EP4005071A1 - Moteur électrique à courant continu sans balais pour système d'essuyage de véhicule automobile - Google Patents

Moteur électrique à courant continu sans balais pour système d'essuyage de véhicule automobile

Info

Publication number
EP4005071A1
EP4005071A1 EP20734245.2A EP20734245A EP4005071A1 EP 4005071 A1 EP4005071 A1 EP 4005071A1 EP 20734245 A EP20734245 A EP 20734245A EP 4005071 A1 EP4005071 A1 EP 4005071A1
Authority
EP
European Patent Office
Prior art keywords
electric motor
rotor
electronic card
motor
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20734245.2A
Other languages
German (de)
English (en)
Inventor
Jose-Luis Herrada
Alain Servin
Mehdi Belhaj
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes dEssuyage SAS
Original Assignee
Valeo Systemes dEssuyage SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes dEssuyage SAS filed Critical Valeo Systemes dEssuyage SAS
Publication of EP4005071A1 publication Critical patent/EP4005071A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/083Structural association with bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • H02K7/1163Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion
    • H02K7/1166Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion comprising worm and worm-wheel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2211/00Specific aspects not provided for in the other groups of this subclass relating to measuring or protective devices or electric components
    • H02K2211/03Machines characterised by circuit boards, e.g. pcb
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements

