
- la fourniture d’un dispositif électroacoustique selon l’invention, et
- l’alimentation électrique du transducteur d’onde pour synthétiser une onde ultrasonore de surface se propageant dans le support jusqu’à un corps disposé sur une face du support et distant du transducteur, au moins une partie de l’énergie d’alimentation électrique étant convertie sous forme de chaleur par le transducteur, l’énergie électrique alimentant le transducteur étant suffisante pour que la chaleur et l’énergie de l’onde ultrasonore de surface induisent :
- la fusion du corps lorsque le corps est à l’état solide,
- et/ou le maintien du corps à l’état liquide lorsque la température du support est inférieure à la température de solidification du corps.
L’énergie de l’onde ultrasonore peut en outre être suffisante pour induire le déplacement du corps fondu ou maintenu à l’état liquide sur la face.
L’invention concerne aussi une troisième méthode comportant :
- la fourniture d’un dispositif comportant : un transducteur d’onde ultrasonore comportant un substrat piézoélectrique, des première et deuxième électrodes en contact avec le substrat piézoélectrique et un support, le transducteur étant fixé sur le support et couplé acoustiquement avec le support, les première et deuxième électrodes étant prises en sandwich, au moins en partie, entre le substrat piézoélectrique et le support, le dispositif étant configuré pour générer une onde de surface ultrasonore se propageant dans le support à distance du transducteur, lorsqu’un courant électrique parcourt les première et deuxième électrodes, le transducteur étant configuré pour générer une onde guidée qui se transforme en l’onde de surface ultrasonore dans le support à distance du transducteur,
- la synthèse, au moyen dudit dispositif d’une onde ultrasonore de surface se propageant dans le support jusqu’à un corps liquide disposé sur une face du support et distant du transducteur, l’énergie de l’onde ultrasonore étant suffisante pour induire un déplacement du corps sur le support, le corps étant une nappe ou étant une goutte présentant un diamètre inférieur ou égal à 5 mm.
Par « diamètre » du corps, on entend la diamètre de la plus petite sphère circonscrite au corps. Le diamètre du corps est déterminé préalablement à la synthèse de l’onde ultrasonore.
La première méthode et/ou la deuxième méthode et/ou la troisième méthode peuvent comporter les caractéristiques suivantes.
Le corps peut présenter l’une quelconque des caractéristiques ci-dessus.
Le corps peut être une nappe. La nappe peut s’étendre sur le support sur une superficie supérieure ou égale à 2 cm2, voire supérieure ou égale à 5 cm2, voire supérieure ou égale à 10 cm2, voire supérieure ou égale à 100 cm2, voire supérieure ou égale à 500 cm2. L’épaisseur de la nappe peut être comprise entre 10 pm et 10 mm, voire comprise entre 50 pm et 5 mm.
Le corps peut être une goutte présentant un diamètre inférieur ou égal à 5 mm. La goutte peut présenter un diamètre inférieur ou égal à 1 mm, voire inférieur ou égal à 0, 1 mm. La goutte peut présenter un diamètre compris entre 2 mm et 5 mm. Elle peut présenter un diamètre compris entre 0, 1 mm et 2 mm.
Le corps peut se déplacer dans le sens de propagation de l’onde de surface ultrasonore.
Le corps peut être déplacé le long de la face du support sur laquelle il est disposé. Par ailleurs, la température du support peut être inférieure à 0 °C, et le corps est de préférence aqueux.
Enfin, l’invention concerne l’utilisation du dispositif selon l’invention, pour nettoyer et/ou désembuer et/ou dégivrer une face d’un support, notamment une surface automobile. L’invention pourra être mieux comprise à la lecture de la description détaillée qui va suivre, d’exemples de mise en œuvre non limitatifs de celle-ci, et à l’examen du dessin annexé, sur lequel :
[Fig 1] la figure 1 représente de manière schématique, et en coupe transversale, un exemple de dispositif électroacoustique selon l’invention,
