EP4008820A1 - A protective sleeve for electrically and thermally protecting an electrically conductive busbar and a method for obtaining the protective sleeve - Google Patents

A protective sleeve for electrically and thermally protecting an electrically conductive busbar and a method for obtaining the protective sleeve Download PDF

Info

Publication number
EP4008820A1
EP4008820A1 EP20383044.3A EP20383044A EP4008820A1 EP 4008820 A1 EP4008820 A1 EP 4008820A1 EP 20383044 A EP20383044 A EP 20383044A EP 4008820 A1 EP4008820 A1 EP 4008820A1
Authority
EP
European Patent Office
Prior art keywords
protective sleeve
sleeve
textile
previous
busbar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20383044.3A
Other languages
German (de)
French (fr)
Inventor
Pere Relats Casas
Oriol Relats Torante
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Relats SA
Original Assignee
Relats SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Relats SA filed Critical Relats SA
Priority to EP20383044.3A priority Critical patent/EP4008820A1/en
Publication of EP4008820A1 publication Critical patent/EP4008820A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/20Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes specially adapted for knitting articles of particular configuration
    • D04B21/205Elongated tubular articles of small diameter, e.g. coverings or reinforcements for cables or hoses
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/06Glass
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/12Vehicles

Definitions

  • the present invention generally relates, in a first aspect, to a protective sleeve for electrically and thermally protecting an electrically conductive busbar, and particularly to a protective textile sleeve with a high thermal and electric resistance and a high adaptability to curved geometries.
  • a second aspect of the invention relates to a method for obtaining the protective sleeve of the first aspect.
  • busbars are metallic elements that act as a system of electrical conductors in a generating or receiving station in which electrical energy is concentrated for distribution or feeding of large capacity equipment.
  • the protective sleeves for electrically and thermally protecting an electrically conductive busbar known in the art are generally made of vinyl, such as that disclosed in KR100845950 B1 , or, for a busbar having bent sections, with a heat-shrinkable insulating tubing, as disclosed in CN105957591B .
  • the present invention relates, in a first aspect, to a protective sleeve for electrically and thermally protecting an electrically conductive busbar.
  • the protective sleeve is a textile sleeve, particularly a textile sleeve made of closed mesh circular warp knitbraided fibreglass yarns.
  • the protective sleeve is dimensioned and has a determined transversal elasticity (preferably providing an expansion ratio of at least 1:6) to allow the protective sleeve to sleeve over and tightly cover consecutive flat straight strip segments of the busbar longitudinally running along crossing directions and respective intermediate curved flat segments joining said flat straight strip segments, said determined transversal elasticity being provided by the closed mesh circular warp knitbraiding of the fibreglass yarns.
  • the textile sleeve is impregnated with an impregnant comprising silicone to improve its thermal stability, dielectric strength and achieve a better coupling when sleeved over the busbar.
  • the protective sleeve of the first aspect of the present invention has still a greater capability for adaptation to curved geometries, and a higher thermal and electrical resistance is achieved, protecting the busbar from thermal leaks generated, for example, in a battery connected thereto, and protecting that battery from short circuits.
  • said impregnant is a water-based impregnant that comprises one or more emulsifying silicones and an acrylic resin.
  • the water-based impregnant comprises between 45% and 70%, preferably between 55% and 60%, in weight of said one or more emulsifying silicones and between 15% and 40%, preferably between 22% and 27%, in weight of said acrylic resin.