Definitions

  • the subject of the invention is an electric motor, preferably brushless, for a motor vehicle wiping system.
  • an electric motor mainly comprises a rotor and a stator.
  • the stator includes a plurality of rotor electromagnetic excitation coils while the rotor includes a multi-pole magnet.
  • the electric motor is configured so that when the coils are supplied with electric current, a magnetic field is created, generating rotational movement of the multipolar magnet which drives a rotating motor shaft.
  • the motor shaft carries a worm gear meshing a toothed wheel integral with an output shaft.
  • the electric motor Due to the insertion of the electric motor in the wiper system of the electric vehicle, the electric motor must be as compact and light as possible.
  • a brushless electric motor in particular for a wiping device of a motor vehicle, comprising a first part, called an electrical part, comprising a stator and a rotor, the stator comprising a plurality of electromagnetic excitation coils and the rotor being mounted to drive a motor shaft in rotation about an axis of rotation, the motor also comprising a second part, called electronic, comprising an output shaft and a reduction mechanism, the reduction mechanism comprising a worm of the motor shaft and a toothed wheel shaped to be meshed by the endless portion and to drive the output shaft in rotation, the electric motor comprising at least one bearing for guiding the rotation of the motor shaft , and a multipolar magnet for measuring the position of the rotor, the bearing being arranged on the motor shaft between said rotor position measuring magnet and the worm, so that said electrical part includes the rotor position measuring magnet.
  • the motor has compartmentalisation between the electrical part on the one hand and the electronic part on the other hand, which simplifies assembly and ensures better resistance of the motor shaft to bending.
  • the motor comprises an electronic card provided with a first part, called the main part, and with a second part, called the transverse part, projecting out of the main part towards the electrical part, the part transverse carrying a magnetic sensor configured to cooperate with the multipolar magnet.
  • the transverse part is arranged opposite the multipolar magnet.
  • the motor comprises a part, called an intermediate part, comprising a ring configured to be mounted around the motor shaft and comprising a connector.
  • the connector is configured for the transmission of power signals to the stator and the transmission of rotor position signals.
  • the motor comprises an auxiliary electronic card dedicated to determining the position of the rotor.
  • the auxiliary electronic card is arranged in an orientation parallel or perpendicular to said main part.
  • the electronic card is arranged opposite the multipolar magnet and is provided with a magnetic sensor configured to cooperate with the multipolar magnet.
  • the auxiliary electronic card is supported by at least the ring and / or the connector of the intermediate part.
  • Figure 1 illustrates a perspective view of an electric motor according to a first embodiment of the invention
  • Figure 2 illustrates a bottom view of the motor of Figure 1, a cover not being illustrated;
  • Figure 3 illustrates a perspective side view of the motor of Figure 1, without housing
  • Figure 4 illustrates a perspective view of an electric motor according to a second embodiment of the invention
  • Figure 5 illustrates a perspective side view of the motor of Figure 4, without housing
  • Figure 6 illustrates another perspective side view of the motor of Figure 4, without housing
  • Figure 7 illustrates a perspective view of an intermediate part of the electric motor of Figure 4.
  • Figure 8 illustrates a perspective view of a housing portion of the electric motor of Figure 4.
  • the invention relates to a brushless electric motor, preferably continuous, for a motor vehicle wiping system, referenced 1 in the figures.
  • the invention is now described with reference to the first embodiment of Figures 1 to 4.
  • the motor 1 comprises an electrical part 2 and an electronic part 3.
  • the electrical part 2 comprises a rotor 4 and a stator 5.
  • the stator 5 comprises a plurality of electromagnetic excitation coils 6 of the rotor 4.
  • the rotor 4 comprises a multipolar magnet mounted to be driven in a rotational movement around an axis of rotation, referenced L.
  • the electric motor 1 is configured so that the rotor 4 rotates in the stator 5, which causes a rotation of a shaft 8, said motor shaft, 8, integral with the rotor 4.
  • the motor shaft 8 extends along the axis of rotation L.
  • the electronic part 3 comprises a worm 9 of the motor shaft 8 and a toothed wheel 10 mounted to be meshed by the worm 9.
  • the electronic part 3 also comprises an output shaft 11 shaped to be driven rotating by the toothed wheel 10.
  • the threaded part 9 and the toothed wheel 10 form a gear motor mechanism M, the speed of rotation of the output shaft 1 1 being less than the speed of rotation of the motor shaft 8.
  • the output shaft 1 1 is substantially perpendicular to the motor shaft 8.
  • a bearing 12 ensures the guidance of the drive shaft 8.
  • the bearing comprises, as is known to those skilled in the art, an inner ring and an outer ring separated by a cage provided rolling elements, the inner and outer rings being decoupled from one another.
  • the electric motor 1 comprises a multipolar magnet 15 disposed in the electrical part 2, the bearing 12 being mounted between the multipolar magnet 15 and the worm 9.
  • the magnet 15 forming an integral part of the electric part 2 the electric motor 1 is compartmentalized between the electric part 2 on the one hand and the electronic part 3 on the other hand. Due to this clear separation of functions between electric 2 and electronic parts 3, the electric motor 1 is made more reliable and more compact.
  • the position of the bearing 12 as close as possible to the wheel 10 makes it possible to ensure better resistance to bending, that is to say that the motor shaft 8 has a deformation or a break for a higher bending force.
  • the multipole magnet 15 is a flat cylinder mounted on the motor shaft 8.
  • the electric motor 1 also comprises an electronic card 16, illustrated in Figures 2 and 3, comprising a first part 17, said main, and a second part 18, called transverse, and projecting out of the main part 17 towards the electrical part 2.
