EP3998200B1 - Système de commande de vol d'aéronef tolérant aux pannes - Google Patents

Système de commande de vol d'aéronef tolérant aux pannes Download PDF

Info

Publication number
EP3998200B1
EP3998200B1 EP21158264.8A EP21158264A EP3998200B1 EP 3998200 B1 EP3998200 B1 EP 3998200B1 EP 21158264 A EP21158264 A EP 21158264A EP 3998200 B1 EP3998200 B1 EP 3998200B1
Authority
EP
European Patent Office
Prior art keywords
bus
flight control
sub
control computer
aircraft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21158264.8A
Other languages
German (de)
English (en)
Other versions
EP3998200A1 (fr
Inventor
João Filipe TELES FERREIRA
Gabriel Oliveira RIBAS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lilium eAircraft GmbH
Original Assignee
Lilium eAircraft GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lilium eAircraft GmbH filed Critical Lilium eAircraft GmbH
Priority to EP21158264.8A priority Critical patent/EP3998200B1/fr
Priority to EP21161129.8A priority patent/EP3998194A1/fr
Priority to KR1020237029100A priority patent/KR20230147103A/ko
Priority to EP22702483.3A priority patent/EP4294719A1/fr
Priority to JP2023550308A priority patent/JP2024507242A/ja
Priority to PCT/EP2022/052300 priority patent/WO2022175071A1/fr
Priority to PCT/EP2022/052644 priority patent/WO2022175106A1/fr
Priority to US17/670,852 priority patent/US20220269291A1/en
Priority to CN202210139788.9A priority patent/CN114954914A/zh
Priority to US17/673,489 priority patent/US20220266979A1/en
Priority to CN202210148678.9A priority patent/CN114954899A/zh
Publication of EP3998200A1 publication Critical patent/EP3998200A1/fr
Application granted granted Critical
Publication of EP3998200B1 publication Critical patent/EP3998200B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/102Simultaneous control of position or course in three dimensions specially adapted for aircraft specially adapted for vertical take-off of aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • B64C13/38Transmitting means with power amplification
    • B64C13/50Transmitting means with power amplification using electrical energy
    • B64C13/503Fly-by-Wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C19/00Aircraft control not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • B64C13/26Transmitting means without power amplification or where power amplification is irrelevant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • B64C13/38Transmitting means with power amplification
    • B64C13/50Transmitting means with power amplification using electrical energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • B64C13/38Transmitting means with power amplification
    • B64C13/50Transmitting means with power amplification using electrical energy
    • B64C13/505Transmitting means with power amplification using electrical energy having duplication or stand-by provisions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C15/00Attitude, flight direction, or altitude control by jet reaction
    • B64C15/02Attitude, flight direction, or altitude control by jet reaction the jets being propulsion jets
    • B64C15/12Attitude, flight direction, or altitude control by jet reaction the jets being propulsion jets the power plant being tiltable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0033Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being tiltable relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/12Canard-type aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • B64C9/04Adjustable control surfaces or members, e.g. rudders with compound dependent movements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • B64C9/08Adjustable control surfaces or members, e.g. rudders bodily displaceable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/30Aircraft characterised by electric power plants
    • B64D27/31Aircraft characterised by electric power plants within, or attached to, wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/30Aircraft characterised by electric power plants
    • B64D27/34All-electric aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • B64D31/02Initiating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • B64D31/14Transmitting means between initiating means and power plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • B64D31/16Power plant control systems; Arrangement of power plant control systems in aircraft for electric power plants
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0055Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements
    • G05D1/0077Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements using redundant signals or controls
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node
    • H04L12/40032Details regarding a bus interface enhancer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40169Flexible bus arrangements
    • H04L12/40176Flexible bus arrangements involving redundancy
    • H04L12/40189Flexible bus arrangements involving redundancy by using a plurality of bus systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/18Multiprotocol handlers, e.g. single devices capable of handling multiple protocols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D2221/00Electric power distribution systems onboard aircraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40208Bus networks characterized by the use of a particular bus standard
    • H04L2012/40215Controller Area Network CAN
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40267Bus for use in transportation systems
    • H04L2012/4028Bus for use in transportation systems the transportation system being an aircraft