[Fig2] la figure 2 représente en perspective le transducteur d’onde du dispositif électroacoustique illustré sur la figure 1,
[Fig 3] la figure 3 représente un autre exemple de dispositif électroacoustique selon l’invention, et
[Fig 4] la figure 4 représente encore autre exemple de dispositif électroacoustique selon l’invention.
Les éléments constitutifs du dessin n’ont pas été représentés à l’échelle par souci de clarté.
Description détaillée
On a illustré sur la figure 1 un premier exemple de dispositif électroacoustique 5 selon le premier aspect de l’invention.
Il comporte un support 10 sur lequel est fixé un transducteur 15, au moyen d’une couche de colle 20. La couche de colle couple acoustiquement le support au transducteur.
Le transducteur comporte un substrat 25 et des première 30 et deuxième 35 électrodes qui revêtent une face 40 du substrat.
Le substrat est fait d’un matériau piézoélectrique, par exemple en niobate de lithium, coupe Y 128°. Il présente une forme d’une plaque dont l’épaisseur e est supérieure à la longueur d’onde de l’onde générée par le transducteur. Ainsi, l’onde générée par le transducteur est transmise directement dans le support et n’atteint pas la face 45 du substrat opposée à celle sur laquelle le support est montée.
Les première et deuxième électrodes sont prises en sandwich entre le support et le substrat et sont reliées à un générateur de tension 50 qui les alimente électriquement. Elles sont ainsi disposées en regard du support, et sont protégées par le support, le substrat et la couche de colle.
Le support se présente dans l’exemple illustré sous la forme d’une plaque et présente une face 55 supérieure en contact avec l’environnement extérieur 60. Dans l’exemple illustré, elle est recouverte d’un corps 65 sous la forme d’un film d’eau. Le corps 65 peut être une goutte ou une nappe. Par exemple, la nappe est formée par l’agglomération de gouttes, par exemple de pluie, sur le support.
Pour fabriquer le dispositif, les première et deuxième électrodes peuvent être formées par un procédé d’évaporation ou pulvérisation et mises en forme par photolithographie. Elles peuvent être en chrome, ou aluminium ou en la combinaison d’une couche d’ accroche telle que le titane et une couche conductrice telle que l’or. Le substrat ainsi recouvert peut ensuite être collé sur le substrat. Afin de faciliter l’opération de collage, un substrat autoporteur est préféré.
Comme cela est illustré sur la figure 2, les première 30 et deuxième 35 électrode forment des premier 70 et deuxième 75 peignes. Chaque peigne comporte une base 80, 85 et une rangée de doigts 90, 95, s’étendant parallèlement les uns aux autres à partir de la base. Les premier et deuxième peignes sont interdigités.
Chacun des doigts du premier peigne, respectivement du deuxième peigne, présente une largeur 1 égale à la longueur d’onde fondamentale de l’onde ultrasonore de surface divisée par 4 et l’espacement S entre deux doigts consécutifs d’un peigne est égal à la longueur d’onde fondamentale de l’onde de surface ultrasonore divisée par 4.
L’espacement entre les doigts détermine la fréquence de résonance du transducteur que l’homme du métier sait aisément déterminer. Une tension alternative est appliquée par le générateur 50 et peut être amplifiée, de telle sorte que le transducteur génère une onde de surface ultrasonore.
La mise sous tension électrique alternative des première et deuxième électrodes induit une réponse mécanique du matériau piézoélectrique, qui résulte en la génération d’une onde de surface guidée G qui se propage dans le support selon un sens de propagation P, notamment vers le corps disposé sur le support.