  • the textile sleeve has been made in a knitting machine with a head with 18 needles and an E8 to E12 gauge.
  • This head/needle ratio gives the textile sleeve a 1:6 expansion ratio.
  • the fibre glass yarns have a title ranging from 34/2 tex to 136/6 tex.
  • the textile sleeve has a weight ranging from 20 g/m to 40g/m.
  • the textile sleeve ranges from 2 to 12 stitches/cm and from 2 to 8 wales/cm in a rest position, when not covering the busbar, and ranges from 8 to 24 stitches/cm in use, when sleeved over the busbar.
  • the textile sleeve has a warp length ranging from 1 mm to 5 mm.
  • the textile sleeve has an optical coverage factor ranging from 70% to 85%.
  • the textile sleeve has a wall thickness ranging 0.2 mm to 2 mm.
  • an embodiment combining at least the above mentioned wall thickness and weight ranges provides a protective sleeve which indeed has an even greater capability for adaptation to curved geometries and to small spaces where the busbars are installed, without the protective sleeve requiring to modify those installation spaces, as it occupies a minimum space in the compartment where the electric batteries are located.
  • the main advantages of the protective sleeve of the first aspect of the present invention compared to those of the prior art are: higher transversal elasticity, lighter, greater thermal stability and a higher production.
  • the present invention relates to a method for obtaining a protective sleeve for electrically and thermally protecting an electrically conductive busbar which, in contrast to the methods known in the art, comprises closed-mesh circular warp knitbraiding fibreglass yarns to obtain the protective sleeve in the form of a textile sleeve.
  • the method further comprises impregnating the textile sleeve with an impregnant comprising silicone.
  • the method of the second aspect of the present invention further comprises curing said impregnant that impregnates the textile sleeve, at a temperature ranging from 150°C and 600°C during a period ranging from 15 seconds to 15 minutes.
  • the method of the second aspect of the present invention is applied, for some embodiments, to manufacture the protective sleeve of the first aspect of the present invention for any of its embodiments.
  • Figure 1 shows the protection/textile sleeve S of the first aspect of the present invention tightly sleeved over and tightly covering an electrically conductive busbar B, particularly consecutive flat straight strip segments of the busbar B longitudinally running along crossing directions, indicated in the Figure by arrows X, Y, and Z, and also along intermediate curved flat segments joining the flat straight strip segments.
  • the high transversal elasticity of the sleeve S provided by the circular warp knit braiding of the fibreglass yarns makes it suitable to be sleeved over busbars B with such varying geometry, i.e. including several and different curved segments.
  • Figure 2 shows the knitting structure used to knit the fiberglass yarns to manufacture the textile sleeve S, particularly a closed mesh circular warp knitbraided structure.
  • the textile sleeve meshes are formed vertically in a closed manner, and joined to each other between adjacent passes, so that diagonal and vertical connections are provided, providing a property to the so knitted sleeve that makes it difficult to unravel.
  • the present inventors have manufactured a prototype of the protective sleeve S, impregnating the textile sleeve with a water-based impregnation that is composed of emulsifying silicones, acrylic resins and a portion of pigmentation that provides the final colour to the textile element, particularly with the following composition: • Transparent emulsifying silicones (58.3%)
  • the manufactured prototype has the following properties:
  • the dielectric strength test has not been carried out on a gauge but directly on the busbar B to be sheathed. Once the busbar B is sheathed with the protective sleeve S, a part of this sheathed busbar B is wrapped in silver foil and the ends of the busbar B are placed in the vortices of the measuring device and then the test is started, providing the above identified results.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Knitting Of Fabric (AREA)