Definitions

  • the present invention generally relates to a flight control system for an aircraft, and an aircraft, that may have such a flight control system.
  • the invention relates to an aircraft to the canard type having multiple lift/thrust units distributed along the front or canard wings and along the aft or main wings.
  • Aircrafts maybe generally classified into fixed wing and rotating wing types.
  • Fixed wing aircrafts typically include a plurality of flight control surfaces that, when controllably positioned, guide the movement of the aircraft from one destination to another destination.
  • the number and type of flight control surfaces included in an aircraft may vary.
  • Primary flight control surfaces are typically those that are used for control the aircraft movement with respect to the pitch, yaw and roll axes.
  • Secondary flight control surface are typically those that are used to influence the lift or drag (or both) of the aircraft.
  • Typical primary flight control surfaces include elevators, ailerons and rudder, and typical secondary flight control surfaces include a plurality of flaps, slats speed brakes and spoilers.
  • Rotary-wing aircraft such as e.g. helicopters, typically do not have flight control surfaces that are separated from the airfoils that produce lift, but the airfoils that constitute the rotating wing have a cyclic control for pitch and roll, and a collective control for lift.
  • aircrafts which have a vertical take-off and landing capability based on propulsion engines, which are mounted rotatably with respect to a transvers axis or pitch axis of the aircraft.
  • the propulsion engines are controllably movable between a cruising flight position and a take-off/landing position. In the cruising position the engines provide forward thrust and the movement of the aircraft through the air is controlled by means of suitable flight control surfaces. In the take-off/landing position, the propulsion engines are angled downwards for allowing a vertical take-off or landing based on the thrust provided by the engines.
  • Such types of aircraft with vertical take-off and landing capability and having electrically driven ducted propellers as propulsion engines have been proposed by the present applicant Lilium GmbH according to the publications US 2016/0023754 A1 and US 2016/0311522 A1 and further publications of the same patent families.
  • the present applicant meanwhile has developed an aircraft denoted as Lilium jet, which is a canard type aircraft and has plural left front engines, plural right front engines, plural left aft engines and plural right aft engines in the form of ducted propellers operated electrically, which are mounted to respective flaps of the front left and right canard wing and the left and right aft or main wing of the canard type aircraft.
  • the first test flight of this Lilium jet was performed on October 01, 2019.
  • the flight control system is a critical system, for which redundancy must be provided, also in view of regulatory requirements, which have to be met.
  • a known conventional flight control system for an aircraft in general terms, comprises a flight computer system, which is connected via an electronic or optoelectronic bus system with a plurality of bus nodes, which each are configured to at least one of controlling an associated aircraft device based on command messages received from the flight control computer system via the bus system and sending information messages to the flight control computer system via the bus system.
  • Flight control systems on which the preamble part of claim 1 may be read are known e.g. from US 2020/0031454 A1 and US 2019/0334741 A1 .
  • the use of a redundant CAN bus system in an aircraft is also known from US 2015/0029902 A1 and EP 3 254 960 A1 .
  • CN 108688803 A discloses a so-called VTLV aircraft, meaning an aircraft that can vertically take off and vertically land.
  • the invention shall provide an aircraft having such a flight control system, which is configured to achieve such a resiliency.
  • the invention provides a flight control system for an aircraft as is defined in claim 1.
  • the flight control system comprises a flight control computer system, which is connected via an electronic or optoelectronic bus system with a plurality of bus nodes, which each are configured to at least one of controlling an associated aircraft device based on command messages received from the flight control computer system via the bus system and sending information messages to the flight control computer system via the bus system.
  • the electronic or optoelectronic bus system is a redundant electronic or optoelectronic bus system comprising plural independent bus sub-systems, wherein each bus node is configured to communicate with the flight control computer system via two different bus sub-systems of the plural independent bus sub-systems, wherein each bus node further is configured to communicate with the flight control computer system on basis of an associated predetermined bus communication protocol via a first bus sub-system of the respective two different bus sub-systems and on basis of an associated predetermined bus communication protocol via a second bus sub-system of the respective two different bus sub-systems.
  • each bus node of a first group of the bus nodes is configured to communicate with the flight control computer system via the first bus sub-system on basis of a first bus communication protocol, which is the associated predetermined bus communication protocol of the bus nodes of the first group for the first bus sub-system, and is configured to communicate with the flight control computer system via the second bus sub-system on basis of a second bus communication protocol, which is the associated predetermined bus communication protocol of the bus nodes of the first group for the second bus sub-system and differs from the first bus communication protocol.
  • a first bus communication protocol which is the associated predetermined bus communication protocol of the bus nodes of the first group for the first bus sub-system
  • a second bus communication protocol which is the associated predetermined bus communication protocol of the bus nodes of the first group for the second bus sub-system and differs from the first bus communication protocol.
  • each bus node of a second group of the bus nodes is configured to communicate with the flight control computer system via the first bus sub-system on basis of the second bus communication protocol, which is the associated predetermined bus communication protocol of the bus nodes of the second group for the first bus sub-system, and is configured to communicate with the flight control computer system via the second bus sub-system on basis of the first bus communication protocol, which is the associated predetermined bus communication protocol of the bus nodes of the second group for the second bus sub-system.
  • each of the plural independent bus sub-systems is composed of plural independent communication busses.
  • Each bus node is connected via one associated communication bus of the first bus sub-system with the flight control computer system and is configured to communicate via this communication bus of the first bus sub-system with the flight control computer system on basis of the associated predetermined bus communication protocol and each bus node is connected via one associated communication bus of the second bus sub-system with the flight control computer system and is configured to communicate via this communication bus of the second bus sub-system with the flight control computer system on basis of the associated predetermined bus communication protocol.
  • the invention provides that plural bus nodes are associated to each of a plurality or most or all of the plural independent communication busses of the first bus sub-system, wherein the bus nodes being associated to the same independent communication bus of the first bus sub-system are configured to communicate via this common independent communication bus with the flight control computer system, and that plural bus nodes are associated to each of a plurality or most or all of the plural independent communication busses of the second bus sub-system, wherein the bus nodes being associated to the same independent communication bus of the second bus sub-system are configured to communicate via this common independent communication bus with the flight control computer system.
  • the bus nodes are CAN bus nodes
  • the plurality independent bus sub-systems are realized as independent CAN bus sub-systems
  • the predetermined bus communication protocols each are one of plural different CAN bus protocols according to a respective CAN standard, including a first CAN bus protocol according to a first CAN standard and a second CAN bus protocol according to a second CAN standard differing from the first CAN standard.
  • each of the independent CAN bus sub-systems will be composed of plural independent CAN busses realizing the plural independent communication busses, so that each CAN bus node is connected via one associated CAN bus of a first CAN bus sub-system with the flight control computer system and each bus node is connected via one associated CAN bus of a second bus CAN sub-system with the flight control computer system.
  • each of plural or most or all of the CAN busses of the first CAN bus sub-system will be connected with plural associated of the CAN bus nodes and each of plural or most or all of the CAN busses of the second CAN bus sub-system is connected with plural associated of the CAN bus nodes, wherein the CAN bus nodes being connected with the same CAN bus are configured to communicate via this common CAN bus with the flight control computer system.
  • each CAN bus node of a/the first group of the bus nodes is configured to communicate with the flight control computer system via the associated CAN bus of the first CAN bus sub-system on basis of the first CAN bus protocol, and is configured to communicate with the flight control computer system via the associated CAN bus of the second CAN bus sub-system on basis of the second CAN bus protocol
  • each CAN bus node of a/the second group of the bus nodes is configured to communicate with the flight control computer system via the associated CAN bus of the first CAN bus sub-system on basis of the second CAN bus protocol, and is configured to communicate with the flight control computer system via the second CAN bus sub-system on basis of the first CAN bus protocol.
  • one of the first and second CAN bus protocols may follow one of the ISO 11898 standard referred to as CAN STANDARD and the SAE J2284-5:2016 standard referred to as CAN FD.
  • the other of the first and second CAN bus protocols follows the other of the ISO 11898 standard referred to as CAN STANDARD and the SAE J2284-5:2016 standard referred to as CAN FD.
  • CAN STANDARD CAN STANDARD
  • SAE J2284-5:2016 CAN FD
  • bus communication according to the CAN FD standard may to advantage be used also for other bus communications than the usual transmission of command messages and information messages for controlling the aircraft. For example, firmware or software updates of various bus nodes and other components connected to the bus system could be done in a very efficient manner by using the CAN FD standard.