  • the electronic card (16) includes the circuits and electronic components necessary for powering and switching the stators and for controlling the motor.
  • the main part is arranged opposite the worm 9 of the motor shaft 8.
  • the transverse part 18 is arranged opposite the multipolar magnet 15 and carries a magnetic sensor 19, for example Hall effect, to detect the changes of poles of the multipolar magnet 15, so that the assembly formed by the multipolar magnet 15 and the magnetic sensor 19 constitutes a sensor for measuring the position of the rotor 4.
  • a magnetic sensor 19 for example Hall effect
  • each of the main 17 and transverse parts 18 has the general shape of a parallelepiped, the transverse part 18 having a width less than a length of the main part 17.
  • the transverse part 18 is a narrow protuberance, which makes it possible to install other elements of the motor 1 in the space between the main part 17 and the transverse part 18 and thus to increase the compactness of the electric motor 1.
  • the electronic card 16 also includes pins 20 for supplying the coils 6.
  • the electric motor 1 comprises a housing 21 having a cover 22 and a cover 23 integral with one another so as to form a housing for the mechanism M and for the electronic card 16.
  • the housing 21 also includes a housing 24 for the rotor 4 and stator 5 assembly.
  • the cover 23 is shaped to cover in particular the toothed wheel 10 and the electronic card 16 and comprises a restriction 25 permitted by the fine projection that constitutes the transverse part 18 relative to the part 17, which ensures, as already indicated , better compactness of the engine 1.
  • the motor 1 comprises an electrical part 2 and an electronic part 3.
  • the electrical part 2 comprises a rotor 4 and a stator 5.
  • the stator 5 comprises a plurality of electromagnetic excitation coils 6.
  • the rotor 4 comprises a multipolar magnet mounted to be driven in a rotational movement around it. an axis of rotation, referenced L.
  • the electric motor 1 is configured so that the rotor 4 rotates in the stator 5, which causes a rotation of a shaft 8, said motor shaft, 8, integral with the rotor 4.
  • the motor shaft 8 extends along the axis of rotation L.
  • the electronic part 3 comprises a worm 9 of the motor shaft 8 and a toothed wheel 10 mounted to be meshed by the worm 9.
  • the electronic part 3 also comprises an output shaft 1 1 shaped to be driven in rotation by the toothed wheel 10.
  • the threaded part 9 and the toothed wheel 10 form a gear motor mechanism M, the speed of rotation of the output shaft 1 1 is lower than the speed of rotation of the motor shaft 8.
  • the output shaft 1 1 is substantially perpendicular to the motor shaft 8.
  • a bearing 12 provides guidance for the drive shaft 8.
  • the bearing comprises, as is known to those skilled in the art, a inner ring and outer ring separated by a cage provided with rolling elements, the inner and outer rings being decoupled from each other.
  • the electric motor 1 comprises a multipolar magnet 15 disposed in the electrical part 2, the bearing 12 being mounted between the multipolar magnet 15 and the worm 9.
  • the electric motor 2 is compartmentalized between the electrical part 2 on the one hand and the electronic part 3 on the other hand. Due to this clear separation of functions between electric 2 and electronic 3 parts, the electric motor 1 is made more reliable and more compact.
  • the position of the bearing 12 as close as possible to the wheel 10 makes it possible to ensure better resistance to bending, that is to say that the motor shaft 8 presents a deformation or a break for a higher bending force.
  • the multipolar magnet 15 is a ring mounted on the motor shaft 8.
  • the electric motor 1 also comprises an electronic card 16 carrying pins 20 for supplying the coils 6.
  • the electronic card 16 has a general parallelepipedal shape.
  • the electric motor 1 also comprises an intermediate part 26 disposed between the multipolar magnet 15 and the guide bearing 12.
  • the intermediate part 26 comprises a ring 27 shaped to be mounted around the motor shaft 8 and surmounted by an electrical connector 28 integral with the ring 27.
  • Ring 27 ensures the mechanical alignment of the arrangement.
  • the electrical connector 28 provides for the transmission of power signals (ie, the currents for the electrical supply to the coils), as well as the transmission of rotor position signals, as will now be explained.
  • the intermediate part 26 allows the combination of the three functions which are the mechanical alignment, the power transmission (power supply to the stator coils) and the control transmission (position of the rotor).
  • the connector 28 comprises a housing portion 29 extending from the ring 27 to the magnet 15 and a housing portion 30 extending from the ring 27 to the electronic card 16, the notches 20 of supply to the coils passing through the housings 29 and 30.
  • the connector 28 also comprises an auxiliary electronic card 31 disposed opposite the multipolar magnet 15.
  • the electronic card 31 carries a magnetic sensor 19, for example Hall effect, in order to detect the changes in the poles of the multipolar magnet 15, so that the assembly formed by the multipolar magnet 15 and the magnetic sensor 19 constitutes an angular position sensor of the rotor 4.
  • the auxiliary electronic card 31 is advantageously dedicated only to the sensor 19, which ensures that it is compact.
  • the auxiliary electronic card is arranged in an orientation parallel to the electronic card 16.
  • the auxiliary electronic card 31 could be arranged in an orientation perpendicular to the electronic card 16.
  • the auxiliary electronic card 31 is preferably carried by the ring 27 or the connector 28, but could also be mounted freely in the housing in another orientation and electrically connected to the electronic card by eg flexible conductors.
  • the electric motor 1 comprises a housing 21 comprising a cover 22 and a cover 23 integral with one another so as to form a housing of the mechanism M and of the electronic card 16.
  • the housing 21 also comprises a housing 24 of the rotor 4, stator 5 assembly.
  • the cover 22 comprises a housing 32 for receiving the ring 27 and an orifice 33 for housing the connector 28.
  • the intermediate part 26 keeps a housing unchanged from the state of the art, which avoids modifying the production lines of known electric motors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