Abstract

The present invention relates to a protective sleeve (S) for electrically and thermally protecting an electrically conductive busbar, wherein the protective sleeve (S) is a textile sleeve made of closed-mesh circular warp knitbraided fibreglass yarns, which provides a high thermal and electric resistance and a high adaptability to curved geometries.The present invention also concerns to a method for obtaining the protective sleeve (S) of the first aspect.

Description

    FIELD OF THE INVENTION
  • The present invention generally relates, in a first aspect, to a protective sleeve for electrically and thermally protecting an electrically conductive busbar, and particularly to a protective textile sleeve with a high thermal and electric resistance and a high adaptability to curved geometries.
  • A second aspect of the invention relates to a method for obtaining the protective sleeve of the first aspect.
  • BACKGROUND OF THE INVENTION
  • Manufacturers are looking for a product with which to cover/protect/isolate some electrically conductive pieces called busbars. These pieces are metallic elements that act as a system of electrical conductors in a generating or receiving station in which electrical energy is concentrated for distribution or feeding of large capacity equipment.
  • When this electrical energy is concentrated, high temperature peaks can be produced and it is for this reason that said metal parts must be protected/isolated from these temperature peaks.
  • The protective sleeves for electrically and thermally protecting an electrically conductive busbar known in the art are generally made of vinyl, such as that disclosed in KR100845950 B1 , or, for a busbar having bent sections, with a heat-shrinkable insulating tubing, as disclosed in CN105957591B .
  • Those known in the art protective sleeves have several drawbacks, such as being heavy, providing clearly improvable thermal and electrical resistances, and having a low transversal elasticity. The latter drawback is clearly shown in CN105957591B , where a sleeve with a larger diameter is first sleeved over the different bent sections of the busbar, and then heat is applied to heat-shrink the sleeve.
  • It is therefore necessary to provide an alternative to the state of the art which covers the gaps found therein, by providing a protective sleeve for electrically and thermally protecting an electrically conductive busbar, which offers a higher thermal and electric protection, is lighter and is also made to have a greater adaptation to curved geometries, so that it can be used for a busbar having bent sections.
  • SUMMARY OF THE INVENTION
  • To that end, the present invention relates, in a first aspect, to a protective sleeve for electrically and thermally protecting an electrically conductive busbar.
  • In contrast to the protective sleeves for busbars known in the prior art, in the one of the present invention, in a characterizing manner, the protective sleeve is a textile sleeve, particularly a textile sleeve made of closed mesh circular warp knitbraided fibreglass yarns.
  • Therefore, in the textile sleeve meshes are formed vertically in a closed manner, and joined to each other between adjacent passes, so that diagonal and vertical connections are provided, providing a property to the so knitted sleeve that makes it difficult to unravel.
  • For an embodiment, the protective sleeve is dimensioned and has a determined transversal elasticity (preferably providing an expansion ratio of at least 1:6) to allow the protective sleeve to sleeve over and tightly cover consecutive flat straight strip segments of the busbar longitudinally running along crossing directions and respective intermediate curved flat segments joining said flat straight strip segments, said determined transversal elasticity being provided by the closed mesh circular warp knitbraiding of the fibreglass yarns.
  • For a preferred embodiment, the textile sleeve is impregnated with an impregnant comprising silicone to improve its thermal stability, dielectric strength and achieve a better coupling when sleeved over the busbar.
  • Indeed, by means of that impregnation, the protective sleeve of the first aspect of the present invention has still a greater capability for adaptation to curved geometries, and a higher thermal and electrical resistance is achieved, protecting the busbar from thermal leaks generated, for example, in a battery connected thereto, and protecting that battery from short circuits.
  • For an embodiment, said impregnant is a water-based impregnant that comprises one or more emulsifying silicones and an acrylic resin.
  • For a variant of said embodiment, the water-based impregnant comprises between 45% and 70%, preferably between 55% and 60%, in weight of said one or more emulsifying silicones and between 15% and 40%, preferably between 22% and 27%, in weight of said acrylic resin.
  • According to an embodiment, the textile sleeve has been made in a knitting machine with a head with 18 needles and an E8 to E12 gauge. In this sense, it must be clarified that the diameter of the textile sleeve without impregnation is the product of the use of a head with 18 needles and an E8 to E12 gauge; this head/needle ratio comes from the formula: No . of needles = Ø . π . E
    Figure imgb0001
    Where:
    • ø: Cylinder diameter in inches
    • π: 3.1416
    • E: Machine gauge
  • This head/needle ratio gives the textile sleeve a 1:6 expansion ratio.
  • According to an embodiment, the fibre glass yarns have a title ranging from 34/2 tex to 136/6 tex.
  • For an embodiment, the textile sleeve has a weight ranging from 20 g/m to 40g/m.
  • According to an embodiment, the textile sleeve ranges from 2 to 12 stitches/cm and from 2 to 8 wales/cm in a rest position, when not covering the busbar, and ranges from 8 to 24 stitches/cm in use, when sleeved over the busbar.
  • For an embodiment, the textile sleeve has a warp length ranging from 1 mm to 5 mm.
  • For an embodiment, the textile sleeve has an optical coverage factor ranging from 70% to 85%.
  • According to an embodiment, the textile sleeve has a wall thickness ranging 0.2 mm to 2 mm.