  • the flight control computer system is a redundant flight control computer system that comprises plural independent flight control computers.
  • three independent flight control computers are provided.
  • the plural independent flight control computers may be dissimilar flight control computers differing in at least one of the flight control computer hardware and the flight control computer software, preferably differing in both thereof.
  • Each flight control computer will be connected via one of the independent bus sub-systems or independent CAN bus sub-systems with each of the bus nodes or CAN bus nodes.
  • two of the flight control computers are connected via the first bus sub-system or first CAN bus sub-system with each of the bus nodes or CAN bus nodes and the other of the flight control computers is connected via the second bus sub-system or second CAN bus sub-system with each of the bus nodes or CAN bus nodes.
  • At least one of the flight control computers is configured to communicate with the bus nodes or CAN bus nodes of a/the first group on basis of the first bus communication protocol or first CAN bus protocol and with the bus nodes or CAN bus nodes of a/the second group on basis of the second bus communication protocol or second first CAN bus protocol, and that at least one other of the flight control computers is configured to communicate with the bus nodes or CAN bus nodes of the first group on basis of the second bus communication protocol or second CAN bus protocol and with the bus nodes or CAN bus nodes of the second group on basis of the first bus communication protocol or first CAN bus protocol.
  • the invention provides for three flight control computers, wherein a first flight control computer and a second flight control computer are connected via the first bus sub-system or first CAN bus sub-system with each of the bus nodes or CAN bus nodes, and a third flight control computer is connected via the second bus sub-system or second CAN bus sub-system with each of the bus nodes or CAN bus nodes.
  • the first flight control computer and the second flight control computer are configured to communicate with the bus nodes or CAN bus nodes of the first group on basis of the first bus communication protocol or first CAN bus protocol and are configured to communicate with the bus nodes or CAN bus nodes of the second group on basis of the second bus communication protocol or second CAN bus protocol
  • the third flight control computer is configured to communicate with the bus nodes or CAN bus nodes of the first group on basis of the second bus communication protocol or second CAN bus protocol and is configured to communicate with the bus nodes or CAN bus nodes of the second group on basis of the first bus communication protocol or first CAN bus protocol.
  • the flight control computers are configured to elect one of the flight control computers to be the flight control computer in control and therewith to elect the other two flight control computers to be a supervising flight control computer.
  • Each flight control computer may be configured to operate as flight control computer in control and to control the aircraft based on command messages sent to bus nodes or CAN bus nodes via the respective independent bus sub-system or independent CAN bus sub-system and possibly based on information messages received from bus nodes or CAN bus nodes via the respective independent bus sub-system or independent CAN bus sub-system.
  • At least two, preferably all three flight control computers may be configured to operate as a supervising flight control computer and to monitor at least one of the operation of the flight control computer currently being the flight control computer in control and messages sent via the respective independent bus sub-system or independent CAN bus sub-system.
  • the flight control computers or at least the flight control computers configured to be a supervising flight control computer may be configured to elect a different flight control computer than the flight control computer currently operating as flight control computer in control as new flight control computer in control, based on the monitoring done by the flight control computers operating as supervising flight control computers.
  • an aircraft comprising a flight control system according to the invention as described in the foregoing is provided.
  • the aircraft may be at least one of a single pilot aircraft, an aircraft having a vertical take-off and landing capability and an aircraft of the canard type, for example.
  • a particular preferred embodiment is an aircraft of the canard type having a vertical take-off and landing capability.
  • the flight control system of the invention can favorably be implemented in any other kind of aircrafts, including all types of aircrafts mentioned in the foregoing description of the technical background.
  • the aircraft may have plural aircraft devices of a common type, which each have associated a respective bus node or CAN bus node of the flight control system.
  • the aircraft devices are arranged in a number and configuration at one or both of the fuselage of the aircraft and wings of the aircraft to achieve a resiliency against failures, such that various subgroups of the plural aircraft devices each comprising at least two of the aircraft devices of the common type may fail without endangering the flight capability and the controllability of the aircraft.
  • the bus nodes or CAN bus nodes of the aircraft devices of the common type are associated in such a number and manner to a respective independent communication bus or CAN bus of the first bus sub-system or first CAN bus sub-system and are associated in such a number and manner to a respective independent communication bus or CAN bus of the second bus sub-system or second CAN bus sub-system, that any combination of two independent communication buses or CAN busses of the flight control system may fail without substantially compromising the flight capability and the controllability of the aircraft.
  • the aircraft devices of the common type or of a first common type may be flaps, which have air control surfaces.
  • the flaps may be mounted in a moveable, e.g. pivotable manner to wings of the aircraft, and each flap may have associated at least one flap actuator and a bus node or CAN bus node, which is configured to control a deflection angle of the flap by controlling the at least one flap actuator based on command messages received from the flight control computer system.
  • the aircraft devices of the common type or of a second common type may be propulsion engines.
  • Each propulsion engine has associated a bus node or CAN bus node, which is configured to control the operation of the propulsion engine based on command messages received from the flight control computer system.
  • flaps as well as propulsion engines are provided, which are associated to each other.
  • the propulsion engines are mounted to or integrated with an associated one of the flaps, so that a thrust direction of the propulsion engines can be controlled by controlling the deflection angle of the respective flap by means of the respective at least one flap actuator and the respective bus node or CAN bus node associated thereto.
  • plural or all flaps which serve to control a thrust direction each have associated only one of the propulsion engines, which is mounted to or integrated with the respective flap.
  • plural or all flaps which serve to control a thrust direction each have associated plural of the propulsion engines, which are mounted to or integrated with the respective flap.
  • a propulsion module comprising plural propulsion engines is mounted to or integrated with the respective flap.
  • flap actuators and propulsion engines associated thereto have associated common bus nodes or CAN bus nodes.
  • the at least one flap actuator of the flap and the associated propulsion engine or plural propulsion engines have associated a common bus node or CAN bus node, which is configured to control the propulsion engine or propulsion engines and the at least one flap actuator based on command messages received from the flight control computer system.
  • a flight control system architecture with triple dissimilar flight control computers and an aircraft having a flight control system are provided.
  • Each flight control computer, FCC may be implemented by a different CPU and may communicate with each other FCC via a dedicated bus.
  • FCC In Control one FCC is elected to effectively control the aircraft (referred as "FCC In Control"), based on its I/O capability, while the others monitor the operation and the messages propagated by the "FCC In Control” via the dedicated bus. If the monitoring FCCs agree that the "FCC In Control" is misbehaving, one of them will be elected the "new FCC In Control” and this decision will be propagated to the other systems of the flight control system.
  • the FCCs may be connected to the actuators and other aircraft devices of the aircraft via a Dual Fly-By-Wire distribution of the CAN type referred to as CAN A and CAN B.
  • FCC1 and FCC2 may be connected to CAN A and FCC3 may be connected to CAN B.
  • Each CAN network A/B may be composed by plural independent full-duplex CAN buses which connect the FCCs to all flap actuators of plural flaps and all propulsion engines of the aircraft.
  • the flap actuators preferably are realized as electro-mechanical actuators, and the propulsion engines preferably are realized as electrically driven propulsion engines.
  • the propulsion engines favorably may be integrated into lift/thrust units comprising one electrically driven propulsion engine or plural electrically driven propulsion engines, a flap and the respective at least one electromechanical flap actuator.
  • the plural independent full-duplex CAN buses provide direct control to all lift/thrust units for each individual FCC.
  • a canard type aircraft of the invention may have thirty six (36) lift/thrust units, preferably six (6) lift/thrust units per canard wing and twelve (12) per main wing.
  • Each lift/thrust units comprises one flap and one propulsion engine mounted to or integrated with the flap.
  • the lift/thrust units may be connected via six (6) independent full-duplex CAN buses of CAN network A and via six (6) independent full-duplex CAN buses of CAN network B with the FCCs.
  • Each network provides enough throughput for high update rate commands (up to 200Hz) and is still compliant with ARINC-825 throughput limitation of 50% bus utilization.
  • Each lift/thrust unit may have two interfaces, one connected to CAN A and the other connected to CAN B.
  • Each interface of the two interfaces may implement a different type of CAN protocol: e.g. one following the ISO 11898 referred as CAN STANDARD and the other the SAE J2284-5:2016 referred as CAN FD, providing a level of dissimilarity on the lift/thrust unit side.
  • connection between each lift/thrust unit and the individual CAN bus in each network may be arranged in such a manner, that full fault tolerance to single failures is obtained and impact of dual bus failures is minimized.
  • dual CAN failure will cause, in the worst case, loss of two lift/thrust units: one in the canard and one in the opposite side wing; or two lift/thrust unit in the same wing close to the fuselage.
