EP4030420B1 - Métamatériau acoustique et son procédé de fabrication - Google Patents

Métamatériau acoustique et son procédé de fabrication Download PDF

Info

Publication number
EP4030420B1
EP4030420B1 EP21382026.9A EP21382026A EP4030420B1 EP 4030420 B1 EP4030420 B1 EP 4030420B1 EP 21382026 A EP21382026 A EP 21382026A EP 4030420 B1 EP4030420 B1 EP 4030420B1
Authority
EP
European Patent Office
Prior art keywords
resonating
layer
separating
thickness
acoustic metamaterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21382026.9A
Other languages
German (de)
English (en)
Other versions
EP4030420A1 (fr
EP4030420C0 (fr
Inventor
Francisco Javier Oliver Olivella
Juan Carlos Cante Terán
David Roca Cazorla
Oriol Lloberas Valls
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre Internacional De Metodes Numerics A L'enginyeria
Original Assignee
Centre Internacional De Metodes Numerics A L'enginyeria
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre Internacional De Metodes Numerics A L'enginyeria filed Critical Centre Internacional De Metodes Numerics A L'enginyeria
Priority to EP21382026.9A priority Critical patent/EP4030420B1/fr
Priority to ES21382026T priority patent/ES2952320T3/es
Priority to PCT/EP2021/083456 priority patent/WO2022152449A1/fr
Publication of EP4030420A1 publication Critical patent/EP4030420A1/fr
Application granted granted Critical
Publication of EP4030420B1 publication Critical patent/EP4030420B1/fr
Publication of EP4030420C0 publication Critical patent/EP4030420C0/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • G10K11/168Plural layers of different materials, e.g. sandwiches
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K1/00Devices in which sound is produced by striking a resonating body, e.g. bells, chimes or gongs
    • G10K1/06Devices in which sound is produced by striking a resonating body, e.g. bells, chimes or gongs the resonating devices having the shape of a bell, plate, rod, or tube
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/002Devices for damping, suppressing, obstructing or conducting sound in acoustic devices