Pour un transducteur configuré pour générer une onde de fréquence fondamentale prédéterminée, la détermination de l’énergie générée par le transducteur suffisante pour déplacer ou fondre le corps et/ou le maintenir à l’état liquide est aisée pour l’homme du métier. Notamment, l’homme du métier sait relier la fréquence fondamentale de l’onde guidée ultrasonore à la fréquence du signal électrique pour générer l’onde. Il sait ensuite faire varier l’amplitude du signal électrique de manière à déterminer l’énergie électrique suffisante à fournir au transducteur. Lorsque le transducteur est alimenté électriquement par le générateur de tension, il génère une onde ultrasonore. Les première et deuxième électrodes étant prises en sandwich entre le support et le substrat, l’onde G générée par le transducteur est guidée et se propage à l’interface entre le support et le substrat, définie par la face du substrat revêtue par les électrodes et par la face du support en regard des électrodes. Lorsque l’onde guidée atteint l’extrémité latérale 98 du substrat le long de sa direction de propagation, elle est transmise dans le support sous la forme d’une onde de surface ultrasonore W qui se propage en surface du support. La transformation de l’onde guidée en onde de surface résulte de l’absence d’interface entre deux solides dans la portion du support non recouverte par le transducteur. L’onde de surface interagit ensuite avec le corps recouvrant le support. Pour un corps liquide, un transducteur synthétisant une onde de surface de fréquence fondamentale comprise entre 0,1 MHz et 1000 MHz, de préférence comprise entre 10 MHz et 100 MHz, par exemple égale à 40 MHz, est bien adapté pour assurer le déplacement d’un film d’eau. Dans la variante où le film d’eau est sous forme de glace ou de givre, il est aussi bien adapté pour provoquer la fusion du film d’eau, par l’apport de l’énergie de l’onde de surface ultrasonore et par le transfert de la chaleur qu’il génère, notamment par chauffage résistif des électrodes.
Le dispositif illustré sur la figure 3 diffère de celui illustré sur la figure 1 en ce qu’il comporte en outre un organe de protection 100 qui est superposé au support et au transducteur. Il définit conjointement avec le support une chambre 105 dans laquelle le transducteur est logé. Le transducteur, et plus particulièrement le substrat est ainsi protégé des éléments extérieurs, tels que les précipitations et les poussières. L’organe de protection est fixé sur la face 45 du substrat non revêtue par les première et deuxième électrodes. Le substrat ayant une épaisseur supérieure à la longueur d’onde de l’onde guidée, l’organe de protection n’interagit pas avec l’onde guidée. L’organe de protection peut être en matériau résistant aux chocs, tels qu’un métal ou un thermoplastique. Dans l’exemple illustré, l’organe de protection est distant du support. Ainsi, il n’entrave pas la propagation de l’onde de surface ultrasonore dans le support.
Enfin, le dispositif illustré sur la figure 4 diffère du dispositif illustré sur la figure 1 en ce qu’il comporte une portion faisant saillie du bord du support, et que les première et deuxième électrodes sont disposées sur une portion 108 du substrat piézoélectrique non superposée au support. Les première et deuxième électrodes étant distantes du support, il est aisé de les connecter électriquement au générateur de tension. Lorsque le substrat est alimenté électriquement, le dispositif génère une onde primaire Q qui se propage en surface du substrat puis à l’interface 110 entre la substrat et le support. Lorsque l’onde primaire atteint l’extrémité latérale 98 du substrat le long de sa direction de propagation, elle est transmise dans le support sous la forme d’une onde de surface ultrasonore qui se propage en surface du support. Comme dans l’exemple de la figure 1, l’onde de surface ultrasonore peut induire le déplacement d’un liquide sur le support.
Bien entendu, l’invention n’est pas limitée aux modes de mise en œuvre du procédé, et notamment aux exemples, présentés dans la présente description.