  • the unbalancing caused by the failure is handled by the flight control system itself, redistributing part of the command that was supposed to be performed by the failed units to the remaining healthy units. In this case, no pilot action is needed to compensate the unbalancing.
  • advantages of a triplex architecture on the flight control computer side may favorably be combined with the advantages of a dual CAN network, providing a lighter and simpler solution than a conventional triple network architecture, but keeping the required availability and dissimilarity requirements.
  • Fig. 1 shows and illustrates schematically an example of a known flight control system 10.
  • the flight control system has a flight control computer system 12, which may be realized according to conventional concepts, in particular concepts, which provide for redundancy.
  • An example is an as such conventional triplex architecture having three redundant flight control computers 12a, 12b and 12c, which may be connected redundantly with the pilot user interface on the one hand and elements and devices of the aircraft to be controlled based on the pilot's commands on the other hand.
  • conventional redundancy concepts it may be referred to US 7,337,044 B2 , US 8,935,015 B2 and US 8,818,575 B2 .
  • elements 14 to 20 which may represent various aircraft devices, such as sensors, actuators (such as actuators for controllably moving flight control surfaces such as flaps and the like), propulsion engines and the like. More precisely, the elements 14 to 20 represent the control nodes or bus nodes of these aircraft devices, which control the respective actuator, propulsion engine and the like bases on commands received from the flight control computer system or/and send sensor or status data to the flight control computer system.
  • a bus system preferably a CAN bus system 22, is provided for optically or electrically linking the various components with the flight control computer system 12.
  • the flight control system 10 further comprises a pilot user interface, which may include a left sidestick apparatus 30a and a right sidestick apparatus 30b, the left sidestick apparatus having a left sidestick 32a and the right sidestick apparatus having a right sidestick 32b.
  • Both sidesticks can be pivoted in a left-right direction, about a first maneuvering axis extending at least roughly in a longitudinal direction of the aircraft and in a forwardbackward direction, about a second maneuvering axis extending at least roughly in a traverse direction of the aircraft, preferably orthogonal to the first maneuvering axis.
  • Corresponding multiple degree of freedom assemblies and sensor assemblies 38a, 38b sensitive to the pivoting movements of the sidesticks or/and pivoting forces acting via the sidesticks as conventionally known may be provided for the two sidesticks.
  • Electronic flight control signals or electronic flight control commands generated by the sensor assembly 38a and sensor assembly 38b are transmitted via electronic or optical connection links 42a and 42b to the flight control computer system 12.
  • Figs. 2 and 3 illustrate two canard-type aircrafts as non-limiting examples, to which the present invention may be applied.
  • the canard-type aircraft 200 has a fixed left aft or main wing 202 and a fixed right aft or main wing 204 at an aft portion of the fuselage 203 of aircraft and a fixed left front or canard wing 206 and a fixed right front or canard wing 208 at a front portion of the fuselage of the aircraft.
  • Each wing is provided with an array of plural flaps 210, 212, 214 and 216, respectively. For example, at least six flaps per front wing or canard and at least twelve flaps per aft wing or main wing could be provided.
  • the shown embodiment of Fig. 2 has two flaps per front wing or canard and four flaps per aft wing or main wing
  • the shown embodiment of Fig. 3 has six flaps per front wing or canard and twelve flaps per aft wing or main wing.
  • Each flap is mounted pivotably or moveably to the respective wing and can be pivoted about a pivoting axis or moved with a pivoting movement component by a respective electric actuator arrangement, preferably independently of each other for each flap.
  • Each flap can be pivoted between an upper first operational position and a lower second operational position.
  • Each flap may assume a position of minimum or vanishing inclination with respect to a longitudinal axis of the aircraft, possibly the upper first operational position, and a position of maximum downward inclination with respect to the longitudinal axis of the aircraft, possibly the lower second operational position.
  • the lower second operational position may alternatively be a position beyond the position of maximum downward inclination, so that the flap points slightly forward.
  • each of these flaps at least one propulsion engine in the form of a ducted propeller, which is operated electrically, is mounted.
  • the ducted propellers preferably are mounted to an upper surface of the respective flap.
  • the propulsion engines may be integrated into a respective flap in a manner, that an air channel of the respective propulsion engine, in which the respective ducted propeller rotates, is located above and aligned with an upper surface of the respective front wing or aft wing.
  • the flaps may assume a position corresponding to the lower second operational position or another operational position between the first and the second operational positions, in which the ducted propellers provide only vertical thrust downwardly, which provides the aircraft with a vertical take-off and landing (VTOL) capability.
  • the operating ducted propellers provide maximum forward thrust for the aircraft.
  • the flaps operate not only for controlling the thrust direction of the propulsion engines or propulsion modules, but also as flight control surfaces influencing the movement of the aircraft in the air based on the usual aerodynamic principles.
  • the flaps are provided with propulsion modules, into which plural propulsion engine in the form of a ducted propeller are integrated.
  • a propulsion module may include three such propulsion engines, so that each flap is provided with three propulsion engines in the form of a respective ducted propeller.
  • the aircraft is provided with overall thirty-six propulsion engines.
  • Fig. 4a shows a schematic view on such a propulsion module 230 having an array of three propulsion engines 232a, 232b and 232c and being mounted to a flap 234, which may be anyone of the flaps 210, 212, 214 and 216 shown in Fig. 2 .
  • the flaps each are provided with one respective propulsion engine in the form of a ducted propeller. Accordingly, the aircraft is provided with overall thirty-six propulsion engines.
  • Fig. 4b shows schematically such a flap 234 with the propulsion engine 232 mounted thereto.
  • the flap 234 may be anyone of the flap 210, 212, 214 and 216 of the Fig. 3 .
  • Fig. 4 shows the respective flap 234 with the propulsion modules 230 or the propulsion engine 232 schematically in a view from the rear of the aircraft.
  • Fig. 5 shows schematically side views of the respective wing 236 of the aircraft, which may be anyone of the wings 202, 204, 206 and 208 of Fig. 2 and 3 , and the respective flap 234, to which the respective propulsion module 230 or the respective propulsion engine 232 is mounted, for different deflection angles of the flap with respect to the wing.
  • a minimum or zero deflection angle as illustrated in Fig. 5a provides for maximum forward thrust for the aircraft
  • a maximum deflection angle or deflection angle of 90 degrees as illustrated in Fig. 5d ) provides maximum or only vertical thrust downwardly for achieving a vertical take-off and landing (VTOL) capability for the aircraft.
  • the maximum deflection angle may even be greater than 90 degrees, so that thrust in a direction having a downward component and a backward component is provided.
  • the intermediate deflection angles of the flap as illustrated in Fig. 5b) and 5c ) provide thrust in a direction having a downward component and a forward component, as follows from the respective deflection angle.
  • This deflection angle preferably can be varied continuously between the minimum and maximum deflection angles.
  • a suitable flap actuator or flap actuator arrangement acting between the respective wing 236 and the respective flap 234 is schematically represented in Fig. 5 by the element 240.
  • a suitable pivoting joint or pivoting joint arrangement pivotably linking the flap 234 with the wing 236 is schematically represented in Fig. 5 by the element 242.
  • the propulsion engines 232a, 232b and 232c of each propulsion module 230 and the flap actuator or flap actuator arrangements 240 of the respective flap 234 have associated a common bus node 250, which is connected with the bus system, in particular CAN bus system 22 of the flight control system of Fig. 1 and controls the propulsion engines 232a, 232b and 232c and the flap actuator or flap actuator arrangements 240 based on command messages received from the flight control computer system 12 via the bus system or CAN bus system 22. This is illustrated in Fig. 6a ).
  • the one propulsion engine 232 of each flap 234 and the respective flap actuator or flap actuator arrangement 240 may have associated a common bus node 250, which is connected with the bus system, in particular CAN bus system 22 of the flight control system of Fig. 1 and controls the propulsion engine 232 and the flap actuator or flap actuator arrangement 240 based on command messages received from the flight control computer system 12 via the bus system or CAN bus system 22. This is illustrated in Fig. 6 .
  • Fig. 4a and 6a together with Fig. 5 on the one hand
  • Fig. 4b and Fig. 6b together with Fig. 5 on the other end
  • the bus nodes 250 are bus nodes such as the bus nodes 14, 16, 18 and 20 shown in Fig. 1 .
  • bus nodes like the bus nodes 250 may be connected with the bus system or CAN bus system 22, but preferably, also other aircraft devices with their corresponding bus nodes may be connected with the bus system.
  • the flaps 234, the propulsion modules 230 and the propulsion engines 232a, 232b, 232c and 232 may have the capability or may be provided with sensors for returning information back to the flight control computer system.
  • the bus nodes 250 may send corresponding information messages to the flight control computer system via the bus system.
  • the canard-type aircraft 200 may be provided with a flight control system shown schematically in Fig. 1 .
  • the flight control computer system 12 controls the deflection angles of the flaps or lift/thrust units at the front wings and the aft wings and the thrust of their propulsion engines by controlling the rotation speeds of the ducted propellers.
  • the deflection angles of all flaps or lift/thrust units can be controlled independently of each other.
  • the rotation speeds of all ducted propellers can be controlled independently of each other.
  • propulsion modules as mentioned, each having plural ducted propellers as in the shown embodiment of Figs. 2 , 4a ) and 6a are provided. However, in this case one may decide to provide for a collective control of the rotation speeds of the ducted propellers of each respective propulsion module 230 as more appropriate.