Definitions

  • the present invention relates to an acoustic metamaterial for noise control and sound attenuation, which is introduced as Multi-resonant Layered Acoustic Metamaterial (MLAM), and which is especially intended for a broad range of applications from different fields, such as building construction, transport industries (trains, aircrafts, etc.
  • MLAM Multi-resonant Layered Acoustic Metamaterial
  • the present invention also relates to a process for manufacturing said acoustic metamaterial.
  • acoustic metamaterials Local resonance appears when the metamaterial is excited by an acoustic wave at a frequency in the vicinity of the frequencies triggering its internal modes.
  • the lower scale of acoustic metamaterials is typically composed of a resonating element, in the form of a coated inclusion, a membrane or some equivalent geometrical contraption, embedded in a stiff matrix or some other kind of structural support.
  • the first problem is that, since local resonance effects are a highly localized phenomenon, the associated frequency bandgaps tend to be narrowband. There are some ways to try to overcome this issue, including coupling local resonance with other attenuating phenomena (for instance, damping) or using different resonating elements. These solutions often add complexity in the overall metamaterial configuration or result in other undesired effects. For example, notice in Figure 22 the dip between two sound transmission loss peaks caused by different uncoupled local resonators in an acoustic metamaterial panel.
  • the second problem is that, for acoustic metamaterials to operate in the frequency range of interest, a proper selection of materials and geometrical properties needs to be made, which usually entails challenging manufacturing processes (3d printing and other additive manufacturing technologies are often considered). The complexity of such techniques and geometries makes them inadequate for large scale and economically feasible production.
  • the acoustic metamaterial for noise control and sound attenuation of the present invention resolves the previously mentioned problems, thanks to a simplified configuration which makes it easy to produce by manufacturing processes like, for instance, lamination and die cutting.
  • a simplified configuration which makes it easy to produce by manufacturing processes like, for instance, lamination and die cutting.
  • their respective internal modes can be coupled in order to produce an extended attenuation band unperturbed by undesired effects.
  • the present invention also relates to a simplified process for easily and economically manufacturing said acoustic metamaterial.
  • the acoustic metamaterial of the present invention is defined by the features of claim 1. Preferred embodiments of the same are defined by the features of the dependent claims 2-11.
  • the acoustic metamaterial of the present invention also called Multi-resonant Layered Acoustic Metamaterial (MLAM)
  • MLAM Multi-resonant Layered Acoustic Metamaterial
  • each resonating layer forms a thin laminate of constant thickness and a single material (homogeneous material), which makes it easy to massively manufacture (large scale production) using manufacturing processes like, for instance, lamination and die cutting.
  • This laminate concept (or flat configuration) avoids, for example, issues related to the manufacture of composite material concepts based on complex inclusions embedded in a matrix.
  • Each resonating layer contains a number of periodically repeating patterns, referred to resonating unit cells.
  • Said unit cells contain the resonating elements responsible for producing local resonance effects at specific target frequencies.
  • the material and topology (thickness, geometric properties, unit cell patterns, etc.) of these resonating layers are relevant to determine the resonating capabilities of the acoustic metamaterial of the present invention. For example, the density of the material plays an important role to improve the attenuation properties, providing the higher densities a better overall performance.
  • Each resonating element extends into the respectively resonating opening, occupying or covering part of the same, thus forming a flat vibrating element in the form of a tab, flap, strip, or any extending element, etc. attached to one internal side of the resonating unit cell.
  • the resonating elements are T-shaped or U-shaped, thus making easier the manufacture of the same. Nonetheless, other configurations are also possible, involving circular or linear geometries, or a combination of the same, as for example, a T-shaped configuration with a substantially circular head, etc. Even irregular shapes would be admissible, as long as they function as resonating elements, i.e. providing a resonance mode in the desired frequency range.
  • the acoustic metamaterial comprises at least one separating layer made of a single or homogenous material having a constant separating thickness and a plurality of separating unit cells, wherein each separating unit cell comprises a separating opening (hole, cavity).
  • the separating layer is arranged adjacent to the resonating layer, partially or completely overlapping the separating openings with the resonating openings to allow the vibration of the resonating elements.
  • the separating openings may adopt different geometries, such as: square, rectangular, hexagonal, circular, elliptical, or any other shape, regular or irregular, accommodating the resonating elements.
  • Each separating layer forms a thin laminate of constant thickness and a single material (homogeneous material), which makes it easy to massively manufacture (large scale production) using manufacturing processes like, for instance, lamination and die cutting.
  • This laminate concept (or flat configuration) avoids, for example, issues related to the manufacture of composite material concepts based on complex inclusions embedded in a matrix.
  • the separating layers separate the resonating layers from other layers, or from the construction elements acting as support. They can also be used to create cavities between other types of layers in case effects caused by air resonances are to be considered in the design.
  • the separating thickness of these layers can be used to adjust the cavity size.
  • a separating layer attached to a resonating layer forms a resonating set.
  • the acoustic metamaterial may comprise a plurality of resonating sets of different configurations connected between them to obtain an extended attenuation band. Thus, improving the attenuating capabilities of the acoustic metamaterial of the present invention.