L'invention concerne un moto-réducteur (1) comprenant une première partie de moteur électrique (2) sans balais comportant un stator (5), un rotor (4) et un arbre moteur (8), une seconde partie (3) comportant un arbre de sortie (11) et un mécanisme réducteur (M) et une partie électronique (16). Le mécanisme réducteur (M) comprenant un arbre de sortie (11), une vis sans fin (9) et une roue dentée (10) conformée pour être engrenée par la vis sans fin (9) et d'entraîner l'arbre de sortie (11) en rotation. Le moto-réducteur (1) comprenant au moins un roulement de guidage (12) disposé sur l'arbre moteur (8) et un aimant multipolaire (15) de mesure de position du rotor (4). Le roulement (12) est disposé entre l'aimant de mesure (15) et la vis sans fin (9), de sorte que le moteur électrique (2) peut être commandé suivant la mesure de position du rotor (4).

Description

Description
Titre : Moteur électrique à courant continu sans balais pour système d’essuyage de véhicule automobile
[0001] L’invention a pour objet un moteur électrique, de préférence sans balais, pour un système d’essuyage de véhicule automobile.
Technique antérieure
[0002] Il est connu qu’un tel moteur électrique comporte principalement un rotor et un stator. Généralement, le stator comprend une pluralité de bobines d’excitation électromagnétique du rotor tandis que le rotor comprend un aimant multipolaire. Le moteur électrique est configuré pour que, quand les bobines sont alimentées en courant électrique, un champ magnétique est créé, générant un mouvement de rotation de l’aimant multipolaire qui entraîne un arbre moteur en rotation. L’arbre moteur porte une vis sans fin engrenant une roue dentée solidaire d’un arbre de sortie.
[0003] Du fait de l’insertion du moteur électrique dans le système d’essuyage du véhicule électrique, le moteur électrique doit être le plus compact et léger possible.
Résumé
[0004] La présente divulgation vient améliorer la situation.
[0005] A cet effet, il est proposé un moteur électrique sans balais, notamment pour un dispositif d’essuyage d’un véhicule automobile, comprenant une première partie, dite partie électrique, comportant un stator et un rotor, le stator comprenant une pluralité de bobines d’excitation électromagnétique et le rotor étant monté pour entraîner en rotation un arbre moteur autour d’un axe de rotation, le moteur comprenant également une seconde partie, dite électronique, comportant un arbre de sortie et un mécanisme réducteur, le mécanisme réducteur comprenant une vis sans fin de l’arbre moteur et une roue dentée conformée pour être engrenée par la portion sans fin et entraîner en rotation l’arbre de sortie, le moteur électrique comprenant au moins un roulement de guidage en rotation de l’arbre moteur, et un aimant multipolaire de mesure de position du rotor, le roulement étant disposé sur l’arbre moteur entre ledit aimant de mesure de position du rotor et la vis sans fin, de sorte que ladite partie électrique comporte l’aimant de mesure de position du rotor.
[0006] Ainsi, grâce à la position de l’aimant de mesure de position du rotor, le moteur présente une compartimentation entre la partie électrique d’une part et la partie électronique d’autre part, ce qui en simplifie le montage et assure une meilleure tenue de l’arbre moteur à la flexion.
[0007] Selon un autre aspect, le moteur comprend une carte électronique munie d’une première partie, dite partie principale, et d’une deuxième partie, dite partie transversale, faisant saillie hors de la partie principale vers la partie électrique, la partie transversale portant un capteur magnétique configuré pour coopérer avec l’aimant multipolaire.
[0008] Selon un autre aspect, la partie transversale est disposée en regard de l’aimant multipolaire.
[0009] Selon un autre aspect, le moteur comprend une pièce, dite pièce intermédiaire, comportant un anneau configuré pour être monté autour de l’arbre moteur et comprenant un connecteur.
[0010] Selon un autre aspect, le connecteur est configuré pour la transmission de signaux de puissance à destination du stator et la transmission de signaux de position du rotor.
[0011 ] Selon un autre aspect, le moteur comprend une carte électronique auxiliaire dédiée à la détermination de position du rotor.
[0012] Selon un autre aspect, la carte électronique auxiliaire est disposée dans une orientation parallèle ou perpendiculaire à ladite partie principale.
[0013] Selon un autre aspect, la carte électronique est disposée en regard de l’aimant multipolaire et est munie d’un capteur magnétique configuré pour coopérer avec l’aimant multipolaire.
[0014] Selon un autre aspect, la carte électronique auxiliaire est supportée par au moins l’anneau et/ou le connecteur de la pièce intermédiaire.
[0015] Il est également proposé un système d’essuyage pour un véhicule automobile, comprenant un moteur électrique tel que décrit précédemment. Brève description des dessins
[0016] D’autres caractéristiques, détails et avantages apparaîtront à la lecture de la description détaillée ci-après, et à l’analyse des dessins annexés, sur lesquels :
[0017] Figure 1 illustre une vue en perspective d’un moteur électrique selon un premier mode de réalisation de l’invention ;
[0018] Figure 2 illustre une vue de dessous du moteur de la figure 1 , un couvercle n’étant pas illustré ;
[0019] Figure 3 illustre une vue en perspective de côté du moteur de la figure 1 , sans boîtier ;
[0020] Figure 4 illustre une vue en perspective d’un moteur électrique selon un deuxième mode de réalisation de l’invention ;
[0021] Figure 5 illustre une vue en perspective de côté du moteur de la figure 4, sans boîtier ;
[0022] Figure 6 illustre une autre vue en perspective de côté du moteur de la figure 4, sans boîtier ;