  • the bus system or CAN bus system 22 comprises a first independent bus sub-system 22a or independent CAN bus sub-system 22a and a second independent bus sub-system 22b or second independent CAN bus sub-system 22b, as illustrated in Fig. 7 .
  • the first flight control computer 12a and the second flight control computer 12b are connected with the first bus sub-system or first CAN bus sub-system 22a and the third flight control computer 12c is connected with the second bus sub-system or second CAN bus sub-system 22b.
  • Each of the two independent bus sub-systems or independent CAN bus sub-systems 22a and 22b comprises plural independent communication busses, in particular plural independent CAN busses.
  • independent communication busses 24a or CAN busses 24a in case of the first independent bus sub-system or CAN bus sub-system 22a and plural independent communication busses or CAN busses 24b in case of the second independent bus sub-system or CAN bus sub-system 22b.
  • These independent communication busses or CAN busses which have full-duplex capability, are represented in Fig. 7 by three parallel horizontal lines 24a1, 24a2, 24a3 and 24b1, 24b2, 24b3, respectively.
  • the bus nodes are connected to different communication bus or CAN bus combinations, namely the bus node 14 to the communication or CAN busses 24a1 and 24b1, the bus node 16 to the communication busses or CAN busses 24a1 and 24b2, the bus node 18 to the communication busses or CAN busses 24a2 and 24b2, and the bus node 20 to the communication busses or CAN busses 24a2 and 24b3.
  • This achieves that any pair of the communication busses or CAN busses 24a1, 24a2, 24a3, 24ba, 24b2 and 24b3 may commonly fail without interrupting the communication of more than one bus node of the bus nodes 14, 16, 18 and 20 with the flight control computer system 12.
  • bus nodes 14, 16, 18 and 20, in particular bus nodes like the bus nodes 250 are configured to communicate via one of the independent bus sub-systems 22a and 22b according to a first bus communication protocol and are configured to communicate via the other independent bus sub-system of the bus sub-systems 22a and 22b according to a second bus communication protocol, which differs from the first bus communication protocol.
  • each of the bus nodes is configured to communicate with the flight control computer system 12 on basis of a first CAN bus protocol via one of the two CAN bus sub-systems 22a and 22b and on basis of a second CAN bus protocol different from the first CAN bus protocol via the other of the two CAN bus sub-systems 22a and 22b.
  • the flight control computer system more particular its flight control computers, is/are configured to communicate with the bus nodes via the respective CAN bus sub-system based on the two different CAN bus protocols.
  • one of the first and second CAN bus protocols follows one of the ISO 11898 standard referred to as CAN STANDARD and the SAE J2284-5:2016 standard referred to as CAN FD
  • the other of the first and second CAN bus protocols follows the other of the ISO 11898 standard referred to as CAN STANDARD and the SAE J2284-5:2016 standard referred to as CAN FD.
  • CAN bus system 22 with independent CAN bus sub-systems 22a and 22b and respectively plural independent CAN busses 24a1, 24a2, 24a3 and 24b1, 24b2, 24b3, respectively, is indeed highly preferred in the context of the present invention.
  • the CAN bus system is a mature system providing many advantages.
  • the bus participants or bus node decide based on an object identifier of a respective bus message, whether the bus message is relevant.
  • the bus participants are not individually addressed, in agreement with the so-called "ATM" or "anyone-to-many" principle.
  • the bus access is automatically controlled based on the object identifier by bitwise arbitration.
  • ARINC-825 even provides additionally for "peer-to-peer” or "PTP" communications, which could be used for certain functions, if desired.
  • a typical CAN bus requires only two signal lines typically provided as twisted pair, namely CAN-Low and CAN-High. In practice, there is normally also a GND (ground) and a CAN V+ (power) line. If desired, CAN bus data may be sent via optical single mode or multimode fibers, using suitable CAN to fiber optic convertors and the like.
  • the lift/thrust units each having a flap 234 and a propulsion engine 232 with a bus node 250 and a flap actuator or flap actuator arrangement 240 as illustrated in Fig. 6 and Fig. 5 , have associated identification numbers shown in inserts in Fig. 3 , which are associated to the wings and canards.
  • the six flaps or lift/thrust units 214 of the canard wing 206 have assigned the identification numbers 1.1 to 1.6.
  • the six flaps or lift/thrust units 214 of the canard wing 208 have assigned the identification numbers 2.1 to 2.6.
  • the twelve flaps or lift/thrust units 210 of the main wing 202 have assigned the identification numbers 3.1 to 3.12.
  • the twelve flaps or lift/thrust units 212 of the main wing 204 have assigned the identification numbers 4.1 to 4.12. These identification numbers are also included in Fig. 8 and 9 for identifying the flaps or lift/thrust units.
  • the identification numbers 1.1, 2.1, 3.1 and 4.1 identify the respectively most inner flap or lift/thrust unit adjacent or near the fuselage 203, and identification numbers 1.6, 2.6, 3.12 and 4.12 identify the outmost flap or lift/thrust unit having a maximum distance from the fuselage 203, and the other flaps or lift/thrust units and their positions along the respective wing or canard are correspondingly identified by the four identification number inserts in Fig. 3 .
  • Fig. 8 und 9 use these identification numbers for identifying the respective flap and therewith the respective lift/thrust unit.
  • Fig. 8 identifies in detail the assignment of the bus nodes of the flaps or lift/thrust units (these terms are used synonymously in the context of the following description) to the first CAN bus sub-system 22a, which is denoted as CAN A, and its six independent CAN busses, represented by continuous lines, as well as to the second independent CAN bus sub-system 24b, which is denoted as CAN B, and its six independent CAN busses, represented by dashed lines.
  • the independent CAN busses of both bus sub-systems are respectively identified by identification numbers 1, 2, 3, 4, 5 and 6 presented in identification boxes included in Fig. 8 .
  • the bus communication via the CAN busses identified by the identification numbers 1, 2 and 3 follows the ISO 11898 standard, to which it was referred as CAN STANDARD, and is referred to in Fig. 8 and 9 as CAN 2.0B, and the bus communication via the independent CAN busses identified by the identification numbers 4, 5 and 6 follows the SAE J2284-5:2016 referred to as CAN FD.
  • the independent CAN busses identified by the identification numbers 1, 2 and 3 of the first CAN bus sub-system 24a and the independent CAN busses identified by the identification numbers 4, 5 and 6 of the second CAN bus sub-system 24b are arranged in an upper portion of the drawing of Fig. 8 and the independent CAN busses identified by the identification numbers 4, 5 and 6 of the first CAN bus sub-system 24a and the independent CAN busses identified by the identification numbers 1, 2 and 3 of the second CAN bus sub-system 24b are arranged in a lower portion of the drawings of Fig. 8 .
  • the flight control computers 12a and 12b communicate with the bus nodes of the first group according to the ISO 11898 standard referred to as CAN STANDARD or CAN 2.0B and with the bus nodes of the second group according to SAE J2284-5:2016 standard referred to as CAN FD.
  • the third flight control computer 12c communicates with the bus nodes of the first group according to the SAE J2284-5:2016 standard referred to as CAN FD and with the bus nodes of the second group according to the ISO 11898 standard referred to as CAN STANDARD or CAN 2.0B.
  • Fig. 9 essentially gives the same information as Fig.8 , but shows also the positional relation of the different flaps or lift/thrust units with respect to each other and along the wings and canards of the aircraft.
  • Bus connectors 28a, 28b, 28c and 28d connecting CAN bus sub-system sections of the first CAN bus sub-system 24a may be denoted as main connectors, for reflecting that the control of the bus nodes is normally done via the first CAN bus sub-system 24a
  • CAN bus connectors 29a, 29b, 29c and 29d connecting CAN bus sub-system sections of the second CAN bus sub-system 24b correspondingly may be denoted as redundant or auxiliary connectors, for reflecting that the control of the bus nodes is normally done via the first CAN bus sub-system 24a.
  • the independent CAN busses of the first CAN bus sub-system 24a are drawn in continuous lines and the independent CAN busses of the second CAN bus sub-system 24b are drawn in dashed lines.
  • the same identification numbers 1, 2, 3, 4, 5, 6 identifying the respective of the independent CAN busses of both CAN bus sub-systems 24a and 24b are also used in Fig. 9 .
  • the respective CAN bus protocol or CAN standard used for the communication via the respective independent CAN bus is identified.
  • a twofold bus communication failure in CAN bus 6 of the first independent CAN bus sub-system 24a denoted as CAN A and in CAN bus 1 of the second independent CAN bus sub-system 24b denoted as CAN B will result in a failure of the lift/thrust units 3.1 and 3.6 of the left main wing 202.
  • a twofold failure in the CAN busses 3 and 4 of the CAN A and CAN B bus sub-systems will result in a failure of the lift/thrust units 4.1 and 4.6 in the right main wing 204.
  • a bus communication error in the independent CAN busses 3 and 6 of the CAN A and CAN B bus sub-systems would affect the outermost lift/thrust unit 1.6 of the left canard wing 206 and the outermost lift/thrust unit 4.12 of the right main wing 204, and a bus failure in the CAN busses 6 and 3 of the CAN A and CAN B bus sub-systems would affect the outermost lift/thrust unit 2.6 of the right canard wing 208 and the outermost lift/thrust unit 3.12 of the left main wing 202. Again, the lateral balancing would not be affected very much.
  • the lift/thrust units are assigned to the individual independent CAN busses of both CAN bus sub-systems in a manner that any combination of two bus failures in any pair of these busses would have no major impact on the lateral balancing, so that the flight capability and the controllability of the aircraft is not substantially compromised.
  • the illustrated principle of achieving resiliency against failures based on the present invention can of course also be applied to other kind of aircraft than the aircraft shown in Fig. 2 .
  • This principle can of course also be applied to the aircraft shown in Fig. 3 , and also to completely different kinds of aircraft, which have such a number of lift/thrust units, propulsion engines, flaps and the like, that not all these aircraft engines are needed for maintaining the flight capability and controllability of the aircraft.
  • the skilled person will be able, when implementing the invention, to assign the various aircraft engines in such a manner to individual busses of a redundant bus system, so that the impact of such twofold or multiple bus faults is minimized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Small-Scale Networks (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Claims (18)