  • the acoustic metamaterial comprises at least one skin layer made of a solid single or homogeneous material having a constant skin thickness, which is arranged adjacent to a separating layer.
  • the skin layers are homogeneous solid layers located at each end of the stack forming the acoustic metamaterial. Their purpose is to provide a foundation or support for the rest of the layers conforming the stack. Additionally, they can be used as a protective casing for transporting and installing the acoustic metamaterial, thus protecting the inner layers between said skin layers.
  • the relevant property for the material in such layers is the stiffness (with higher stiffness values providing overall better performance).
  • the skin layers can be removed in case the acoustic metamaterial is stacked onto another kind of construction element (e.g. wall, panel, structure) acting as support.
  • Each skin layer forms a thin laminate of constant thickness and a single material (homogeneous material), which makes it easy to massively manufacture (large scale production) using manufacturing processes like, for instance, lamination and die cutting.
  • This laminate concept (or flat configuration) avoids, for example, issues related to the manufacture of composite material concepts based on complex inclusions embedded in a matrix.
  • the acoustic metamaterial of the present invention comprises two separating layers formed by a first separating layer and a second separating layer, wherein the first separating layer is arranged adjacent to a front side of a resonating layer, and wherein the second separating layer is arranged adjacent to a rear side of said resonating layer, partially or completely overlapping the separating openings of the first separating layer and the second separating layer with the resonating openings of the resonating layer to allow the vibration of the resonating elements.
  • the acoustic metamaterial of the present invention comprises two resonating layers formed by a first resonating layer and a second resonating layer, wherein the first resonating layer and the second resonating layer have a similar or different configuration, in order to obtain an extended attenuation band.
  • the acoustic metamaterial comprises a connecting layer made of a single or homogeneous material having a constant connecting thickness and a plurality of connecting unit cells, wherein each connecting unit cell comprises a connecting opening.
  • the connecting layer is arranged adjacent to the first resonating layer and to the second resonating layer, partially or completely overlapping the connecting openings of the connecting layer with the resonating openings of the first resonating layer and the second resonating layer to allow the vibration of the resonating elements.
  • the connecting layer forms a thin laminate of constant thickness and a single material (homogeneous material), which makes it easy to massively manufacture (large scale production) using manufacturing processes like, for instance, lamination and die cutting.
  • This laminate concept (or flat configuration) avoids, for example, issues related to the manufacture of composite material concepts based on complex inclusions embedded in a matrix.
  • the connecting layer is placed between two resonating layers to couple their respective attenuating capabilities and produce an extended attenuation band.
  • the material and topology of these layers is important to establish a proper coupling between resonances.
  • the relevant material property in this case is the stiffness (higher compliance, or lower stiffness, provides overall better performance).
  • the materials can be different for each layer.
  • the single or homogenous materials that may be used for any of the previous layers are polymers or standard polymers (e.g. polyamides, PVC, etc.), rubber-like materials (e.g. silicone rubber), or metals (e.g. steel, aluminum, etc.).
  • Table 1 shows an example of the properties for these types of materials.
  • Table 1 Material Density (kg/m 3 ) Young's Modulus (MPa) Poisson's ratio Polymer-like 900-1200 1000-5000 0.4-0.48 e.g. Polyamide 950 1650 0.4 Rubber-like 1000-1500 0.1-100 0.45-0.5 e.g. Silicone rubber 1060 0.15 0.47 Metal-like 2000-10000 50000-300000 0.25-0.35 e.g. Steel 7860 200000 0.3
  • the constant thickness can be different for each layer.
  • the sum of the thicknesses of all the layers conforming the acoustic metamaterial determines its total thickness.
  • the thickness and material properties of each layer can be chosen to adjust the attenuation level of the acoustic metamaterial. Typical magnitude ranges for each layer's thickness depend on the material type employed.
  • the constant thickness for any of the previous layers ranges from 0.5 to 20 mm.
  • the constant thickness for any any of the previous layers ranges:
  • each unit cell parameters p and q, can be adjusted to target a range of operation in terms of frequencies and attenuation level.
  • a practical magnitude range for these dimensions is from 10 to 100 mm.
  • each unit cell (resonating unit cell, separating unit cell, connecting unit cell) for any of the previous layers (resonating layers, separating layers, connecting layers) has:
  • the surface size of the acoustic metamaterial, parameters H and W is determined according to the specific needs of each application. A practical magnitude range for such dimensions is from 10 cm to 2 m.
  • the acoustic metamaterial has:
  • the acoustic metamaterial of the present invention may adopt different constructive configurations depending on the intended used of the same.
  • the acoustic metamaterial is presented in the form of a panel or liner, depending on the total thickness and the stiffness of the employed materials.
  • a panel configuration is normally associated with a rigid product.
  • a liner configuration may be associated with a product of flexible character (such as a flexible covering), due to the small thickness of some embodiments, allowing its use for covering irregular surfaces, or no flat surfaces, that may be present in some applications.
  • the acoustic metamaterial of the present invention forms a collection of different stacked layers of constant thickness joined in the form of a panel or liner for sound attenuation at selected frequency ranges. Its constant thickness layered configuration makes it easy to produce by manufacturing processes like, for instance, lamination and die cutting.
  • Table 3 shows a second example of the acoustic metamaterial of the present invention forming a panel, wherein the layers are made of different materials. The openings between adjacent layers partially overlap, and the layers are disposed symmetrically.