[0023] Figure 7 illustre une vue en perspective d’une pièce intermédiaire du moteur électrique de la figure 4 ; et
[0024] Figure 8 illustre une vue en perspective d’une partie de boîtier du moteur électrique de la figure 4.
Description des modes de réalisation
[0025] Les dessins et la description ci-après contiennent, pour l’essentiel, des éléments de caractère certain. Ils pourront donc non seulement servir à mieux faire comprendre la présente divulgation, mais aussi contribuer à sa définition, le cas échéant.
[0026] L’invention a pour objet un moteur électrique sans balais, de préférence continu, pour un système d’essuyage de véhicule automobile, référencé 1 sur les figures. [0027] L’invention est maintenant décrite en référence au premier mode de réalisation des figures 1 à 4.
[0028] Comme visible sur les figures, le moteur 1 comprend une partie électrique 2 et une partie électronique 3.
[0029] La partie électrique 2 comporte un rotor 4 et un stator 5. Le stator 5 comprend une pluralité de bobines d’excitation électromagnétique 6 du rotor 4. Le rotor 4 comprend un aimant multipolaire monté pour être animé d’un mouvement de rotation autour d’un axe de rotation, référencé L.
[0030] Le moteur électrique 1 est configuré pour que le rotor 4 tourne dans le stator 5, ce qui entraîne une rotation d’un arbre 8, dit arbre moteur, 8, solidaire du rotor 4. L’arbre moteur 8 s’étend selon l’axe de rotation L.
[0031] La partie électronique 3 comprend une vis sans fin 9 de l’arbre moteur 8 et une roue dentée 10 montée pour être engrenée par la vis sans fin 9. La partie électronique 3 comprend également un arbre de sortie 11 conformé pour être entraîné en rotation par la roue dentée 10.
[0032] Ainsi, la partie filetée 9 et la roue dentée 10 forment un mécanisme M moto- réducteur, la vitesse de rotation de l’arbre de sortie 1 1 étant inférieure à la vitesse de rotation de l’arbre moteur 8.
[0033] Avantageusement, l’arbre de sortie 1 1 est sensiblement perpendiculaire à l’arbre moteur 8.
[0034] Comme visible sur la figure 3, un roulement 12 assure le guidage de l’arbre moteur 8. Le roulement comprend, comme il est connu de l’homme du métier, une bague intérieure et une bague extérieure séparées par une cage munie d’éléments roulants, les bagues intérieure et extérieure étant découplées l’une de l’autre.
[0035] Comme également visible sur la figure 3, le moteur électrique 1 comprend un aimant multipolaire 15 disposé dans la partie électrique 2, le roulement 12 étant monté entre l’aimant multipolaire 15 et la vis sans fin 9.
[0036] Ainsi, l’aimant 15 faisant partie intégrante de la partie électrique 2, le moteur électrique 1 est compartimenté entre la partie électrique 2 d’une part et la partie électronique 3 d’autre part. Du fait de cette séparation nette des fonctions entre parties électrique 2 et électronique 3, le moteur électrique 1 est rendu plus fiable et plus compact. La position du roulement 12 au plus près de la roue 10 permet d’assurer une meilleure tenue à la flexion, c’est-à-dire que l’arbre moteur 8 présente une déformation ou une rupture pour un effort de flexion plus élevé.
[0037] Comme visible sur la figure 3, l’aimant multipolaire 15 est un cylindre plat monté sur l’arbre moteur 8.
[0038] Le moteur électrique 1 comprend aussi une carte électronique 16, illustrée sur les figures 2 et 3, comprenant une première partie 17, dite principale, et une deuxième partie 18, dite transversale, et faisant saillie hors de la partie principale 17 vers la partie électrique 2. La carte électronique (16) comprend les circuits et composants électroniques nécessaires pour l’alimentation et commutation des stators et la pilotage du moteur.
[0039] La partie principale est disposée en face de la vis sans fin 9 de l’arbre moteur 8.
[0040] La partie transversale 18 est disposée en face de l’aimant multipolaire 15 et porte un capteur magnétique 19, par exemple à effet Hall, pour détecter les changements de pôles de l’aimant multipolaire 15, de sorte que l’ensemble formé par l’aimant multipolaire 15 et le capteur magnétique 19 constitue un capteur de mesure de position du rotor 4.
[0041] Comme plus particulièrement visible sur la figure 2, chacune des parties principale 17 et transversale 18 présente une forme générale de parallélépipède, la partie transversale 18 ayant une largeur inférieure à une longueur de la partie principale 17. Ainsi, la partie transversale 18 est une protubérance étroite, ce qui permet d’installer d’autres éléments du moteur 1 dans l’espace entre la partie principale 17 et la partie transversale 18 et d’augmenter ainsi la compacité du moteur électrique 1 .
[0042] La carte électronique 16 comprend également des broches 20 d’alimentation des bobines 6.
[0043] Comme visible sur la figure 1 , le moteur électrique 1 comprend un boîtier 21 comportant un capot 22 et un couvercle 23 solidaires l’un de l’autre de sorte à former un logement du mécanisme M et de la carte électronique 16. Le boîtier 21 comprend également un logement 24 de l’ensemble rotor 4, stator 5.
[0044] Le couvercle 23 est conformé pour couvrir en particulier la roue dentée 10 et la carte électronique 16 et comprend une restriction 25 permise par la saillie fine que constitue la partie transversale 18 relativement à la partie 17, ce qui assure, comme déjà indique, une meilleure compacité du moteur 1 .
[0045] L’invention est maintenant décrite en référence au deuxième mode de réalisation des figures 4 à 7. Les éléments déjà décrits en relation avec le premier mode de réalisation portent les mêmes références numériques.
[0046] Comme visible sur les figures 4 à 7, le moteur 1 comprend une partie électrique 2 et une partie électronique 3.