  1. Système de commande de vol (10) destiné à un aéronef (200), comprenant un système d'ordinateurs de commande de vol (12), qui est connecté, par l'intermédiaire d'un système de bus électronique ou optoélectronique (22), à une pluralité de noeuds de bus (14, 16, 18, 20 ; 200), qui sont configurés chacun pour commander un dispositif d'aéronef associé (232 ; 232a, 232b, 232c ; 242) sur la base de messages d'instruction reçus du système d'ordinateurs de commande de vol par l'intermédiaire du système de bus et/ou pour envoyer des messages d'informations au système d'ordinateurs de commande de vol par l'intermédiaire du système de bus ;
    dans lequel le système de bus électronique ou optoélectronique est un système de bus électronique ou optoélectronique redondant (22) comprenant plusieurs sous-systèmes de bus indépendants (22a, 22b), dans lequel chaque noeud de bus est configuré pour communiquer avec le système d'ordinateurs de commande de vol (12) par l'intermédiaire de deux sous-systèmes de bus différents (22a, 22b) des plusieurs sous-systèmes de bus indépendants, dans lequel chaque noeud de bus est en outre configuré pour communiquer avec le système d'ordinateurs de commande de vol sur la base d'un protocole de communication de bus prédéterminé associé par l'intermédiaire d'un premier sous-système de bus (22a) des deux sous-systèmes de bus différents respectifs et sur la base d'un protocole de communication de bus prédéterminé associé par l'intermédiaire d'un second sous-système de bus (22b) des deux sous-systèmes de bus différents respectifs ;
    dans lequel chaque noeud de bus est connecté, par l'intermédiaire d'un bus de communication associé du premier sous-système de bus, au système d'ordinateurs de commande de vol et est configuré pour communiquer, par l'intermédiaire de ce bus de communication du premier sous-système de bus, avec le système d'ordinateurs de commande de vol sur la base du protocole de communication de bus prédéterminé associé et chaque noeud de bus est connecté, par l'intermédiaire d'un bus de communication associé du second sous-système de bus, au système d'ordinateurs de commande de vol et est configuré pour communiquer, par l'intermédiaire de ce bus de communication du second sous-système de bus, avec le système d'ordinateurs de commande de vol sur la base du protocole de communication de bus prédéterminé associé ;
    dans lequel le système d'ordinateurs de commande de vol (12) est un système d'ordinateurs de commande de vol redondant (12) comprenant trois ordinateurs de commande de vol indépendants (12a, 12b, 12c) ; et dans lequel deux ordinateurs (12a, 12b) des ordinateurs de commande de vol sont connectés, par l'intermédiaire du premier sous-système de bus (22a), à chacun des noeuds de bus et l'autre ordinateur (12c) des ordinateurs de commande de vol est connecté, par l'intermédiaire du second sous-système de bus (22b), à chacun des noeuds de bus ;
    caractérisé en ce que chacun des plusieurs sous-systèmes de bus indépendants est constitué de plusieurs bus de communication indépendants (24a1, 24a2, 24a3 ; 24b1, 24b2, 24b3),
    dans lequel plusieurs noeuds de bus sont associés à chaque bus d'une pluralité des plusieurs bus de communication indépendants (24a1, 24a2, 24a3), ou à tous ces derniers, du premier sous-système de bus (24), dans lequel les noeuds de bus qui sont associés au même bus de communication indépendant du premier sous-système de bus sont configurés pour communiquer, par l'intermédiaire de ce bus de communication indépendant commun, avec le système d'ordinateurs de commande de vol (12), et plusieurs noeuds de bus sont associés à chaque bus d'une pluralité des plusieurs bus de communication indépendants (24b1, 24b2, 24b3), ou à tous ces derniers, du second sous-système de bus (24b), dans lequel les noeuds de bus qui sont associés au même bus de communication indépendant du second sous-système de bus sont configurés pour communiquer, par l'intermédiaire de ce bus de communication indépendant commun, avec le système d'ordinateurs de commande de vol (12) .
  2. Système de commande de vol selon la revendication 1, dans lequel chaque noeud de bus d'un premier groupe des noeuds de bus est configuré pour communiquer avec le système d'ordinateurs de commande de vol (12) par l'intermédiaire du premier sous-système de bus (22a) sur la base d'un premier protocole de communication de bus, qui est le protocole de communication de bus prédéterminé associé des noeuds de bus du premier groupe pour le premier sous-système de bus, et est configuré pour communiquer avec le système d'ordinateurs de commande de vol (12) par l'intermédiaire du second sous-système de bus (22b) sur la base d'un second protocole de communication de bus, qui est le protocole de communication de bus prédéterminé associé des noeuds de bus du premier groupe pour le second sous-système de bus et qui diffère du premier protocole de communication de bus, et dans lequel chaque noeud de bus d'un second groupe des noeuds de bus est configuré pour communiquer avec le système d'ordinateurs de commande de vol (12) par l'intermédiaire du premier sous-système de bus (22a) sur la base du second protocole de communication de bus, qui est le protocole de communication de bus prédéterminé associé des noeuds de bus du second groupe pour le premier sous-système de bus, et est configuré pour communiquer avec le système d'ordinateurs de commande de vol (12) par l'intermédiaire du second sous-système de bus (22b) sur la base du premier protocole de communication de bus, qui est le protocole de communication de bus prédéterminé associé des noeuds de bus du second groupe pour le second sous-système de bus.
  3. Système de commande de vol selon l'une des revendications 1 et 2, dans lequel les noeuds de bus (14, 16, 18, 20 ; 200) sont des noeuds de bus CAN, les plusieurs sous-systèmes de bus indépendants sont réalisés en tant que sous-systèmes de bus CAN indépendants (22a, 22b), et les protocoles de communication de bus prédéterminés sont individuellement un protocole de plusieurs protocoles de bus CAN différents conformes à une norme CAN respective, comprenant un premier protocole de bus CAN conforme à une première norme CAN et un second protocole de bus CAN conforme à une seconde norme CAN différente de la première norme CAN.
  4. Système de commande de vol selon la revendication 3, dans lequel chacun des sous-systèmes de bus CAN indépendants (22a, 22b) est constitué de plusieurs bus CAN indépendants (24a1, 24a2, 24a3 ; 24b1, 24b2, 24b3) réalisant les plusieurs bus de communication indépendants, de sorte que chaque noeud de bus CAN soit connecté, par l'intermédiaire d'un bus CAN associé d'un premier sous-système de bus CAN (22a), au système d'ordinateurs de commande de vol (12) et que chaque noeud de bus soit connecté, par l'intermédiaire d'un bus CAN associé d'un second sous-système de bus CAN (22b), au système d'ordinateurs de commande de vol (12) ;
    dans lequel tous les bus CAN du premier sous-système de bus CAN (22a) sont individuellement connectés à plusieurs noeuds associés des noeuds de bus CAN et tous les bus CAN du second sous-système de bus CAN (22b) sont individuellement connectés à plusieurs noeuds associés des noeuds de bus CAN, dans lequel les noeuds de bus CAN qui sont connectés au même bus CAN sont configurés pour communiquer, par l'intermédiaire de ce bus CAN commun, avec le système d'ordinateurs de commande de vol.
  5. Système de commande de vol selon la revendication 2 et selon la revendication 4, dans lequel chaque noeud de bus CAN du premier groupe des noeuds de bus est configuré pour communiquer avec le système d'ordinateurs de commande de vol (12) par l'intermédiaire du bus CAN associé du premier sous-système de bus CAN (22a) sur la base du premier protocole de bus CAN, et est configuré pour communiquer avec le système d'ordinateurs de commande de vol (12) par l'intermédiaire du bus CAN associé du second sous-système de bus CAN (22b) sur la base du second protocole de bus CAN, et dans lequel chaque noeud de bus CAN du second groupe des noeuds de bus est configuré pour communiquer avec le système d'ordinateurs commande de vol (12) par l'intermédiaire du bus CAN associé du premier sous-système de bus CAN (22a) sur la base du second protocole de bus CAN, et est configuré pour communiquer avec le système d'ordinateurs de commande de vol (12) par l'intermédiaire du second sous-système de bus CAN (22b) sur la base du premier protocole de bus CAN.
  6. Système de commande de vol selon l'une des revendications 3 à 5, dans lequel un protocole des premier et second protocoles de bus CAN suit l'une de la norme ISO 11898 désignée sous le nom de CAN STANDARD et de la norme SAE J2284-5:2016 désignée sous le nom de CAN FD, et dans lequel, de préférence, l'autre protocole des premier et second protocoles de bus CAN suit l'autre de la norme ISO 11898 désignée sous le nom de CAN STANDARD et de la norme SAE J2284-5:2016 désignée sous le nom de CAN FD.
  7. Système de commande de vol selon l'une des revendications 1 à 6, dans lequel les trois ordinateurs de commande de vol indépendants (12a, 12b, 12c) sont des ordinateurs de commande de vol non-similaires qui diffèrent du point de vue d'au moins l'un parmi le matériel d'ordinateur de commande de vol et le logiciel d'ordinateur de commande de vol.