  • An embodiment combining the above described embodiments defining ranges for different properties of the textile sleeve is also embraced by the first aspect of the present invention.
  • Specifically, an embodiment combining at least the above mentioned wall thickness and weight ranges provides a protective sleeve which indeed has an even greater capability for adaptation to curved geometries and to small spaces where the busbars are installed, without the protective sleeve requiring to modify those installation spaces, as it occupies a minimum space in the compartment where the electric batteries are located.
  • The main advantages of the protective sleeve of the first aspect of the present invention compared to those of the prior art are: higher transversal elasticity, lighter, greater thermal stability and a higher production.
  • In a second aspect, the present invention relates to a method for obtaining a protective sleeve for electrically and thermally protecting an electrically conductive busbar which, in contrast to the methods known in the art, comprises closed-mesh circular warp knitbraiding fibreglass yarns to obtain the protective sleeve in the form of a textile sleeve.
  • For an embodiment, the method further comprises impregnating the textile sleeve with an impregnant comprising silicone.
  • For a variant of said embodiment, the method of the second aspect of the present invention further comprises curing said impregnant that impregnates the textile sleeve, at a temperature ranging from 150°C and 600°C during a period ranging from 15 seconds to 15 minutes.
  • The method of the second aspect of the present invention is applied, for some embodiments, to manufacture the protective sleeve of the first aspect of the present invention for any of its embodiments.
  • BRIEF DESCRIPTION OF THE FIGURES
  • In the following some preferred embodiments of the invention will be described with reference to the enclosed figures. They are provided only for illustration purposes without however limiting the scope of the invention.
    • Figure 1 schematically shows the protection sleeve of the first aspect of the present invention tightly sleeved over a busbar having different segments, including curved segments;
    • Figure 2 shows an enlarged portion of the textile sleeve of the first aspect of the present invention, showing its knitting structure, where the vertical arrow pointing upwards shows the direction of weaving process.
    DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In the present section some working embodiments of the present invention will be described with reference to the Figures.
  • Specifically, Figure 1 shows the protection/textile sleeve S of the first aspect of the present invention tightly sleeved over and tightly covering an electrically conductive busbar B, particularly consecutive flat straight strip segments of the busbar B longitudinally running along crossing directions, indicated in the Figure by arrows X, Y, and Z, and also along intermediate curved flat segments joining the flat straight strip segments. The high transversal elasticity of the sleeve S provided by the circular warp knit braiding of the fibreglass yarns makes it suitable to be sleeved over busbars B with such varying geometry, i.e. including several and different curved segments.
  • Figure 2 shows the knitting structure used to knit the fiberglass yarns to manufacture the textile sleeve S, particularly a closed mesh circular warp knitbraided structure. As shown in that Figure, the textile sleeve meshes are formed vertically in a closed manner, and joined to each other between adjacent passes, so that diagonal and vertical connections are provided, providing a property to the so knitted sleeve that makes it difficult to unravel.
  • The choice of this type of knitting structure is mainly due to the above mentioned transversal elasticity offered thereby, which makes the sleeve S able to elastically deform to expand and contract when being sleeved over the busbar B, even along busbar segments with complex radii of curvature, as shown in Figure 1.
  • The present inventors have manufactured a prototype of the protective sleeve S, impregnating the textile sleeve with a water-based impregnation that is composed of emulsifying silicones, acrylic resins and a portion of pigmentation that provides the final colour to the textile element, particularly with the following composition:
    • Transparent emulsifying silicones (58.3%)
    • ∘ Appearance: viscous liquid
    • ∘ Colour: translucent white
    • ∘ Odour: slight
    • ∘ Initial boiling point and range:> 65 ° C @ 760 mm Hg
    • ∘ Flash point:> 100 ° C Pensky-Martens Closed Cup
    • ∘ Relative density: 1.10
    • ∘ Viscosity: 44000 cSt @ 25°C
    • Acrylic resin (25.3%)
    • ∘ Appearance: White or whitish, opaque liquid
    • ∘ pH: 5.50 - 7.50
    • Pigment (16.4%)
    ∘ Appearance 20 / 25°C: Orange pigment dispersion
    ∘ Fastness. See table below:
    Xenotest 60°C Wash Perchloroethylene Rubbing
    100 h Dry Wash Dry Wet
    30 g/kg 1/10 30 g/kg 30 g/kg 1/10 30 g/kg
    7 4-5 5 4 4 4 3-4
    ZN* Reducer Stability Migration into PVC
    30 g/kg 30 g/kg
    3-4 3-4
  • The manufactured prototype has the following properties:
    • Wall thickness: 0.82mm
    • Weight: 28.32 g/m
    • Sleeve diameter: 10mm
    • N° of Stitches: 12
  • The prototype has been submitted to essays, obtaining the following values:
    • ∘ Heat resistance test at 500°C for 5 min - Passed
    • ∘ Heat resistance test at 600°C for 10min - Passed
    • ∘ Dielectric strength test: Passed with values of 0.7 kV
  • The dielectric strength test has not been carried out on a gauge but directly on the busbar B to be sheathed. Once the busbar B is sheathed with the protective sleeve S, a part of this sheathed busbar B is wrapped in silver foil and the ends of the busbar B are placed in the vortices of the measuring device and then the test is started, providing the above identified results.
  • A person skilled in the art could introduce changes and modifications in the embodiments described without departing from the scope of the invention as it is defined in the attached claims.