[0047] La partie électrique 2 comporte un rotor 4 et un stator 5. Le stator 5 comprend une pluralité de bobines d’excitation électromagnétique 6. Le rotor 4 comprend un aimant multipolaire monté pour être animé d’un mouvement de rotation autour d’un axe de rotation, référencé L.
[0048] Le moteur électrique 1 est configuré pour que le rotor 4 tourne dans le stator 5, ce qui entraîne une rotation d’un arbre 8, dit arbre moteur, 8, solidaire du rotor 4. L’arbre moteur 8 s’étend selon l’axe de rotation L.
[0049] La partie électronique 3 comprend une vis sans fin 9 de l’arbre moteur 8 et une roue dentée 10 montée pour être engrenée par la vis sans fin 9. La partie électronique 3 comprend également un arbre de sortie 1 1 conformé pour être entraîné en rotation par la roue dentée 10.
[0050] Ainsi, la partie filetée 9 et la roue dentée 10 forme un mécanisme M moto- réducteur, la vitesse de rotation de l’arbre de sortie 1 1 est inférieure à la vitesse de rotation de l’arbre moteur 8.
[0051] Avantageusement, l’arbre de sortie 1 1 est sensiblement perpendiculaire à l’arbre moteur 8.
[0052] Comme visible sur la figure 5, un roulement 12 assure le guidage de l’arbre moteur 8. Le roulement comprend, comme il est connu de l’homme du métier, une bague intérieure et une bague extérieure séparées par une cage munie d’éléments roulants, les bagues intérieure et extérieure étant découplées l’une de l’autre.
[0053] Comme également visible sur la figure 5, le moteur électrique 1 comprend un aimant multipolaire 15 disposé dans la partie électrique 2, le roulement 12 étant monté entre l’aimant multipolaire 15 et la vis sans fin 9.
[0054] Ainsi, l’aimant 15 faisant partie intégrante de la partie électrique 2, le moteur électrique 2 est compartimenté entre la partie électrique 2 d’une part et la partie électronique 3 d’autre part. Du fait de cette séparation nette des fonctions entre parties électrique 2 et électronique 3, le moteur électrique 1 est rendu plus fiable et plus compact. La position du roulement 12 au plus près de la roue 10 permet d’assurer une meilleure tenue à la flexion, c’est-à-dire que l’arbre moteur 8 présente une déformation ou une rupture pour un effort de flexion plus élevé.
[0055] Comme visible sur la figure 5, l’aimant multipolaire 15 est un anneau monté sur l’arbre moteur 8.
[0056] Le moteur électrique 1 comprend aussi une carte électronique 16 portant des broches 20 d’alimentation des bobines 6. La carte électronique 16 présente une forme générale parallélépipédique.
[0057] Le moteur électrique 1 comprend également une pièce intermédiaire 26 disposée entre l’aimant multipolaire 15 et le roulement de guidage 12.
[0058] Comme plus particulièrement visible sur la figure 7, la pièce intermédiaire 26 comprend un anneau 27 conformé pour être monté autour de l’arbre moteur 8 et surmonté d’un connecteur électrique 28 solidaire de l’anneau 27.
[0059] L’anneau 27 assure l’alignement mécanique de l’agencement. Le connecteur électrique 28 assure la transmission de signaux de puissance (c'est-à- dire, les courants pour l’alimentation électrique des bobines), ainsi que la transmission de signaux de position du rotor, comme il va être maintenant expliqué.
[0060] Ainsi, la pièce intermédiaire 26 permet la réunion des trois fonctions que sont l’alignement mécanique, la transmission de puissance (alimentation électrique des bobines du stator) et la transmission de la commande (position du rotor). [0061] Le connecteur 28 comprend une partie de logement 29 s’étendant depuis l’anneau 27 vers l’aimant 15 et une partie de logement 30 s’étendant depuis l’anneau 27 vers la carte électronique 16, les encoches 20 d’alimentation des bobines traversant les logements 29 et 30.
[0062] Comme visible sur la figure 6, le connecteur 28 comprend également une carte électronique auxiliaire 31 disposée en face de l’aimant multipolaire 15. La carte électronique 31 porte un capteur magnétique 19, par exemple à effet Hall, afin de détecter les changements de pôles de l’aimant multipolaire 15, de sorte que l’ensemble formé par l’aimant multipolaire 15 et le capteur magnétique 19 constitue un capteur de position angulaire du rotor 4. Ainsi, les signaux émis par le capteur 19 peuvent être transmis par le connecteur 28. La carte électronique auxiliaire 31 est avantageusement dédiée uniquement au capteur 19, ce qui assure qu’elle soit peu encombrante.
[0063] Dans cette mode de réalisation, la carte électronique auxiliaire est disposée dans une orientation parallèle à la carte électronique 16. Toutefois, d’autres orientations pourraient être possible dans d’autres configurations : par exemple, la carte électronique auxiliaire 31 pourrait être disposée dans une orientation perpendiculaire à la carte électronique 16. La carte électronique auxiliaire 31 est de préférence portée par l’anneau 27 ou le connecteur 28, mais pourrait également être montée libre dans le boîtier dans une autre orientation et reliée électriquement à la carte électronique par e.g. des conducteurs flexibles.
[0064] Comme visible sur la figure 4, le moteur électrique 1 comprend un boîtier 21 comportant un capot 22 et un couvercle 23 solidaires l’un de l’autre de sorte à former un logement du mécanisme M et de la carte électronique 16. Le boîtier 21 comprend également un logement 24 de l’ensemble rotor 4, stator 5.
[0065] Comme visible sur la figure 8, le capot 22 comprend un logement 32 de réception de l’anneau 27 et un orifice 33 de logement du connecteur 28.
[0066] On note que la pièce intermédiaire 26 permet de garder un boîtier inchangé par rapport à l’état de l’art, ce qui évite de modifier les lignes de production de moteurs électriques connus.