Claims

Revendications
1. Dispositif électroacoustique (5) comportant :
- un transducteur (15) d’onde ultrasonore comportant un substrat (25) piézoélectrique et des première (30) et deuxième (35) électrodes en contact avec le substrat piézoélectrique, et
- un support (10), le transducteur étant fixé sur le support et couplé acoustiquement avec le support, et les première et deuxième électrodes étant prises en sandwich, au moins en partie, entre le substrat piézoélectrique et le support, le dispositif étant configuré pour générer une onde de surface ultrasonore (W) se propageant dans le support à distance du transducteur, lorsqu’un courant électrique parcourt les première et deuxième électrodes, le transducteur étant configuré pour générer une onde guidée qui se transforme en l’onde de surface ultrasonore dans le support à distance du transducteur, le dispositif étant configuré pour que la fréquence fondamentale de l’onde guidée ultrasonore soit comprise entre 10 MHz et 1000 MHz.
2. Dispositif selon la revendication 1 , les première et deuxième électrodes étant au contact du support ou étant au contact d’une couche intermédiaire, de préférence formée de colle, disposée sur le support.
3. Dispositif selon l’une quelconque des revendications 1 et 2, l’épaisseur (e) du substrat piézoélectrique étant supérieure à la longueur d’onde fondamentale de l’onde guidée ultrasonore.
4. Dispositif selon l’une quelconque des revendications précédentes, une partie de la première, respectivement deuxième, électrode, faisant saillie du support.
5. Dispositif électroacoustique (5) comportant :
- un transducteur (15) d’onde ultrasonore comportant un substrat (25) piézoélectrique et des première (30) et deuxième (35) électrodes en contact avec le substrat piézoélectrique, et
- un support (10), le transducteur étant fixé sur le support et couplé acoustiquement avec le support, le transducteur faisant saillie d’un bord du support, les première et deuxième électrodes revêtant une face du substrat en regard du support et étant disposées sur une portion du substrat piézoélectrique non superposée au support, le dispositif étant configuré pour générer une onde de surface ultrasonore se propageant dans le support à distance du transducteur, lorsqu’un courant électrique parcourt les première et deuxième électrodes.
6. Dispositif selon l’une quelconque des revendications précédentes, le substrat étant collé sur le support.
7. Dispositif selon l’une quelconque des revendications précédentes, comportant un organe de protection (100) superposé au substrat piézoélectrique.
8. Dispositif selon la revendication précédente, le transducteur étant logé dans une chambre (105) définie par l’organe de protection et le support.
9. Dispositif selon l’une quelconque des revendications précédentes, le support étant choisi dans le groupe formé par :
- une surface automobile, par exemple choisie parmi un pare-brise d’un véhicule, un vitrage d’un rétroviseur, ou
- une visière d’un casque,
- une vitre d’un bâtiment,
- un capteur, par exemple un capteur optique, un capteur thermique, un capteur acoustique ou un capteur de pression ou de vitesse, notamment une sonde, par exemple une sonde de Pitot,
- une surface d’un dispositif optique, le dispositif optique étant par exemple choisi parmi un objectif d’une caméra, un verre d’une lunette de vue, et
- un élément de protection d’un tel capteur.
10. Méthode comportant