Claims (15)

  1. A protective sleeve (S) for electrically and thermally protecting an electrically conductive busbar (B), characterized in that said protective sleeve (S) is a textile sleeve made of closed-mesh circular warp knitbraided fibreglass yarns.
  2. The protective sleeve (S) according to claim 1, wherein said textile sleeve is impregnated with an impregnant comprising silicone.
  3. The protective sleeve (S) according to claim 2, wherein said impregnant is a water-based impregnant that comprises one or more emulsifying silicones and an acrylic resin.
  4. The protective sleeve (S) according to claim 3, wherein the water-based impregnant comprises between 45% and 70%, preferably between 55% and 60%, in weight of said one or more emulsifying silicones and between 15% and 40%, preferably between 22% and 27%, in weight of said acrylic resin.
  5. The protective sleeve (S) according to any of the previous claims, wherein the protective sleeve (S) is dimensioned and has a determined transversal elasticity to allow the protective sleeve (S) to sleeve over and tightly cover consecutive flat straight strip segments of the busbar (B) longitudinally running along crossing directions (X, Y; X, Z; Y, Z) and respective intermediate curved flat segments joining said flat straight strip segments, said determined transversal elasticity being provided by the circular warp knit braiding of the fibreglass yarns.
  6. The protective sleeve (S) according to any of the previous claims, wherein the textile sleeve has been made in a knitting machine with a head with 18 needles and an E8 to E12 gauge.
  7. The protective sleeve (S) according to any of the previous claims, wherein the fibre glass yarns have a title ranging from 34/2 tex to 136/6 tex.
  8. The protective sleeve (S) according to any of the previous claims, wherein the textile sleeve has a weight ranging from 20 g/m to 40 g/m.
  9. The protective sleeve (S) according to any of the previous claims, wherein the textile sleeve ranges from 2 to 12 stitches/cm and from 2 to 8 wales/cm in a rest position, when not covering the busbar, and ranges from 8 to 24 stitches/cm in use, when sleeved over the busbar.
  10. The protective sleeve (S) according to any of the previous claims, wherein the textile sleeve has a warp length ranging from 1 mm to 5 mm.
  11. The protective sleeve (S) according to any of the previous claims, wherein the textile sleeve has an optical coverage factor ranging from 70% to 85%.
  12. The protective sleeve (S) according to any of the previous claims, wherein the textile sleeve has a wall thickness ranging 0.2 mm to 2 mm.
  13. A method for obtaining a protective sleeve (S) for electrically and thermally protecting an electrically conductive busbar (B), characterized in that said method comprising closed-mesh circular warp knitbraiding fibreglass yarns to obtain the protective sleeve (S) in the form of a textile sleeve.
  14. The method according to claim 13, further comprising impregnating said textile sleeve with an impregnant comprising silicone.
  15. The method according to claim 14, further comprising curing said impregnant that impregnates the textile sleeve, at a temperature ranging from 150°C and 600°C during a period ranging from 15 seconds to 15 minutes.
EP20383044.3A 2020-12-01 2020-12-01 A protective sleeve for electrically and thermally protecting an electrically conductive busbar and a method for obtaining the protective sleeve Withdrawn EP4008820A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20383044.3A EP4008820A1 (en) 2020-12-01 2020-12-01 A protective sleeve for electrically and thermally protecting an electrically conductive busbar and a method for obtaining the protective sleeve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20383044.3A EP4008820A1 (en) 2020-12-01 2020-12-01 A protective sleeve for electrically and thermally protecting an electrically conductive busbar and a method for obtaining the protective sleeve