  • Table 3 Width [W] (mm) Height [H] (mm) Thickness [t 1 ] (mm) unit cells (*) 400 400 7.7 10x 10 Layer Type Material Thickness, [t i ] (mm) 4a Skin Polymer-like 0.65 3a Separating Polymer-like 0.5 2a Resonating (U-shaped) Metal-like 0.7 Width [W] (mm) Height [H] (mm) Thickness [t 1 ] (mm) unit cells (*) 5 Connecting Rubber-like 4 2b Resonating (U-shaped) Metal-like 0.7 3b Separating Polymer-like 0.5 4b Skin Polymer-like 0.65 (*) Unit cell width [p] and height [q] of 40 mm
  • Table 4 shows a third example of the acoustic metamaterial of the present invention forming a panel without metallic layers. The openings between adjacent layers partially overlap, and the layers are disposed asymmetrically, having no front skin layer.
  • Table 4 Width [W] (mm) Height [H] (mm) Thickness [t 1 ] (mm) unit cells (*) 400 400 20 10 x 10 Layer Type Material Thickness, [t i ] (mm) 3a Separating Polymer-like 0.5 2a Resonating (T-shaped) Polymer-like 4 5 Connecting Rubber-like 10 2b Resonating (U-shaped) Polymer-like 3.5 3b Separating Polymer-like 0.5 4b Skin Polymer-like 1.5 (*) Unit cell width [p] and height [q] of 40 mm
  • Table 5 shows a fourth example of the acoustic metamaterial of the present invention forming a liner, wherein all the layers are made of rubber-like materials. The openings between adjacent layers coincide or completely overlap, and the layers are disposed symmetrically, having no skin layers.
  • Table 5 Width [W] (mm) Height [H] (mm) Thickness [t 1 ] (mm) unit cells (*) 400 800 12 20 x 40 Layer Type Material Thickness, [t i ] (mm) 3a Separating Rubber-like 1 2a Resonating (T-shaped) Rubber-like 3 5 Connecting Rubber-like 4 2b Resonating (T-shaped) Rubber-like 3 3b Separating Rubber-like 1 (*) Unit cell width [p] and height [q] of 40 mm
  • Table 6 shows the resonating unit cells dimensions for each of the previous examples.
  • Table 6 Dimensions (mm) First example Second example Third example Fourth example Hole width [r] 35 36 / 36 38 / 38 38 1 38 Hole height [s] 35 36 / 36 38/38 38/38 Resonating element width [a] 25 20 / 28 34 / 30 34/34 Resonating element height [b] 20 28 / 32 36 / 34 36/ 36 Union width [c] 8 - / - 5/- 10/20 Union height [d] 5 - / - 8/- 2/2 - The "/" is to distinguish among two resonating layers. - The union dimensions [c] and [d] are only given for the "T-shaped" resonating elements. For "U-shaped", these dimensions don't exist (or they can be considered 0).
  • Table 7 shows the separating/connecting unit cells dimensions for each of the previous examples. Table 7 Dimensions (mm) First example Second example Third example Fourth example Hole width [r] 35 39 38 38 Hole height [s] 35 39 38 38
  • the present invention also refers to a process for manufacturing an acoustic metamaterial as defined by the features of claim 12. Preferred embodiments of the same are defined by the features of the dependent claim 13.
  • the process comprises the following steps:
  • the process further comprises the steps of:
  • the process comprises the steps of:
  • the process comprises the steps of:
  • the different layers are stacked in an orderly manner to form a panel or liner.
  • the adjacent layers are joined or attached between them by means of mechanical fastenings, such as screws or bolts, or by welding means, or by gluing, to avoid undesired vibrations.
  • Figures 1 - 3 represent different views of the acoustic metamaterial (1) of the present invention. As seen, the acoustic metamaterial (1) is presented in the form of panel or liner, depending on the stiffness of the materials employed in the same, as demonstrated in the previous examples.
  • the acoustic metamaterial (1) has a width (W), a height (H) and a thickness (t 1 ).
  • Figures 4 and 5 respectively represent the layer structure and an exploded view of the acoustic metamaterial according to a first preferred embodiment which is not part of the claimed invention.
  • the acoustic metamaterial (1) comprises one resonating layer (2a) disposed between two separating layers (3a, 3b), and two skin layers (4a, 4b) which provide a foundation or support for the rest of the layers conforming the stack.
  • the two separating layers (3a, 3b) are formed by a first separating layer (3a) and a second separating layer (3b).
  • the two skin layers (4a, 4b) are formed by a first skin layer (4a) and a second skin layer (4b).
  • Figures 6 - 8 represent different views of the resonating layer (2a).
  • the resonating layer (2a) is made of a single or homogenous material having a constant resonating thickness (t 2 ) and a plurality of resonating unit cells (20).
  • the resonating layer (2a) has a width (W) and a height (H).
  • each resonating unit cell (20) comprises:
  • each resonating element (22) extends into the respectively resonating opening (21), occupying or covering part of the same, thus forming a vibrating element in the form of a tab, flap, strip, extending from an internal side or inner contour (23) of the resonating unit cell (20).
  • the resonating elements (22) of the present example are T-shaped.
  • each resonating unit cell (20) are defined by a unit cell width (p), a unit cell height (q), a hole width (r), a hole height (s), a resonating element width (a), a resonating element height (b), a union width (c) and a union height (d).
  • the T-shaped resonating layer (2a) forming the acoustic metamaterial (1) of the present example may be perfectly replaced with the U-shaped resonating layer (2b) of Figures 16 - 18 , providing the same advantages.
  • FIGS 9 - 11 represent different views of the first separating layer (3a) or the second separating layer (3b).
  • each separating layer (3a, 3b) is made of a single or homogenous material having a constant separating thickness (t 3 ) and a plurality of separating unit cells (30).
  • Each separating layer (3a, 3b) has a width (W) and a height (H).
  • the first separating layer (3a) is arranged adjacent to a front side of the resonating layer (2a), and the second separating layer (3b) is arranged adjacent to a rear side of said resonating layer (2a), partially or completely overlapping the separating openings (31) of the first separating layer (3a) and the second separating layer (3b) with the resonating openings (21) of the resonating layer (2a) to allow the vibration of the resonating elements (22), Figure 5 .
  • the separating layers (3a, 3b) separate the resonating layer (2a) from other layers, or from the construction elements acting as support.
  • each separating unit cell (30) are defined by a unit cell width (p), a unit cell height (q), a hole width (r) and a hole height (s).