  8. Système de commande de vol selon l'une des revendications 1 à 7, dans lequel au moins un ordinateur (12a, 12b) des ordinateurs de commande de vol (12a, 12b, 12c) est configuré pour communiquer avec les noeuds de bus ou avec les noeuds de bus CAN d'un/du premier groupe sur la base du premier protocole de communication de bus ou du premier protocole de bus CAN et avec les noeuds de bus ou les noeuds de bus CAN d'un/du second groupe sur la base du second protocole de communication de bus ou du second premier protocole de bus CAN, et dans lequel au moins un autre ordinateur (12c) des ordinateurs de commande de vol (12a, 12b, 12c) est configuré pour communiquer avec les noeuds de bus ou avec les noeuds de bus CAN du premier groupe sur la base du second protocole de communication de bus ou du second protocole de bus CAN et avec les noeuds de bus ou les noeuds de bus CAN du second groupe sur la base du premier protocole de communication de bus ou du premier protocole de bus CAN.
  9. Système de commande de vol selon l'une des revendications 1 à 8, dans lequel les ordinateurs de commande de vol (12a, 12b, 12c) sont configurés pour choisir l'un des ordinateurs de commande de vol comme devant être l'ordinateur de commande de vol lors d'une commande et, parallèlement, pour choisir les deux autres ordinateurs de commande de vol comme devant être un ordinateur de commande de vol de supervision,
    dans lequel chaque ordinateur de commande de vol (12a, 12b, 12c) est configuré pour fonctionner en tant qu'ordinateur de commande de vol lors d'une commande et pour commander l'aéronef (200) sur la base de messages d'instruction envoyés à des noeuds de bus ou à des noeuds de bus CAN par l'intermédiaire du sous-système de bus indépendant ou du sous-système de bus CAN indépendant (22a ; 22b) respectif et, possiblement, sur la base de messages d'informations reçus de noeuds de bus ou de noeuds de bus CAN par l'intermédiaire du sous-système de bus indépendant ou du sous-système de bus CAN indépendant respectif,
    et dans lequel au moins deux ordinateurs, de préférence les trois ordinateurs de commande de vol (12a, 12b, 12c), sont configurés pour fonctionner en tant qu'ordinateur de commande de vol de supervision et pour surveiller au moins l'un du fonctionnement de l'ordinateur de commande de vol qui est l'ordinateur de commande de vol courant lors d'une commande et de messages envoyés par l'intermédiaire du sous-système de bus indépendant ou du sous-système de bus CAN indépendant respectif ;
    dans lequel, de préférence, les ordinateurs de commande de vol (12a, 12b, 12c) ou au moins les ordinateurs de commande de vol configurés comme étant un ordinateur de commande de vol de supervision sont configurés pour choisir un ordinateur de commande de vol différent de l'ordinateur de commande de vol en cours de fonctionnement en tant qu'ordinateur de commande de vol lors d'une commande en tant que nouvel ordinateur de commande de vol lors d'une commande, sur la base de la surveillance effectuée par les ordinateurs de commande de vol fonctionnant en tant qu'ordinateurs de commande de vol de supervision.
  10. Aéronef (200) comprenant un système de commande de vol (10) selon l'une des revendications précédentes ; dans lequel l'aéronef (200) est, de préférence, au moins l'un parmi un aéronef à un seul pilote, un aéronef à capacité de décollage et d'atterrissage verticaux et un aéronef du type canard.
  11. Aéronef selon la revendication 10, dans lequel l'aéronef (200) comporte plusieurs dispositifs d'aéronef d'un type commun qui comportent individuellement un noeud de bus ou un noeud de bus CAN (200) respectif associé du système de commande de vol, dans lequel les dispositifs d'aéronef sont agencés selon un nombre et une configuration au niveau du fuselage (203) de l'aéronef et/ou des ailes (202, 204, 206, 208) de l'aéronef pour obtenir une résilience contre des défaillances, de sorte que divers sous-groupes des plusieurs dispositifs d'aéronef comprenant individuellement au moins deux des dispositifs d'aéronef du type commun puissent présenter une défaillance sans mettre en danger la capacité de vol et l'aptitude à la commande de l'aéronef.
  12. Aéronef selon la revendication 11, dans lequel les noeuds de bus ou les noeuds de bus CAN des dispositifs d'aéronef du type commun sont associés selon un nombre et une manière à un bus de communication ou à un bus CAN indépendant respectif du premier sous-système de bus ou du premier sous-système de bus CAN (22a) et sont associés selon un nombre et une manière à un bus de communication ou à un bus CAN indépendant respectif du second sous-système de bus ou du second sous-système de bus CAN (22b), tels qu'une combinaison quelconque de deux bus de communication indépendants ou de deux bus CAN du système de commande de vol puisse présenter une défaillance sans sensiblement compromettre la capacité de vol et l'aptitude à la commande de l'aéronef.
  13. Aéronef selon la revendication 11 ou la revendication 12, dans lequel les dispositifs d'aéronef du type commun ou d'un premier type commun sont des volets (234) comportant des surfaces de commande d'air, dans lequel les volets sont montés d'une manière mobile sur des ailes (234) de l'aéronef, dans lequel chaque volet comporte au moins un actionneur de volet (240) et un noeud de bus ou un noeud de bus CAN (250) associé, qui est configuré pour commander un angle de déflexion du volet (234) par une commande de l'au moins un actionneur de volet (240) sur la base de messages d'instruction reçus du système d'ordinateurs de commande de vol (12).
  14. Aéronef selon l'une des revendications 11 à 13, dans lequel les dispositifs d'aéronef du type commun ou d'un second type commun sont des moteurs de propulsion (232 ; 232a, 323b, 232c), dans lequel chaque moteur de propulsion comporte un noeud de bus ou un noeud de bus CAN (250) associé, qui est configuré pour commander le fonctionnement du moteur de propulsion sur la base de messages d'instruction reçus du système d'ordinateurs de commande de vol (12).
  15. Aéronef selon les revendications 13 et 14, dans lequel les moteurs de propulsion (232 ; 232a, 323b, 232c) sont montés sur un volet associé (234), ou intégré à ce dernier, parmi les volets, de façon à pouvoir commander une direction de poussée des moteurs de propulsion par une commande de l'angle de déflexion du volet respectif (234) au moyen d'au moins un actionneur de volet respectif (240) et du noeud de bus ou du noeud de bus CAN (250) respectif qui lui est associé.
  16. Aéronef selon la revendication 15, dans lequel plusieurs volets ou tous les volets (234) qui servent à commander une direction de poussée ne comportent individuellement qu'un seul moteur associé (232) parmi les moteurs de propulsion, qui est monté sur le volet respectif (234), ou intégré à ce dernier.
  17. Aéronef selon la revendication 15 ou la revendication 16, dans lequel plusieurs volets ou tous les volets (234) qui servent à commander une direction de poussée comportent individuellement plusieurs moteurs associés (232a, 323b, 232c) parmi les moteurs de propulsion, qui sont montés sur le volet respectif (234), ou intégrés à ce dernier ;
    dans lequel, de préférence, un module de propulsion (230) comprenant plusieurs moteurs de propulsion (232a, 323b, 232c) est monté sur le volet respectif (234) ou est intégré à ce dernier.
  18. Aéronef selon l'une des revendications 15 à 17, dans lequel, pour chaque volet (234) comportant un moteur de propulsion (232) ou plusieurs moteurs de propulsion (232a, 323b, 232c) associés, l'au moins un actionneur de volet (240) du volet et le moteur de propulsion ou les plusieurs moteurs de propulsion associés comportent un noeud de bus ou un noeud de bus CAN (250) commun associé, qui est configuré pour commander le moteur de propulsion ou les moteurs de propulsion et l'au moins un actionneur de volet sur la base de messages d'instruction reçus du système d'ordinateurs de commande de vol (12).
EP21158264.8A 2021-02-19 2021-02-19 Système de commande de vol d'aéronef tolérant aux pannes Active EP3998200B1 (fr)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP21158264.8A EP3998200B1 (fr) 2021-02-19 2021-02-19 Système de commande de vol d'aéronef tolérant aux pannes
EP21161129.8A EP3998194A1 (fr) 2021-02-19 2021-03-05 Ensemble ailes pour aéronef
EP22702483.3A EP4294719A1 (fr) 2021-02-19 2022-02-01 Ensemble aile pour aéronef
JP2023550308A JP2024507242A (ja) 2021-02-19 2022-02-01 航空機のための翼組立体
PCT/EP2022/052300 WO2022175071A1 (fr) 2021-02-19 2022-02-01 Ensemble aile pour aéronef
KR1020237029100A KR20230147103A (ko) 2021-02-19 2022-02-01 항공기용 날개 어셈블리
PCT/EP2022/052644 WO2022175106A1 (fr) 2021-02-19 2022-02-03 Système de commande de vol d'aéronef insensible aux défaillances
US17/670,852 US20220269291A1 (en) 2021-02-19 2022-02-14 Fault tolerant aircraft flight control system and aircraft preferably having such an aircraft flight control system
CN202210139788.9A CN114954914A (zh) 2021-02-19 2022-02-16 容错飞行器飞行控制系统和优选具有此类飞行器飞行控制系统的飞行器
US17/673,489 US20220266979A1 (en) 2021-02-19 2022-02-16 Wing assembly for an aircraft
CN202210148678.9A CN114954899A (zh) 2021-02-19 2022-02-17 用于飞行器的机翼组件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP21158264.8A EP3998200B1 (fr) 2021-02-19 2021-02-19 Système de commande de vol d'aéronef tolérant aux pannes