Claims

Revendications
1. Moteur électrique sans balais, notamment pour un dispositif d’essuyage d’un véhicule automobile, comprenant une première partie (2), dite partie électrique, comportant un stator (5) et un rotor (4), le stator (5) comprenant une pluralité de bobines (6) d’excitation électromagnétique du rotor (4) et le rotor (4) étant monté pour entraîner en rotation un arbre moteur (8) autour d’un axe de rotation (L), le moteur (1 ) comprenant également une seconde partie (3), dite électronique, comportant un arbre de sortie (1 1 ) et un mécanisme réducteur (M), le mécanisme réducteur (M) comprenant une vis sans fin (9) sur l’arbre moteur et une roue dentée (10) conformée pour être engrenée par la portion sans fin (9) et entraîner en rotation l’arbre de sortie (1 1 ), le moteur électrique (1 ) comprenant au moins un roulement (12) de guidage en rotation de l’arbre moteur (8), et un aimant multipolaire (15) de mesure de position du rotor, le roulement étant disposé sur l’arbre moteur (8) entre ledit aimant de mesure de position du rotor (15) et la vis sans fin (9), de sorte que ladite partie électrique (2) comporte l’aimant de mesure de position du rotor (4).
2. Moteur électrique selon la revendication 1 , comprenant une carte électronique (16) munie d’une première partie, dite partie principale (17), et d’une deuxième partie, dite partie transversale (18), faisant saillie hors de la partie principale (17) vers la partie électrique (2), la partie transversale (18) portant un capteur magnétique (19) configuré pour coopérer avec l’aimant multipolaire (15).
3. Moteur électrique selon la revendication précédente, dans lequel la partie transversale (18) est disposée en regard de l’aimant multipolaire (15).
4. Moteur électrique selon la revendication 1 , comprenant une pièce, dite pièce intermédiaire (26) comportant un anneau (27) configuré pour être monté sur autour de l’arbre moteur (8), et un connecteur (28) configuré pour coopérer avec une carte électronique (16).
5. Moteur électrique selon la revendication précédente, dans lequel le connecteur (28) est configuré pour la transmission de signaux de puissance à destination du stator (5) et la transmission de signaux de position du rotor (4).
6. Moteur électrique selon l’une des revendications 4 ou 5, comprenant une carte électronique auxiliaire (31 ) dédiée à la détermination de position du rotor (4).
7. Moteur électrique selon la revendication 6, dans lequel la carte électronique auxiliaire (31 ) est disposée dans une orientation parallèle ou perpendiculaire à ladite carte électronique (16)
8. Moteur électrique selon l’une des revendications 6 ou 7, dans lequel la carte électronique auxiliaire (31 ) est disposée en regard de l’aimant multipolaire (15) et est munie d’un capteur magnétique configuré pour coopérer avec l’aimant multipolaire (15).
9. Moteur électrique selon l’une des revendications 6 à 8, dans lequel la carte électronique auxiliaire (31 ) est supportée par au moins l’anneau (27) et/ou le connecteur (28) de la pièce intermédiaire (26).
10. Système d’essuyage pour un véhicule automobile, comprenant un moteur électrique (1 ) selon l’une des revendications précédentes.
EP20734245.2A 2019-07-31 2020-06-29 Moteur électrique à courant continu sans balais pour système d'essuyage de véhicule automobile Pending EP4005071A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1908797A FR3099659B1 (fr) 2019-07-31 2019-07-31 Moteur électrique à courant continu sans balais pour système d’essuyage de véhicule automobile
PCT/EP2020/068312 WO2021018496A1 (fr) 2019-07-31 2020-06-29 Moteur électrique à courant continu sans balais pour système d'essuyage de véhicule automobile

Publications (1)

Publication Number Publication Date
EP4005071A1 true EP4005071A1 (fr) 2022-06-01

Family

ID=68654713

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20734245.2A Pending EP4005071A1 (fr) 2019-07-31 2020-06-29 Moteur électrique à courant continu sans balais pour système d'essuyage de véhicule automobile

Country Status (6)

Country Link
US (1) US20220348166A1 (fr)
EP (1) EP4005071A1 (fr)
JP (1) JP7432706B2 (fr)
CN (1) CN114128105B (fr)
FR (1) FR3099659B1 (fr)
WO (1) WO2021018496A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3134259A1 (fr) 2022-03-29 2023-10-06 Valeo Systèmes D’Essuyage Ensemble moteur pour un dispositif d’essuyage
FR3143493A1 (fr) 2022-12-15 2024-06-21 Valeo Systèmes D’Essuyage Ensemble moteur pour un dispositif d’essuyage
FR3143492A1 (fr) 2022-12-15 2024-06-21 Valeo Systèmes D’Essuyage Ensemble moteur pour un dispositif d’essuyage