  • FIGs 12 and 13 respectively represent a front view and a profile view of the first skin layer (4a) or the second skin layer (4b).
  • each skin layer (4a, 4b) is made of a solid single or homogeneous material having a constant skin thickness (t 4 ).
  • Each skin layer (4a, 4b) has a width (W) and a height (H).
  • the first skin layer (4a) is arranged adjacent to a front side of the first separating layer (3a), and the second skin layer (4b) is arranged adjacent to a rear side of the second separating layer (3b), Figure 5 .
  • the skin layers (4a, 4b) are homogeneous solid layers located at each end of the stack forming the acoustic metamaterial (1). Their purpose is to provide a foundation or support for the rest of the layers conforming the stack.
  • Figures 14 and 15 respectively represent the layer structure and an exploded view of the acoustic metamaterial of the present invention, according to a second preferred embodiment of the same.
  • the acoustic metamaterial (1) comprises two resonating layers (2a, 2b) formed by a first resonating layer (2a) and a second resonating layer (2b), wherein the first resonating layer (2a) and the second resonating layer (2b) have a different configuration, in order to obtain an extended attenuation band.
  • the configuration of the first resonating layer (2a) is shown in Figures 6-8 , having T-shaped resonating elements (22).
  • the configuration of the second resonating layer (2b) is shown in Figures 16 - 18 , having U-shaped resonating elements (22).
  • the acoustic metamaterial (1) of the present embodiment also comprises a first separating layer (3a) arranged adjacent to a front side of the first resonating layer (2a), and a second separating layer (3b) arranged adjacent to a rear side of the second resonating layer (2b), partially or completely overlapping the separating openings (31) of the first separating layer (3a) and the second separating layer (3b) respectively with the resonating openings (21) of the first resonating layer (2a) and the second resonating layer (2b) to allow the vibration of the resonating elements (22).
  • the configuration of the first separating layer (3a) and the second separating layer (3b) is shown in Figures 9 - 11 , having square resonating openings (31).
  • the acoustic metamaterial (1) of the present embodiment also comprises a first skin layer (4a) arranged adjacent to a front side of the first separating layer (3a), and a second skin layer (4b) arranged adjacent to a rear side of the second separating layer (3b).
  • the configuration of the first skin layer (4a) and the second skin layer (4b) is shown in Figures 12 - 13 .
  • a separating layer (3a, 3b) attached to a resonating layer (2a, 2b) forms a resonating set (RSa, RSb). So, the first resonating layer (2a) together with the first separating layer (3b) form a first resonating set (RSa), whereas the second layer (2b) together with the second separating layer (3b) form a second resonating set (RSb).
  • RSa first resonating set
  • RSb second resonating set
  • Figures 16 - 18 represent different views of the second resonating layer (2b).
  • the second resonating layer (2b) is also made of a single or homogenous material having a constant resonating thickness (t 2 ) and a plurality of resonating unit cells (20).
  • the second resonating layer (2b) has a width (W) and a height (H).
  • each resonating unit cell (20) comprises:
  • each resonating element (22) extends into the respectively resonating opening (21), occupying or covering part of the same, thus forming a vibrating element in the form of a tab, flap, strip, extending from an internal side or inner contour (23) of the resonating unit cell (20).
  • the resonating elements (22) of the present example are U-shaped.
  • each resonating unit cell (20) are defined by a unit cell width (p), a unit cell height (q), a hole width (r), a hole height (s), a resonating element width (a) and resonating element height (b).
  • Figures 19 - 21 represent different views of the connecting layer (5).
  • the connecting layer (5) is made of a single or homogeneous material having a constant separating thickness (t 5 ) and a plurality of connecting unit cells (50).
  • the connecting layer (5) has a width (W) and a height (H).
  • each connecting unit cell (50) comprises a connecting opening (51).
  • a connecting opening (51) In this case, a square connecting opening (51).
  • each connecting unit cell (50) are defined by a unit cell width (p), a unit cell height (q), a hole width (r) and a hole height (s).
  • the connecting layer (5) is arranged adjacent to a rear side of the first resonating layer (2a) and to a front side of the second resonating layer (2b), partially or completely overlapping the connecting openings (51) of the connecting layer (5) with the resonating openings (21) of the first resonating layer (2a) and the second resonating layer (2b) to allow the vibration of the resonating elements (22).
  • Figure 22 shows a comparative of the sound transmission loss computed with a numerical simulation for panels under normally incident acoustic plane waves. Each curve corresponds to a different panel configuration with a given area density (in kg/m 2 ).
  • the acoustic metamaterial configurations both provide increased levels of attenuation around the internal resonance frequencies at 360 and 440 Hz when compared with an equivalent homogeneous panel (dashed line).
  • the acoustic metamaterial of the present invention (MLAM, solid line) provides a continuous increased level of attenuation between 360 and 480 Hz, comparable in magnitude to that of a homogeneous panel with four times its area density (dash-dotted line).
  • dotted line For the standard uncoupled acoustic metamaterial case (dotted line) the same attenuation band is interrupted with an undesired dip at 380 Hz between the two internal resonance frequencies.
  • Figure 23 represents a schematic operating sequence of the manufacturing process of the present invention.
  • the process for manufacturing an acoustic metamaterial comprises the steps of:
  • the process further comprises the steps of:
  • the process further comprises the steps of:
  • the process further comprises the steps of:
  • the previous steps are repeated to obtain the necessary number of different layers forming the acoustic metamaterial (1).
  • the different layers are stacked in an orderly manner to form a panel or liner, according to any of the embodiments and/or examples previously mentioned.
  • the adjacent layers are joined or attached between them by means of mechanical fastenings, such as screws or bolts, or by welding means, or by gluing, to avoid undesired vibrations.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Claims (13)