Publications (2)

Publication Number Publication Date
EP3998200A1 EP3998200A1 (fr) 2022-05-18
EP3998200B1 true EP3998200B1 (fr) 2024-04-24

Family

ID=74672242

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21158264.8A Active EP3998200B1 (fr) 2021-02-19 2021-02-19 Système de commande de vol d'aéronef tolérant aux pannes

Country Status (4)

Country Link
US (1) US20220269291A1 (fr)
EP (1) EP3998200B1 (fr)
CN (1) CN114954914A (fr)
WO (1) WO2022175106A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11435761B1 (en) * 2021-07-23 2022-09-06 Beta Air, Llc System and method for distributed flight control system for an electric vehicle
EP4358475A1 (fr) 2022-10-19 2024-04-24 Lilium eAircraft GmbH Auto-configuration de noeuds de bus dans un système de bus d'un avion
WO2024152015A2 (fr) * 2023-01-13 2024-07-18 Beta Air, Llc Système et procédé de commande de vol pour un aéronef

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001704A (en) * 1988-02-09 1991-03-19 Mcdonnell Douglas Corporation Multipurpose bus interface
US6133846A (en) * 1996-10-01 2000-10-17 Honeywell Inc. Low cost redundant communications system
US7337044B2 (en) 2004-11-10 2008-02-26 Thales Canada Inc. Dual/triplex flight control architecture
WO2008122820A2 (fr) 2007-04-05 2008-10-16 Bombardier Inc. Système de commande de vol électrique multivoie. à canal unique et redondance série multiaxe
US8935015B2 (en) 2011-05-09 2015-01-13 Parker-Hannifin Corporation Flight control system with alternate control path
RU2014114897A (ru) * 2011-09-21 2015-10-27 Кэссидиэн Эрборн Солюшнс ГмбХ Пригодная для авиации система can-шина
US9276765B2 (en) * 2011-10-13 2016-03-01 Texas Instruments Incorporated Apparatus and system for an active star/stub/ring controller area network physical layer transceiver
DE102014213215A1 (de) 2014-07-08 2016-01-14 Lilium GmbH Senkrechtstarter
DE102015207445B4 (de) 2015-04-23 2023-08-17 Lilium GmbH Tragfläche für ein Luftfahrzeug und Luftfahrzeug
US10926874B2 (en) * 2016-01-15 2021-02-23 Aurora Flight Sciences Corporation Hybrid propulsion vertical take-off and landing aircraft
FR3051898B1 (fr) * 2016-05-24 2020-12-11 Airbus Operations Sas Ensemble de gestion de vol pour un aeronef et procede de securisation de donnees du monde ouvert a l'aide d'un tel ensemble
US20170355449A1 (en) * 2016-06-10 2017-12-14 Goodrich Aerospace Services Private Limited Electrical architecture for slat/flap control using smart sensors and effectors
JP6500875B2 (ja) * 2016-10-25 2019-04-17 トヨタ自動車株式会社 車載ネットワークシステム、及び、車載ネットワークシステムにおける通信制御方法
WO2019006469A1 (fr) * 2017-06-30 2019-01-03 A3 By Airbus, Llc Systèmes électriques tolérants aux défaillances pour aéronef
US10382225B2 (en) * 2017-07-27 2019-08-13 Wing Aviation Llc Asymmetric CAN-based communication for aerial vehicles
EP3587194B1 (fr) * 2018-06-29 2022-08-03 Aptiv Technologies Limited Centre de données et de puissance (pdc) pour applications automobiles
CN108688803A (zh) * 2018-07-26 2018-10-23 杨福鼎 一种可垂直起降的飞行器
US11155341B2 (en) * 2018-07-30 2021-10-26 Honeywell International Inc. Redundant fly-by-wire systems with fault resiliency

Also Published As

Publication number Publication date
EP3998200A1 (fr) 2022-05-18
CN114954914A (zh) 2022-08-30
US20220269291A1 (en) 2022-08-25
WO2022175106A1 (fr) 2022-08-25

Similar Documents

Publication Publication Date Title
EP3998200B1 (fr) Système de commande de vol d'aéronef tolérant aux pannes
US9533751B2 (en) Multi-axis serially redundant single channel, multi-path fly-by wire flight control system
US9081372B2 (en) Distributed flight control system implemented according to an integrated modular avionics architecture
US7770842B2 (en) Aircraft flight control surface actuation system communication architecture
US8600584B2 (en) Aircraft control system with integrated modular architecture
RU2494931C2 (ru) Самолет с системой увеличения подъемной силы
EP1301393B1 (fr) Modules de commande de vol fusionnes avec une aeroelectronique modulaire integree
US12103404B2 (en) Electrical fault isolation in a power distribution network of an aircraft
EP3736212A1 (fr) Aéronef à décollage et à atterrissage verticaux (adav)
JP3965243B2 (ja) 操縦装置
US20240051672A1 (en) Airship equipped with an electric distributed propulsion system
JP2024519074A (ja) 航空機の電力分配ネットワークにおける時間変化する電気負荷分散
US12006035B1 (en) Systems and methods for flight control of EVTOL aircraft
EP1781538B1 (fr) Architecture de communication du systeme d'actionnement de la gouverne d'un avion
CN210983099U (zh) 飞机的控制系统和飞机
EP4358475A1 (fr) Auto-configuration de noeuds de bus dans un système de bus d'un avion
CN117707202A (zh) 一种小型倾转四旋翼无人机分布式飞行控制系统及方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221108

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G05D 1/08 20060101ALN20230827BHEP

Ipc: H04L 12/40 20060101ALI20230827BHEP

Ipc: B64C 15/12 20060101ALI20230827BHEP

Ipc: B64C 39/12 20060101ALI20230827BHEP

Ipc: B64C 29/00 20060101ALI20230827BHEP

Ipc: B64C 9/08 20060101ALI20230827BHEP

Ipc: B64D 31/14 20060101ALI20230827BHEP

Ipc: B64C 13/50 20060101AFI20230827BHEP

INTG Intention to grant announced

Effective date: 20230914

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: G05D 1/08 20060101ALN20231026BHEP

Ipc: H04L 12/40 20060101ALI20231026BHEP

Ipc: B64C 15/12 20060101ALI20231026BHEP

Ipc: B64C 39/12 20060101ALI20231026BHEP

Ipc: B64C 29/00 20060101ALI20231026BHEP

Ipc: B64C 9/08 20060101ALI20231026BHEP

Ipc: B64D 31/14 20060101ALI20231026BHEP

Ipc: B64C 13/50 20060101AFI20231026BHEP

INTG Intention to grant announced

Effective date: 20231120

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602021012092

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

P01 Opt-out of the competence of the unified patent court (upc) registered

Free format text: CASE NUMBER: APP_44485/2024

Effective date: 20240731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1679346

Country of ref document: AT

Kind code of ref document: T

Effective date: 20240424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240424

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240826