- la fourniture d’un dispositif comportant : un transducteur (15) d’onde ultrasonore comportant un substrat (25) piézoélectrique et des première (30) et deuxième (35) électrodes en contact avec le substrat piézoélectrique, et un support (10), le transducteur étant fixé sur le support et couplé acoustiquement avec le support, et les première et deuxième électrodes étant prises en sandwich, au moins en partie, entre le substrat piézoélectrique et le support, le dispositif étant configuré pour générer une onde de surface ultrasonore (W) se propageant dans le support à distance du transducteur, lorsqu’un courant électrique parcourt les première et deuxième électrodes, le transducteur étant configuré pour générer une onde guidée qui se transforme en l’onde de surface ultrasonore dans le support à distance du transducteur, - la synthèse, au moyen du dispositif d’une onde ultrasonore de surface (W) se propageant dans le support (10) jusqu’à un corps (65) liquide disposé sur une face du support et distant du transducteur, l’énergie de l’onde ultrasonore étant suffisante pour induire un déplacement du corps sur le support, le corps étant une nappe ou étant une goutte présentant un diamètre inférieur ou égal à 5 mm.
11. Méthode selon la revendication précédente, la goutte présentant un diamètre inférieur ou égal à 1 mm.
12. Méthode selon la revendication précédente, la goutte présentant un diamètre inférieure ou égal à 0,1 mm.
13. Méthode comportant la synthèse, au moyen d’un dispositif selon l’une quelconque des revendications 1 à 9, d’une onde ultrasonore de surface (W) se propageant dans le support (10) jusqu’à un corps (65) liquide disposé sur une face du support et distant du transducteur, l’énergie de l’onde ultrasonore étant suffisante pour induire un déplacement du corps sur le support.
14. Méthode selon la revendication précédente, le corps étant une nappe ou étant une goutte présentant un diamètre inférieur ou égal à 5 mm.
15. Méthode selon la revendication précédente, la goutte présentant un diamètre inférieur ou égal à 1 mm.
16. Méthode selon la revendication précédente, la goutte présentant un diamètre inférieure ou égal à 0,1 mm.
17. Méthode comportant :
- la fourniture d’un dispositif électroacoustique (5) selon l’une quelconque des revendications 1 à 9, et
- l’alimentation électrique du transducteur d’onde pour synthétiser une onde ultrasonore de surface (W) se propageant dans le support (10) jusqu’à un corps (65) disposé sur une face du support et distant du transducteur, au moins une partie de l’énergie d’alimentation électrique étant convertie sous forme de chaleur par le transducteur, l’énergie électrique alimentant le transducteur étant suffisante pour que la chaleur et l’énergie de l’onde ultrasonore de surface induisent :
- la fusion du corps lorsque le corps est à l’état solide,
- et/ou le maintien du corps à l’état liquide lorsque la température du support est inférieure à la température de solidification du corps.
18. Méthode selon la revendication précédente, l’énergie de l’onde ultrasonore étant en outre suffisante pour induire le déplacement du corps fondu ou maintenu à l’état liquide sur la face du support.
19. Méthode selon l’une quelconque des revendications 10 à 18, le corps comportant, voire étant constitué par de l’eau, notamment de l’eau de pluie ou de l’eau de rosée.
20. Méthode selon l’une quelconque des revendications 10 à 19, la fréquence fondamentale de l’onde guidée et/ou la fréquence fondamentale de l’onde de surface étant comprise en 0,1 MHz et 1000 MHz, de préférence comprise entre 10 MHz et 100 MHz, par exemple égale à 40 MHz.
21. Utilisation du dispositif selon l’une quelconque des revendications 1 à 9, pour nettoyer et/ou désembuer et/ou dégivrer une face d’un support, le support étant de préférence tel que selon la revendication 9.
EP20780191.1A 2019-09-25 2020-09-24 Dispositif électroacoustique Pending EP4034311A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1910590A FR3100999B1 (fr) 2019-09-25 2019-09-25 Dispositif électroacoustique
PCT/EP2020/076762 WO2021058666A1 (fr) 2019-09-25 2020-09-24 Dispositif électroacoustique