  1. Métamatériau acoustique comprenant :
    • une première couche résonante (2a) et une deuxième couche résonante (2b) ayant une configuration similaire ou différente, dans laquelle chaque couche résonante (2a, 2b) est constituée d'un seul matériau ayant une épaisseur de résonance constante (t2) et une pluralité de cellules unitaires résonantes (20), dans laquelle chaque cellule unitaire résonante (20) comprend :
    - une ouverture de résonance (21) ; et
    - un élément de résonance (22) s'étendant dans ladite ouverture de résonance (21) ;
    dans laquelle les éléments de résonance (22) sont coplanaires à la couche de résonance (2a, 2b), ladite couche de résonance (2a, 2b) et lesdits éléments de résonance (22) ayant la même épaisseur de résonance constante (t2) caractérisée en ce qu'elle comprend en outre :
    • une couche de connexion (5) constituée d'un seul matériau ayant une épaisseur de connexion constante (t5) et une pluralité de cellules unitaires de connexion (50), dans laquelle chaque cellule unitaire de connexion (50) comprend :
    - une ouverture de connexion (51) ;
    dans laquelle la couche de connexion (5) est disposée à côté de la première couche de résonance (2a) et de la deuxième couche de résonance (2b), en recouvrant partiellement ou complètement les ouvertures de connexion (51) de la couche de connexion (5) avec les ouvertures de résonance (21) de la première couche de résonance (2a) et de la deuxième couche de résonance (2b) afin de permettre la vibration des éléments de résonance (22).
  2. Le métamatériau acoustique selon la revendication 1, caractérisé en ce que les éléments de résonance (22) sont en forme de T ou de U.
  3. Le métamatériau acoustique selon l'une des revendications 1 à 2, caractérisé en ce qu'il comprend au moins une couche de séparation (3a, 3b) faite d'un seul matériau ayant une épaisseur de séparation constante (t3) et une pluralité de cellules unitaires de séparation (30), où chaque cellule unitaire de séparation (30) comprend :
    - une ouverture de séparation (31) ;
    dans laquelle la couche de séparation (3a, 3b) est disposée à côté de la couche de résonance (2a, 2b), recouvrant partiellement ou complètement les ouvertures de séparation (31) avec les ouvertures de résonance (21) pour permettre la vibration des éléments de résonance (22).
  4. Le métamatériau acoustique selon la revendication 3, caractérisé en ce qu'il comprend au moins une couche de peau (4a, 4b) faite d'un seul matériau solide ayant une épaisseur de peau constante (t4), qui est disposée à côté de la couche de séparation (3a, 3b).
  5. Le métamatériau acoustique selon l'une des revendications 1 à 4, caractérisé en ce qu'il comprend deux couches de séparation (3a, 3b) formées d'une première couche de séparation (3a) et d'une seconde couche de séparation (3b), dans lesquelles la première couche de séparation (3a) est adjacente à une face avant d'une couche de résonance (2a, 2b), et dans laquelle la seconde couche de séparation (3b) est adjacente à une face arrière de ladite couche de résonance (2a, 2b), les ouvertures de séparation (31) de la première couche de séparation (3a) et de la seconde couche de séparation (3b) se superposant partiellement ou complètement aux ouvertures de résonance (21) de la couche de résonance (2a, 2b) pour permettre la vibration des éléments de résonance (22).
  6. Le métamatériau acoustique selon l'une des revendications 1 à 5, caractérisé en ce que le matériau unique pour l'une des couches (2a, 2b, 3a, 3b, 4a, 4b, 5) est un polymère, un matériau de type caoutchouc ou un métal.
  7. Le métamatériau acoustique selon l'une des revendications 1 à 6, caractérisé en ce que l'épaisseur constante (t2, t3, t4, t5) de l'une des couches (2a, 2b, 3a, 3b, 4a, 4b, 5) est comprise entre 0,5 et 20 mm.
  8. Le métamatériau acoustique selon l'une des revendications 1 à 7, caractérisé en ce que l'épaisseur constante (t2, t3, t4, t5) pour l'une des couches (2a, 2b, 3a, 3b, 4a, 4b, 5) va :
    - de 0,5 à 10 mm pour un matériau unique de type polymère ;
    - de 0,5 à 20 mm pour un matériau unique de type caoutchouc ; ou
    - de 0,5 à 5 mm pour un matériau unique de type métal.