Publications (1)

Publication Number Publication Date
EP4008820A1 true EP4008820A1 (en) 2022-06-08

Family

ID=73834404

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20383044.3A Withdrawn EP4008820A1 (en) 2020-12-01 2020-12-01 A protective sleeve for electrically and thermally protecting an electrically conductive busbar and a method for obtaining the protective sleeve

Country Status (1)

Country Link
EP (1) EP4008820A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0077665A1 (en) * 1981-10-15 1983-04-27 The Bentley-Harris Manufacturing Co. Electrical insulation sleeve
EP1746324A1 (en) * 2004-05-12 2007-01-24 Relats, S.A. Method of producing protective tubes
KR100845950B1 (en) 2006-12-08 2008-07-11 남상만 Fireproof Isulation Busbar of Coating Manufacture System
WO2009010599A1 (en) * 2007-07-17 2009-01-22 Relats, S.A. Flexible protective cover and method for manufacture thereof
WO2011044345A2 (en) * 2009-10-07 2011-04-14 Federal-Mogul Powertrain, Inc. Flexible textile sleeve with end fray resistant, protective coating and method of construction thereof
CN105957591A (en) 2016-06-23 2016-09-21 深圳市沃尔核材股份有限公司 Irregular busbar and insulation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0077665A1 (en) * 1981-10-15 1983-04-27 The Bentley-Harris Manufacturing Co. Electrical insulation sleeve
EP1746324A1 (en) * 2004-05-12 2007-01-24 Relats, S.A. Method of producing protective tubes
KR100845950B1 (en) 2006-12-08 2008-07-11 남상만 Fireproof Isulation Busbar of Coating Manufacture System
WO2009010599A1 (en) * 2007-07-17 2009-01-22 Relats, S.A. Flexible protective cover and method for manufacture thereof
WO2011044345A2 (en) * 2009-10-07 2011-04-14 Federal-Mogul Powertrain, Inc. Flexible textile sleeve with end fray resistant, protective coating and method of construction thereof
CN105957591A (en) 2016-06-23 2016-09-21 深圳市沃尔核材股份有限公司 Irregular busbar and insulation method thereof

Similar Documents

Publication Publication Date Title
EP2084324B1 (en) Flexible printed conductive fabric and method for fabricating the same
EP3043358B1 (en) Metal sheathed cable with jacketed, cabled conductor subassembly
KR20190024713A (en) Heating Wire Cable And Heating Sheet Having The Same
KR101938214B1 (en) Flexible printed electrically conductive fabric and method for fabricating the same
US3231665A (en) Stress-relieved stranded wire structure and method of making the same
EP4008820A1 (en) A protective sleeve for electrically and thermally protecting an electrically conductive busbar and a method for obtaining the protective sleeve
US2817737A (en) Electrical resistance nets
KR101316964B1 (en) Heat linoleum and manufacture method consisting of planar heating element
EP3043357A1 (en) Metal sheathed cable with jacketed, cabled conductor subassembly
EP1297722B1 (en) Heating cable of multi-layer construction
KR20180029809A (en) Heated electric mat with carbon fiber heating cable
CN106251937A (en) A kind of tandem invariable power electric-heating belt
CN219891976U (en) Protective sleeve for electrically and thermally protecting an electrically conductive busbar
EP1041585B1 (en) Flexible electrical power line
DE102014108553B4 (en) Serving tray heating pad, serving tray with a serving tray heating pad and method for controlling the temperature of a serving tray
DE10055141B4 (en) heating conductor
DE202013101027U1 (en) Pliable warming device
JP2022090646A (en) Heater wire and planar heater
DE3147995A1 (en) "ELECTRIC HEATING RIBBON"
CN209591589U (en) A kind of elastic body insulated high flexibility power cable
US3180925A (en) Conductor strand
EP0003747B1 (en) Flexible insulated multi-core electrical cable
DE1946753C3 (en) Electrically heated belt
KR100908978B1 (en) Electric and magnetic shielded heating wire
CN217847456U (en) Bending-resistant cable

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20221209