Publications (1)

Publication Number Publication Date
EP4034311A1 true EP4034311A1 (fr) 2022-08-03

Family

ID=69190917

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20780191.1A Pending EP4034311A1 (fr) 2019-09-25 2020-09-24 Dispositif électroacoustique

Country Status (6)

Country Link
US (1) US20220339669A1 (fr)
EP (1) EP4034311A1 (fr)
JP (1) JP2022550302A (fr)
CN (1) CN114630717A (fr)
FR (1) FR3100999B1 (fr)
WO (1) WO2021058666A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11673585B2 (en) * 2020-05-29 2023-06-13 Gm Cruise Holdings Llc Integrated module for sensor data aggregation and control of sensor support hardware
FR3130656A1 (fr) * 2021-12-16 2023-06-23 Valeo Systèmes D’Essuyage Ensemble de protection d’une unité de nettoyage d’une surface optique par ondes ultrasonores, avec recouvrement en matériau absorbant d’onde électromagnétique
FR3130657A1 (fr) * 2021-12-16 2023-06-23 Valeo Systèmes D’Essuyage Ensemble de protection d’une unité de nettoyage par ondes ultrasonores d’une surface optique

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2145892A (en) * 1983-08-31 1985-04-03 Philips Electronic Associated Surface acoustic wave device
US4768256A (en) * 1986-11-07 1988-09-06 Motoda Electronics Co., Ltd. Ultrasonic wiper
US7227293B2 (en) * 2005-05-11 2007-06-05 Tai-Saw Technology Co., Ltd. Surface acoustic wave device with electro-static discharge protection
CN101279318B (zh) * 2007-04-06 2011-01-26 广州市新栋力超声电子设备有限公司 一种超声弯曲振动装置
CN201724191U (zh) * 2010-07-17 2011-01-26 安徽师范大学 采用传感器和单片机并利用超声波的led灯具清洗器
GB201100290D0 (en) * 2011-01-10 2011-02-23 Trevett David R M Clearing precipitation from windaows
JP6063672B2 (ja) * 2011-09-06 2017-01-18 キヤノン株式会社 圧電セラミックス、圧電セラミックスの製造方法、圧電素子、液体吐出ヘッド、液体吐出装置、超音波モータ、光学機器、振動装置、塵埃除去装置、撮像装置、圧電音響部品、および電子機器
CN103163569A (zh) * 2011-12-14 2013-06-19 苏州凯行电子科技有限公司 一种智能防雾树脂镜片及其成镜制作方法
CN102434405B (zh) * 2011-12-27 2013-08-07 东南大学 热辅助超声波联合除冰装置及其控制方法
US9796002B2 (en) * 2012-03-05 2017-10-24 Empire Technology Development Llc Particle removal using periodic piezoelectric coefficient material
GB2518136B (en) * 2013-07-22 2016-09-14 Echovista Gmbh Ultrasonically clearing precipitation
US20160023772A1 (en) * 2013-07-26 2016-01-28 Fbs, Inc. Ultrasonic vibration system and method for removing/avoiding unwanted build-up on structures
CN104056708B (zh) * 2014-05-30 2016-08-17 浙江大学 基于声表面波的细胞粉碎器
CN205546005U (zh) * 2015-11-24 2016-08-31 范贵云 汽车后挡风玻璃除雾除霜装置及汽车
FR3044937B1 (fr) * 2015-12-09 2018-01-12 Universite De Lille 1 Procede pour favoriser le glissement d'au moins une goutte sur un support
KR101838596B1 (ko) * 2017-07-13 2018-04-27 한국철도기술연구원 압전소자를 이용한 제빙 장치

Also Published As

Publication number Publication date
US20220339669A1 (en) 2022-10-27
JP2022550302A (ja) 2022-12-01
WO2021058666A1 (fr) 2021-04-01
FR3100999B1 (fr) 2022-07-15
CN114630717A (zh) 2022-06-14
FR3100999A1 (fr) 2021-03-26

Similar Documents

Publication Publication Date Title
WO2021058666A1 (fr) Dispositif électroacoustique
EP4034312A1 (fr) Dispositif pour nettoyer un support recouvert d'un liquide
EP4260122A1 (fr) Dispositif pour nettoyer une surface optique
EP0667265B1 (fr) Paroi composite, notamment pare-brise pour véhicule automobile, comportant un dispositif de détection ultrasonore pour la détection de corps étrangers sur une de ses faces
WO2021058664A1 (fr) Procédé de fusion d'un corps au moyen d'une onde ultrasonore
EP4260123A1 (fr) Dispositif pour nettoyer une surface optique
EP3772133A1 (fr) Dispositif de protection pour lidar de véhicule automobile
WO2009095599A1 (fr) Agencement pour l'evacuation d'eau sur une surface optique de vehicule automobile
WO2023110982A1 (fr) Ensemble de protection d'une unité de nettoyage par ondes ultrasonores d'une surface optique
WO2024079259A1 (fr) Unité de protection et ensemble de détection pour véhicule automobile
WO2022207667A1 (fr) Dispositif de nettoyage d'une surface optique
WO2023110979A1 (fr) Ensemble de protection d'une unité de nettoyage d'une surface optique par ondes ultrasonores, avec recouvrement en matériau absorbant d'onde électromagnétique
WO2023117676A1 (fr) Dispositif pour nettoyer une surface
WO2024079226A1 (fr) Unité de protection et ensemble de détection pour véhicule automobile
WO2024079258A1 (fr) Glace de fermeture et système d'éclairage et/ou de signalisation pour véhicule automobile
FR3131396A1 (fr) Ensemble de détection comprenant un capteur et au moins un transducteur d’onde pour nettoyer une surface optique du capteur
EP3315368B1 (fr) Ensemble pour vehicule automobile comprenant un equipement automobile et un element piezo-electrique
WO2024089222A1 (fr) Système d'essuyage avec élément chauffant dans une zone d'extrémité longitudinale du balai d'essuyage
JPH06270776A (ja) 雨滴除去ミラー

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220316

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)