  9. Le métamatériau acoustique selon l'une des revendications 1 à 8, caractérisé en ce que chaque cellule unitaire (20, 30, 50) pour l'une des couches (2a, 2b, 3a, 3b, 5) a :
    - une hauteur de cellule (q) comprise entre 10 mm et 100 mm ; et
    - une largeur de cellule (p) comprise entre 10 mm et 100 mm.
  10. Le métamatériau acoustique selon l'une des revendications 1 à 9, caractérisé en ce qu'il a :
    - une hauteur de surface (H) comprise entre 10 cm et 2 m ; et
    - une largeur de surface (W) comprise entre 10 cm et 2 m.
  11. Le métamatériau acoustique selon l'une des revendications 1 à 10, caractérisé en ce qu'il s'agit d'un panneau ou d'un revêtement.
  12. Procédé de fabrication d'un métamatériau acoustique, comprenant les étapes suivantes :
    - laminer un matériau solide unique pour obtenir une première couche de résonance non finie d'une épaisseur de résonance constante (t2) ;
    - découper à l'emporte-pièce la première couche de résonance non finie pour obtenir une première couche de résonance (2a) ;
    - laminer un matériau solide unique pour obtenir une deuxième couche de résonance inachevée d'une épaisseur de résonance constante (t2) ; et
    - découpage à l'emporte-pièce de la deuxième couche de résonance non finie pour obtenir une deuxième couche de résonance (2b) ;
    dans laquelle la première couche résonante (2a) et la deuxième couche résonante (2b) ont une configuration similaire ou différente ;
    dans laquelle chaque couche résonante (2a, 2b) possède plusieurs cellules unitaires résonantes (20), dans laquelle chaque cellule unitaire résonante (20) comprend une ouverture résonante (21) et un élément résonant (22) s'étendant dans ladite ouverture résonante (21), et dans laquelle les éléments résonants (22) sont coplanaires à la couche résonante (2a, 2b), ladite couche résonante (2a, 2b) et lesdits éléments résonants (22) ayant la même épaisseur résonante constante (t2) et en ce qu'elle comprend les étapes suivantes :
    - laminer un matériau solide unique pour obtenir une couche de connexion non finie d'une épaisseur de connexion constante (t5) ;
    - découper la couche de connexion non finie pour obtenir une couche de connexion (5) comportant plusieurs cellules d'unité de connexion (50), dans laquelle chaque cellule d'unité de connexion (50) comprend une ouverture de connexion (51) ; et
    disposer la couche de connexion (5) à côté de la première couche de résonance (2a) et de la deuxième couche de résonance (2b), en superposant partiellement ou complètement les ouvertures de connexion (51) de la couche de connexion (5) avec les ouvertures de résonance (21) des premières couches de résonance (2a) et de la deuxième couche de résonance (2b) afin de permettre la vibration des éléments de résonance (22).
  13. Procédé selon la revendication 12, caractérisé en ce qu'il comprend les étapes suivantes :
    - laminer un matériau solide unique pour obtenir une couche de séparation non finie d'une épaisseur de séparation constante (t3) ;
    - découper à l'emporte-pièce la couche de séparation non finie pour obtenir une couche de séparation (3a, 3b) comportant plusieurs cellules de séparation (30), chaque cellule de séparation (30) comportant une ouverture de séparation (31) ; et
    - disposer un côté de la couche de séparation (3a, 3b) adjacent à un côté de la couche de résonance (2a, 2b), en chevauchant partiellement ou complètement les ouvertures de séparation (31) de la couche de séparation (3a, 3b) avec les ouvertures de résonance (21) de la couche de résonance (2a, 2b) pour permettre la vibration des éléments de résonance (22).
EP21382026.9A 2021-01-15 2021-01-15 Métamatériau acoustique et son procédé de fabrication Active EP4030420B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21382026.9A EP4030420B1 (fr) 2021-01-15 2021-01-15 Métamatériau acoustique et son procédé de fabrication
ES21382026T ES2952320T3 (es) 2021-01-15 2021-01-15 Metamaterial acústico y proceso para la fabricación del mismo
PCT/EP2021/083456 WO2022152449A1 (fr) 2021-01-15 2021-11-30 Métamatériau acoustique et son procédé de fabrication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP21382026.9A EP4030420B1 (fr) 2021-01-15 2021-01-15 Métamatériau acoustique et son procédé de fabrication