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69607371T2 (de) * 1995-11-16 2000-08-24 Lucas Industries Ltd Verbesserungen in elektrischen stellgliedern für fahrzeugsysteme
US6756711B2 (en) * 2000-12-27 2004-06-29 Asmo Co., Ltd. Motor having control circuit board for controlling its rotation
DE102013006854A1 (de) * 2012-04-26 2013-10-31 Asmo Co., Ltd. Motor
DE102013206400A1 (de) * 2013-04-11 2014-10-16 Robert Bosch Gmbh Elektrischer Antrieb für ein Kraftfahrzeug
CN103978954B (zh) * 2014-05-23 2016-08-24 电子科技大学 一种新型气动雨刮器
WO2016010021A1 (fr) * 2014-07-15 2016-01-21 株式会社ミツバ Moteur d'essuie-glace sans balais
DE102015220900A1 (de) * 2015-10-27 2017-04-27 Robert Bosch Gmbh Wischerdirektantrieb
FR3056355B1 (fr) * 2016-09-22 2018-09-07 Valeo Systemes D'essuyage Moteur electrique a courant continu sans balais pour systeme d'essuyage de vehicule automobile
FR3066970B1 (fr) * 2017-06-02 2021-01-01 Valeo Systemes Dessuyage Moto-reducteur pour systeme d'essuyage de vehicule automobile

Also Published As

Publication number Publication date
FR3099659B1 (fr) 2022-06-24
CN114128105B (zh) 2024-06-11
CN114128105A (zh) 2022-03-01
FR3099659A1 (fr) 2021-02-05
WO2021018496A1 (fr) 2021-02-04
US20220348166A1 (en) 2022-11-03
JP7432706B2 (ja) 2024-02-16
JP2022542604A (ja) 2022-10-05

Similar Documents

Publication Publication Date Title
WO2021018496A1 (fr) Moteur électrique à courant continu sans balais pour système d'essuyage de véhicule automobile
EP1277030B1 (fr) Connecteur a concentrateur de flux pour moteur electrique
FR2815189A1 (fr) Moto-reducteur electrique sans balai autocommute sur un signal de position absolu
EP1509987A2 (fr) Dispositif de motoreduction et connecteur de motoreducteur
EP3927621A1 (fr) Propulseur electrique pour aeronef et procede d'utilisation d'un tel propulseur
EP0926279B1 (fr) Actionneur rotatif électrique pour la formation de la foule sur un métier à tisser, mécanique d'armure et métier à tisser
EP1407528B1 (fr) Moteur polyphase
WO2006120515A1 (fr) Actionneur pour indicateurs de mesures
EP3651345B1 (fr) Procédé de réduction du couple de crantage produit par des moteurs électriques de type brushless utilises simulatenement
WO2020234532A1 (fr) Motoreducteur faible bruit a moteur electrique dissymetrique
EP1648076A1 (fr) Motoréducteur comprenant une carte de contrôle et un porte-balais et son procédé d'assemblage
WO2019012010A1 (fr) Procede de pilotage d'une machine electrique tournante polyphasee et machine electrique tournante mettant en oeuvre ce procede
WO2021028760A1 (fr) Système de vis-écrou magnétiques
FR3121723B1 (fr) Actionneur pour l’actionnement d’au moins un organe mobile, notamment pour le changement de rapports d’une transmission de véhicule automobile
FR3121555A1 (fr) Stator pour moteur ou générateur sans balais
EP3047561A2 (fr) Moteur electrique polyphase equipe d'un dispositif de determination de la position angulaire et/ou de la vitesse de rotation d'un rotor dudit moteur
FR2585409A1 (fr) Dispositif d'actionnement electrique d'un organe, notamment d'un volet de papillon de carburateur
FR3004296A1 (fr) Moteur electrique a faible couple de court-circuit, dispositif de motorisation a plusieurs moteurs et procede de fabrication d`un tel moteur
FR3066972B1 (fr) Moto-reducteur pour systeme d'essuyage de vehicule automobile
EP0549429A1 (fr) Rotor à aimants permanents doté d'une indication de sa position angulaire instantanée et machine magnéto-dynamique, comme un moteur sans collecteur, équipée d'un tel rotor
FR3086813A1 (fr) Rotor pour moteur electrique a courant continu
EP3496237A1 (fr) Moteur electrique a courant continu sans balais pour systeme d'essuyage de vehicule automobile
FR3112252A1 (fr) Machine électrique synchrone équipée d’un commutateur mécanique
FR2632133A1 (fr) Moteur a induction du type a aimantation
FR3092712A1 (fr) Machine électrique synchrone polyphasée à commutateur mécanique

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211129

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20231113