Publications (3)

Publication Number Publication Date
EP4030420A1 EP4030420A1 (fr) 2022-07-20
EP4030420B1 true EP4030420B1 (fr) 2023-06-07
EP4030420C0 EP4030420C0 (fr) 2023-06-07

Family

ID=74205778

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21382026.9A Active EP4030420B1 (fr) 2021-01-15 2021-01-15 Métamatériau acoustique et son procédé de fabrication

Country Status (3)

Country Link
EP (1) EP4030420B1 (fr)
ES (1) ES2952320T3 (fr)
WO (1) WO2022152449A1 (fr)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11158299B2 (en) * 2015-09-11 2021-10-26 Component Technologies, L.L.C. Acoustic meta-material basic structure unit, composite structure thereof, and assembly method
JP6996913B2 (ja) * 2017-09-06 2022-01-17 旭化成株式会社 構造体、並びに該構造体を含む遮音材、制振材、材料及び各種部材
CN108447467B (zh) * 2018-03-30 2022-04-12 北京速阔智能科技有限公司 一种主动声学超材料结构单元及其控制装置
US11164559B2 (en) * 2018-04-30 2021-11-02 Toyota Motor Engineering & Manufacturing North America, Inc. Selective sound transmission and active sound transmission control

Also Published As

Publication number Publication date
EP4030420A1 (fr) 2022-07-20
WO2022152449A1 (fr) 2022-07-21
ES2952320T3 (es) 2023-10-30
EP4030420C0 (fr) 2023-06-07

Similar Documents

Publication Publication Date Title
EP3896686B1 (fr) Structure d'isolation acoustique utilisant un organe d'insonorisation en feuille
US8752667B2 (en) High bandwidth antiresonant membrane
US9284727B2 (en) Acoustic barrier support structure
CN101827702B (zh) 用于吸音板的蜂窝芯体结构
EP2026325B1 (fr) Revêtement insonorisant linéaire
US9270253B2 (en) Hybrid acoustic barrier and absorber
US8863893B2 (en) Engine inlet varying impedance acoustic liner section
JP6781676B2 (ja) 成形遮音構造形成方法
RU2405216C2 (ru) Слоистая конструкция, имеющая частотно-избирательные характеристики двойной степени
CN106042468B (zh) 一种宽频隔音蜂窝板
CN103561948A (zh) 制造声衰减板的方法
CA2460531A1 (fr) Tubulure d'admission de moteur fabriquee dans une matiere composite antibruit
EP4030420B1 (fr) Métamatériau acoustique et son procédé de fabrication
CN109572105B (zh) 一种船用多层复合隔声结构
US11039252B2 (en) Membrane plate structure for generating sound waves
EP3885124A1 (fr) Procédé de fabrication d'un panneau d'absorption sonore utilisant des nids d'abeilles et panneau d'absorption sonore utilisant des nids d'abeilles fabriqué selon ce procédé
CN111341292A (zh) 穿孔板层合吸声结构
CN110473512A (zh) 低声速超材料层及由其制成的中低频高效吸声的超材料复合结构
WO2020059460A1 (fr) Corps stratifié
KR20230012135A (ko) 멀티 스케일 차음 시스템
CN113163303A (zh) 一种发声装置的振膜
JP2004339758A (ja) サンドイッチパネル及びその製造方法
AU2002341726A1 (en) Engine intake manifold made of noise barrier composit material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221114

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: G10K 11/00 20060101ALN20221222BHEP

Ipc: G10K 1/06 20060101ALN20221222BHEP

Ipc: G10K 11/168 20060101ALI20221222BHEP

Ipc: G10K 11/172 20060101AFI20221222BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G10K 11/00 19680901ALN20230110BHEP

Ipc: G10K 1/06 19680901ALN20230110BHEP

Ipc: G10K 11/168 19950101ALI20230110BHEP

Ipc: G10K 11/172 19950101AFI20230110BHEP

INTG Intention to grant announced

Effective date: 20230131

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1577384

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

Ref country code: DE

Ref legal event code: R096

Ref document number: 602021002809

Country of ref document: DE

U01 Request for unitary effect filed

Effective date: 20230706

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230720

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2952320

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20231030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

U20 Renewal fee paid [unitary effect]

Year of fee payment: 4

Effective date: 20240130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602021002809

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240202

Year of fee payment: 4

26N No opposition filed

Effective date: 20240308